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THE CALABI-YAU EQUATION ON THE
KODAIRA-THURSTON MANIFOLD,
VIEWED AS AN SL.BUNDLE OVER A 3-TORUS

E. BuzaNo, A. FINO & L. VEZZONI

Abstract

We prove that the Calabi-Yau equation on the Kodaira-Thurston
manifold has a unique solution for every S'-invariant initial da-
tum.

1. Introduction and statement of the result

The celebrated Calabi—Yau theorem affirms that given a compact
Kahler manifold (M™, €, J) with first Chern class ¢;(M"), every (1,1)-
form p € 2me; (M™) is the Ricci form of a unique Kéhler metric whose
Kéhler form belongs to the cohomology class [2]. This theorem was
conjectured by Calabi in [4] and subsequently proved by Yau in [15].
The Calabi-Yau theorem can be alternatively reformulated in terms of
symplectic geometry by saying that, given a compact Kéahler manifold
(M™,Q,J) and a volume form o satisfying the normalizing condition

o= Q"
n Mn

then there exists a unique Kihler form Q on (M™,.J) solving
(1) =0 [Q=[Q

Equation (1) still makes sense in the almost-Kdhler case, when J is
merely an almost-complex structure. In this more general context (1) is
usually called the Calabi—Yau equation.

In [5] Donaldson described a project about compact symplectic 4-
manifolds involving the Calabi—Yau equation and showed the uniqueness
of the solutions. Donaldson’s project is principally based on a conjecture
stated in [5] whose confirmation would lead to new fundamental results
in symplectic geometry. Donaldson’s project was partially confirmed
by Taubes in [9] and strongly motivates the study of the Calabi—Yau
equation on non-Kahler 4-manifolds.

In [16] Weinkove proved that the Calabi-Yau equation can be solved
if the torsion of J is sufficiently small, and in [13] Tosatti, Weinkove,
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and Yau proved the Donaldson conjecture assuming an extra condition
on the curvature and the torsion of the almost-Kéahler metric. Further-
more, Tosatti and Weinkove solved in [12] the Calabi-Yau equation on
the Kodaira—Thurston manifold assuming the initial datum ¢ invariant
under the action of a 2-dimensional torus 7. The Kodaira-Thurston
is historically the first example of symplectic manifold without Kéhler
structures (see [11, 1]) and it is defined as the direct product of a com-
pact quotient of the 3-dimensional Heisenberg group by a lattice with
the circle S*. In [6] it is proved that when o is T2-invariant, the Calabi-
Yau equation on the Kodaira—Thurston manifold can be reduced to a
Monge—Ampere equation on a torus which has always a solution. More-
over, in [6, 3] the same equation is studied in every T?-fibration over a
2-torus.

The Kodaira—Thurston manifold is defined as the compact 4-manifold

M = Nil®/T" x St
where Nil® is the 3-dimensional real Heisenberg group

1
Nil? = {[Osfzz/] T x,Y, 2 € R}
001
and I' is the lattice in Nil® of matrices having integers entries.
Therefore, M is parallelizable and has the global left-invariant co-
frame

(2) el =dy, € =dx, &=dt, ¢ =dz—zdy
satisfying the structure equations

(3) de' = de* = de® =0, de* =e!'?

with

el =e Ne.

Since Nil3/T' x S' = (Nil®> x R)/(I" x Z), the Kodaira-Thurston man-
ifold M is a 2-step nilmanifold and every left-invariant almost-Kéahler
structure on Nil® x R projects to an almost-Kihler structure on M.
Moreover, the compact 3-dimensional manifold N = Nil® /T is the total
space of an S'-bundle over a 2-dimensional torus 72 with projection
Tey: N — T:?y and M inherits a structure of principal S'-bundle over
the 3-dimensional torus 73 = Tgy x St ie.,

Sl - NxSl=Mm
T2 x 81 =713,

Then it makes sense to consider differential forms invariant by the action
of the fiber S!. A k-form ¢ on M is invariant by the action of the fiber
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Sl if its coefficients with respect to the global basis e/t A --- A e’k do not
depend on the variable z.

These observations allow us to extend the analysis in [12, 6] from
T?-invariant to S'-invariant data o.

