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RIGIDITY OF ASYMPTOTICALLY CONICAL

SHRINKING GRADIENT RICCI SOLITONS

Brett Kotschwar & Lu Wang

Abstract

We show that if two gradient shrinking Ricci solitons are asymp-
totic along some end of each to the same regular cone ((0,∞) ×
Σ, dr2+r2gΣ), then the soliton metrics must be isometric on some
neighborhoods of infinity of these ends. Our theorem imposes no
restrictions on the behavior of the metrics off of the ends in ques-
tion and in particular does not require their geodesic completeness.
As an application, we prove that the only complete connected gra-
dient shrinking Ricci soliton asymptotic to a rotationally symmet-
ric cone is the Gaussian soliton on Rn.

1. Introduction

In this paper, by a shrinking (gradient) Ricci soliton structure, we
will mean a triple (M,g, f) consisting of a smooth manifold M , a Rie-
mannian metric g, and a smooth function f satisfying the equations

(1.1) Rc(g) +∇∇f =
1

2
g and R+ |∇f |2 = f

on M . Since ∇(R + |∇f |2 − f) ≡ 0 whenever g and f satisfy the first
equation, the second equation is merely a convenient normalization and
can be achieved by adding an appropriate constant to f on every con-
nected component of M . When the potential is well-known or can be
determined from context, we often will refer simply to the metric g as
the soliton (or the shrinker) on M .
Beyond their intrinsic interest as generalizations of positive Einstein

metrics, shrinking solitons occupy a prominent place in the analysis of
singularities of the Ricci flow

(1.2)
∂

∂t
g(t) = −2Rc(g(t)),

where they correspond to shrinking self-similar solutions—the fixed
points of the equation modulo the actions of Diff(M) and R+ on the
space of metrics onM . They are the critical cases in Perelman’s entropy
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monotonicity formula and an important class of ancient solutions, aris-
ing frequently in applications as limits of rescalings of solutions to (1.2)
about developing singularities.
It is a fundamental problem to extend the classification of shrinking

solitons, which, at present, is only fully complete in dimensions two
and three. Hamilton [33] proved that the only complete nonflat two-
dimensional shrinking solitons are the standard round metrics on S2 and
RP 2, and, with a combination of results from his later paper [34] and
the work of Ivey [35], Perelman [47], Ni-Wallach [46], and Cao-Chen-
Zhu [16], it follows that the only nonflat complete three-dimensional
examples are finite quotients of either the standard round metric on S3

or the standard cylindrical metric on R× S2.
In higher dimensions, there are a number of partial classifications

for solitons satisfying certain auxiliary (and typically pointwise) condi-
tions on the curvature tensor. For example, Naber [44] has shown that
a four-dimensional complete noncompact nonflat shrinker of bounded
nonnegative curvature operator must be a finite quotient of the stan-
dard solitons on R×S3 or R2×S2. In the compact setting, there are also
a number of known positivity conditions on the curvature operator of a
shrinker which imply that it must be a finite quotient of the standard
round sphere. The results of Böhm-Wilking [2], for example, imply that
two-positivity of the curvature operator is sufficient, and the results of
Brendle-Schoen [8] and Brendle [5] demonstrate that this can be relaxed
further still, e.g., to the condition that M×R has positive isotropic cur-
vature. Additionally, an exhaustive classification is now known for com-
plete shrinking solitons of vanishing Weyl tensor in dimensions n ≥ 4:
the only nonflat examples are finite quotients of the standard metrics
on Sn or Sn−1 × R. A proof in the compact case can be found in the
paper of Eminenti-La Nave-Mantegazza [28] and, in the noncompact
case, in the combined work of Ni-Wallach [46] and Zhang [56] (see also
the papers of Petersen-Wylie [49] and Cao-Wang-Zhang [18]). The work
of Fernández-López and Garćıa-Rı́o [32] and Munteanu-Sesum [41] has
since extended this classification to shrinkers of harmonic Weyl tensor.
A further classification, under the still weaker condition of vanishing
Bach tensor, can be found in Cao-Chen [15]. We refer the reader to the
two surveys [13], [14] of Cao for a detailed picture of the current state
of the art.
Our specific interest is in complete noncompact shrinking Ricci soli-

tons. Here, one might optimistically interpret the sharp estimates now
known to hold on the growth of the potential f [17] and the volume
of metric balls (see, e.g., [17], [19], [42]) as indicators of an enforce-
ment of some broader principle of asymptotic rigidity, however, the cat-
alog of nontrivial examples is still exceedingly slim. Excluding products
and otherwise locally reducible metrics, to the authors’ knowledge, the
only complete noncompact examples in the literature belong either to
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the family of Kähler-Ricci solitons on complex line bundles constructed
by Feldman-Ilmanen-Knopf [31] or to those of their generalizations in
Dancer-Wang [26] (see also [54]). We remark, however, that Maximo
[40] has recently shown that the examples in [31] indeed arise as blow-up
limits for a large class of four-dimensional solutions to the Kähler-Ricci
flow. All of the shrinkers constructed in [31] and [26] possess conical
structures at infinity, and it is their example which motivates the in-
vestigation of the rigidity of such asymptotic structures in this paper.
We approach this as a question of uniqueness: if two gradient shrinking
solitons are asymptotic to the same cone along some end of each, must
they be isometric on some neighborhoods of infinity on those ends?

