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ON REGULAR ALGEBRAIC SURFACES OF IR
3

WITH CONSTANT MEAN CURVATURE

J. Lucas M. Barbosa & Manfredo P. do Carmo

Abstract

We consider regular surfaces M that are given as the zeros
of a polynomial function p : IR3 → IR, where the gradient of
p vanishes nowhere. We assume that M has non-zero constant
mean curvature and prove that there exist only two examples of
such surfaces, namely the sphere and the circular cylinder.

1. Introduction

An algebraic set in IR3 will be the set

M = {(x, y, z) ∈ IR3; p(x, y, z) = 0}

of zeros of a polynomial function p : IR3 → R. An algebraic set is
regular if the gradient vector ∇p = (px, py, pz) vanishes nowhere in M ;
here px, py, and pz denote the derivative of p with respect to x, y, or z
respectively.

The condition of regularity is essential in our case. It allows us to pa-
rametrize the set M locally by differentiable functions x(u, v), y(u, v),
z(u, v) (not necessarily polynomials), so that M becomes a regular sur-
face in the sense of differential geometry (see [3], chapter 2, section 2.2,
in particular Proposition 2); here (u, v) are coordinates in an open set
of IR2.

Since M is a closed set in IR3, it is a complete surface. In addition,
being a regular surface, it is properly embedded, i.e., the limit set of
M (if any) does not belong to M (cf. [16], chapter IV, A.1 p. 113).
In particular, regular algebraic surfaces are locally graphs over their
tangent planes.

From now on, M will denote a regular algebraic surface in IR3. Due
to the regularity condition, one can define on M the basic objects of
differential geometry of surfaces and pose some differential-algebraic
questions within this algebraic category.

For instance, in the last 60 years (namely after the seminal work [5]
of Heinz Hopf in 1951), many questions have been worked out on differ-
entiable surfaces of non-zero constant mean curvature H. See also [6].
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In our case, we have two examples of algebraic regular surfaces that
have non-zero constant mean curvature, namely,

(1) spheres, (x−x0)
2+(y−y0)

2+(z−z0)
2 = r2 with center (x0, y0, z0) ∈

IR3 and radius r = 1/H;
(2) circular right cylinders, (x− x0)

2 + (y − y0)
2 = r2, whose basis is

a circle in the plane xy with center (x0, y0) and whose axis is a
straight line passing through the center and parallel to the z axis.

A first natural question is: Are there further examples?
The first time we heard about this question was in a preprint of

Oscar Perdomo (recently published in [14]) where he proves that for
polynomials of degree three there are no such surfaces.

In this note, we prove the following general result:

Theorem 1.1. Let M be a regular algebraic surface in IR3. Assume

that it has constant mean curvature H �= 0. Then M is a sphere or a

right circular cylinder.
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also want to thank the referee for useful comments.
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2. Preliminaries

We first observe that, in the compact case, this theorem follows im-
mediately from Alexandrov’s well-known result: An embedded compact

surface in IR3 with constant mean curvature is isometric to a sphere.

The second observation is that the total curvature of an algebraic
surface is finite. This was first proved by Osserman [12] in the case
that the surface is an immersion parametrized by polynomials in two
variables. In this case, it follows from a theorem by Huber [7] that a
complete parametrized algebraic surface has finite topology, i.e., it is a
compact surface with a finite number of ends.

It is likely that a similar proof can be given to our (implicitly defined)
regular algebraic surface M . The proof by Osserman uses Bezout’s theo-
rem and the same will occur in the implicit case. Since we had difficulties
in finding a reference for the appropriate version of Bezout’s theorem,
we followed another way.

The fact that algebraic surfaces in IR3 have finite topology is just a
particular case of a more general theorem which states that all algebraic
subsets of IRn defined by any number of real polynomials with bounded
degree belong to a finite number of topological types. This is proved in
[2], chapter 9, Theorem 9.3.5. Applied to surfaces, this proves that our
M is a compact surface with finitely many ends.
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The proof of our theorem uses in a crucial way the structure theory for
embedded, complete finitely connected surfaces with non-zero constant
mean curvature developed by Korevaar, Kusner, and Solomon in [8]
after some preliminary work by Meeks [10]. The statement that we
need from these papers is as follows:

Theorem A ([10] and [8]) Let M be a complete, non-compact, prop-
erly embedded surface in IR3 with non-zero constant mean curvature.
Assume that M is finitely connected. Then, the ends of M are cylin-
drically bounded. Furthermore, for each end E of M , there exists a
Delaunay surface Σ ⊂ IR3 such that E and Σ can be expressed as cylin-
drical graphs ρE and ρΣ so that, near infinity, |ρE −ρΣ| < Ce−λx where
C ≥ 0 and λ > 0 are constants.

Remark 2.1. The first assertion in Theorem A comes from [10].
The final assertion is from [8], Theorem 5.18.

3. Proof of the Theorem

We can assume thatM is complete and non-compact; otherwise it is a
sphere. Thus, M has finite topology, that is, M is compact with finitely
many ends. By Theorem A, each end E of M converges exponentially
to a Delaunay surface Σ. Since M is embedded, the Delaunay surface Σ
to which an end E converges has to be an onduloid or a right circular
cylinder.

We first claim that the Delaunay surface Σ toward which E converges
is actually a cylinder.

Suppose it is not. By a rigid motion, we can assume that the axis of
Σ is parallel to the y axis and meets the z axis. Then, there is a value z0
of z such that the line y → (0, y, z0) intersects Σ infinitely often. Since
E approaches Σ at infinity, the algebraic equation p(0, y, z0) = 0 has
infinitely many solutions. This is impossible. So Σ is a cylinder as we
claimed.

