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THE CALABI-YAU EQUATION ON THE
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VIEWED AS AN S
1-BUNDLE OVER A 3-TORUS

E. Buzano, A. Fino & L. Vezzoni

Abstract

We prove that the Calabi-Yau equation on the Kodaira-Thurston
manifold has a unique solution for every S1-invariant initial da-
tum.

1. Introduction and statement of the result

The celebrated Calabi–Yau theorem affirms that given a compact
Kähler manifold (Mn,Ω, J) with first Chern class c1(M

n), every (1, 1)-
form ρ̃ ∈ 2πc1(M

n) is the Ricci form of a unique Kähler metric whose
Kähler form belongs to the cohomology class [Ω]. This theorem was
conjectured by Calabi in [4] and subsequently proved by Yau in [15].
The Calabi–Yau theorem can be alternatively reformulated in terms of
symplectic geometry by saying that, given a compact Kähler manifold
(Mn,Ω, J) and a volume form σ satisfying the normalizing condition∫

Mn

σ =

∫
Mn

Ωn,

then there exists a unique Kähler form Ω̃ on (Mn, J) solving

(1) Ω̃n = σ, [Ω̃] = [Ω].

Equation (1) still makes sense in the almost-Kähler case, when J is
merely an almost-complex structure. In this more general context (1) is
usually called the Calabi–Yau equation.

In [5] Donaldson described a project about compact symplectic 4-
manifolds involving the Calabi–Yau equation and showed the uniqueness
of the solutions. Donaldson’s project is principally based on a conjecture
stated in [5] whose confirmation would lead to new fundamental results
in symplectic geometry. Donaldson’s project was partially confirmed
by Taubes in [9] and strongly motivates the study of the Calabi–Yau
equation on non-Kähler 4-manifolds.

In [16] Weinkove proved that the Calabi–Yau equation can be solved
if the torsion of J is sufficiently small, and in [13] Tosatti, Weinkove,
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and Yau proved the Donaldson conjecture assuming an extra condition
on the curvature and the torsion of the almost-Kähler metric. Further-
more, Tosatti and Weinkove solved in [12] the Calabi–Yau equation on
the Kodaira–Thurston manifold assuming the initial datum σ invariant
under the action of a 2-dimensional torus T 2. The Kodaira–Thurston
is historically the first example of symplectic manifold without Kähler
structures (see [11, 1]) and it is defined as the direct product of a com-
pact quotient of the 3-dimensional Heisenberg group by a lattice with
the circle S1. In [6] it is proved that when σ is T 2-invariant, the Calabi–
Yau equation on the Kodaira–Thurston manifold can be reduced to a
Monge–Ampère equation on a torus which has always a solution. More-
over, in [6, 3] the same equation is studied in every T 2-fibration over a
2-torus.

The Kodaira–Thurston manifold is defined as the compact 4-manifold

M = Nil3/Γ× S1,

where Nil3 is the 3-dimensional real Heisenberg group

Nil3 =
{[

1 x z
0 1 y
0 0 1

]
: x, y, z ∈ R

}
and Γ is the lattice in Nil3 of matrices having integers entries.

Therefore, M is parallelizable and has the global left-invariant co-
frame

(2) e1 = dy, e2 = dx, e3 = dt, e4 = dz − xdy

satisfying the structure equations

(3) de1 = de2 = de3 = 0, de4 = e12,

with

eij = ei ∧ ej .

Since Nil3/Γ×S1 = (Nil3 ×R)/(Γ×Z), the Kodaira–Thurston man-
ifold M is a 2-step nilmanifold and every left-invariant almost-Kähler
structure on Nil3 × R projects to an almost-Kähler structure on M .
Moreover, the compact 3-dimensional manifold N = Nil3/Γ is the total
space of an S1-bundle over a 2-dimensional torus T 2 with projection
πxy : N → T 2

xy and M inherits a structure of principal S1-bundle over

the 3-dimensional torus T 3 = T 2
xy × S1

t , i.e.,

S1 � � �� N × S1 = M

��

T 2 × S1 = T 3.

Then it makes sense to consider differential forms invariant by the action
of the fiber S1

z . A k-form φ on M is invariant by the action of the fiber
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S1
z if its coefficients with respect to the global basis ej1 ∧ · · ·∧ ejk do not

depend on the variable z.
These observations allow us to extend the analysis in [12, 6] from

T 2-invariant to S1-invariant data σ.
Consider on M the canonical metric

(4) g =

4∑
k=1

ek ⊗ ek

and the compatible symplectic form

Ω = e13 + e42.

The pair (Ω, g) specifies an almost-complex structure J making (Ω, J)
an almost-Kähler structure. Observe that

Je1 = e3 and Je4 = e2.

Then we can consider the Calabi–Yau equation

(5) (Ω + dα)2 = eF Ω2,

where the unknown α is a smooth 1-form on M such that

(6) J(dα) = dα

and the datum F is a smooth function on M satisfying

(7)

∫
M

eF Ω2 =

∫
M

Ω2.

We have the following theorem.

Theorem 1. The Calabi–Yau equation (5) has a unique solution

ω̃ = Ω+ dα for every S1-invariant volume form σ = eF Ω2 such that

(8)

∫
T 3

eF dV = 1,

where dV is the volume form dx ∧ dy ∧ dt on T 3.