1.1. Asymptotically conical shrinking Ricci solitons. We now
make precise the sense in which we will understand a soliton to be
asymptotic to a cone. First let us make a preliminary definition and fix
some notation. By an end of M , we will mean a connected unbounded
component V of M \ Ω for some compact Ω ⊂ M . We will denote by
((0,∞) × Σ, gc) a regular (i.e., Euclidean) cone, where gc = dr2 + r2gΣ
and (Σ, gΣ) is a closed (n − 1)-dimensional Riemannian manifold, and
write ER � (R,∞) × Σ for R ≥ 0. Finally, for λ > 0, we define the
dilation by λ to be the map ρλ : E0 → E0 given by ρλ(r, σ) � (λr, σ).

Definition 1.1. Let V be an end of M . We say that (M,g) is as-
ymptotic to the regular cone (E0, gc) along V if, for some R > 0, there
is a diffeomorphism Φ : ER → V such that λ−2ρ∗λΦ

∗g → gc as λ → ∞
in C2

loc
(E0, gc). We will say that the soliton (M,g, f) is asymptotic to

(E0, gc) along V if (M,g) is.

Our main result is the following theorem. Note that neither (M̄ , ḡ)

nor (M̂, ĝ) is assumed to be complete, and no restriction is made on the

topology or geometry of (M̄ , ḡ) and (M̂ , ĝ) off of the ends in question.

Theorem 1.2. Suppose that (M̄, ḡ, f̄) and (M̂, ĝ, f̂) are shrinking
gradient Ricci solitons that are asymptotic to the regular cone (E0, gc)

along the ends V̄ ⊂ M̄ and V̂ ⊂ M̂ , respectively. Then there exist ends
W̄ ⊂ V̄ and Ŵ ⊂ V̂ and a diffeomorphism Ψ : W̄ → Ŵ such that
Ψ∗ĝ = ḡ.

Together with the local analyticity of Ricci solitons [36] and a stan-
dard monodromy argument (see, e.g., Theorem 3 of [43] or Corollary
6.4 of [37]), Theorem 1.2 implies the following global statement.

Corollary 1.3. Suppose (M̄, ḡ, f̄) and (M̂ , ĝ, f̂) are complete gradi-
ent shrinking Ricci solitons, and ḡ0 and ĝ0 are the metrics induced by
ḡ and ĝ on the universal covers M̄0 and M̂0 of M̄ and M̂ , respectively.
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Then, if (M̄ , ḡ, f̄) and (M̂ , ĝ, f̂) are asymptotic to the same regular cone

along some end of each, (M̄0, ḡ0) and (M̂0, ĝ0) must be isometric.

Theorem 1.2 can also be used to rule out the possibility of nontriv-
ial complete shrinking solitons asymptotic to a rotationally symmet-
ric cone. As we prove in Appendix B, for each α ∈ (0,∞), there ex-
ists a rotationally symmetric shrinking gradient Ricci soliton ((0,∞)×
Sn−1, gα, fα) asymptotic to the rotationally symmetric cone ((0,∞) ×
Sn−1, dr2 + αr2gSn−1). By Theorem 1.2, if (M,g, f) is any complete
shrinking gradient Ricci soliton asymptotic to the same cone on some
end V ⊂ M , there exists an isometry ϕ : (V ′, g) → (E′, gα) between
some ends V ′ ⊂ V and E′ ⊂ (0,∞) × Sn−1. But g is then rotation-
ally symmetric (and so also locally conformally flat) on V ′. Appealing
to analyticity, we may then argue in dimensions n ≥ 4 that the Weyl
curvature tensor vanishes identically on M . From the aforementioned
classification theorems in dimensions two and three and the locally con-
formally flat case, it follows that (M,g) must be flat.

Corollary 1.4. A complete connected shrinking gradient Ricci soli-
ton (M,g, f) is asymptotic to a rotationally symmetric cone ((0,∞) ×
Sn−1, dr2 + αr2gSn−1) along some end V ⊂ M if and only if M ≈ Rn

and g is flat.

