THE CALABI-YAU EQUATION ON THE KODAIRA-THURSTON MANIFOLD, VIEWED AS AN \boldsymbol{S}^{1}-BUNDLE OVER A 3-TORUS

E. Buzano, A. Fino \& L. Vezzoni

Abstract

We prove that the Calabi-Yau equation on the Kodaira-Thurston manifold has a unique solution for every S^{1}-invariant initial datum.

1. Introduction and statement of the result

The celebrated Calabi-Yau theorem affirms that given a compact Kähler manifold (M^{n}, Ω, J) with first Chern class $c_{1}\left(M^{n}\right)$, every $(1,1)$ form $\tilde{\rho} \in 2 \pi c_{1}\left(M^{n}\right)$ is the Ricci form of a unique Kähler metric whose Kähler form belongs to the cohomology class $[\Omega]$. This theorem was conjectured by Calabi in [4] and subsequently proved by Yau in [15]. The Calabi-Yau theorem can be alternatively reformulated in terms of symplectic geometry by saying that, given a compact Kähler manifold $\left(M^{n}, \Omega, J\right)$ and a volume form σ satisfying the normalizing condition

$$
\int_{M^{n}} \sigma=\int_{M^{n}} \Omega^{n},
$$

then there exists a unique Kähler form $\tilde{\Omega}$ on $\left(M^{n}, J\right)$ solving

$$
\begin{equation*}
\tilde{\Omega}^{n}=\sigma, \quad[\tilde{\Omega}]=[\Omega] \tag{1}
\end{equation*}
$$

Equation (1) still makes sense in the almost-Kähler case, when J is merely an almost-complex structure. In this more general context (1) is usually called the Calabi-Yau equation.

In [5] Donaldson described a project about compact symplectic 4manifolds involving the Calabi-Yau equation and showed the uniqueness of the solutions. Donaldson's project is principally based on a conjecture stated in [5] whose confirmation would lead to new fundamental results in symplectic geometry. Donaldson's project was partially confirmed by Taubes in [9] and strongly motivates the study of the Calabi-Yau equation on non-Kähler 4-manifolds.

In [16] Weinkove proved that the Calabi-Yau equation can be solved if the torsion of J is sufficiently small, and in [13] Tosatti, Weinkove,
and Yau proved the Donaldson conjecture assuming an extra condition on the curvature and the torsion of the almost-Kähler metric. Furthermore, Tosatti and Weinkove solved in [12] the Calabi-Yau equation on the Kodaira-Thurston manifold assuming the initial datum σ invariant under the action of a 2-dimensional torus T^{2}. The Kodaira-Thurston is historically the first example of symplectic manifold without Kähler structures (see $[\mathbf{1 1}, \mathbf{1}]$) and it is defined as the direct product of a compact quotient of the 3-dimensional Heisenberg group by a lattice with the circle S^{1}. In [6] it is proved that when σ is T^{2}-invariant, the CalabiYau equation on the Kodaira-Thurston manifold can be reduced to a Monge-Ampère equation on a torus which has always a solution. Moreover, in $[\mathbf{6}, \mathbf{3}]$ the same equation is studied in every T^{2}-fibration over a 2-torus.

The Kodaira-Thurston manifold is defined as the compact 4-manifold

$$
M=\mathrm{Nil}^{3} / \Gamma \times S^{1}
$$

where Nil^{3} is the 3 -dimensional real Heisenberg group

$$
\mathrm{Nil}^{3}=\left\{\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]: x, y, z \in \mathbb{R}\right\}
$$

and Γ is the lattice in Nil^{3} of matrices having integers entries.
Therefore, M is parallelizable and has the global left-invariant coframe

$$
\begin{equation*}
e^{1}=d y, \quad e^{2}=d x, \quad e^{3}=d t, \quad e^{4}=d z-x d y \tag{2}
\end{equation*}
$$

satisfying the structure equations

$$
\begin{equation*}
d e^{1}=d e^{2}=d e^{3}=0, \quad d e^{4}=e^{12} \tag{3}
\end{equation*}
$$

with

$$
e^{i j}=e^{i} \wedge e^{j}
$$

Since $\mathrm{Nil}^{3} / \Gamma \times S^{1}=\left(\mathrm{Nil}^{3} \times \mathbb{R}\right) /(\Gamma \times \mathbb{Z})$, the Kodaira-Thurston manifold M is a 2-step nilmanifold and every left-invariant almost-Kähler structure on $\mathrm{Nil}^{3} \times \mathbb{R}$ projects to an almost-Kähler structure on M. Moreover, the compact 3 -dimensional manifold $N=\mathrm{Nil}^{3} / \Gamma$ is the total space of an S^{1}-bundle over a 2-dimensional torus T^{2} with projection $\pi_{x y}: N \rightarrow T_{x y}^{2}$ and M inherits a structure of principal S^{1}-bundle over the 3-dimensional torus $T^{3}=T_{x y}^{2} \times S_{t}^{1}$, i.e.,

Then it makes sense to consider differential forms invariant by the action of the fiber S_{z}^{1}. A k-form ϕ on M is invariant by the action of the fiber
S_{z}^{1} if its coefficients with respect to the global basis $e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}$ do not depend on the variable z.

These observations allow us to extend the analysis in $[\mathbf{1 2}, \mathbf{6}]$ from T^{2}-invariant to S^{1}-invariant data σ.

Consider on M the canonical metric

$$
\begin{equation*}
g=\sum_{k=1}^{4} e^{k} \otimes e^{k} \tag{4}
\end{equation*}
$$

and the compatible symplectic form

$$
\Omega=e^{13}+e^{42}
$$

The pair (Ω, g) specifies an almost-complex structure J making (Ω, J) an almost-Kähler structure. Observe that

$$
J e^{1}=e^{3} \quad \text { and } \quad J e^{4}=e^{2}
$$

Then we can consider the Calabi-Yau equation

$$
\begin{equation*}
(\Omega+d \alpha)^{2}=\mathrm{e}^{F} \Omega^{2} \tag{5}
\end{equation*}
$$

where the unknown α is a smooth 1-form on M such that

$$
\begin{equation*}
J(d \alpha)=d \alpha \tag{6}
\end{equation*}
$$

and the datum F is a smooth function on M satisfying

$$
\begin{equation*}
\int_{M} \mathrm{e}^{F} \Omega^{2}=\int_{M} \Omega^{2} \tag{7}
\end{equation*}
$$

We have the following theorem.
Theorem 1. The Calabi-Yau equation (5) has a unique solution $\tilde{\omega}=\Omega+d \alpha$ for every S^{1}-invariant volume form $\sigma=\mathrm{e}^{F} \Omega^{2}$ such that

$$
\begin{equation*}
\int_{T^{3}} \mathrm{e}^{F} d V=1 \tag{8}
\end{equation*}
$$

where $d V$ is the volume form $d x \wedge d y \wedge d t$ on T^{3}.
Since uniqueness follows from a general result in [5], we need only to prove existence. This will be done in two steps. First, in Section 2 we reduce equation (5) to a fully nonlinear PDE on the 3-dimensional base torus T^{3}. Then, in Section 4 we show that such an equation is solvable. Section 3 concerns the a priori estimates needed in Section 4.

With some minor changes in the proof, it is possible to generalize Theorem 1 to the larger class of invariant almost-Kähler structures on the Kodaira-Thurston manifold. All positively oriented invariant almostKähler structures compatible with the canonical metric (4) can be obtained by rotating the symplectic form $\Omega=e^{13}+e^{42}$. Indeed, since the three forms

$$
\Omega=e^{13}+e^{42}, \quad \Omega^{\prime}=e^{14}+e^{23}, \quad \Omega^{\prime \prime}=e^{12}+e^{34}
$$

are a basis of invariant self-dual 2-forms, every positively oriented invariant 2 -form ω compatible with g can be written as

$$
\omega=A \Omega+B \Omega^{\prime}+C \Omega^{\prime \prime}
$$

for some constants A, B, C satisfying $A^{2}+B^{2}+C^{2}=1$. The condition $d \omega=0$ is equivalent to $C=0$, and therefore every positively oriented symplectic 2 -form compatible with g can be written as

$$
\omega_{\theta}=\left(\cos \theta e^{1}+\sin \theta e^{2}\right) \wedge e^{3}-\left(-\sin \theta e^{1}+\cos \theta e^{2}\right) \wedge e^{4}
$$

for some $\theta \in[0,2 \pi)$.
Theorem 2. Assume either $\cos \theta=0$ or $\tan \theta \in \mathbb{Q}$. Then the CalabiYau equation

$$
\left(\omega_{\theta}+d \alpha\right)^{2}=\mathrm{e}^{F} \omega_{\theta}^{2}, \quad J_{\theta}(d \alpha)=0
$$

has a unique solution $\tilde{\omega}=\omega_{\theta}+d \alpha$ for every S^{1}-invariant volume form $\sigma=\mathrm{e}^{F} \omega_{\theta}^{2}$ satisfying (8).