Consider on M the canonical metric

4
(4) g= Z e’ @ ef
k=1

and the compatible symplectic form
O =eld et

The pair (€2, g) specifies an almost-complex structure J making (€2, J)
an almost-Kahler structure. Observe that

Jel =¢3 and Jet = €2

Then we can consider the Calabi—Yau equation

(5) (Q+da)? = e Q2
where the unknown « is a smooth 1-form on M such that
(6) J(da) = da

and the datum F' is a smooth function on M satisfying

(7) /M el 02 = /M 02

We have the following theorem.

Theorem 1. The Calabi-Yau equation (5) has a unique solution
& = Q+ da for every S'-invariant volume form o = et Q2 such that

(8) / efav =1,
T3
where dV is the volume form dx A dy A dt on T3.

Since uniqueness follows from a general result in [5], we need only to
prove existence. This will be done in two steps. First, in Section 2 we
reduce equation (5) to a fully nonlinear PDE on the 3-dimensional base
torus T3. Then, in Section 4 we show that such an equation is solvable.
Section 3 concerns the a priori estimates needed in Section 4.

With some minor changes in the proof, it is possible to generalize The-
orem 1 to the larger class of invariant almost-Kéhler structures on the
Kodaira—Thurston manifold. All positively oriented invariant almost-
Kéhler structures compatible with the canonical metric (4) can be ob-
tained by rotating the symplectic form Q = e'? + ¢*2. Indeed, since the
three forms

Q—eB e e, O =12y M



178 E. BUZANO, A. FINO & L. VEZZONI

are a basis of invariant self-dual 2-forms, every positively oriented in-
variant 2-form w compatible with g can be written as

w=AQ+ BQ + CQ"

for some constants A, B, C' satisfying A% + B2 + C? = 1. The condition
dw = 0 is equivalent to C = 0, and therefore every positively oriented
symplectic 2-form compatible with g can be written as

wp = (cosfel +sinfe?) Aed — (—sinfel +cosfe?) Ael,

for some 6 € [0, 27).

Theorem 2. Assume either cosd = 0 ortan @ € Q. Then the Calabi—
Yau equation

(wg +da)* =ef'ws,  Jy(da) =0

has a unique solution & = wg + da for every S*-invariant volume form

o = el w2 satisfying (8).

In Section 5 we give some details on how to modify the proof of
Theorem 1 in order to prove Theorem 2.

Observe that for § = 0, wy is the form Q = e'® + €*? considered in
Theorem 1, while wy /, = el + 23 is the symplectic form (V.
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2. Reduction to a single elliptic equation

The dual frame of (2) is
e1 =0y +x0,, ex=0; e3=0, e4=0,.
If u is S'-invariant, it does not depend on z, and we have
et = Oy = Uy, €U = OpU = Uy, e3u = O = Uy, equ = 0.
It is convenient to set
9) O =0y, 0Oy=0;, 03=0,

so the differential can be written as

3
du = Z ue'.
i=1
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Theorem 3. Given a smooth function v : T° — R such that

(10) / wdV =0,
TS

set

(11) o = d°u — uel.

Then the 1-form (11) satisfies equation (6). Moreover, « solves equa-
tion (5) if and only if u is a solution to the fully non-linear PDE

(12) (Uze + 1) (Uyy + v +up + 1) — u?cy — u?vt = el
Proof. Thanks to (3) we have
3 3 ' '
ddu = Z 0;0jue' N\ Je! — Opu el?
i=1 j=1

3 3
= Z Z d0;ue’ A Jel + d(uet) + dzuel®.

i=1 j=1

Therefore, da is of type (1,1) and

3 3
da = Z Z 0;05u e’ N Je + Ozueld
i=1 j=1
= (uyy + uy + ut)el?’ — gt + u:cy(e23 — 614) + Uxt(€12 — 634).

Then a simple computation shows that « satisfies (5) if and only if u
satisfies (12). q.e.d.

We end this section by proving ellipticity of equation (12).

First we fix some notation. Functions on the 3-torus can be identified
with functions u : R? — R that are 1-periodic in each variable.