Corollary 1.4 has some precedent in the category of steady and ex-
panding gradient Ricci solitons. Brendle [6] has proven that any three-
dimensional nonflat κ-noncollapsed steady gradient Ricci soliton must
be rotationally symmetric and hence, up to homothety, identical to
Bryant’s soliton [9]. This was also asserted by Perelman [47], who fur-
ther conjectured that Bryant’s soliton is the unique complete, noncom-
pact, three-dimensional κ-noncollapsed ancient solution to the Ricci
flow of bounded positive sectional curvature. Brendle’s approach in [6]
combines the construction of “approximate Killing vector fields” with a
careful blow-down analysis and a Liouville-type theorem for solutions to
the Lichnerowicz PDE. The essential dimension-specific aspects of his
argument are, first, that the sectional curvature of a complete steady
three-dimensional soliton is (by the Hamilton-Ivey estimate in its local
[21] and global [34] forms) necessarily nonnegative and, second, that the
asymptotic shrinking soliton obtained by parabolic blow-down from a
positively curved κ-noncollapsed steady soliton is known to be a cylin-
der. In a later paper, following the same general outline, Brendle [7]
extended his theorem to higher-dimensional steady solitons of positive
curvature operator which blow-down similarly to a cylinder.
Using a modification of this “approximate Killing vector” technique,

Chodosh [22] has proven that if a complete expanding gradient Ricci
soliton with nonnegative sectional curvature is asymptotic to a rotation-
ally symmetric cone ((0,∞)× Sn−1, dr2 +αr2Sn−1) for α ∈ (0, 1], then
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the soliton must itself be rotationally symmetric. Where the parabolic
blow-down procedure in [6], [7] is inapplicable in the expanding setting,
Chodosh substitutes an argument based on the elliptic maximum prin-
ciple and a judicious choice of barrier functions constructed from the
potential f . Arguing along these lines, Chodosh-Fong [23] have further
proven that any Kähler-Ricci expanding soliton of positive holomorphic
bisectional curvature asymptotic to a U(n)-invariant cone must be it-
self U(n)-invariant and so identical to one of the family of expanding
solitons constructed by Cao [12].

1.2. Overview of the proof of Theorem 1.2. Brendle’s technique,
however, does not seem to extend in the same straightforward way to
the case of shrinking Ricci solitons. According to [19], a complete Ricci
shrinker with nonnegative Ricci curvature must have vanishing asymp-
totic volume ratio and so cannot be asymptotically conical. An assump-
tion of positive curvature of any kind is therefore undesirable for our
purposes, yet, in its absence, it is unclear how to develop the Liouville-
type theorem needed to pass from approximate to exact Killing vector
fields (cf. the concluding comment in [23]). The positive coefficient of
the metric in (1.1) also generates a zeroth-order term of uncooperative
sign in the associated Lichnerowicz PDE.
We pursue instead a completely different strategy and convert Theo-

rem 1.2—on its face, an assertion of unique continuation at infinity for
the weakly elliptic system (1.1)—into an assertion of backward unique-
ness for the weakly parabolic system (1.2). By the same general strategy,
the second author in [52] recently obtained an analogous uniqueness
result for asymptotically conical self-shrinking solutions to the mean
curvature flow. The key idea can be summarized very succinctly: after
appropriate normalizations on the ends V̄ and V̂ , the self-similar so-
lutions to the Ricci flow associated to the solitons in Theorem 1.2 can
be made to coincide in finite time with the conical metric gc. Thus the
problem in Theorem 1.2 becomes a clean (if analytically somewhat sub-
tle) problem of backward uniqueness. We describe this conversion in
greater detail below.

1.2.1. Self-similar solutions to the Ricci flow. Recall that a family
g(t), t ∈ I, of metrics onM is said to be a shrinking self-similar solution
to (1.2) if there is a smooth family of diffeomorphisms Ψt : M → M
and a positive decreasing function c(t) defined for t ∈ I such that

(1.3) g(t) = c(t)Ψ∗t (g(t0))

for some t0 ∈ I. As is well-known (see, e.g., Lemma 2.4 in [24]), one can
construct a local shrinking self-similar solution from a shrinking gradi-
ent Ricci soliton structure (M,g, f) in an essentially canonical fashion.
Moreover, when ∇f is complete as a vector field (e.g., as happens when
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g is complete, according to [55]), this construction produces a globally
defined ancient solution to the Ricci flow.
In the setting of Theorem 1.2, on our (typically incomplete) ends V̄

and V̂ , we will obtain solutions g(t) = −tΨ∗t ḡ and g̃(t) = −tΨ̃∗t ĝ defined
for t ∈ [−1, 0) that satisfy g(−1) = ḡ and g̃(−1) = ĝ, have uniform
quadratic curvature decay, and (as can be seen) converge smoothly as
t↗ 0 to limit metrics g(0) and g̃(0). On one hand, the self-similarity of
the solutions for t ∈ [−1, 0) forces these limit metrics to be conical; on
the other (as we will verify, but is at least intuitively plausible), they
must also be asymptotic to gc in the sense of Definition 1.1. It follows,
then, that g(0) and g̃(0) must actually be isometric to the cone gc on
some sufficiently restricted end. Adjusting g(t) and g̃(t) by appropriate
diffeomorphisms, we can thus arrange that they inhabit the same endW
and agree identically at t = 0. To conclude that ḡ and ĝ are isometric on

some end, it is then enough to show that g(t) = −tΨ∗t ḡ and g̃(t) = −tΨ̃∗t ĝ
agree identically on W ′ ⊂ W for t ∈ (−ε, 0], and this is the backward
uniqueness problem we seek to solve.