In Section 5 we give some details on how to modify the proof of Theorem 1 in order to prove Theorem 2.

Observe that for $\theta=0, \omega_{0}$ is the form $\Omega=e^{13}+e^{42}$ considered in Theorem 1, while $\omega_{\pi / 2}=e^{14}+e^{23}$ is the symplectic form Ω^{\prime}.

Acknowledgements. We would like to thank Valentino Tosatti for useful remarks and helpful comments on a preliminary version of the present paper. Moreover, we are grateful to the anonymous referee for useful comments and improvements.

This work was supported by the project FIRB "Geometria Differenziale e teoria geometrica delle funzioni," the project PRIN "Varietà reali e complesse: geometria, topologia e analisi armonica," and by G.N.S.A.G.A. of I.N.d.A.M.

2. Reduction to a single elliptic equation

The dual frame of (2) is

$$
e_{1}=\partial_{y}+x \partial_{z}, \quad e_{2}=\partial_{x}, \quad e_{3}=\partial_{t}, \quad e_{4}=\partial_{z}
$$

If u is S^{1}-invariant, it does not depend on z, and we have

$$
e_{1} u=\partial_{y} u=u_{y}, \quad e_{2} u=\partial_{x} u=u_{x}, \quad e_{3} u=\partial_{t} u=u_{t}, \quad e_{4} u=0
$$

It is convenient to set

$$
\begin{equation*}
\partial_{1}=\partial_{y}, \quad \partial_{2}=\partial_{x}, \quad \partial_{3}=\partial_{t} \tag{9}
\end{equation*}
$$

so the differential can be written as

$$
d u=\sum_{i=1}^{3} \partial_{i} u e^{i}
$$

Theorem 3. Given a smooth function $u: T^{3} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\int_{T^{3}} u d V=0 \tag{10}
\end{equation*}
$$

set

$$
\begin{equation*}
\alpha=d^{\mathrm{c}} u-u e^{1} . \tag{11}
\end{equation*}
$$

Then the 1-form (11) satisfies equation (6). Moreover, α solves equation (5) if and only if u is a solution to the fully non-linear PDE

$$
\begin{equation*}
\left(u_{x x}+1\right)\left(u_{y y}+u_{t t}+u_{t}+1\right)-u_{x y}^{2}-u_{x t}^{2}=\mathrm{e}^{F} \tag{12}
\end{equation*}
$$

Proof. Thanks to (3) we have

$$
\begin{aligned}
d d^{\mathrm{c}} u & =\sum_{i=1}^{3} \sum_{j=1}^{3} \partial_{i} \partial_{j} u e^{i} \wedge J e^{j}-\partial_{2} u e^{12} \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3} \partial_{i} \partial_{j} u e^{i} \wedge J e^{j}+d\left(u e^{1}\right)+\partial_{3} u e^{13} .
\end{aligned}
$$

Therefore, $d \alpha$ is of type $(1,1)$ and

$$
\begin{aligned}
d \alpha & =\sum_{i=1}^{3} \sum_{j=1}^{3} \partial_{i} \partial_{j} u e^{i} \wedge J e^{j}+\partial_{3} u e^{13} \\
& =\left(u_{y y}+u_{t t}+u_{t}\right) e^{13}-u_{x x} e^{24}+u_{x y}\left(e^{23}-e^{14}\right)+u_{x t}\left(e^{12}-e^{34}\right)
\end{aligned}
$$

Then a simple computation shows that α satisfies (5) if and only if u satisfies (12).
q.e.d.

We end this section by proving ellipticity of equation (12).
First we fix some notation. Functions on the 3-torus can be identified with functions $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ that are 1-periodic in each variable.

For any non-negative integer n, we denote by $C^{n}\left(T^{3}\right)$ the Banach space of C^{n} functions $u: T^{3} \rightarrow \mathbb{R}$ equipped with norm

$$
\|u\|_{C^{n}}=\max _{m \leq n}|u|_{C^{m}}
$$

where

$$
|u|_{C^{m}}=\max _{|\kappa|=m} \sup _{q \in \mathbb{R}^{3}}\left|\partial^{\kappa} u(q)\right| .
$$

Given $0<\rho<1$ and $u \in C^{0}\left(T^{3}\right)$, we set

$$
\llbracket u(q) \rrbracket_{\rho}=\sup _{0<|h| \leq 1}|u(q+h)-u(q)||h|^{-\rho} .
$$

Here we employ the multi-index notation $\partial^{\kappa}=\partial_{1}^{\kappa_{1}} \partial_{2}^{\kappa_{2}} \partial_{3}^{\kappa_{3}}$ and $|\kappa|=$ $\kappa_{1}+\kappa_{2}+\kappa_{3}$.

For every non-negative integer n and real number $0<\rho<1$, define the space $C^{n+\rho}\left(T^{3}\right)$ of functions $u \in C^{n}\left(T^{3}\right)$ such that

$$
|u|_{C^{n+\rho}}=\max _{|\kappa|=n} \sup _{q \in \mathbb{R}^{3}} \llbracket \partial^{\kappa} u(q) \rrbracket_{\rho}<\infty .
$$

$C^{n+\rho}\left(T^{3}\right)$ is a Banach space with respect to the norm

$$
\|u\|_{C^{n+\rho}}=\max \left\{\|u\|_{C^{n}},|u|_{C^{n+\rho}}\right\}
$$

In conclusion, we have defined $C^{\sigma}\left(T^{3}\right)$ for every non-negative real number σ.

Finally, we denote by $\tilde{C}^{\sigma}\left(T^{3}\right)$ the closed subspace of all $u \in C^{\sigma}\left(T^{3}\right)$ satisfying

$$
\int_{T^{3}} u d V=0
$$

Proposition 1. Let $u \in \tilde{C}^{2}\left(T^{3}\right)$ be a solution to (12). Then we have

$$
\begin{equation*}
u_{x x}>-1 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{y y}+u_{t t}+u_{t}>-1 \tag{14}
\end{equation*}
$$

Proof. Indeed, from equation (12) we have

$$
\left(u_{y y}+u_{t t}+u_{t}+1\right)\left(u_{x x}+1\right) \geq \mathrm{e}^{F}>0
$$

This implies that $u_{y y}+u_{t t}+u_{t}+1$ and $u_{x x}+1$ have always the same sign. But at a point where u attains its minimum, we must have

$$
u_{x x}+1 \geq 1
$$

Let

$$
\Delta u=u_{x x}+u_{y y}+u_{t t}
$$

be the standard Laplacian in \mathbb{R}^{3}.
Now we prove ellipticity of equation (12).
Proposition 2. Let $u \in \tilde{C}^{2}\left(T^{3}\right)$ be a solution to equation (12). Then we have

$$
\begin{equation*}
0<2 \mathrm{e}^{F / 2} \leq \Delta u+u_{t}+2 \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
&\left(u_{x x}+1\right)\left(\eta^{2}+\right.\left.\tau^{2}\right)+\left(u_{y y}+u_{t t}+u_{t}+1\right) \xi^{2}-2 u_{x y} \xi \eta-2 u_{x t} \xi \tau \geq \tag{16}\\
& \geq \Lambda(u)\left(\xi^{2}+\eta^{2}+\tau^{2}\right), \quad \text { for all }(\xi, \eta, \tau) \in \mathbb{R}^{3}
\end{align*}
$$

where

$$
\begin{equation*}
\Lambda(u)=\frac{1}{2}\left(\Delta u+u_{t}+2-\sqrt{\left(\Delta u+u_{t}+2\right)^{2}-4 \mathrm{e}^{F}}\right) \tag{17}
\end{equation*}
$$

Remark. The left-hand side of (16) is the principal symbol of the linearization of (12) at the solution u. Since a non-linear equation is elliptic on a set S if its linearization at any $u \in S$ is elliptic, we have that equation (12) is elliptic on the set of all of its solutions $u \in \tilde{C}^{2}\left(T^{3}\right)$.