Since uniqueness follows from a general result in [5], we need only to
prove existence. This will be done in two steps. First, in Section 2 we
reduce equation (5) to a fully nonlinear PDE on the 3-dimensional base
torus T 3. Then, in Section 4 we show that such an equation is solvable.
Section 3 concerns the a priori estimates needed in Section 4.

With some minor changes in the proof, it is possible to generalize The-
orem 1 to the larger class of invariant almost-Kähler structures on the
Kodaira–Thurston manifold. All positively oriented invariant almost-
Kähler structures compatible with the canonical metric (4) can be ob-
tained by rotating the symplectic form Ω = e13 + e42. Indeed, since the
three forms

Ω = e13 + e42 , Ω′ = e14 + e23 , Ω′′ = e12 + e34



178 E. BUZANO, A. FINO & L. VEZZONI

are a basis of invariant self-dual 2-forms, every positively oriented in-
variant 2-form ω compatible with g can be written as

ω = AΩ +BΩ′ + CΩ′′

for some constants A,B,C satisfying A2 +B2 +C2 = 1. The condition
dω = 0 is equivalent to C = 0, and therefore every positively oriented
symplectic 2-form compatible with g can be written as

ωθ = (cos θ e1 + sin θ e2) ∧ e3 − (− sin θ e1 + cos θ e2) ∧ e4,

for some θ ∈ [0, 2π).

Theorem 2. Assume either cos θ = 0 or tan θ ∈ Q. Then the Calabi–

Yau equation

(ωθ + dα)2 = eFω2
θ , Jθ(dα) = 0

has a unique solution ω̃ = ωθ + dα for every S1-invariant volume form

σ = eF ω2
θ satisfying (8).

In Section 5 we give some details on how to modify the proof of
Theorem 1 in order to prove Theorem 2.

Observe that for θ = 0, ω0 is the form Ω = e13 + e42 considered in
Theorem 1, while ωπ/2 = e14 + e23 is the symplectic form Ω′.
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useful comments and improvements.
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2. Reduction to a single elliptic equation

The dual frame of (2) is

e1 = ∂y + x∂z, e2 = ∂x, e3 = ∂t, e4 = ∂z.

If u is S1-invariant, it does not depend on z, and we have

e1u = ∂yu = uy, e2u = ∂xu = ux, e3u = ∂tu = ut, e4u = 0.

It is convenient to set

(9) ∂1 = ∂y, ∂2 = ∂x, ∂3 = ∂t,

so the differential can be written as

du =

3∑
i=1

∂iu e
i.
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Theorem 3. Given a smooth function u : T 3 → R such that

(10)

∫
T 3

u dV = 0,

set

(11) α = dcu− ue1.

Then the 1-form (11) satisfies equation (6). Moreover, α solves equa-

tion (5) if and only if u is a solution to the fully non-linear PDE

(12) (uxx + 1)(uyy + utt + ut + 1)− u2xy − u2xt = eF .

Proof. Thanks to (3) we have

ddcu =

3∑
i=1

3∑
j=1

∂i∂ju e
i ∧ Jej − ∂2u e

12

=

3∑
i=1

3∑
j=1

∂i∂ju e
i ∧ Jej + d(ue1) + ∂3u e

13.

Therefore, dα is of type (1, 1) and

dα =

3∑
i=1

3∑
j=1

∂i∂ju e
i ∧ Jej + ∂3u e

13

= (uyy + utt + ut)e
13 − uxxe

24 + uxy(e
23 − e14) + uxt(e

12 − e34).

Then a simple computation shows that α satisfies (5) if and only if u
satisfies (12). q.e.d.

We end this section by proving ellipticity of equation (12).
First we fix some notation. Functions on the 3-torus can be identified

with functions u : R3 → R that are 1-periodic in each variable.
For any non-negative integer n, we denote by Cn(T 3) the Banach

space of Cn functions u : T 3 → R equipped with norm

‖u‖Cn = max
m≤n

|u|Cm ,

where

|u|Cm = max
|κ|=m

sup
q∈R3

∣∣∂κu(q)
∣∣.

Given 0 < ρ < 1 and u ∈ C0(T 3), we set[[
u(q)

]]
ρ
= sup

0<|h|≤1

∣∣u(q + h)− u(q)
∣∣ |h|−ρ .

Here we employ the multi-index notation ∂κ = ∂κ1

1 ∂κ2

2 ∂κ3

3 and |κ| =
κ1 + κ2 + κ3.
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For every non-negative integer n and real number 0 < ρ < 1, define
the space Cn+ρ(T 3) of functions u ∈ Cn(T 3) such that

|u|Cn+ρ = max
|κ|=n

sup
q∈R3

[[
∂κu(q)

]]
ρ
< ∞.

Cn+ρ(T 3) is a Banach space with respect to the norm

‖u‖Cn+ρ = max
{
‖u‖Cn , |u|Cn+ρ

}
.

In conclusion, we have defined Cσ(T 3) for every non-negative real num-
ber σ.