1.2.2. The model Euclidean problem. A distinctive feature of The-
orem 1.2 (and of the corresponding result, Theorem 1.1, in [52]) is that
its conclusion is valid without any restrictions on the soliton structures
off of the particular ends V̄ and V̂ . The analytic artifact of this flexibil-
ity is that we have no control on g(t) and g̃(t) at the spatial boundary
of the end, and the backward uniqueness problem described above is
considerably more delicate than, e.g., the global problem considered in
[38] for complete solutions to (1.2).
For a model of an attack on this problem, as in [52], we can look to

the paper of Escauriaza-Seregin-Šverák [30]. There it is proven that any
smooth function u on (Rn \BR(0)) × [0, T ] which satisfies

|∂tu+Δu| ≤ N (|u|+ |∇u|) , u(x, 0) = 0, and |u(x, t)| ≤ NeN |x|
2

must vanish identically. The significance of their result is that it makes
no restriction on the behavior of u on the parabolic boundary of (Rn \
BR(0))× [0, T ]; it was previously known that this particular formulation
would settle a longstanding open question in the regularity of solutions
to the Navier-Stokes equations in three dimensions.
Since (1.2) is only weakly parabolic, there is no direct generalization

of this result which we may apply to our backward uniqueness problem,
nor is there, as there is for the mean curvature flow, a convenient means
of breaking the gauge-invariance of the equation to reduce the prob-
lem to one for a corresponding strictly parabolic equation. (See, e.g.,
the first section of [38] for an explanation of the inapplicability of De-
Turck’s method to backward-time uniqueness problems.) Nevertheless,
as in [38], we can embed the problem into one for a prolonged “PDE-
ODE” system of mixed differential inequalities for which an analog of
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the above theorem can be shown to hold. It is worth remarking that the
elliptic unique continuation problem implied by Theorem 1.2 is itself
somewhat nonstandard, even neglecting the complications arising from
the gauge-degeneracy which the system (1.1) shares with (1.2)—see Sec-
tion 3 of [52] for some discussion of the features of the corresponding
equation in the related case of self-shrinking solutions of the mean cur-
vature flow.

1.2.3. Structure of the paper. In Section 2, we construct from ḡ
and ĝ the self-similar solutions to the Ricci flow described above and
carry out the reduction of Theorem 1.2 to a specific problem of back-
ward uniqueness (Theorem 2.2). In Section 3, we convert this backward
uniqueness problem into one for a larger coupled system of mixed differ-
ential inequalities (a “PDE-ODE” system). The technical heart of the
paper is contained in Sections 4 and 5 where we develop two pairs of
Carleman inequalities for time-dependent sections of vector bundles on
a self-similar Ricci flow background. We then combine these estimates
in Section 6 to prove Theorem 2.2. We conclude the paper with two
technical appendices. In Appendix A, we record some elementary con-
sequences of Definition 1.1 and give a proof of a normalization lemma
for shrinking solitons with quadratic curvature decay. In Appendix B,
we construct a rotationally symmetric gradient shrinking soliton asymp-
totic to each rotationally symmetric cone ((0,∞)×Sn−1, dr2+αr2gSn−1).
These examples furnish the rotationally symmetric “competitor” soli-
tons we need to deduce Corollary 1.4 from Theorem 1.2.

Acknowledgments. The authors wish to thank Ben Chow, Toby Cold-
ing, Bill Minicozzi, and Lei Ni for their support and for sharing some
of their intuition, and also Huai-Dong Cao for his comments on a pre-
liminary draft of the paper. The second author would also like to thank
FIM/ETH for their hospitality during her visit in December 2012 while
this project was underway.
The first author was supported in part by NSF grant DMS-1160613.
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2. Reduction to a problem of backward uniqueness

Going forward, as in the statement of Theorem 1.2, (Σ, gΣ) will denote
a closed Riemannian (n − 1)-manifold and gc = dr2 + r2gΣ a regular
conical metric on E0 = (0,∞) × Σ. We will use rc : E0 → R to denote
the radial distance from the vertex relative to the conical metric gc (so
in coordinates (r, σ) on E0, we have rc(r, σ) = r) and the shorthand

ER = {x ∈ E0 | rc(x) > R}, and ETR � ER × [0, T ].
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Our aim in this section is to take the soliton structures (M̄ , ḡ, f̄) and

(M̂, ĝ, f̂) from Theorem 1.2 and construct from them self-similar solu-
tions to the backward Ricci flow on ER×(0, 1], for some sufficiently large
R, which flow smoothly from the cone gc at the singular time τ = 0 to
isometric copies of (restrictions of) ḡ and ĝ. This construction converts
Theorem 1.2 into the assertion of parabolic backward uniqueness stated
in Theorem 2.2 below.

2.1. An asymptotically conical self-similar solution to the Ricci

flow.