Proof. Inequality (15) follows from (13), (14), and (12).
A simple computation shows that the characteristic polynomial of the matrix

$$
P(u)=\left[\begin{array}{ccc}
u_{y y}+u_{t t}+u_{t}+1 & u_{x y} & u_{x t} \\
u_{x y} & u_{x x}+1 & 0 \\
u_{x t} & 0 & u_{x x}+1
\end{array}\right]
$$

associated to the quadratic form on the left-hand side of (16) is

$$
\left(\lambda-\left(u_{x x}+1\right)\right)\left(\lambda^{2}-\left(\Delta u+u_{t}+2\right) \lambda+\mathrm{e}^{F}\right)
$$

Then the eigenvalues of $P(u)$ are

$$
\lambda_{ \pm}=\frac{1}{2}\left(\Delta u+u_{t}+2 \pm \sqrt{\left(\Delta u+u_{t}+2\right)^{2}-4 \mathrm{e}^{F}}\right)
$$

and $u_{x x}+1$. Since

$$
\begin{aligned}
\left(\Delta u+u_{t}+2\right)^{2}-4 \mathrm{e}^{F} & =\left(\left(u_{y y}+u_{t t}+u_{t}+1\right)-\left(u_{x x}+1\right)\right)^{2}+u_{x y}^{2}+u_{x t}^{2} \\
& \geq\left(\left(\Delta u+u_{t}+2\right)-2\left(u_{x x}+1\right)\right)^{2}
\end{aligned}
$$

we have

$$
\lambda_{-} \leq u_{x x}+1 \leq \lambda_{+},
$$

and the proof is complete. q.e.d.

3. A priori estimates

3.1. C^{0}-estimate.

Proposition 3. We have

$$
\begin{equation*}
\left|u_{x}\right| \leq 1 \tag{18}
\end{equation*}
$$

for all solution u to (12).
Proof. Fix $(x, y, t) \in \mathbb{R}^{3}$, and consider the periodic function

$$
v(s)=u(x+s, y, t)
$$

We have

$$
v^{\prime \prime}(s)=u_{x x}(x+s, y, t) \geq-1
$$

Let $s_{0} \in[0,1]$ be a critical point of v. Then we have

$$
v^{\prime}(s)=\int_{s_{0}}^{s} v^{\prime \prime}(r) r \begin{cases}\geq-\left(s-s_{0}\right) \geq-1, & s_{0} \leq s \leq s_{0}+1 \\ \leq-\left(s-s_{0}\right) \leq 1, & s_{0}-1 \leq s \leq s_{0}\end{cases}
$$

By periodicity we get that these estimates hold everywhere; in particular, we obtain

$$
\left|u_{x}(x, y, t)\right|=\left|v^{\prime}(0)\right| \leq 1
$$

Denote by

$$
\nabla u=\left[\begin{array}{l}
u_{x} \\
u_{y} \\
u_{t}
\end{array}\right]
$$

the standard gradient of u. We have

$$
|\nabla u|^{2}=u_{x}^{2}+u_{y}^{2}+u_{t}^{2}
$$

thus, if we set

$$
|\nabla u|_{C^{0}}=\|\left.\nabla u\right|_{C^{0}},
$$

we have

$$
|u|_{C^{1}} \leq|\nabla u|_{C^{0}} \leq \sqrt{3}|u|_{C^{1}}
$$

In this paper all L^{p} norms are taken on the torus T^{3}. In particular, we set

$$
\|\nabla u\|_{L^{2}}^{2}=\int_{T^{3}}|\nabla u|^{2} d V=\int_{T^{3}}\left(u_{x}^{2}+u_{y}^{2}+u_{t}^{2}\right) d V
$$

Theorem 4. Given a real number $p \geq 2$, we have

$$
\begin{equation*}
\left\|\nabla|u|^{p / 2}\right\|_{L^{2}}^{2} \leq \frac{p^{2}}{16}\|u\|_{L^{p}}^{p}+\frac{5 p^{3}}{16}\left|1+\mathrm{e}^{F}\right|_{C^{0}}\|u\|_{L^{p}}^{p-1} \tag{19}
\end{equation*}
$$

for all $u \in \tilde{C}^{2}\left(T^{3}\right)$ satisfying equation (12).
Proof. From Theorem 3 we have that

$$
\begin{equation*}
\alpha=d^{c} u-u e^{1} \tag{20}
\end{equation*}
$$

solves equation (5), which can be rewritten as

$$
\left(\mathrm{e}^{F}-1\right) \Omega^{2}=d \alpha \wedge(\Omega+\tilde{\Omega})
$$

where

$$
\tilde{\Omega}=\Omega+d \alpha
$$

Since

$$
\begin{aligned}
d\left(u|u|^{p-2}\right) & =|u|^{p-2} d u+u(p-2)|u|^{p-3} \frac{u}{|u|} d u \\
& =(p-1)|u|^{p-2} d u, \quad \text { for } u \neq 0
\end{aligned}
$$

we have

$$
\begin{align*}
& \int_{T^{3}} d\left(\left(u|u|^{p-2} \alpha\right) \wedge(\Omega+\tilde{\Omega})\right)= \tag{21}\\
= & (p-1) \int_{T^{3}}|u|^{p-2} d u \wedge \alpha \wedge(\Omega+\tilde{\Omega})+\int_{T^{3}}|u|^{p-2} u\left(\mathrm{e}^{F}-1\right) \Omega^{2}
\end{align*}
$$

and Stokes' theorem implies

$$
\begin{equation*}
\int_{T^{3}}|u|^{p-2} d u \wedge \alpha \wedge(\Omega+\tilde{\Omega})=\frac{1}{p-1} \int_{T^{3}}\left(1-\mathrm{e}^{F}\right)|u|^{p-2} u \Omega^{2} . \tag{22}
\end{equation*}
$$

Taking into account that

$$
\begin{align*}
\tilde{\Omega}= & \left(u_{y y}+u_{t t}+u_{t}+1\right) e^{13}-\left(u_{x x}+1\right) e^{24} \tag{23}\\
& +u_{x y}\left(e^{23}-e^{14}\right)+u_{x t}\left(e^{12}-e^{34}\right)
\end{align*}
$$

we have

$$
\begin{equation*}
d u \wedge \alpha \wedge \Omega=\frac{1}{2}\left(u_{x}^{2}+u_{y}^{2}+u_{t}\left(u_{t}+u\right)\right) \Omega^{2} \tag{24}
\end{equation*}
$$

and

$$
\begin{align*}
d u \wedge \alpha \wedge \tilde{\Omega}= & \frac{1}{2}\left(u_{y}^{2}+\left(u_{t}+\frac{1}{2} u\right)^{2}\right)\left(u_{x x}+1\right) \Omega^{2} \tag{25}\\
& +\frac{1}{2} u_{x}^{2}\left(u_{y y}+u_{t t}+u_{t}+1\right) \Omega^{2} \\
& -\left(u_{x} u_{y} u_{x y}+u_{x}\left(u_{t}+\frac{1}{2} u\right) u_{x t}\right) \Omega^{2} \\
& -\frac{1}{8} u^{2}\left(u_{x x}+1\right) \Omega^{2}
\end{align*}
$$

Thanks to (16), we obtain from (25) that

$$
d u \wedge \alpha \wedge \tilde{\Omega} \geq-\frac{1}{8} u^{2}\left(u_{x x}+1\right) \Omega^{2}
$$

Then from (22) and (24) we get

$$
\begin{align*}
& \int_{T^{3}}|u|^{p-2}\left(u_{x}^{2}+u_{y}^{2}+u_{t}\left(u_{t}+u\right)\right) d V \leq \tag{26}\\
& \quad \leq \frac{1}{4} \int_{T^{3}}|u|^{p}\left(u_{x x}+1\right) d V+\frac{2}{p-1} \int_{T^{3}}\left(1-\mathrm{e}^{F}\right)|u|^{p-2} u d V
\end{align*}
$$

An integration by parts gives

$$
\int_{T^{3}}|u|^{p-2} u u_{t} d V=(1-p) \int_{T^{3}}|u|^{p-2} u u_{t} d V
$$

and therefore we have

$$
\int_{T^{3}}|u|^{p-2} u u_{t} d V=0
$$

Since, moreover,

$$
\int_{T^{3}}|u|^{p} u_{x x} d V=-p \int_{T^{3}}|u|^{p-2} u u_{x}^{2} d V
$$

estimates (18) and (26) imply

$$
\begin{align*}
\int_{T^{3}}|u|^{p-2}|\nabla u|^{2} d V \leq & \frac{1}{4} \int_{T^{3}}|u|^{p} d V+ \tag{27}\\
& +\left(\frac{p}{4}+\frac{2}{p-1}\left|1-\mathrm{e}^{F}\right|_{C^{0}}\right) \int_{T^{3}}|u|^{p-1} d V
\end{align*}
$$