For any non-negative integer n, we denote by C"(T®) the Banach
space of C™ functions u: T% — R equipped with norm

Hu”cn = max ’U‘cm )
m<n

where

[ulem = max sup |0"u(q)|.
|n|:mq€R3

Given 0 < p < 1 and u € C9(T3), we set
[u(@)], = sup [u(g+h)—ulg)| |n]™".
0<|h|<1

Here we employ the multi-index notation 9" = 0705205* and |k| =
K1+ K2 + K3.
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For every non-negative integer n and real number 0 < p < 1, define
the space C"P(T?3) of functions u € C™(T3) such that

[u|cntp = max sup [0"u(q)] < oo.
|k|=n g€R3 p

C™P(T3) is a Banach space with respect to the norm

lullgnsn = max{ ulln sl gn }-

In conclusion, we have defined C?(T?) for every non-negative real num-
ber o.
Finally, we denote by C?(T?) the closed subspace of all u € C7(T?)

satisfying
/ udV = 0.
T3

Proposition 1. Let u € C*(T?) be a solution to (12). Then we have

(13) Ugpy > —1
and
(14) Uyy + g +ug > —1.

Proof. Indeed, from equation (12) we have
(tyy + Uge + ug + 1) (Ug + 1) > e > 0.

This implies that w,, + uy +u + 1 and ug, + 1 have always the same
sign. But at a point where v attains its minimum, we must have

Uae + 12 1. q.e.d.

Let
AU = Ugy + Uyy + Uy

be the standard Laplacian in R3.
Now we prove ellipticity of equation (12).

Proposition 2. Let u € C%(T3) be a solution to equation (12). Then
we have

(15) 0<2e? < Au+uy +2

and

(16)  (uge + 1)(0* + 72) + (uyy + g + ug + 1)E2 — 2ugy€n — 2upér >
> A(u) (52 +n?+ 7'2), for all (&,m,7) € R3,

where

17 Aw) = %(Au Pt 2= /(B 1 2)2 — deF).
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REMARK. The left-hand side of (16) is the principal symbol of the
linearization of (12) at the solution w. Since a non-linear equation is
elliptic on a set S if its linearization at any u € S is elliptic, we have
that equation (12) is elliptic on the set of all of its solutions u € C?(T%).

Proof. Inequality (15) follows from (13), (14), and (12).
A simple computation shows that the characteristic polynomial of the
matrix

Uy + Uy + U + 1 Ugy Uyt
P(u) = Ugy Ugr + 1 0
Ut 0 Upe + 1

associated to the quadratic form on the left-hand side of (16) is
(A = (uge + 1)) (A = (Au+up +2)A + ).

Then the eigenvalues of P(u) are

A = %(Au+ut+2:t\/(Au+ut+2)2—4eF>
and ugz; + 1. Since
(Au+uy +2)? — 4ef = ((uyy +up +w + 1) — (uge + 1))2 + u?cy + u?,
> ((Au 4w +2) — 2(uge + 1)),

we have
A §um—|—1§)\+,
and the proof is complete. q.e.d.

3. A priori estimates
3.1. CYestimate.

Proposition 3. We have
(18) |um| <1,
for all solution u to (12).

Proof. Fix (x,y,t) € R3, and consider the periodic function
o(s) = ule + 5,,1).
We have
V" (8) = ugz(x + 8,y,t) > —1.

Let sg € [0, 1] be a critical point of v. Then we have
$ > —(s — > —1 <s< 1
U/(S) _ / U//(T‘)T‘ - (S 80) e , S0 <s=<sp+1,
50 <—(s—s0) <1, sp—1<s<sp.

By periodicity we get that these estimates hold everywhere; in particu-
lar, we obtain

‘ul‘(x7y7t)’ = |UI(0)| <L q.e.d.
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Denote by
Uy
Vu= |uy
Ut

the standard gradient of u. We have
Vul? = u? + %2; +
thus, if we set
Vuleo = [[Vul|co,
we have
[uler < [Vuleo < V3 ulea -

In this paper all LP norms are taken on the torus 7. In particular,
we set

IVulte = [ FuP v = [ @2+ adsad)av.
T3 T3
Theorem 4. Given a real number p > 2, we have
/2|2 p? F
(19) [V [ulPZ][7 < 16 Il L \1+e | o Il

for all u € C*(T?) satisfying equation (12).
Proof. From Theorem 3 we have that

(20) o = d°u — uet

solves equation (5), which can be rewritten as

(e =12 =da A (Q+Q),

where )
Q=Q+do.
Since
A ful™2) = uf"* du - (p = 2)[ul ™ 1 du
=(p—1)|uP~? du, for u # 0,
we have