Proposition 2.1. Suppose (M̄ , ḡ, f̄) is a shrinking Ricci soliton as-
ymptotic to the regular cone (E0, gc) along the end V̄ ⊂ M̄ . Then there
exist K0, N0, and R0 > 0, and a smooth family of maps Ψ̄τ : ER0 → V̄
defined for τ ∈ (0, 1] satisfying:
(1) For each τ ∈ (0, 1], Ψ̄τ is a diffeomorphism onto its image and

Ψ̄τ (ER0) is an end of V̄ .
(2) The family of metrics g(x, τ) � τΨ̄∗τ ḡ(x) is a solution to the back-

ward Ricci flow

(2.1)
∂g

∂τ
= 2Rc(g)

for τ ∈ (0, 1], and extends smoothly as τ ↘ 0 to g(x, 0) ≡ gc(x)
on ER0 .

(3) For all m = 0, 1, 2, . . . ,

sup
ER0

×[0,1]

(
rm+2
c + 1

) ∣∣∣∇(m) Rm(g)
∣∣∣ ≤ K0.(2.2)

Here | · | = | · |g(τ) and ∇ = ∇g(τ) denote the norm and the Levi-
Civita connection associated to the metric g = g(τ).

(4) If f is the function on ER0 × (0, 1] defined by f(τ) = Ψ̄∗τ f̄ , then
τf extends to a smooth function on all of E1R0

and there g and τf
together satisfy

lim
τ↘0

4τf(x, τ) = r2c (x), r2c −
N0

r2c
≤ 4τf ≤ r2c +

N0

r2c
,(2.3)

and
∂

∂τ
(τf) = τR, τ2|∇f |2 − τf = −τ2R, τ Rc(g) + τ∇∇f =

g

2
.(2.4)

Therefore, Theorem 1.2 reduces to the following assertion of backward
uniqueness.

Theorem 2.2. Suppose that g and g̃ are self-similar solutions to
(2.1) on ER0 × (0, 1] for some R0 ≥ 1 that extend smoothly to gc on

ER0×{0} and with their potentials f and f̂ satisfy (2.2)–(2.4) for some
constants K0 and N0. Then there exists R ≥ R0 and τ ′ ∈ (0, 1) such

that g ≡ g̃ on Eτ ′R .
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For the application to Theorem 1.2, note that g(1) and g̃(1) are iso-
metric to τ−1g(τ) and τ−1g̃(τ), respectively, for any τ ∈ (0, 1]. We will
postpone the proof of this theorem to Section 6, until after we have
developed the necessary ingredients in Sections 3–5.

2.2. Proof of Proposition 2.1. There are three main steps. First,
we show that if a shrinking soliton (M̄ , ḡ, f̄) is asymptotically conical
along an end V̄ , it has quadratic curvature decay, and so, on some end
V̄ ′ ⊂ V̄ , admits a reparametrization that is compatible in a certain
sense with the level sets of f̄ . Second, we show that a shrinking soliton
with quadratic curvature decay gives rise to a self-similar solution to
the backward Ricci flow that extends smoothly to a conical metric on
sufficiently distant regions at the singular time. (In particular, this shows
that a soliton on a cylinder of the form (a,∞)×Σ for some compact Σ
with quadratic curvature decay must be asymptotically conical.) Finally,
we argue that this conical limit metric and the original asymptotic cone
gc are isometric. With a further adjustment by a diffeomorphism, we
can then arrange that our self-similar solution interpolates between a
soliton asymptotic to gc and the cone gc itself.

2.2.1. Initial technical simplifications. In order to eliminate some
notational baggage that we do not wish to carry with us through the
entire proof, we make a couple of up-front reductions. First, if Φ : ER →
V̄ is the map from Definition 1.1, then, replacing ḡ and f̄ by Φ∗ḡ and
Φ∗f̄ , we may as well assume that Φ = Id and V̄ = ER. Second, by
Lemma A.1 (b)–(c) and Lemma A.2, after pulling-back by an additional
diffeomorphism (and relabeling R), we may as well also assume that f̄
and ḡ are defined on ĒR/2 = (R/2,∞) × Σ̄ for some smooth closed

(n − 1)-manifold Σ̄, and that, writing r̄(x) � dḡ(x, ∂ĒR), there are
constants K and N such that the conditions

f̄(r, σ̄) =
r2

4
, |Rm(ḡ)|ḡ(r, σ̄) ≤ K

r2 + 1
, and

N(r − 1) ≤ r̄(r, σ̄) ≤ N(r + 1)

(2.5)

are satisfied for all x = (r, σ̄) ∈ ĒR. As we have only modified our soliton
structure by diffeomorphisms, our “normalized” (ĒR/2, ḡ, f̄) will still be

asymptotic to (E0, gc) along an end of the closure of ĒR in the sense
of Definition 1.1 (that we can adjust the domain of the diffeomorphism
required by this definition to have the form ES for some S, follows from
Lemma A.1 (b) and (A.5)). We do not assume here that Σ and Σ̄ are
diffeomorphic.