Finally, we denote by C̃σ(T 3) the closed subspace of all u ∈ Cσ(T 3)
satisfying ∫

T 3

u dV = 0.

Proposition 1. Let u ∈ C̃2(T 3) be a solution to (12). Then we have

(13) uxx > −1

and

(14) uyy + utt + ut > −1.

Proof. Indeed, from equation (12) we have

(uyy + utt + ut + 1)(uxx + 1) ≥ eF > 0.

This implies that uyy + utt + ut + 1 and uxx + 1 have always the same
sign. But at a point where u attains its minimum, we must have

uxx + 1 ≥ 1.
q.e.d.

Let

Δu = uxx + uyy + utt

be the standard Laplacian in R3.
Now we prove ellipticity of equation (12).

Proposition 2. Let u ∈ C̃2(T 3) be a solution to equation (12). Then
we have

(15) 0 < 2eF/2 ≤ Δu+ ut + 2

and

(16) (uxx + 1)(η2 + τ2) + (uyy + utt + ut + 1)ξ2 − 2uxyξη − 2uxtξτ ≥
≥ Λ(u)

(
ξ2 + η2 + τ2

)
, for all (ξ, η, τ) ∈ R3,

where

(17) Λ(u) =
1

2

(
Δu+ ut + 2−

√
(Δu+ ut + 2)2 − 4eF

)
.
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Remark. The left-hand side of (16) is the principal symbol of the
linearization of (12) at the solution u. Since a non-linear equation is
elliptic on a set S if its linearization at any u ∈ S is elliptic, we have
that equation (12) is elliptic on the set of all of its solutions u ∈ C̃2(T 3).

Proof. Inequality (15) follows from (13), (14), and (12).
A simple computation shows that the characteristic polynomial of the

matrix

P (u) =

⎡
⎣uyy + utt + ut + 1 uxy uxt

uxy uxx + 1 0
uxt 0 uxx + 1

⎤
⎦

associated to the quadratic form on the left-hand side of (16) is(
λ− (uxx + 1)

)(
λ2 − (Δu+ ut + 2)λ+ eF

)
.

Then the eigenvalues of P (u) are

λ± =
1

2

(
Δu+ ut + 2±

√
(Δu+ ut + 2)2 − 4eF

)
and uxx + 1. Since

(Δu+ ut + 2)2 − 4eF =
(
(uyy + utt + ut + 1)− (uxx + 1)

)2
+ u2xy + u2xt

≥ (
(Δu+ ut + 2)− 2(uxx + 1)

)2
,

we have
λ− ≤ uxx + 1 ≤ λ+,

and the proof is complete. q.e.d.

3. A priori estimates

3.1. C0-estimate.

Proposition 3. We have

(18)
∣∣ux∣∣ ≤ 1,

for all solution u to (12).

Proof. Fix (x, y, t) ∈ R3, and consider the periodic function

v(s) = u(x+ s, y, t).

We have
v′′(s) = uxx(x+ s, y, t) ≥ −1.

Let s0 ∈ [0, 1] be a critical point of v. Then we have

v′(s) =

∫ s

s0

v′′(r) r

{
≥ −(s− s0) ≥ −1, s0 ≤ s ≤ s0 + 1,

≤ −(s− s0) ≤ 1, s0 − 1 ≤ s ≤ s0.

By periodicity we get that these estimates hold everywhere; in particu-
lar, we obtain

|ux(x, y, t)| =
∣∣v′(0)∣∣ ≤ 1. q.e.d.
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Denote by

∇u =

⎡
⎣uxuy
ut

⎤
⎦

the standard gradient of u. We have

|∇u|2 = u2x + u2y + u2t

thus, if we set

|∇u|C0 =
∣∣|∇u|∣∣

C0 ,

we have

|u|C1 ≤ |∇u|C0 ≤
√
3 |u|C1 .

In this paper all Lp norms are taken on the torus T 3. In particular,
we set

‖∇u‖2L2 =

∫
T 3

|∇u|2 dV =

∫
T 3

(u2x + u2y + u2t ) dV.

Theorem 4. Given a real number p ≥ 2, we have

(19)
∥∥∇ |u|p/2∥∥2

L2 ≤ p2

16
‖u‖pLp +

5p3

16

∣∣1 + eF
∣∣
C0 ‖u‖p−1

Lp ,

for all u ∈ C̃2(T 3) satisfying equation (12).

Proof. From Theorem 3 we have that

(20) α = dcu− ue1

solves equation (5), which can be rewritten as

(eF − 1)Ω2 = dα ∧ (Ω + Ω̃),

where

Ω̃ = Ω+ dα.