(21) /T3d<(u]u]p_2a) /\(Q—i—ﬁ)) =

:(p_l)/ P> duAaA(Q+Q)+/ P2 u(ef — 1) 02,
T3 T3

and Stokes’ theorem implies

(22) / P2 duhan(Q+Q) = L (1—eY uf2un?
T3 p—1 )3
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Taking into account that

(23) Q =(Uyy + g + up + 1)613 — (uge + 1)624,
+ Umy(e23 o 614) + Umt(€12 o 634),
we have
1

(24) du/\a/\Q:§<ui+u5+ut(ut+u)> 0?
and

=1, 1 \2 )
(25) du/\a/\Q:§ uy—l—(ut+§u> (Uge + 1)2

1
+ = ’LL?C(Uyy + g + up + 1)92

1
UgpUyUgy + Uy <ut + 3 u) umt> 0?

—

~3 u? (g + 1)Q2
Thanks to (16), we obtain from (25) that
duhahQ> —é U? (ugy + 1)Q2.
Then from (22) and (24) we get

(26) / P2 (ui + ui + ug(ug + u)) av <
T3

1 2
< —/ [ul? (Uge +1)dV + —— [ (1 —ef) julP"2udV.
4 T3 pP— 1 T3

An integration by parts gives
/ lulP~2 e dV = (1 —p)/ ulP~ wuy dV,
T3 T3
and therefore we have
/ lulP2 wuy dV = 0.
T3

Since, moreover,

/ P e dV = —p / P2 w2 v
T3 T3

estimates (18) and (26) imply
p—2 2 1 p
(27) [ulP™7 |Vu|” dV < — lul? dV+
T3 4 T3

p 2 F p—1
—|—<Z—|—p7_ 1-e ‘CO)/TS|U| av.
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But the left-hand side can be rewritten as
4
/ (P2 [Vuf? 4V = 2/ IV [uf’?| v,
T3 b= Jrs

Moreover,

_op
— 4

1 o ‘1—|—e ‘CO’ for p > 2;

then (27) becomes
(28)

/|vyuv’/2| av < & / u \pdV+5 \1+eF\CO/ luP~t dv.
T3

Since T has measure 1, we have

(29) Jullp—r < llullzs -
Estimate (19) follows from (28) and (29). q.e.d.

Dy 2 ) o
-

It is rather natural to compare estimate (19) with the classical a priori
Yau’s estimate

2
<o (1= leo) ol
involving the solutions ¢ to the complex Monge-Ampere equation (w +
dd®p)™ = el w™ in 2m-dimensional Kihler manifolds (see, for instance,
[8, Proposition 5.4.1]). The right-hand side of (19) contains the extra
term % [ul|¥, due to the presence of —ue! in (11). This is a problem in
the first step of the C%-estimate, i.e., with p = 2. We take care of this
in the next proposition.
From the Strong Maximum Principle Au constant implies u constant,

and then —A is an operator from C?(T?) into C°(T?). As such, its first
eigenvalue is 472. This implies the inequality

IV 1625 <

(30) 472 [|ull7, < /T3 —AuudV = ||Vul[3,,  forall u e C*T?).

Proposition 4. We have
(31) lull 2 < 1+ €0,
for all u € C*(T?) satisfying equation (12).
Proof. Since
IV fulll 72 = 1VulZ-
from (19) with p = 2 and (30) we obtain

2
4 ullds < |l + 2 !1 +ef] o llull 2

—4
which implies (31). q.e.d.
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Now we are ready to prove an a priori C? estimate for the solutions
o (12):

Theorem 5. Given F' € C?(T3) satisfying condition (8), there exists
a positive constant Cy, depending only on |F'| o, such that

(32) [u| o < Co,
for all u € C*(T?) satisfying equation (12).