2.2.2. Distance estimates on the trajectories of ∇̄f̄ .We now ex-
amine the relationship between the integral curves of the vector field
∇̄f̄ and the radial trajectories. In what follows, we will use r to denote
both the global coordinate on the factor (0,∞) and the function on Ē0

given by r(r, σ̄) = r.
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Claim 2.3. There exist R′ > R depending only on R, K, and N ,
and a one-parameter family of local diffeomorphisms Ψs : ĒR′ → ĒR′ ,
defined for s ≥ 0, which satisfy

(2.6)
∂Ψs

∂s
= ∇̄f̄ ◦Ψs and Ψ0 = IdĒR′ .

Moreover, for all (r, σ̄) ∈ ĒR′ , rs � r ◦Ψs satisfies

(2.7) (r − 1)es/2 + 1 ≤ rs(r, σ̄) ≤ (r + 1)es/2 − 1.

Proof. First, by the local existence and uniqueness theory for ODE,
for each initial point x ∈ ĒR/2, the trajectory Ψs(x) of ∇̄f̄ with Ψ0(x) =

x exists for small s. Moreover, since f̄ = r2/4 in ĒR, and

(2.8)
∂

∂s
(f̄ ◦Ψs) = |∇f̄ |2ḡ ◦Ψs > 0,

it follows that rs(x) > r(x) for all x and all s ≥ 0 for which the trajectory
is defined. In particular, Ψs(ĒR) ⊂ ĒR, i.e., trajectories which begin in
ĒR stay in ĒR.
Using the second equation in (1.1) and the boundedness of R̄ =

scal(ḡ), we can obtain even better control on the distance, namely,

∂rs
∂s

= (f̄−
1
2 |∇f̄ |2ḡ) ◦Ψs =

rs
2

(
1− 4R̄ ◦Ψs

r2s

)
.

So, if R′ ≥ R is sufficiently large (depending on n, K, and R), then

1

2
(rs − 1) ≤ ∂rs

∂s
≤ 1

2
(rs + 1)

on ĒR′ . Integrating this last equation with respect to s yields (2.7) and
also proves the existence of the local diffeomorphisms Ψs : ĒR′ → ĒR′
for all s ≥ 0. q.e.d.

2.2.3. Derivative estimates. Continuing from the statement of Claim
2.3, we set s(t) � − log(−t) for t < 0 and define the family of metrics

(2.9) g(t) = −tΨ∗s(t)ḡ

on ĒR′ × [−1, 0). Then, as in Section 2.1 of [24], g(t) solves (1.2) with
initial condition g(−1) = ḡ.
Using the self-similarity of g(t), we can parlay the quadratic decay

of Rm(ḡ) into decay estimates for the higher derivatives of Rm(g(t)).
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First, by the quadratic curvature decay and (2.7), it follows that

sup
ĒR′×[−1,0)

(r2(x) + 1)|Rm(g)|g(x, t)

= sup
ĒR′×[−1,0)

(r2(x) + 1)

−t |Rm(ḡ)|ḡ ◦Ψs(t)(x)

≤ sup
ĒR′×[0,∞)

8(r2s(x) + 1) |Rm(ḡ)|ḡ ◦Ψs(x)

≤ 8K.

Then, from Shi’s derivative estimates [51], for each m ≥ 0, we obtain

|∇(m) Rm(g)|g(x, t) ≤ Km on the set { 2R′ ≤ r(x) ≤ 4R′ } × [−1/2, 0).
(Here and below, Km denotes a constant that changes from inequality
to inequality but depends only on m, n, and K.) From the definition
of the metrics g(t), the distance estimate (2.7), and the estimate on
|Rm(g)|g above, it follows that

(2.10) sup
ĒR′

(
rm+2(x) + 1

) ∣∣∣∇(m)
Rm(ḡ)

∣∣∣
ḡ
(x) ≤ Km.

From a scaling argument akin to the one above, we then obtain the
following estimate on the higher derivatives of Rm(g(t)).

Claim 2.4. For all m ≥ 0, there exists a constant Km = Km(n,K)
such that the curvature tensor of the solution g(t) = −tΨ∗s(t)ḡ satisfies

(2.11) sup
(x,t)∈ĒR′×[−1,0)

(
rm+2(x) + 1

) ∣∣∣∇(m) Rm(g)
∣∣∣
g
(x, t) ≤ Km.

Since Σ̄ is compact, we may find a finite atlas for ĒR′ for which we
have uniform estimates on the derivatives of the charts, and argue as in
the proofs of Theorem 6.45 and Proposition 6.48 of [24] to see that g(t)
converges smoothly as t↗ 0 to a smooth metric g0 = g(0) on ĒR′×{0}.
2.2.4. The potential function f and limit metric g(0). Now define
f on ĒR′×[−1, 0) by f = Ψ∗s(t)f̄ . Then f and g together form a shrinking

soliton structure on ĒR′ for each t ∈ [−1, 0), albeit one with the constant
−1/(2t) in place of 1/2 on the right side of (1.1). The following identities
are standard (see, e.g., Section 4.1 of [25]) and follow easily from the
definition of f , g, and equation (1.1).

Claim 2.5. On ĒR′ × [−1, 0), f satisfies

∂f

∂t
= |∇f |2, |∇f |2 + f

t
= −R, and ∇∇f = −Rc(g)− g

2t
.