Since

d
(
u |u|p−2) = |u|p−2 du+ u (p − 2) |u|p−3 u

|u| du

= (p− 1) |u|p−2 du, for u �= 0,

we have

(21)

∫
T 3

d
((

u |u|p−2 α
) ∧ (Ω + Ω̃)

)
=

= (p− 1)

∫
T 3

|u|p−2 du ∧ α ∧ (Ω + Ω̃) +

∫
T 3

|u|p−2 u(eF − 1)Ω2,

and Stokes’ theorem implies

(22)

∫
T 3

|u|p−2 du ∧ α ∧ (Ω + Ω̃) =
1

p− 1

∫
T 3

(1− eF ) |u|p−2 uΩ2.
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Taking into account that

(23) Ω̃ =(uyy + utt + ut + 1)e13 − (uxx + 1)e24,

+ uxy(e
23 − e14) + uxt(e

12 − e34),

we have

(24) du ∧ α ∧Ω =
1

2

(
u2x + u2y + ut(ut + u)

)
Ω2

and

(25) du ∧ α ∧ Ω̃ =
1

2

(
u2y +

(
ut +

1

2
u
)2
)
(uxx + 1)Ω2

+
1

2
u2x(uyy + utt + ut + 1)Ω2

−
(
uxuyuxy + ux

(
ut +

1

2
u
)
uxt

)
Ω2

− 1

8
u2(uxx + 1)Ω2.

Thanks to (16), we obtain from (25) that

du ∧ α ∧ Ω̃ ≥ −1

8
u2(uxx + 1)Ω2.

Then from (22) and (24) we get

(26)

∫
T 3

|u|p−2
(
u2x + u2y + ut(ut + u)

)
dV ≤

≤ 1

4

∫
T 3

|u|p (uxx + 1) dV +
2

p− 1

∫
T 3

(1− eF ) |u|p−2 u dV.

An integration by parts gives∫
T 3

|u|p−2 uut dV = (1− p)

∫
T 3

|u|p−2 uut dV,

and therefore we have ∫
T 3

|u|p−2 uut dV = 0.

Since, moreover,∫
T 3

|u|p uxx dV = −p

∫
T 3

|u|p−2 uu2x dV,

estimates (18) and (26) imply

(27)

∫
T 3

|u|p−2 |∇u|2 dV ≤ 1

4

∫
T 3

|u|p dV+

+
(p
4
+

2

p− 1

∣∣1− eF
∣∣
C0

)∫
T 3

|u|p−1 dV.



184 E. BUZANO, A. FINO & L. VEZZONI

But the left-hand side can be rewritten as∫
T 3

|u|p−2 |∇u|2 dV =
4

p2

∫
T 3

∣∣∇ |u|p/2∣∣2 dV.
Moreover,

p

4
+

2

p− 1

∣∣1− eF
∣∣
C0 ≤ 5p

4

∣∣1 + eF
∣∣
C0 , for p ≥ 2;

then (27) becomes
(28)∫

T 3

∣∣∇ |u|p/2∣∣2 dV ≤ p2

16

∫
T 3

|u|p dV +
5p3

16

∣∣1 + eF
∣∣
C0

∫
T 3

|u|p−1 dV.

Since T 3 has measure 1, we have

(29) ‖u‖Lp−1 ≤ ‖u‖Lp .

Estimate (19) follows from (28) and (29). q.e.d.

It is rather natural to compare estimate (19) with the classical a priori

Yau’s estimate∥∥∇ |ϕ|p/2∥∥2
L2 ≤ mp2

4p− 1

(∣∣1− eF
∣∣
C0

) ‖ϕ‖p−1
Lp

involving the solutions ϕ to the complex Monge–Ampère equation (ω+
ddcϕ)m = eF ωm in 2m-dimensional Kähler manifolds (see, for instance,
[8, Proposition 5.4.1]). The right-hand side of (19) contains the extra

term p2

16 ‖u‖pLp due to the presence of −ue1 in (11). This is a problem in

the first step of the C0-estimate, i.e., with p = 2. We take care of this
in the next proposition.

From the Strong Maximum Principle Δu constant implies u constant,
and then −Δ is an operator from C̃2(T 3) into C̃0(T 3). As such, its first
eigenvalue is 4π2. This implies the inequality

(30) 4π2 ‖u‖2L2 ≤
∫
T 3

−Δuu dV = ‖∇u‖2L2 , for all u ∈ C̃2(T 3).

Proposition 4. We have

(31) ‖u‖L2 ≤ ∣∣1 + eF
∣∣
C0 ,

for all u ∈ C̃2(T 3) satisfying equation (12).

Proof. Since ∥∥∇ |u|∥∥2
L2 = ‖∇u‖2L2 ,

from (19) with p = 2 and (30) we obtain

4π2 ‖u‖2L2 ≤ 1

4
‖u‖2L2 +

5

2

∣∣1 + eF
∣∣
C0 ‖u‖L2 ,

which implies (31). q.e.d.



CALABI–YAU EQUATION ON THE KODAIRA–THURSTON MANIFOLD 185

Now we are ready to prove an a priori C0 estimate for the solutions
to (12):

Theorem 5. Given F ∈ C2(T 3) satisfying condition (8), there exists

a positive constant C0, depending only on |F |C0 , such that

(32) |u|C0 ≤ C0,

for all u ∈ C̃2(T 3) satisfying equation (12).

Proof. From the Sobolev Imbedding Theorem (see, for instance, [2,
Theorem 5.4]), there exists a positive constant K such that

(33) ‖w‖2L6 ≤ K
(
‖w‖2L2 + ‖∇w‖2L2

)
,

for all w in the Sobolev space W 1,2(T 3).
Then from (19) and (33) we have

(34) ‖u‖p
L3p ≤ K

(
1 +

p2

16

)
‖u‖pLp +K

5p3

16

∣∣1 + eF
∣∣
C0 ‖u‖p−1

Lp

≤ K p3 ‖u‖pLp

(
1 +

∣∣1 + eF
∣∣
C0 ‖u‖−1

L2

)
, for all p ≥ 2.