Proof. From the Sobolev Imbedding Theorem (see, for instance, [2,
Theorem 5.4]), there exists a positive constant K such that

(33) holi3e < K (lel2s + IVwls),

for all w in the Sobolev space W2(T3).
Then from (19) and (33) we have

60 Tl < K (14 2) ulf, + K2 |14 e uls”

< Ky lul®, (1 n ‘1 I GF‘CO ”UHB)’ for all p > 2.
It follows that
[[wll 3o < (Mpz)l/pk, for all k € Z4,
HUHLPk
with
and
pr=2-3%
Then
llwll z30m H 1/pk foralln € Z,.
”u”L2 k=0
But

o0 o0

1
3\1/pr _ 3/493u/2
k|:|0(Mpk) /Pk = exp <k§:0j 5o <log(8M) + 3k log 3)> = (8M)3/4331/2,

with
=k
n=> 5 <
k=1
Then

(36) lul o = sup [|[ul o < (8M)¥433/2 ||u| 1
neN
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Now from (35) and (31) we have

3/4
Ml 2 = K (|l e + 1+ e o) ™ Ilulls"
< 2K 1+ 0,
and (32) follows from (36). q.e.d.

3.2. Estimate of gradient and Laplacian.
We make use of the tensor product notation. In particular, (V ® V)u
is the Hessian matrix of u, and tr(V ® V) = A is the Laplacian.
Observe that

(Ve V) (uw) =v(VeaViu+u(VeV)v+ (Vu® Vo) + (Vv Vu).

Theorem 6. Given ' € C?(T3) satisfying condition (8), there exists
a positive constant Cy, depending only on || F|| 2, such that

(37) |Au|qo < Ch (1 + |u|cl),
for all u € CH(T?) satisfying equation (12).
Proof. From equation (12) we obtain

(38) (AF+|VF] + F)el =
= (uyy + upy + ur + 1) (Augy + Ugar)

+ (Ugg + 1) (Auyy + wyyr + Ay + gt

+ (Ugg + 1) (Auy + ugt) + 2Vugy - V(uyy + uy + uyr)

— 2y (AUgy + Ugyr) — 2 ]Vuxylz — U (Atgy + Ugyy) — 2 ]Vuxt\2 .

Consider
(39) O = (Au+u +2)e M,
where
(40) l .

- max(Au + uy + 2)
and 0 < € < 1 is a constant to be chosen later. Differentiating (39) yields

VP =e M <V(Au +ug) — p(Au + uy + 2)Vu)

and

(Ve V)® =— ue M <Vu QR V(Au+u) + V(Au +w) ® Vu)
+ plemru ((Au +u +2)Vu® Vu) +
+e MY ((V @ V)(Au + up) — p(Au 4 up + 2)(V @ V)u)

Consider now a point (g, yo, to), where ® attains its maximum value.
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We have V® = 0 and (V ® V)® <0, so that
(41) V(Au + u) = p(Au+ v + 2)Vu,
and

(42) (V@ V)(Au+u) < u(Au+ uy + 2) ((v ® V)u+ uVu ® w).

In particular, we obtain

2
(43) (B(Au+ Uy + 2)(ttay + uttatty) = (Atpy + tiayr)) <
< (u(Au + g + 2) (Ugg + pul) — (Atgy + umt)>
: (M(AU g+ 2) (uyy + puy) — (Auy, + uyyt))

and

(44) (Bt g+ 2) g+ ) — (B + 1)) <
< <N(Au + g+ 2) (g + pu2) — (Augy + umt)>
- (,U(Au + g + 2) (ug + pug) — (Auge + Uttt))-
From (42) we have, in particular, that
(A 4 ug + 2)(0;05u + pojudju) — (Adi0ju + 0,0;05u) > 0
for all 1 <i,j < 3. Then, form (43), (44), and (16) with

€ = (Dt -+ 2) (s + p12) — (At + tzar))

n= (,u(Au + g+ 2) (uyy + pug) — (Duyy + uyy) 1/2

T= (,u(Au + ug + 2) (g + pu?) — (Aug + Uttt)) 2
we obtain

(45)  (uyy + uge + v + 1) (Augg + Ugqr)
+ (Uze + 1) (Auyy + wyyr + Aty + gt
— 2y (AUgy + Ugyr) — 20 (AUgy + Ugyy) <
<p(Au + up + 2) (ugy + up + up + 1) (Ugy + pul)
+ (AU + g + 2) (Ugg + 1) (uyy + pul, + ug + pruy)