But the left-hand side can be rewritten as

$$
\int_{T^{3}}|u|^{p-2}|\nabla u|^{2} d V=\left.\left.\frac{4}{p^{2}} \int_{T^{3}}|\nabla| u\right|^{p / 2}\right|^{2} d V
$$

Moreover,

$$
\frac{p}{4}+\frac{2}{p-1}\left|1-\mathrm{e}^{F}\right|_{C^{0}} \leq \frac{5 p}{4}\left|1+\mathrm{e}^{F}\right|_{C^{0}}, \quad \text { for } p \geq 2
$$

then (27) becomes

$$
\begin{equation*}
\left.\left.\int_{T^{3}}|\nabla| u\right|^{p / 2}\right|^{2} d V \leq \frac{p^{2}}{16} \int_{T^{3}}|u|^{p} d V+\frac{5 p^{3}}{16}\left|1+\mathrm{e}^{F}\right|_{C^{0}} \int_{T^{3}}|u|^{p-1} d V \tag{28}
\end{equation*}
$$

Since T^{3} has measure 1, we have

$$
\begin{equation*}
\|u\|_{L^{p-1}} \leq\|u\|_{L^{p}} . \tag{29}
\end{equation*}
$$

Estimate (19) follows from (28) and (29). q.e.d.

It is rather natural to compare estimate (19) with the classical a priori Yau's estimate

$$
\left\|\nabla|\varphi|^{p / 2}\right\|_{L^{2}}^{2} \leq \frac{m p^{2}}{4 p-1}\left(\left|1-\mathrm{e}^{F}\right|_{C^{0}}\right)\|\varphi\|_{L^{p}}^{p-1}
$$

involving the solutions φ to the complex Monge-Ampère equation ($\omega+$ $\left.d d^{c} \varphi\right)^{m}=\mathrm{e}^{F} \omega^{m}$ in 2m-dimensional Kähler manifolds (see, for instance, [8, Proposition 5.4.1]). The right-hand side of (19) contains the extra term $\frac{p^{2}}{16}\|u\|_{L^{p}}^{p}$ due to the presence of $-u e^{1}$ in (11). This is a problem in the first step of the C^{0}-estimate, i.e., with $p=2$. We take care of this in the next proposition.

From the Strong Maximum Principle Δu constant implies u constant, and then $-\Delta$ is an operator from $\tilde{C}^{2}\left(T^{3}\right)$ into $\tilde{C}^{0}\left(T^{3}\right)$. As such, its first eigenvalue is $4 \pi^{2}$. This implies the inequality

$$
\begin{equation*}
4 \pi^{2}\|u\|_{L^{2}}^{2} \leq \int_{T^{3}}-\Delta u u d V=\|\nabla u\|_{L^{2}}^{2}, \quad \text { for all } u \in \tilde{C}^{2}\left(T^{3}\right) \tag{30}
\end{equation*}
$$

Proposition 4. We have

$$
\begin{equation*}
\|u\|_{L^{2}} \leq\left|1+\mathrm{e}^{F}\right|_{C^{0}} \tag{31}
\end{equation*}
$$

for all $u \in \tilde{C}^{2}\left(T^{3}\right)$ satisfying equation (12).
Proof. Since

$$
\|\nabla|u|\|_{L^{2}}^{2}=\|\nabla u\|_{L^{2}}^{2}
$$

from (19) with $p=2$ and (30) we obtain

$$
4 \pi^{2}\|u\|_{L^{2}}^{2} \leq \frac{1}{4}\|u\|_{L^{2}}^{2}+\frac{5}{2}\left|1+\mathrm{e}^{F}\right|_{C^{0}}\|u\|_{L^{2}}
$$

which implies (31). q.e.d.

Now we are ready to prove an a priori C^{0} estimate for the solutions to (12):

Theorem 5. Given $F \in C^{2}\left(T^{3}\right)$ satisfying condition (8), there exists a positive constant C_{0}, depending only on $|F|_{C^{0}}$, such that

$$
\begin{equation*}
|u|_{C^{0}} \leq C_{0} \tag{32}
\end{equation*}
$$

for all $u \in \tilde{C}^{2}\left(T^{3}\right)$ satisfying equation (12).
Proof. From the Sobolev Imbedding Theorem (see, for instance, [2, Theorem 5.4]), there exists a positive constant K such that

$$
\begin{equation*}
\|w\|_{L^{6}}^{2} \leq K\left(\|w\|_{L^{2}}^{2}+\|\nabla w\|_{L^{2}}^{2}\right), \tag{33}
\end{equation*}
$$

for all w in the Sobolev space $W^{1,2}\left(T^{3}\right)$.
Then from (19) and (33) we have

$$
\begin{align*}
\|u\|_{L^{3 p}}^{p} & \leq K\left(1+\frac{p^{2}}{16}\right)\|u\|_{L^{p}}^{p}+K \frac{5 p^{3}}{16}\left|1+\mathrm{e}^{F}\right|_{C^{0}}\|u\|_{L^{p}}^{p-1} \tag{34}\\
& \leq K p^{3}\|u\|_{L^{p}}^{p}\left(1+\left|1+\mathrm{e}^{F}\right|_{C^{0}}\|u\|_{L^{2}}^{-1}\right), \quad \text { for all } p \geq 2
\end{align*}
$$

It follows that

$$
\frac{\|u\|_{L^{3 p_{k}}}}{\|u\|_{L^{p_{k}}}} \leq\left(M p_{k}^{3}\right)^{1 / p_{k}}, \quad \text { for all } k \in \mathbb{Z}_{+}
$$

with

$$
\begin{equation*}
M=K\left(1+\left|1+\mathrm{e}^{F}\right|_{C^{0}}\|u\|_{L^{2}}^{-1}\right) \tag{35}
\end{equation*}
$$

and

$$
p_{k}=2 \cdot 3^{k}
$$

Then

$$
\frac{\|u\|_{L^{3 p_{n}}}}{\|u\|_{L^{2}}} \leq \prod_{k=0}^{n}\left(M p_{k}^{3}\right)^{1 / p_{k}}, \quad \text { for all } n \in \mathbb{Z}_{+}
$$

But

$$
\prod_{k=0}^{\infty}\left(M p_{k}^{3}\right)^{1 / p_{k}}=\exp \left(\sum_{k=0}^{\infty} \frac{1}{2 \cdot 3^{k}}(\log (8 M)+3 k \log 3)\right)=(8 M)^{3 / 4} 3^{3 \mu / 2},
$$

with

$$
\mu=\sum_{k=1}^{\infty} \frac{k}{3^{k}}<\infty .
$$

Then

$$
\begin{equation*}
|u|_{C^{0}}=\sup _{n \in \mathbb{N}}\|u\|_{L^{p_{n}}} \leq(8 M)^{3 / 4} 3^{3 \mu / 2}\|u\|_{L^{2}} \tag{36}
\end{equation*}
$$

Now from (35) and (31) we have

$$
\begin{aligned}
M^{3 / 4}\|u\|_{L^{2}} & =K^{3 / 4}\left(\|u\|_{L^{2}}+\left|1+\mathrm{e}^{F}\right|_{C^{0}}\right)^{3 / 4}\|u\|_{L^{2}}^{1 / 4} \\
& \leq(2 K)^{3 / 4}\left|1+\mathrm{e}^{F}\right|_{C^{0}}
\end{aligned}
$$

and (32) follows from (36). q.e.d.

3.2. Estimate of gradient and Laplacian.

We make use of the tensor product notation. In particular, $(\nabla \otimes \nabla) u$ is the Hessian matrix of u, and $\operatorname{tr}(\nabla \otimes \nabla)=\Delta$ is the Laplacian.