It follows that

‖u‖L3pk

‖u‖Lpk

≤ (Mp3k)
1/pk , for all k ∈ Z+,

with

(35) M = K
(
1 +

∣∣1 + eF
∣∣
C0 ‖u‖−1

L2

)
and

pk = 2 · 3k.
Then

‖u‖L3pn

‖u‖L2

≤
n∏

k=0

(Mp3k)
1/pk , for all n ∈ Z+.

But
∞∏
k=0

(Mp3k)
1/pk = exp

( ∞∑
k=0

1

2 · 3k
(
log(8M) + 3k log 3

))
= (8M)3/433μ/2,

with

μ =
∞∑
k=1

k

3k
< ∞.

Then

(36) |u|C0 = sup
n∈N

‖u‖Lpn ≤ (8M)3/433μ/2 ‖u‖L2 .
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Now from (35) and (31) we have

M3/4 ‖u‖L2 = K3/4
(
‖u‖L2 +

∣∣1 + eF
∣∣
C0

)3/4 ‖u‖1/4
L2

≤ (2K)3/4
∣∣1 + eF

∣∣
C0 ,

and (32) follows from (36). q.e.d.

3.2. Estimate of gradient and Laplacian.

We make use of the tensor product notation. In particular, (∇⊗∇)u
is the Hessian matrix of u, and tr(∇⊗∇) = Δ is the Laplacian.

Observe that

(∇⊗∇)(uv) = v (∇⊗∇)u+ u (∇⊗∇)v + (∇u⊗∇v) + (∇v ⊗∇u).

Theorem 6. Given F ∈ C2(T 3) satisfying condition (8), there exists

a positive constant C1, depending only on ‖F‖C2 , such that

(37) |Δu|C0 ≤ C1

(
1 + |u|C1

)
,

for all u ∈ C̃4(T 3) satisfying equation (12).

Proof. From equation (12) we obtain

(38)
(
ΔF + |∇F |2 + Ft

)
eF =

= (uyy + utt + ut + 1)(Δuxx + uxxt)

+ (uxx + 1)(Δuyy + uyyt +Δutt + uttt)

+ (uxx + 1)(Δut + utt) + 2∇uxx · ∇(uyy + utt + ut)

− 2uxy(Δuxy + uxyt)− 2 |∇uxy|2 − 2uxt(Δuxt + uxtt)− 2 |∇uxt|2 .
Consider

(39) Φ = (Δu+ ut + 2)e−μu,

where

(40) μ =
ε

max(Δu+ ut + 2)

and 0 < ε < 1 is a constant to be chosen later. Differentiating (39) yields

∇Φ = e−μu
(
∇(Δu+ ut)− μ(Δu+ ut + 2)∇u

)
and

(∇⊗∇)Φ =− μe−μu
(
∇u⊗∇(Δu+ ut) +∇(Δu+ ut)⊗∇u

)
+ μ2e−μu

(
(Δu+ ut + 2)∇u⊗∇u

)
+

+ e−μu
(
(∇⊗∇)(Δu+ ut)− μ(Δu+ ut + 2)(∇⊗∇)u

)
.

Consider now a point (x0, y0, t0), where Φ attains its maximum value.
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We have ∇Φ = 0 and (∇⊗∇)Φ ≤ 0, so that

(41) ∇(Δu+ ut) = μ(Δu+ ut + 2)∇u,

and

(42) (∇⊗∇)(Δu+ ut) ≤ μ(Δu+ ut + 2)
(
(∇⊗∇)u+ μ∇u⊗∇u

)
.

In particular, we obtain

(43)
(
μ(Δu+ ut + 2)(uxy + μuxuy)− (Δuxy + uxyt)

)2 ≤

≤
(
μ(Δu+ ut + 2)(uxx + μu2x)− (Δuxx + uxxt)

)
·

·
(
μ(Δu+ ut + 2)(uyy + μu2y)− (Δuyy + uyyt)

)
and

(44)
(
μ(Δu+ ut + 2)(uxt + μuxut)− (Δuxt + uxtt)

)2
≤

≤
(
μ(Δu+ ut + 2)(uxx + μu2x)− (Δuxx + uxxt)

)
·

·
(
μ(Δu+ ut + 2)(utt + μu2t )− (Δutt + uttt)

)
.