Given the estimates (2.11) on the derivatives of curvature, it follows
from these identities that −tf converges locally smoothly as t ↗ 0
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to a smooth limit function q on ĒR′ . Moreover, there exists N > 0,
depending only on K, such that

−N

r2
≤ q − r2

4
≤ N

r2
, |∇q|2g0 = q, and ∇∇g0q =

1

2
g0.(2.12)

The first inequality implies that q is proper (on the closure of ĒR′) and
positive on sufficiently distant regions, which, with the second identity,
implies that the level sets of q corresponding to sufficiently large values
are smooth and diffeomorphic to a common closed (n− 1)-manifold Σ̂.
Moreover, the second inequality implies the integral curves of 2

√
q are

geodesic. As in Section 1 of [20], this along with the third identity in

(2.12) implies that g0 is conical, i.e., there exists R̂ > 0, and a diffeo-

morphism Φ̂ from ÊR̂ � (R̂,∞) × Σ̂ to an end of the closure of ĒR′
satisfying

(q ◦ Φ̂)(r̂, σ̂) = r̂2

4
and Φ̂∗(g0) = ĝc � dr̂2 + r̂2gΣ̂.

2.3. A final reparametrization. Now consider the family of metrics
Φ̂∗(g(t)) on ÊR̂ for t ∈ [−1, 0]. Each member of this family is uniformly
equivalent to ĝc = Φ̂∗(g0) in view of the boundedness of Rc(g(t)), and
from this equivalence, the identity

Φ̂∗(ḡ) = ĝc +

∫ 0

−1
2Rc(Φ̂∗(g(s))) ds,

the second and third inequalities in (2.5), and equation (2.12), it follows
that there is a constant N such that

|Φ̂∗(ḡ)− ĝc|ĝc(r̂, σ̂) ≤
N

r̂2 + 1

on ÊR̂. Writing ρ̂λ for the dilation map on Ê0, it follows that the family

λ−2ρ̂∗λΦ̂
∗(ḡ) converges to ĝc in C0

loc(ÊR̂, ĝc) as λ→∞.
On the other hand, we assume that ḡ is asymptotic to (E0, gc) along

an end of ĒR. Since ĒR \ ĒR+1 is bounded relative to ḡ (implying,
in particular, that (ĒR, ḡ) has at most one end relative to any compact
set), Lemma A.3 implies that (E0, gc) and (Ê0, ĝc) are isometric. Call the
isometry between them F . Replacing g(t) and f(t) with their pull-backs

by Φ̂◦F , on a sufficiently distant end we then achieve g(0) = gc exactly
and that −tf converges smoothly to r2c/4 as t↗ 0. The estimates (2.2)
and (2.3), which hold in terms of the parameter r for f and g prior to
their replacement by their pull-backs, will then also hold (for possibly
larger constants) in terms of rc. Setting τ = −t completes the proof.

3. A PDE-ODE system

Next, as in Section 2 of [38], we convert the backward uniqueness
problem in Theorem 2.2 into one for solutions to a PDE-ODE system



RIGIDITY OF ASYMPTOTICALLY CONICAL SHRINKING SOLITONS 67

of inequalities that are amenable to the development of parabolic-type
Carleman inequalities. The idea is to try to build a closed system out

of sufficiently many components of the form ∇(k)(Rm−R̃m) (the “PDE
part”) and ∇(k)(g − g̃) (the “ODE part”). (Here and in what follows

we will simply write Rm and R̃m for the (3, 1) curvature tensors of the

solutions g and g̃.) The curvature tensors Rm and R̃m will indepen-
dently satisfy strictly parabolic equations, and their differences will sat-
isfy parabolic equations up to lower order differences of these derivatives
and error terms involving the tensors ∇(k)(g − g̃). In turn, the norms
of these latter tensors can be controlled by the norms of the tensors

∇(k)Rm−∇̃(k)R̃m via their evolutions and a basic ODE comparison.
We will only summarize the construction of this system below and

refer the reader to [38] for more details. The use of such PDE-ODE
systems originated in the work of Alexakis [1] on the problem of unique
continuation for the vacuum Einstein equations. (See also [53].)

3.1. Elements of the prolonged system. The PDE part of our sys-
tem will be composed of the tensors

(3.1) S � Rm−R̃m and T � ∇Rm−∇̃R̃m,

and the ODE part of the tensors

(3.2) U � g − g̃, V � ∇− ∇̃, and W � ∇V.

Here V is a (2, 1)-tensor, given in local coordinates by V k
ij = Γk

ij − Γ̃k
ij .

Using T l
k(ER0) to denote the bundle of (k, l)-tensors over ER0 , we define

X � T 1
3 (ER0)⊕ T 1

4 (ER0), Y � T2(ER0)⊕ T 1
2 (ER0)⊕ T 1

3 (ER0),

and smooth families of sections X(τ) ∈ C∞(X ), Y(τ) ∈ C∞(Y) for
τ ∈ [0, 1] by

X � S ⊕ T, and Y � U ⊕ V ⊕W.