Observe that

$$
(\nabla \otimes \nabla)(u v)=v(\nabla \otimes \nabla) u+u(\nabla \otimes \nabla) v+(\nabla u \otimes \nabla v)+(\nabla v \otimes \nabla u)
$$

Theorem 6. Given $F \in C^{2}\left(T^{3}\right)$ satisfying condition (8), there exists a positive constant C_{1}, depending only on $\|F\|_{C^{2}}$, such that

$$
\begin{equation*}
|\Delta u|_{C^{0}} \leq C_{1}\left(1+|u|_{C^{1}}\right) \tag{37}
\end{equation*}
$$

for all $u \in \tilde{C}^{4}\left(T^{3}\right)$ satisfying equation (12).
Proof. From equation (12) we obtain

$$
\begin{align*}
& \text { (38) } \quad\left(\Delta F+|\nabla F|^{2}+F_{t}\right) \mathrm{e}^{F}= \tag{38}\\
& =\left(u_{y y}+u_{t t}+u_{t}+1\right)\left(\Delta u_{x x}+u_{x x t}\right) \\
& \quad+\left(u_{x x}+1\right)\left(\Delta u_{y y}+u_{y y t}+\Delta u_{t t}+u_{t t t}\right) \\
& \quad+\left(u_{x x}+1\right)\left(\Delta u_{t}+u_{t t}\right)+2 \nabla u_{x x} \cdot \nabla\left(u_{y y}+u_{t t}+u_{t}\right) \\
& \quad-2 u_{x y}\left(\Delta u_{x y}+u_{x y t}\right)-2\left|\nabla u_{x y}\right|^{2}-2 u_{x t}\left(\Delta u_{x t}+u_{x t t}\right)-2\left|\nabla u_{x t}\right|^{2} .
\end{align*}
$$

Consider

$$
\begin{equation*}
\Phi=\left(\Delta u+u_{t}+2\right) \mathrm{e}^{-\mu u} \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\frac{\epsilon}{\max \left(\Delta u+u_{t}+2\right)} \tag{40}
\end{equation*}
$$

and $0<\epsilon<1$ is a constant to be chosen later. Differentiating (39) yields

$$
\nabla \Phi=\mathrm{e}^{-\mu u}\left(\nabla\left(\Delta u+u_{t}\right)-\mu\left(\Delta u+u_{t}+2\right) \nabla u\right)
$$

and

$$
\begin{aligned}
(\nabla \otimes \nabla) \Phi= & -\mu \mathrm{e}^{-\mu u}\left(\nabla u \otimes \nabla\left(\Delta u+u_{t}\right)+\nabla\left(\Delta u+u_{t}\right) \otimes \nabla u\right) \\
& +\mu^{2} \mathrm{e}^{-\mu u}\left(\left(\Delta u+u_{t}+2\right) \nabla u \otimes \nabla u\right)+ \\
& +\mathrm{e}^{-\mu u}\left((\nabla \otimes \nabla)\left(\Delta u+u_{t}\right)-\mu\left(\Delta u+u_{t}+2\right)(\nabla \otimes \nabla) u\right)
\end{aligned}
$$

Consider now a point $\left(x_{0}, y_{0}, t_{0}\right)$, where Φ attains its maximum value.

We have $\nabla \Phi=0$ and $(\nabla \otimes \nabla) \Phi \leq 0$, so that

$$
\begin{equation*}
\nabla\left(\Delta u+u_{t}\right)=\mu\left(\Delta u+u_{t}+2\right) \nabla u \tag{41}
\end{equation*}
$$

and
(42) $(\nabla \otimes \nabla)\left(\Delta u+u_{t}\right) \leq \mu\left(\Delta u+u_{t}+2\right)((\nabla \otimes \nabla) u+\mu \nabla u \otimes \nabla u)$.

In particular, we obtain

$$
\begin{align*}
& \left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{x y}+\mu u_{x} u_{y}\right)-\left(\Delta u_{x y}+u_{x y t}\right)\right)^{2} \leq \tag{43}\\
& \leq\left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{x x}+\mu u_{x}^{2}\right)-\left(\Delta u_{x x}+u_{x x t}\right)\right) \\
& \cdot\left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{y y}+\mu u_{y}^{2}\right)-\left(\Delta u_{y y}+u_{y y t}\right)\right)
\end{align*}
$$

and

$$
\begin{align*}
& \left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{x t}+\mu u_{x} u_{t}\right)-\left(\Delta u_{x t}+u_{x t t}\right)\right)^{2} \leq \tag{44}\\
& \leq\left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{x x}+\mu u_{x}^{2}\right)-\left(\Delta u_{x x}+u_{x x t}\right)\right) \\
& \cdot\left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{t t}+\mu u_{t}^{2}\right)-\left(\Delta u_{t t}+u_{t t t}\right)\right)
\end{align*}
$$

From (42) we have, in particular, that

$$
\mu\left(\Delta+u_{t}+2\right)\left(\partial_{i} \partial_{j} u+\mu \partial_{i} u \partial_{j} u\right)-\left(\Delta \partial_{i} \partial_{j} u+\partial_{t} \partial_{i} \partial_{j} u\right) \geq 0
$$

for all $1 \leq i, j \leq 3$. Then, form (43), (44), and (16) with

$$
\left\{\begin{array}{l}
\xi=\left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{x x}+\mu u_{x}^{2}\right)-\left(\Delta u_{x x}+u_{x x t}\right)\right)^{1 / 2} \\
\eta=\left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{y y}+\mu u_{y}^{2}\right)-\left(\Delta u_{y y}+u_{y y t}\right)\right)^{1 / 2} \\
\tau=\left(\mu\left(\Delta u+u_{t}+2\right)\left(u_{t t}+\mu u_{t}^{2}\right)-\left(\Delta u_{t t}+u_{t t t}\right)\right)^{1 / 2}
\end{array}\right.
$$

we obtain

$$
\begin{align*}
& \left(u_{y y}+u_{t t}+u_{t}+1\right)\left(\Delta u_{x x}+u_{x x t}\right) \tag{45}\\
& +\left(u_{x x}+1\right)\left(\Delta u_{y y}+u_{y y t}+\Delta u_{t t}+u_{t t t}\right) \\
& -2 u_{x y}\left(\Delta u_{x y}+u_{x y t}\right)-2 u_{x t}\left(\Delta u_{x t}+u_{x t t}\right) \leq \\
& \leq \mu\left(\Delta u+u_{t}+2\right)\left(u_{y y}+u_{t t}+u_{t}+1\right)\left(u_{x x}+\mu u_{x}^{2}\right) \\
& \quad+\mu\left(\Delta u+u_{t}+2\right)\left(u_{x x}+1\right)\left(u_{y y}+\mu u_{y}^{2}+u_{t t}+\mu u_{t}^{2}\right) \\
& \quad-2 \mu\left(\Delta u+u_{t}+2\right)\left(u_{x y}\left(u_{x y}+\mu u_{x} u_{y}\right)+u_{x t}\left(u_{x t}+\mu u_{x} u_{t}\right)\right)
\end{align*}
$$

Substituting (41) and (45) into (38), and using (15), we get

$$
\begin{align*}
& \left(\Delta F+|\nabla F|^{2}+F_{t}\right) \mathrm{e}^{F} \leq \tag{46}\\
& \leq \mu\left(\Delta u+u_{t}+2\right)\left(u_{y y}+u_{t t}+u_{t}+1\right)\left(u_{x x}+\mu u_{x}^{2}\right) \\
& \quad+\mu\left(\Delta u+u_{t}+2\right)\left(u_{x x}+1\right)\left(u_{y y}+u_{t t}+\mu\left(u_{y}^{2}+u_{t}^{2}\right)\right) \\
& \quad+\mu\left(\Delta u+u_{t}+2\right)\left(u_{x x}+1\right) u_{t}+2 \nabla u_{x x} \cdot \nabla\left(u_{y y}+u_{t t}+u_{t}\right) \\
& \quad-2 \mu\left(\Delta u+u_{t}+2\right)\left(u_{x y}\left(u_{x y}+\mu u_{x} u_{y}\right)+u_{x t}\left(u_{x t}+\mu u_{x} u_{t}\right)\right) .
\end{align*}
$$

On the other side, from (41) we have

$$
\begin{align*}
& \mu^{2}\left(\Delta u+u_{t}+2\right)^{2}|\nabla u|^{2}=\left|\nabla\left(\Delta u+u_{t}\right)\right|^{2}= \tag{47}\\
& \quad=\left|\nabla u_{x x}\right|^{2}+\left|\nabla\left(u_{y y}+u_{t t}+u_{t}\right)\right|^{2}+2 \nabla u_{x x} \cdot \nabla\left(u_{y y}+u_{t t}+u_{t}\right) \\
& \quad \geq 2 \nabla u_{x x} \cdot \nabla\left(u_{y y}+u_{t t}+u_{t}\right)
\end{align*}
$$