We claim now that E contains an open set of the cylinder Σ.
To see this, we take a rigid motion so that one of the straight lines

of the cylinder Σ agrees with the coordinate y-axis. Thus, one of the
intersection curves of E with the plane x = 0 is a curve β that converges
to the y-axis. If y is large enough, β is given by

β(y) = (0, y, z(y)),

where z(y) is a function that satisfies

lim
y→∞

z(y) = 0.

Since the curve β belongs to the end E, we have

p(0, y, z(y)) = 0.
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Observe that the polynomial p can be written as

p(x, y, z) = anz
n + an−1z

n−1 + . . .+ a1z + a0

where ak = ak(x, y) is a polynomial in x and y of degree ≤ n. By
Theorem A, we have that

lim
y→∞

z(y) = lim
y→∞

Ce−λy = 0.

By a known result in calculus, we have, for any integer k,

lim
y→∞

yke−λy = 0

for any integer k.
Thus, by computing the limit in the equation p(0, y, z(y)) = 0 as

y → ∞ along the curve β, we obtain that a0 does not depend on y, and
a0 = 0. This means that, for any y, the equation p(0, y, z) = 0 has z = 0
as a root, i.e., the straight line y → (0, y, 0) is contained in E.

The above argument applies to an arbitrary straight line of Σ. It
follows that an open set in E is a cylinder. This proves our claim.

Thus, there exists an open set U in M with the property that the
Gaussian curvature K vanishes in M . Since M is analytic, K vanishes
identically in M . It is then well known (see e.g. [9]) that M is a cylinder.
Since H is constant, this is a circular cylinder. This proves the theorem.

Remark 3.1. A crucial point in the proof is that the convergence in

[8] is exponential. It allows us to prove that not only an arbitrary straight

line in the cylinder Σ converges to E but that actually it is contained

in E.

4. Final Remarks

The case H = 0. There are many algebraic minimal surfaces in IR3

(see p. 161 of the English translation of Nitsche’s book [11]). However,
the examples we are most familiar with, namely, the Enneper surface and
the Hennenberg surface, are not embedded; thus they are not regular
algebraic surfaces.

In fact it is simple to prove the following proposition.

Proposition 4.1. There are no regular algebraic minimal surfaces

in IR3 except the plane.

Proof. LetM be an algebraic minimal surface in IR3. As we have seen,
such a surface is finitely connected, i.e., it is a compact surface with a
finite number of ends. We also know that M is properly embedded.

Let E be one of its ends. Parametrically E can be described by a
map x : D−{O} → IR3, where D is an open disk of IR2 centered at the
origin and O is the origin.

We may assume, after a rotation if necessary, that the Gauss map,
which extends to O (see Osserman [13]), takes on the value (0, 0, 1) at
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O. The two simplest examples of such ends are the plane and (either
end of) the catenoid.

Now we use a result proved by R. Schoen [15]. He showed that such
an end is the graph of the function x3 defined over the (x1, x2)-plane
and

(1) x3(x1, x2) = a log ρ+ β + ρ−2(γ1x1 + γ2x2) +O(ρ−2).

When a �= 0 the end is of catenoid type. When a = 0 the end is of the
planar type. In fact, if a �= 0 the function x3 will be asymptotic to the
graph of the function log ρ; if a = 0 it will be asymptotic to the graph
of a constant function (equal to β).

Let’s assume that E is of the catenoid type. Consider the curve α
intersection of the E with the plane x2 = 0 in the region x1 > 0. Since
M is given by the equation p(x1, x2, x3) = 0, the curve α is algebraic,
given by p(x1, 0, x3) = 0. This curve must be asymptotic to the graph
of the function x3 = a log x1. But this is impossible. Hence, M can not
have an end of the catenoid type.

Thus, all the ends of M are of the planar type. But they are in finite
number. Since M is embedded, the planes asymptotic to M must be
parallel. It follows that there are two parallel planes such that M is
contained in the region bounded by them. It follows by the halfspace
theorem for minimal surfaces [4] that M must be a plane. q.e.d.

Hypersurfaces in IRn+1, n ≥ 3. In this case we consider the zeros of a
polynomial function p(x0, x1, . . . , xn), n ≥ 3, with ∇p �= 0 everywhere,
and call them regular algebraic hypersurfaces Mn of IRn+1. Similar to
the case n = 2, the only compact examples of such hypersurfaces are
spheres. This follows immediately from Alexandrov theorem. So, we are
left to consider the complete non-compact case. A generalized cylinder
Ck in IRn+1 is a product Bk × IRn−k, where the basis Bk ⊂ IRk+1 ⊂
IRn+1 is a hypersurface of IRk+1 and the product is embedded in IRn+1

in the canonical way, i.e., Bk×IRn−k ⊂ IRk+1×IRn−k. It is easily checked
that when B is a k-sphere, Ck has nonzero constant mean curvature.
The following lemma is again a consequence of Alexandrov’s theorem.

Lemma 4.2. Let Ck be an algebraic regular generalized cylinder in

IRn+1 whose basis B is a compact hypersurface. If Ck has constant mean

curvature then the base Bk is a k-sphere.

We do not know any further examples of a regular algebraic hyper-
surface in IRn+1, n > 2, with nonzero constant mean curvature. We can
ask a question similar to the one we answered for n = 2. The possible
extension of our proof, however, needs new ideas. Although the topology
is again finite, the proof of the structure theorem of [8] does not work
for hypersurfaces in IRn+1, n > 2.
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Instituto Nacional de Matemática Pura e Aplicada - IMPA

Estrada Dona Castorina 110

22460-320 Rio de Janeiro - RJ, Brazil

E-mail address: manfredo@impa.br