From (42) we have, in particular, that

μ(Δ + ut + 2)(∂i∂ju+ μ∂iu∂ju)− (Δ∂i∂ju+ ∂t∂i∂ju) ≥ 0,

for all 1 ≤ i, j ≤ 3. Then, form (43), (44), and (16) with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξ =
(
μ(Δu+ ut + 2)(uxx + μu2x)− (Δuxx + uxxt)

)1/2
,

η =
(
μ(Δu+ ut + 2)(uyy + μu2y)− (Δuyy + uyyt)

)1/2
,

τ =
(
μ(Δu+ ut + 2)(utt + μu2t )− (Δutt + uttt)

)1/2
,

we obtain

(45) (uyy + utt + ut + 1)(Δuxx + uxxt)

+ (uxx + 1)(Δuyy + uyyt +Δutt + uttt)

− 2uxy(Δuxy + uxyt)− 2uxt(Δuxt + uxtt) ≤
≤μ(Δu+ ut + 2)(uyy + utt + ut + 1)(uxx + μu2x)

+ μ(Δu+ ut + 2)(uxx + 1)(uyy + μu2y + utt + μu2t )

− 2μ(Δu+ ut + 2)
(
uxy(uxy + μuxuy) + uxt(uxt + μuxut)

)
.
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Substituting (41) and (45) into (38), and using (15), we get

(46)
(
ΔF + |∇F |2 + Ft

)
eF ≤

≤ μ(Δu+ ut + 2)(uyy + utt + ut + 1)(uxx + μu2x)

+ μ(Δu+ ut + 2)(uxx + 1)
(
uyy + utt + μ(u2y + u2t )

)
+ μ(Δu+ ut + 2)(uxx + 1)ut + 2∇uxx · ∇(uyy + utt + ut)

− 2μ(Δu+ ut + 2)
(
uxy(uxy + μuxuy) + uxt(uxt + μuxut)

)
.

On the other side, from (41) we have

(47) μ2(Δu+ ut + 2)2 |∇u|2 = |∇(Δu+ ut)|2 =
= |∇uxx|2 + |∇(uyy + utt + ut)|2 + 2∇uxx · ∇(uyy + utt + ut)

≥ 2∇uxx · ∇(uyy + utt + ut).

Eventually, from (46) and (47) we obtain

(48)
(
ΔF + |∇F |2 + Ft

)
eF ≤

≤μ(Δu+ ut + 2)
(
(uyy + utt + ut + 1)uxx + (uxx + 1)(uyy + utt + ut)

)
− 2μ(Δu+ ut + 2)(u2xy + u2xt)

+ 2μ2(Δu+ ut + 2)
(
(uyy + utt + ut + 1)u2x + (uxx + 1)(u2y + u2t )

)
+ μ2(Δu+ ut + 2)2 |∇u|2

≤2μ(Δu+ ut + 2)eF − μ(Δu+ ut + 2)2 + μ2(Δu+ ut + 2)2 |∇u|2 .
Set

M = Δu(x0, y0, t0) + ut(x0, y0, t0) + 2

and

u0 = u(x0, y0, t0),

so that

maxΦ = Me−μu0 .

From (48) we get

(49) μM2 ≤ ∣∣(ΔF + Ft)e
F
∣∣
C0 + 2μM

∣∣eF ∣∣
C0 + μ2M2 |∇u|2C0 .

Denote by ũ the value of u at a point where Δu+ ut + 2 attains its
maximum value. Then, thanks to Theorem 5, we have

(50) M ≤ max(Δu+ ut + 2) ≤ Meμ(ũ−u0) ≤ Me2μC0 .

Moreover, (40) and (15) imply

2μ =
2ε

max(Δu+ ut + 2)
≤ ε e−minF/2 ≤ e−minF/2,
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and then (50) yields

(51) ε exp
(
− e−minF/2 C0

)
≤ μM ≤ ε

and

(52) exp
(
− e−minF/2C0

)
max(Δu+ ut + 2) ≤ M.

Eventually, from (49), (51), and (52) we obtain

ε exp
(
− 2e−minF/2 C0

)
max(Δu+ ut + 2) ≤

≤ ∣∣(ΔF + Ft)e
F
∣∣
C0 + 2ε

∣∣eF ∣∣
C0 + ε2 |∇u|2C0 ,

i.e.,

(53) max(Δu+ ut + 2) ≤

≤ exp
(
2e−minF/2 |u|C0

)(1

ε

∣∣(ΔF+Ft)e
F
∣∣
C0+2

∣∣eF ∣∣
C0+3ε |∇u|2C0

)
.

Since
|Δu|C0 ≤ max(Δu+ ut + 2) + |∇u|C0 + 2,

estimate (37) follows from (53), with

ε =
1

1 + |∇u|C0

.
q.e.d.

To prove the next theorem, we need the following estimate.

Proposition 5. Given 0 < μ < 1, there exists a positive K0, depend-

ing only on μ, such that

(54) |u|C1+μ ≤ K0

(
‖u‖C0 + |Δu|C0

)
, for all u ∈ C2(T 3).

Proof. Let p = 3
1−μ . Since p > 3, the Morrey inequality gives

|u|C1+μ ≤ C ‖u‖W 2,p ,

where the constant C depends only on μ. On the other hand, elliptic Lp

estimates for the Laplacian give

‖u‖W 2,p ≤ C ′
(‖u‖Lp + ‖Δu‖Lp

)
,

where again C ′ depends only on μ.
Finally, if u ∈ C2(T 3), we have

‖u‖Lp + ‖Δu‖Lp ≤ |u|C0 + |Δu|C0 . q.e.d.