—2u(Au + u + 2) <uxy(uxy + prugtty) + gt (g + uuxut)).
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Substituting (41) and (45) into (38), and using (15), we get

(46) (AF+|VF[ + F)ef" <
< (A g+ 2) (uyy + g + g + 1) (g + pul)
+ (AU 4 g + 2) (Uge + 1) (Uyy + g + p(ul, + uf))
+ 1(Au + up + 2) (ugy + 1)up + 2Vugg - V(uyy + un + uy)
—2u(Au+ up + 2) <uxy(uxy + prugtty) + Uge (g + /wxut)).
On the other side, from (41) we have

(47) pP(Au A+ ug +2)? | Vul* = [V(Au -+ u)[* =
= |Vitge|* + |V (tyy + ue + ue)|* + 2Vtay - V (Uyy + s + )
> 2V Uy - V(Uyy + ug + ).
Eventually, from (46) and (47) we obtain
(48) (AF+|VF[ + F)ef" <
<p(Au+up +2) <(uyy + ug + up + D)y + (Upe + 1) (wyy + w + ut)>
— 2 u(Au A+ ug + 2)(uF, + uzy)
+ 2% (Au A+ ug + 2) ((uyy + gy + ug + D) ud + (uge + 1)(u§ + uf))
+ 12 (Au + ug + 2)? |Vul?
<2p(Au 4 ug + 2)eF — p(Au+ up + 2)% + P2 (Au + up + 2)? [Vul?.

Set
M = Au(zo, Yo, to) + (0, Yo, to) + 2
and
ug = u(xo, Yo, o),
so that
max ® = Me H40,

From (48) we get
(49) uM? < |(AF + Fy)e”| o +2uM |7 o + 12 M? | VulZo -

Denote by @ the value of u at a point where Au + u; + 2 attains its
maximum value. Then, thanks to Theorem 5, we have

(50) M < max(Au + u; + 2) < Met@710) < pe?nco,
Moreover, (40) and (15) imply
9y, — 2e < ceminF/2 <e minF/2’

max(Au + uy + 2)
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and then (50) yields

(51) eexp(—e_minF/2C0) <uM <e
and
(52) exp ( — T minFy2 Co) max(Au + ug +2) < M.

Eventually, from (49), (51), and (52) we obtain
€ exp ( — e~ MinF/2 C’o) max(Au + uy + 2) <

< [(AF + F)e”| .o + 2¢|e”] o + € [VulZo

ie.,

(53) max(Au+u; +2) <
: 1
< exp (207012 ) (6 (AF+F)e| 042 e o+ 3¢ |Vu|%0>-

Since
|Auloo < max(Au + ug + 2) + |Vu|qo + 2,
estimate (37) follows from (53), with
1

€E= ——=.
1+ Vo

q.e.d.
To prove the next theorem, we need the following estimate.

Proposition 5. Given 0 < p < 1, there exists a positive Kq, depend-
wng only on u, such that

(54)  Julgrsn < K()(HUHCO + \Au\c()), for all u € C2(T?).

Proof. Let p = % Since p > 3, the Morrey inequality gives
[uleren < Cllullyen,

where the constant C' depends only on p. On the other hand, elliptic L?
estimates for the Laplacian give

lullyzp < C"(lull o + 1Aull ),

where again C’ depends only on .
Finally, if u € C?(T3), we have

[ull oo + 1Aull L < fulco + [Aulco - q.e.d.

Theorem 7. Consider F € C?(T3) satisfying condition (8). Then
there exists a positive constant Ca, depending only on ||F || 2, such that

(55) ‘U‘Cq S 027
for all u € CH(T?) satisfying equation (12).
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Proof. Let 0 < p < 1. Thanks to standard interpolation theory (see
[7, section 6.8]), for all € > 0 there exists a positive constant M, such
that

lulcn < Me|u|qo + € |ulpirn, for all u € CH(T3).