Eventually, from (46) and (47) we obtain
$\left(\Delta F+|\nabla F|^{2}+F_{t}\right) \mathrm{e}^{F} \leq$
$\leq \mu\left(\Delta u+u_{t}+2\right)\left(\left(u_{y y}+u_{t t}+u_{t}+1\right) u_{x x}+\left(u_{x x}+1\right)\left(u_{y y}+u_{t t}+u_{t}\right)\right)$
$-2 \mu\left(\Delta u+u_{t}+2\right)\left(u_{x y}^{2}+u_{x t}^{2}\right)$
$+2 \mu^{2}\left(\Delta u+u_{t}+2\right)\left(\left(u_{y y}+u_{t t}+u_{t}+1\right) u_{x}^{2}+\left(u_{x x}+1\right)\left(u_{y}^{2}+u_{t}^{2}\right)\right)$
$+\mu^{2}\left(\Delta u+u_{t}+2\right)^{2}|\nabla u|^{2}$
$\leq 2 \mu\left(\Delta u+u_{t}+2\right) \mathrm{e}^{F}-\mu\left(\Delta u+u_{t}+2\right)^{2}+\mu^{2}\left(\Delta u+u_{t}+2\right)^{2}|\nabla u|^{2}$.
Set

$$
M=\Delta u\left(x_{0}, y_{0}, t_{0}\right)+u_{t}\left(x_{0}, y_{0}, t_{0}\right)+2
$$

and

$$
u_{0}=u\left(x_{0}, y_{0}, t_{0}\right),
$$

so that

$$
\max \Phi=M \mathrm{e}^{-\mu u_{0}}
$$

From (48) we get

$$
\begin{equation*}
\mu M^{2} \leq\left|\left(\Delta F+F_{t}\right) \mathrm{e}^{F}\right|_{C^{0}}+2 \mu M\left|\mathrm{e}^{F}\right|_{C^{0}}+\mu^{2} M^{2}|\nabla u|_{C^{0}}^{2} \tag{49}
\end{equation*}
$$

Denote by \tilde{u} the value of u at a point where $\Delta u+u_{t}+2$ attains its maximum value. Then, thanks to Theorem 5, we have

$$
\begin{equation*}
M \leq \max \left(\Delta u+u_{t}+2\right) \leq M \mathrm{e}^{\mu\left(\tilde{u}-u_{0}\right)} \leq M \mathrm{e}^{2 \mu C_{0}} \tag{50}
\end{equation*}
$$

Moreover, (40) and (15) imply

$$
2 \mu=\frac{2 \epsilon}{\max \left(\Delta u+u_{t}+2\right)} \leq \epsilon \mathrm{e}^{-\min F / 2} \leq \mathrm{e}^{-\min F / 2}
$$

and then (50) yields

$$
\begin{equation*}
\epsilon \exp \left(-\mathrm{e}^{-\min F / 2} C_{0}\right) \leq \mu M \leq \epsilon \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\exp \left(-\mathrm{e}^{-\min F / 2} C_{0}\right) \max \left(\Delta u+u_{t}+2\right) \leq M \tag{52}
\end{equation*}
$$

Eventually, from (49), (51), and (52) we obtain

$$
\begin{aligned}
\epsilon \exp \left(-2 \mathrm{e}^{-\min F / 2} C_{0}\right) & \max \left(\Delta u+u_{t}+2\right) \leq \\
& \leq\left|\left(\Delta F+F_{t}\right) \mathrm{e}^{F}\right|_{C^{0}}+2 \epsilon\left|\mathrm{e}^{F}\right|_{C^{0}}+\epsilon^{2}|\nabla u|_{C^{0}}^{2}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\leq \exp \left(2 \mathrm{e}^{-\min F / 2}|u|_{C^{0}}\right)\left(\frac{1}{\epsilon}\left|\left(\Delta F+F_{t}\right) \mathrm{e}^{F}\right|_{C^{0}}+2\left|\mathrm{e}^{F}\right|_{C^{0}}+3 \epsilon|\nabla u|_{C^{0}}^{2}\right) \tag{53}
\end{equation*}
$$

Since

$$
|\Delta u|_{C^{0}} \leq \max \left(\Delta u+u_{t}+2\right)+|\nabla u|_{C^{0}}+2,
$$

estimate (37) follows from (53), with

$$
\epsilon=\frac{1}{1+|\nabla u|_{C^{0}}}
$$

q.e.d.

To prove the next theorem, we need the following estimate.
Proposition 5. Given $0<\mu<1$, there exists a positive K_{0}, depending only on μ, such that

$$
\begin{equation*}
|u|_{C^{1+\mu}} \leq K_{0}\left(\|u\|_{C^{0}}+|\Delta u|_{C^{0}}\right), \quad \text { for all } u \in C^{2}\left(T^{3}\right) \tag{54}
\end{equation*}
$$

Proof. Let $p=\frac{3}{1-\mu}$. Since $p>3$, the Morrey inequality gives

$$
|u|_{C^{1+\mu}} \leq C\|u\|_{W^{2, p}}
$$

where the constant C depends only on μ. On the other hand, elliptic L^{p} estimates for the Laplacian give

$$
\|u\|_{W^{2, p}} \leq C^{\prime}\left(\|u\|_{L^{p}}+\|\Delta u\|_{L^{p}}\right)
$$

where again C^{\prime} depends only on μ.
Finally, if $u \in C^{2}\left(T^{3}\right)$, we have

$$
\|u\|_{L^{p}}+\|\Delta u\|_{L^{p}} \leq|u|_{C^{0}}+|\Delta u|_{C^{0}} .
$$

Theorem 7. Consider $F \in C^{2}\left(T^{3}\right)$ satisfying condition (8). Then there exists a positive constant C_{2}, depending only on $\|F\|_{C^{2}}$, such that

$$
\begin{equation*}
|u|_{C^{1}} \leq C_{2}, \tag{55}
\end{equation*}
$$

for all $u \in \tilde{C}^{4}\left(T^{3}\right)$ satisfying equation (12).

Proof. Let $0<\mu<1$. Thanks to standard interpolation theory (see [7, section 6.8]), for all $\epsilon>0$ there exists a positive constant M_{ϵ} such that

$$
|u|_{C^{1}} \leq M_{\epsilon}|u|_{C^{0}}+\epsilon|u|_{C^{1+\mu}}, \quad \text { for all } u \in C^{1+\mu}\left(T^{3}\right)
$$

Then, thanks to Theorem 5 and Proposition 5, we have

$$
\begin{aligned}
|u|_{C^{1}} & \leq M_{\epsilon} C_{0}+\epsilon K_{0}\left(C_{0}+|u|_{C^{1}}+|\Delta u|_{C^{0}}\right) \\
& \leq M_{\epsilon} C_{0}+\epsilon K_{0}\left(C_{0}+|u|_{C^{1}}+C_{1}\left(1+|u|_{C^{1}}\right)\right) \\
& =M_{\epsilon} C_{0}+\epsilon K_{0}\left(C_{0}+C_{1}\right)+\epsilon K_{0}\left(1+C_{1}\right)|u|_{C^{1}}
\end{aligned}
$$

which implies (55), if we choose

$$
\epsilon<\frac{1}{K_{0}\left(1+C_{1}\right)}
$$

Corollary 1. Under the hypotheses of Theorem 7, we have that equation (12) is uniformly elliptic on the set \mathcal{S} of all solutions $u \in \tilde{C}^{4}\left(T^{3}\right)$, in the sense that

$$
\inf _{u \in \mathcal{S}} \Lambda(u)>0
$$

where Λ is defined in (17).
Proof. It follows from Proposition 2 and Theorems 5 and 7 . q.e.d.

3.3. $C^{2+\rho}$-estimate.

We begin by recalling a theorem of [14], which greatly simplifies the estimate of derivatives up to second order. In $[\mathbf{1 4}]$ the theorem has been stated locally, but on compact manifolds it holds globally.