Theorem 7. Consider F ∈ C2(T 3) satisfying condition (8). Then
there exists a positive constant C2, depending only on ‖F‖C2, such that

(55) |u|C1 ≤ C2,

for all u ∈ C̃4(T 3) satisfying equation (12).
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Proof. Let 0 < μ < 1. Thanks to standard interpolation theory (see
[7, section 6.8]), for all ε > 0 there exists a positive constant Mε such
that

|u|C1 ≤ Mε |u|C0 + ε |u|C1+μ , for all u ∈ C1+μ(T 3).

Then, thanks to Theorem 5 and Proposition 5, we have

|u|C1 ≤ MεC0 + εK0

(
C0 + |u|C1 + |Δu|C0

)
≤ MεC0 + εK0

(
C0 + |u|C1 + C1(1 + |u|C1)

)
= MεC0 + εK0(C0 + C1) + εK0(1 + C1) |u|C1 ,

which implies (55), if we choose

ε <
1

K0(1 + C1)
.

q.e.d.

Corollary 1. Under the hypotheses of Theorem 7, we have that equa-
tion (12) is uniformly elliptic on the set S of all solutions u ∈ C̃4(T 3),
in the sense that

inf
u∈S

Λ(u) > 0,

where Λ is defined in (17).

Proof. It follows from Proposition 2 and Theorems 5 and 7. q.e.d.

3.3. C2+ρ-estimate.

We begin by recalling a theorem of [14], which greatly simplifies the
estimate of derivatives up to second order. In [14] the theorem has been
stated locally, but on compact manifolds it holds globally.

Theorem 8 ([14, Theorem 5.1]). Let Ω̃ be be the solution of the

Calabi–Yau equation

Ω̃n = eFΩn, [Ω̃] = [Ω],

on a compact almost-Kähler manifold (M2n,Ω, J).

Assume there are two constants C̃0 > 0 and 0 < ρ0 < 1 such that

F ∈ Cρ0(M2n) and

tr g̃ ≤ C̃0,

where g̃ is the Riemannian metric associated to Ω̃.
Then there exist two constants C̃ > 0 and 0 < ρ < 1, depending only

on M2n, Ω, J , C0 and ‖F‖Cρ0 , such that

‖g̃‖Cρ ≤ C̃.

Using this Theorem we easily prove the following estimate.
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Theorem 9. Given F ∈ C2(T 3) satisfying condition (8), there exist

constants C3 > 0 and ρ > 0, both depending only on ‖F‖C2 , such that

(56) ‖u‖C2+ρ ≤ C3,

for all u ∈ C̃4(T 3) satisfying equation (12).

Proof. From (23) we obtain that the Riemannian metric g̃ is repre-
sented by the matrix

g̃ =

⎡
⎢⎢⎣
uyy + utt + ut + 1 uxy 0 uxt

uxy uxx + 1 uxt 0
0 uxt uyy + utt + ut + 1 −uxy
uxt 0 −uxy uxx + 1

⎤
⎥⎥⎦ .

Then
tr g̃ = 2(Δu+ ut + 2).

Thanks to Theorems 5 and 7 we can apply Theorem 8 and get that
(57)

max
{‖1 + uxx‖Cρ , ‖1 + uyy + utt + ut‖Cρ , ‖uxy‖Cρ , ‖uxt‖Cρ

} ≤ C̃,

where C̃ depends only on ‖F‖C2 .
Now the estimates of second-order derivatives can be obtained as

follows. Given a solution u of equation (12), we have that u can be
viewed as a solution to the linear PDE

(58) Puxx +Q(uyy + utt)− 2Ruxy − 2Suxt +Qut = f

with

P = uyy + utt + ut + 1, Q = uxx + 1, R = uxy, S = uxt,

and
f = 2eF − (Δu+ ut + 2).

Thanks to Proposition 2, Corollary 1 and estimate (57), standard Schauder
theory gives the estimate (56). q.e.d.

4. Proof of Theorem 1

Proposition 6. Assume u ∈ C̃2+ρ(T 3) is a solution to equation (12)

with ρ > 0. If F ∈ C∞(T 3), then u ∈ C̃∞(T 3).

Proof. From Proposition 2 we have that equation (12) is elliptic. Then
from [10, Theorem 4.8, Chapter 14], it follows that u belongs to the
Sobolev space W n,2(T 3), for all n ∈ Z+. But this implies that u ∈
C∞(T 3). q.e.d.

Thanks to Theorem 3, Theorem 1 is an immediate consequence of
the following theorem.

Theorem 10. Let F ∈ C∞(T 3) satisfy (8). Then equation (12) has

a solution u ∈ C̃∞(T 3).
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Proof. We apply the continuity method (see [7, Section 17.2]). For
0 ≤ τ ≤ 1, let
(59)

Sτ =
{
u ∈ C̃∞(T 3) : (uyy + utt + ut +1)(uxx +1)− u2xy − u2xt = eFτ

}
,

where

Fτ = log(1− τ + τ eF ).

Note that 0 ∈ S0 and that S1 consists of the solutions to (12) lying in

C̃∞(T 3). Since

max
0≤τ≤1

‖Fτ‖C2 < ∞,

and ∫
T 3

eFτ dV =

∫
T 3

(
1− τ + τ eF

)
dV = 1,

by Theorem 9 there exists a real number ρ > 0 such that

(60) sup
u∈S

‖u‖C2+ρ < ∞,

with

S =
⋃

0≤τ≤1

Sτ �= ∅.