Then, thanks to Theorem 5 and Proposition 5, we have
"U,‘Cq S MECO + €K0 (C() + ‘U’01 + ’A’U«‘Co)

< M.Cy + €Ky (Co + ulpr + Cr(1 + |u|01))
= M.Cy+ EK(](C(] + 01) + EK(](l + 01) |U|C«1 s

which implies (55), if we choose

1

‘S Kd o)

q.e.d.

Corollary 1. Under the hypotheses of Theorem 7, we have that equa-
tion (12) is uniformly elliptic on the set S of all solutions u € C*(T?),
in the sense that

inf A(u) >0,
ueS

where A is defined in (17).
Proof. It follows from Proposition 2 and Theorems 5 and 7.  q.e.d.

3.3. C*tr-estimate.

We begin by recalling a theorem of [14], which greatly simplifies the
estimate of derivatives up to second order. In [14] the theorem has been
stated locally, but on compact manifolds it holds globally.

Theorem 8 ([14, Theorem 5.1]). Let Q be be the solution of the
Calabi-Yau equation

ar=efar, Q) = [0,

on a compact almost-Kdahler manifold (M?,Q,J).
Assume there are two constants Cy > 0 and 0 < pg < 1 such that
F € CPo(M*) and

tI'g < C~’07

where g is the Riemannian metric associated to Q.
Then there exist two constants C >0 and 0 < p < 1, depending only
on M?", Q, J, Co and ||F| gy, such that

I3l < C.

Using this Theorem we easily prove the following estimate.
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Theorem 9. Given F € C*(T?3) satisfying condition (8), there exist
constants C3 > 0 and p > 0, both depending only on || F|| o2, such that

(56) [ullg2+p < Cs,

for all u € CH(T?) satisfying equation (12).

Proof. From (23) we obtain that the Riemannian metric § is repre-
sented by the matrix

Ugyy + U + ug + 1 Ugy 0 Uyt
5 Uzy Ugy + 1 Ugt 0
g 0 Uyt Uy + Uy + U + 1 —Ugy
Uyt 0 —Ugy Ugpe + 1
Then

trg = 2(Au+ u + 2).
Thanks to Theorems 5 and 7 we can apply Theorem 8 and get that
(57) )
maX{Hl + UMHCP 1+ Uyy + Ut + ut”cp ) Huxy”cp ) Huxt”cp} <C,
where C' depends only on ||F|| .

Now the estimates of second-order derivatives can be obtained as
follows. Given a solution u of equation (12), we have that u can be
viewed as a solution to the linear PDE
(58) Pugy + Q(uyy + uy) — 2Rugy — 2Suy + Qui = f
with

P:uyy+utt+ut+17 Q:uxx+17 R:u:cyy S:uxta
and
f=2e" — (Au+u +2).
Thanks to Proposition 2, Corollary 1 and estimate (57), standard Schauder
theory gives the estimate (56). q.e.d.

4. Proof of Theorem 1

Proposition 6. Assume u € C~’2+p(1:3) is a solution to equation (12)
with p > 0. If F € C*®(T?3), then u € C>®(T?).

Proof. From Proposition 2 we have that equation (12) is elliptic. Then
from [10, Theorem 4.8, Chapter 14], it follows that u belongs to the
Sobolev space W™2(T3), for all n € Z,. But this implies that u €
C>=(T3). q.e.d.

Thanks to Theorem 3, Theorem 1 is an immediate consequence of
the following theorem.

Theorem 10. Let F' € C>(T3) satisfy (8). Then equation (12) has
a solution u € C*(T3).
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Proof. We apply the continuity method (see [7, Section 17.2]). For
0<7<1,let
(59)
&, = {u € é"o(T?’) D (uyy +up Fup 1) (uge + 1) — uiy —u2, = eFT},
where

F. =log(1 —71+7el).

Note that 0 € G and that &; consists of the solutions to (12) lying in
C>(T?3). Since

ax, [[Frllgz < oo,

and
/ eFTdV:/(l—T—I—TeF)dV:l,
T3 T3

by Theorem 9 there exists a real number p > 0 such that

(60) sup [[u| g2+, < 00,
ued
with
6= |J & £0.
0<r<1

Since 0 € &y, the set {7‘ €[0,1] : &6, # (Z)} is not empty and we can
define
p=sup{tT €[0,1] : &, #£0}.
In order to compete the proof we have to show that &, # ) and p = 1.
e &, # . By the definition of x there exist two sequences (1) C [0, 1]
and (uy,) C C(T?) such that (uy) is increasing and uy € &, for all

k. Thanks to (60), the sequence (uy) is bounded in C*(T3); then by
the Ascoli-Arzela Theorem there exists a subsequence (ug,) conver-
gent in C?TP/2(T3). Let v = lim ug;. Then v belongs to C2Hr/2(T3)
and satisfies the equation