Theorem 8 ([14, Theorem 5.1]). Let $\tilde{\Omega}$ be be the solution of the Calabi-Yau equation

$$
\tilde{\Omega}^{n}=\mathrm{e}^{F} \Omega^{n}, \quad[\tilde{\Omega}]=[\Omega]
$$

on a compact almost-Kähler manifold $\left(M^{2 n}, \Omega, J\right)$.
Assume there are two constants $\tilde{C}_{0}>0$ and $0<\rho_{0}<1$ such that $F \in C^{\rho_{0}}\left(M^{2 n}\right)$ and

$$
\operatorname{tr} \tilde{g} \leq \tilde{C}_{0}
$$

where \tilde{g} is the Riemannian metric associated to $\tilde{\Omega}$.
Then there exist two constants $\tilde{C}>0$ and $0<\rho<1$, depending only on $M^{2 n}, \Omega, J, C_{0}$ and $\|F\|_{C^{\rho_{0}}}$, such that

$$
\|\tilde{g}\|_{C^{\rho}} \leq \tilde{C}
$$

Using this Theorem we easily prove the following estimate.

Theorem 9. Given $F \in C^{2}\left(T^{3}\right)$ satisfying condition (8), there exist constants $C_{3}>0$ and $\rho>0$, both depending only on $\|F\|_{C^{2}}$, such that

$$
\begin{equation*}
\|u\|_{C^{2+\rho}} \leq C_{3} \tag{56}
\end{equation*}
$$

for all $u \in \tilde{C}^{4}\left(T^{3}\right)$ satisfying equation (12).
Proof. From (23) we obtain that the Riemannian metric \tilde{g} is represented by the matrix

$$
\tilde{g}=\left[\begin{array}{cccc}
u_{y y}+u_{t t}+u_{t}+1 & u_{x y} & 0 & u_{x t} \\
u_{x y} & u_{x x}+1 & u_{x t} & 0 \\
0 & u_{x t} & u_{y y}+u_{t t}+u_{t}+1 & -u_{x y} \\
u_{x t} & 0 & -u_{x y} & u_{x x}+1
\end{array}\right] .
$$

Then

$$
\operatorname{tr} \tilde{g}=2\left(\Delta u+u_{t}+2\right)
$$

Thanks to Theorems 5 and 7 we can apply Theorem 8 and get that

$$
\begin{equation*}
\max \left\{\left\|1+u_{x x}\right\|_{C^{\rho}},\left\|1+u_{y y}+u_{t t}+u_{t}\right\|_{C^{\rho}},\left\|u_{x y}\right\|_{C^{\rho}},\left\|u_{x t}\right\|_{C^{\rho}}\right\} \leq \tilde{C} \tag{57}
\end{equation*}
$$

where \tilde{C} depends only on $\|F\|_{C^{2}}$.
Now the estimates of second-order derivatives can be obtained as follows. Given a solution u of equation (12), we have that u can be viewed as a solution to the linear PDE

$$
\begin{equation*}
P u_{x x}+Q\left(u_{y y}+u_{t t}\right)-2 R u_{x y}-2 S u_{x t}+Q u_{t}=f \tag{58}
\end{equation*}
$$

with

$$
P=u_{y y}+u_{t t}+u_{t}+1, \quad Q=u_{x x}+1, \quad R=u_{x y}, \quad S=u_{x t}
$$

and

$$
f=2 \mathrm{e}^{F}-\left(\Delta u+u_{t}+2\right) .
$$

Thanks to Proposition 2, Corollary 1 and estimate (57), standard Schauder theory gives the estimate (56).
q.e.d.

4. Proof of Theorem 1

Proposition 6. Assume $u \in \tilde{C}^{2+\rho}\left(T^{3}\right)$ is a solution to equation (12) with $\rho>0$. If $F \in C^{\infty}\left(T^{3}\right)$, then $u \in \tilde{C}^{\infty}\left(T^{3}\right)$.

Proof. From Proposition 2 we have that equation (12) is elliptic. Then from [10, Theorem 4.8, Chapter 14], it follows that u belongs to the Sobolev space $W^{n, 2}\left(T^{3}\right)$, for all $n \in \mathbb{Z}_{+}$. But this implies that $u \in$ $C^{\infty}\left(T^{3}\right)$.
q.e.d.

Thanks to Theorem 3, Theorem 1 is an immediate consequence of the following theorem.

Theorem 10. Let $F \in C^{\infty}\left(T^{3}\right)$ satisfy (8). Then equation (12) has a solution $u \in \tilde{C}^{\infty}\left(T^{3}\right)$.

Proof. We apply the continuity method (see [7, Section 17.2]). For $0 \leq \tau \leq 1$, let
$\mathfrak{S}_{\tau}=\left\{u \in \tilde{C}^{\infty}\left(T^{3}\right):\left(u_{y y}+u_{t t}+u_{t}+1\right)\left(u_{x x}+1\right)-u_{x y}^{2}-u_{x t}^{2}=\mathrm{e}^{F_{\tau}}\right\}$,
where

$$
F_{\tau}=\log \left(1-\tau+\tau \mathrm{e}^{F}\right)
$$

Note that $0 \in \mathfrak{S}_{0}$ and that \mathfrak{S}_{1} consists of the solutions to (12) lying in $\tilde{C}^{\infty}\left(T^{3}\right)$. Since

$$
\max _{0 \leq \tau \leq 1}\left\|F_{\tau}\right\|_{C^{2}}<\infty
$$

and

$$
\int_{T^{3}} \mathrm{e}^{F_{\tau}} d V=\int_{T^{3}}\left(1-\tau+\tau \mathrm{e}^{F}\right) d V=1
$$

by Theorem 9 there exists a real number $\rho>0$ such that

$$
\begin{equation*}
\sup _{u \in \mathfrak{S}}\|u\|_{C^{2+\rho}}<\infty \tag{60}
\end{equation*}
$$

with

$$
\mathfrak{S}=\bigcup_{0 \leq \tau \leq 1} \mathfrak{S}_{\tau} \neq \emptyset
$$

Since $0 \in \mathfrak{S}_{0}$, the set $\left\{\tau \in[0,1]: \mathfrak{S}_{\tau} \neq \emptyset\right\}$ is not empty and we can define

$$
\mu=\sup \left\{\tau \in[0,1]: \mathfrak{S}_{\tau} \neq \emptyset\right\}
$$

In order to compete the proof we have to show that $\mathfrak{S}_{\mu} \neq \emptyset$ and $\mu=1$.

- $\mathfrak{S}_{\mu} \neq \emptyset$. By the definition of μ there exist two sequences $\left(\tau_{k}\right) \subset[0,1]$ and $\left(u_{k}\right) \subset \tilde{C}^{\infty}\left(T^{3}\right)$ such that $\left(\mu_{k}\right)$ is increasing and $u_{k} \in \mathfrak{S}_{\tau_{k}}$ for all k. Thanks to (60), the sequence $\left(u_{k}\right)$ is bounded in $\tilde{C}^{\rho}\left(T^{3}\right)$; then by the Ascoli-Arzelà Theorem there exists a subsequence $\left(u_{k_{j}}\right)$ convergent in $\tilde{C}^{2+\rho / 2}\left(T^{3}\right)$. Let $v=\lim u_{k_{j}}$. Then v belongs to $\tilde{C}^{2+\rho / 2}\left(T^{3}\right)$ and satisfies the equation

$$
\left(v_{y y}+v_{t t}+v_{b}+1\right)\left(v_{x x}+1\right)-v_{x y}^{2}-v_{x t}^{2}=\mathrm{e}^{F_{\mu}} .
$$

By Proposition $6 v$ belongs to $\tilde{C}^{\infty}\left(T^{3}\right)$. In particular, v belongs to \mathfrak{S}_{μ}, which turns out to be not empty.

- $\mu=1$. Assume by contradiction $\mu<1$, and define the non-linear C^{∞} operator

$$
\left\{\begin{array}{l}
T: \tilde{C}^{\rho}\left(T^{3}\right) \times[0,1] \rightarrow \tilde{C}^{\rho-2}\left(T^{3}\right), \\
T(u, \tau)=\left(u_{y y}+u_{t t}+u_{t}+1\right)\left(u_{x x}+1\right)-u_{x y}^{2}-u_{x t}^{2}-\mathrm{e}^{F_{\tau}}
\end{array}\right.
$$

Observe that the condition $\int_{T^{3}} T(u, \tau) d V=0$ follows from the identities $\int_{T^{3}}\left(u_{x y}^{2}+u_{x t}^{2}\right) d V=\int_{T^{3}}\left(u_{y y}+u_{t t}\right) u_{x x} d V$ and $\int_{T^{3}} \mathrm{e}^{F_{\tau}} d V=1$.