Since 0 ∈ S0, the set
{
τ ∈ [0, 1] : Sτ �= ∅} is not empty and we can

define

μ = sup
{
τ ∈ [0, 1] : Sτ �= ∅}.

In order to compete the proof we have to show that Sμ �= ∅ and μ = 1.

• Sμ �= ∅. By the definition of μ there exist two sequences (τk) ⊂ [0, 1]

and (uk) ⊂ C̃∞(T 3) such that (μk) is increasing and uk ∈ Sτk for all

k. Thanks to (60), the sequence (uk) is bounded in C̃ρ(T 3); then by
the Ascoli–Arzelà Theorem there exists a subsequence (ukj ) conver-

gent in C̃2+ρ/2(T 3). Let v = lim ukj . Then v belongs to C̃2+ρ/2(T 3)
and satisfies the equation

(vyy + vtt + vb + 1)(vxx + 1)− v2xy − v2xt = eFμ .

By Proposition 6 v belongs to C̃∞(T 3). In particular, v belongs to
Sμ, which turns out to be not empty.

• μ = 1. Assume by contradiction μ < 1, and define the non-linear C∞

operator{
T : C̃ρ(T 3)× [0, 1] → C̃ρ−2(T 3),

T (u, τ) = (uyy + utt + ut + 1)(uxx + 1)− u2xy − u2xt − eFτ .

Observe that the condition
∫
T 3 T (u, τ) dV = 0 follows from the iden-

tities
∫
T 3(u

2
xy + u2xt) dV =

∫
T 3(uyy + utt)uxx dV and

∫
T 3 e

Fτ dV = 1.
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Since Sμ is not empty, there exists v ∈ Sμ such that T (v, μ) = 0.
Compute

∂1T (v, μ)w = Lw,

where

Lw = Pwxx +Q(wyy + wtt)− 2Rwxy − 2Swxt +Qwt = f

with

P = vyy + vtt + vt + 1, Q = vxx + 1, R = vxy, S = vxt,

Since v ∈ Sμ, we know that L : C̃2+ρ(T 3) → C̃ρ(T 3) is elliptic. Then
by the Strong Maximum Principle L = 0 implies that u is constant.
This shows that L is is one-to-one on C̃2+ρ. Moreover, by ellipticity,
L has closed range, and thus Schauder Theory and the Continuity
Method (see [7, Theorem 5.2]) show that L is onto. Therefore, by
the Implicit Function Theorem there exists an ε > 0 such that

T (u, τ) = 0

is solvable with respect to u for every τ ∈ (μ− ε, μ + ε). Thanks to

Proposition 6, these solutions belong to C̃∞(T 3). Then Sτ �= ∅ for
all μ < τ < μ+ ε, in contradiction with the definition of μ.

q.e.d.

5. Outline of the proof of Theorem 2

Let θ as in the statement of Theorem 2. Then we can write

ωθ = f13 − f24,

with

f1 = cos θ e1+sin θ e2, f2 = − sin θ e1+cos θ e2, f3 = e3, f4 = e4.

Since
df4 = de4 = e12 = f12,

one easily obtains that
α = dcu− uf1

satisfies (6) and (5) if and only if u ∈ C̃2(T 3) is a solution to the fully
non-linear PDE

(61)(
(cos θ ∂x − sin θ ∂y)

2u+1
)(

(sin θ ∂x + cos θ ∂y)
2u+ ∂2

t u+ ∂tu+1
)
−

−
(
(cos θ ∂x − sin θ ∂y)(sin θ ∂x + cos θ ∂y)u

)2−

−
(
(cos θ ∂x − sin θ ∂y)∂tu

)2
= eF .

Let
v(p, q, t) = u(x, y, t),
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with {
x = cos θ p+ sin θ q,

y = − sin θ p+ cos θ q.

Then {
∂pv = cos θ ∂xu− sin θ ∂yu,

∂qv = sin θ ∂xu+ cos θ ∂yu.

This implies that (61) can be rewritten as

(62) (vpp + 1)(vqq + vtt + vt + 1)− v2pq − v2pt = eG,

where
G(p, q, t) = F (x, y, t).

Equation (62) is formally the same as equation (12). There is, how-
ever, a big difference in periodicity conditions, which become

v(p + cos θm+ sin θn, q + sin θm+ cos θ n, t+ k) = v(p, q, t),

for all m,n, k ∈ Z.
In particular, this implies that the proof of Proposition 3 fails, unless

v is periodic with respect to the first variable p. An elementary argument
shows that this happens if and only if either cos θ = 0 or tan θ ∈ Q, i.e.,
if and only if there exist two integers m and n such that

m2 + n2 > 0

and

cos θ =
m√

m2 + n2
, sin θ =

n√
m2 + n2

.

Then
v(p +

√
m2 + n2, q, t) = v(p, q, t),

and from vpp > −1 we get the estimate

|vp| ≤
√

m2 + n2.

The rest of the proof of Theorem 2 can be obtained by a slight mod-
ification of the argument used to prove Theorem 1 and is left to the
reader.
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