(vgy + Ve + 0p + 1) (Vgg + 1) — 07, — v, = /¥

By Proposition 6 v belongs to é‘x’(T?’). In particular, v belongs to
&, which turns out to be not empty.

e ;= 1. Assume by contradiction i < 1, and define the non-linear C*°
operator

T:CP(T?) x [0,1] — CP=2(T?),
T(u,7) = (tyy + g + up + 1) (Uae + 1) — u2, — u;, — e’

Observe that the condition [ T'(u,7)dV = 0 follows from the iden-
tities [ (u%y +u2)dV = [1a(uyy + un) gy dV and [ ef7dV = 1.
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Since &, is not empty, there exists v € &, such that T'(v, u) = 0.

Compute
NT (v, p)w = Lw,
where
Lw = Pwg, + Q(wyy + wy) — 2Rwgy — 2Swes + Quy = f

with

P:Uyy+vtt+vt+17 Q:Uxx+17 R:U:cyy S:Uxta
Since v € &,,, we know that L : C2*°(T3) — CP(T?) is elliptic. Then
by the Strong Maximum Principle L = 0 implies that u is constant.
This shows that L is is one-to-one on C?TP. Moreover, by ellipticity,
L has closed range, and thus Schauder Theory and the Continuity
Method (see [7, Theorem 5.2]) show that L is onto. Therefore, by
the Implicit Function Theorem there exists an ¢ > 0 such that

T(u,7)=0

is solvable with respect to u for every 7 € (u — €, ju + €). Thanks to
Proposition 6, these solutions belong to C*°(T?). Then &, # () for
all 4 < 7 < pu+ €, in contradiction with the definition of u.

q.e.d.
5. Outline of the proof of Theorem 2
Let 6 as in the statement of Theorem 2. Then we can write
wo = [ =,
with
fl=cosfe! +sinfe?, f2=—sinfe'+cosbe?, f3=¢3, fr=¢t
Since

dft = det = 2 = f12
one easily obtains that
a=du—uft
satisfies (6) and (5) if and only if u € C?(T?) is a solution to the fully
non-linear PDE

(61)
((cos 00, —sin6d,)*u + 1) ((sin@ Dy +cos 0 0y)*u+ Ofu + Oyu + 1) -

2
- ((COS 00, — sinf 0y)(sinf 0, + cosﬁﬁy)u) -

2
— <(COS 00, — sinﬁﬁy)@u) —

Let
v(p, q,t) = u(z,y,t),
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with
x =cosfp+sinfq,
y = —sinfp+ cosfq.
Then
Opv = cos 0 Opu — sin 6 Oyu,
Oqv = sin 0 Ou + cos 0 Oyu.

This implies that (61) can be rewritten as
(62) (Vpp + 1) (vgqg + vt + 14 + 1) — fugq — vﬁt =%,
where

G(p,q,t) = F(z,y,1).
Equation (62) is formally the same as equation (12). There is, how-
ever, a big difference in periodicity conditions, which become

v(p+cos@m +sinfn,q+sinf@m+ cosOn,t + k) =v(p,q,t),

for all m,n, k € Z.

In particular, this implies that the proof of Proposition 3 fails, unless
v is periodic with respect to the first variable p. An elementary argument
shows that this happens if and only if either cosd = 0 or tanf € Q, i.e.,
if and only if there exist two integers m and n such that

m?2+n?>0
and
cos 0 = _m sinf = r
N N
Then

v(p+ Vm? +n?,q,t) = v(p,q,t),
and from v,, > —1 we get the estimate

[vp| < vVm? 4+ n2.

The rest of the proof of Theorem 2 can be obtained by a slight mod-
ification of the argument used to prove Theorem 1 and is left to the
reader.
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