Since \mathfrak{S}_{μ} is not empty, there exists $v \in \mathfrak{S}_{\mu}$ such that $T(v, \mu)=0$. Compute

$$
\partial_{1} T(v, \mu) w=L w
$$

where

$$
L w=P w_{x x}+Q\left(w_{y y}+w_{t t}\right)-2 R w_{x y}-2 S w_{x t}+Q w_{t}=f
$$

with

$$
P=v_{y y}+v_{t t}+v_{t}+1, \quad Q=v_{x x}+1, \quad R=v_{x y}, \quad S=v_{x t}
$$

Since $v \in \mathfrak{S}_{\mu}$, we know that $L: \tilde{C}^{2+\rho}\left(T^{3}\right) \rightarrow \tilde{C}^{\rho}\left(T^{3}\right)$ is elliptic. Then by the Strong Maximum Principle $L=0$ implies that u is constant. This shows that L is is one-to-one on $\tilde{C}^{2+\rho}$. Moreover, by ellipticity, L has closed range, and thus Schauder Theory and the Continuity Method (see [7, Theorem 5.2]) show that L is onto. Therefore, by the Implicit Function Theorem there exists an $\epsilon>0$ such that

$$
T(u, \tau)=0
$$

is solvable with respect to u for every $\tau \in(\mu-\epsilon, \mu+\epsilon)$. Thanks to Proposition 6, these solutions belong to $\tilde{C}^{\infty}\left(T^{3}\right)$. Then $\mathfrak{S}_{\tau} \neq \emptyset$ for all $\mu<\tau<\mu+\epsilon$, in contradiction with the definition of μ.
q.e.d.

5. Outline of the proof of Theorem 2

Let θ as in the statement of Theorem 2. Then we can write

$$
\omega_{\theta}=f^{13}-f^{24}
$$

with
$f^{1}=\cos \theta e^{1}+\sin \theta e^{2}, \quad f^{2}=-\sin \theta e^{1}+\cos \theta e^{2}, \quad f^{3}=e^{3}, \quad f^{4}=e^{4}$.
Since

$$
d f^{4}=d e^{4}=e^{12}=f^{12},
$$

one easily obtains that

$$
\alpha=d^{\mathrm{c}} u-u f^{1}
$$

satisfies (6) and (5) if and only if $u \in \tilde{C}^{2}\left(T^{3}\right)$ is a solution to the fully non-linear PDE

$$
\begin{gather*}
\left(\left(\cos \theta \partial_{x}-\sin \theta \partial_{y}\right)^{2} u+1\right)\left(\left(\sin \theta \partial_{x}+\cos \theta \partial_{y}\right)^{2} u+\partial_{t}^{2} u+\partial_{t} u+1\right)- \tag{61}\\
-\left(\left(\cos \theta \partial_{x}-\sin \theta \partial_{y}\right)\left(\sin \theta \partial_{x}+\cos \theta \partial_{y}\right) u\right)^{2}- \\
-\left(\left(\cos \theta \partial_{x}-\sin \theta \partial_{y}\right) \partial_{t} u\right)^{2}=\mathrm{e}^{F}
\end{gather*}
$$

Let

$$
v(p, q, t)=u(x, y, t)
$$

with

$$
\left\{\begin{array}{l}
x=\cos \theta p+\sin \theta q \\
y=-\sin \theta p+\cos \theta q
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
\partial_{p} v=\cos \theta \partial_{x} u-\sin \theta \partial_{y} u \\
\partial_{q} v=\sin \theta \partial_{x} u+\cos \theta \partial_{y} u
\end{array}\right.
$$

This implies that (61) can be rewritten as

$$
\begin{equation*}
\left(v_{p p}+1\right)\left(v_{q q}+v_{t t}+v_{t}+1\right)-v_{p q}^{2}-v_{p t}^{2}=\mathrm{e}^{G} \tag{62}
\end{equation*}
$$

where

$$
G(p, q, t)=F(x, y, t)
$$

Equation (62) is formally the same as equation (12). There is, however, a big difference in periodicity conditions, which become

$$
v(p+\cos \theta m+\sin \theta n, q+\sin \theta m+\cos \theta n, t+k)=v(p, q, t)
$$

for all $m, n, k \in \mathbb{Z}$.
In particular, this implies that the proof of Proposition 3 fails, unless v is periodic with respect to the first variable p. An elementary argument shows that this happens if and only if either $\cos \theta=0$ or $\tan \theta \in \mathbb{Q}$, i.e., if and only if there exist two integers m and n such that

$$
m^{2}+n^{2}>0
$$

and

$$
\cos \theta=\frac{m}{\sqrt{m^{2}+n^{2}}}, \quad \sin \theta=\frac{n}{\sqrt{m^{2}+n^{2}}}
$$

Then

$$
v\left(p+\sqrt{m^{2}+n^{2}}, q, t\right)=v(p, q, t)
$$

and from $v_{p p}>-1$ we get the estimate

$$
\left|v_{p}\right| \leq \sqrt{m^{2}+n^{2}} .
$$

The rest of the proof of Theorem 2 can be obtained by a slight modification of the argument used to prove Theorem 1 and is left to the reader.

References

[1] E. Abbena, An example of an almost Kähler manifold which is not Kählerian, Boll. Un. Mat. Ital. A (6) 3 (1984), no. 3, 383-392, MR 769169, Zbl 0559.53023.
[2] R.A. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol. 65, Academic Press, Orlando, 1975, MR 2424078, Zbl 1098.46001.
[3] E. Buzano, A. Fino \& L. Vezzoni, The Calabi-Yau equation for T^{2}-bundles over the non-Lagrangian case, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011), no. 3, 281-298, MR 2945685, Zbl 1247.53085.
[4] E. Calabi, On Kähler manifolds with vanishing canonical class, in Algebraic geometry and topology, symposium in honor of S. Lefschetz, pp. 78-89, Princeton University Press, Princeton, N.J., 1957, MR 0085583, Zbl 0080.15002.
[5] S.K. Donaldson, Two-forms on four-manifolds and elliptic equations, Inspired by S.S. Chern, 153-172, Nankai Tracts Math. 11, World Scientific, Hackensack N.J., 2006, MR 2313334, Zbl 1140.58018.
[6] A. Fino, Y.Y. Li, S. Salamon \& L. Vezzoni, The Calabi-Yau equation on 4manifolds over 2-tori, Trans. Amer. Math. Soc. 365 (2013), no. 3, 1551-1575, MR 3003274, Zbl 1269.53047.
[7] D. Gilbarg \& N.S. Trudinger, Elliptic partial differential equations of second order, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983, MR 0737190, Zbl 0361.35003.
[8] D.D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. xii+436 pp, MR 1787733, Zbl 1027.53052.
[9] C.H. Taubes, Tamed to compatible: symplectic forms via moduli space integration, J. Symplectic Geom. 9 (2011), no. 2, 161-250, MR 2811651, Zbl 1232.57021.
[10] M.E. Taylor, Partial Differential Equations III, Nonlinear Equations, Applied Mathematical Sciences, vol. V 117, Springer, New York, NY, 1996, MR 1477408, Zbl 1206.35004.
[11] W.P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468, MR 0402764, Zbl 0324.53031.
[12] V. Tosatti \& B. Weinkove, The Calabi-Yau equation on the Kodaira-Thurston manifold, J. Inst. Math. Jussieu 10 (2011), no. 2, 437-447, MR 2787695, Zbl 1219.53072.
[13] V. Tosatti, B. Weinkove \& S.T. Yau, Taming symplectic forms and the CalabiYau equation, Proc. London Math. Soc. 97 (2008), no. 2, 401-424, MR 2439667, Zbl 1153.53054.
[14] V. Tosatti, Y. Wang, B. Weinkove \& X. Yang, $C^{2, \alpha}$ estimates for nonlinear elliptic equations in complex and almost-complex geometry, arXiv:1402.0554.
[15] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411, MR 480350, Zbl 0369.53059.
[16] B. Weinkove, The Calabi-Yau equation on almost-Kähler four-manifolds, J. Differential Geom. 76 (2007), no. 2, 317-349, MR 2330417, Zbl 1123.32015.

Dipartimento di Matematica Università di Torino
 Via Carlo Alberto 10
 10123 Torino, Italy
 E-mail address: ernesto.buzano@unito.it

Dipartimento di Matematica

Università di Torino
Via Carlo Alberto 10
10123 Torino, Italy
E-mail address: annamaria.fino@unito.it
Dipartimento di Matematica
Università di Torino
Via Carlo Alberto 10
10123 Torino, Italy
E-mail address: luigi.vezzoni@unito.it