We will use g = g(τ) and its Levi-Civita connection, ∇ = ∇g(τ), as
a reference metric and connection in our calculations (and will use the
same symbols to denote the metrics and connections they induce on X
and Y and the other tensor bundles we consider). We will also write
Δ = gab∇a∇b for the induced Laplacian on X , and use | · | � | · |g(τ) for
the induced family of norms on each fiber of X and Y.

3.2. Evolution equations.We now import from [38] the following
evolution equations for the components of X and Y, correcting some
typographical errors in that reference. Here A ∗ B represents a linear
combination of contractions of tensors A and B with the metric g.
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Lemma 3.1 (Lemma 2.4, [38]). On E1R0
, we have the equations(

∂

∂τ
+Δ

)
S = g̃−1 ∗ ∇̃∇̃R̃m ∗ U + ∇̃R̃m ∗ V + R̃m ∗W

+ R̃m ∗ V ∗ V + g̃−1 ∗ R̃m ∗ R̃m ∗ U + R̃m ∗ S + S ∗ S,
(3.3)

(
∂

∂τ
+Δ

)
T = g̃−1 ∗ ∇̃(3)R̃m ∗ U + ∇̃∇̃R̃m ∗ V

+ ∇̃R̃m ∗ V ∗ V + ∇̃R̃m ∗W + g̃−1 ∗ R̃m ∗ ∇̃R̃m ∗ U
+ R̃m ∗ T + ∇̃R̃m ∗ S + S ∗ T,

(3.4)

and
∂

∂τ
Uij = 2Sl

lij ,(3.5)

∂

∂τ
V k
ij = gmk

(
T p
ipjm + T p

jpim − T p
mpij

)
− g̃amgbk

(
∇̃iR̃jm + ∇̃jR̃im − ∇̃mR̃ij

)
Uab,

(3.6)

∂

∂τ
W = ∇T + ∇̃R̃m ∗ V + g̃−1 ∗ ∇̃∇̃R̃m ∗ U

+ T ∗ V + g̃−1 ∗ ∇̃R̃m ∗ U ∗ V.
(3.7)

3.3. A coupled system of inequalities. The key feature of equations
(3.3)–(3.7) is that each term on the right-hand side contains at least one
factor of a (possibly contracted) component of either X, ∇X, or Y. Our
assumptions guarantee that the other factors in each term will at least
be uniformly bounded on E1R0

. Using the Cauchy-Schwarz inequality,
we can then organize the evolution equations for X and Y into a closed
system of inequalities.

Proposition 3.2. There exists N > 0, depending only on n, K, and

K̃, such that S, T , U , V , and W satisfy

(3.8) sup
E1R0

{|S|+ |T |+ |∇S|+ |∇T |+ |U |+ |V |+ |W |} ≤ Nr−2c ,

and the system of inequalities∣∣∣∣∂S∂τ +ΔS

∣∣∣∣ ≤ Nr−2c (|S|+ |U |+ |V |+ |W |) ,∣∣∣∣∂T∂τ +ΔT

∣∣∣∣ ≤ Nr−2c (|S|+ |T |+ |U |+ |V |+ |W |) ,
(3.9)

and ∣∣∣∣∂U∂τ
∣∣∣∣ ≤ N |S|,

∣∣∣∣∂V∂τ
∣∣∣∣ ≤ N |T |+Nr−2c |U |,∣∣∣∣∂W∂τ

∣∣∣∣ ≤ N |∇T |+Nr−2c (|U |+ |V |) .
(3.10)
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In particular X = S ⊕ T and Y = U ⊕ V ⊕W satisfy∣∣∣∣∂X∂τ +ΔX

∣∣∣∣ ≤ Nr−2c (|X|+ |Y|)∣∣∣∣∂Y∂τ
∣∣∣∣ ≤ N (|X|+ |∇X|) +Nr−2c |Y|

(3.11)

for N sufficiently large on E1R0
.

Proof. The argument goes essentially as in Proposition 2.1 of [38]. By
(2.2), we know the derivatives of the curvature tensors of both solutions
have at least quadratic decay relative to rc, so the coefficients of the

form ∇̃(m)R̃m and the extra-linear factors of S and T in equations (3.3)–
(3.7) have at least quadratic decay. (Note that the curvature bounds,
together with the fact that g and g̃ agree identically on ER0 × {0}, in
particular, imply that the metrics are uniformly equivalent, so that the

bounds on ∇̃(k)R̃m are also valid in the g(τ)-norm.) The same goes for
the extra-linear factors of U , V , W , since, just as in [38], they can be
estimated at each fixed x by simply integrating their τ -derivatives, and
these are controlled in turn by the pointwise values of |∇(m) Rm | and
|∇̃(m)R̃m|. However, not every term in the equations for U , V , and W
has a coefficient with quadratic decay, and so, in (3.11), the coefficients
of |X| and |∇X| in the second equation are merely constant. q.e.d.

4. Carleman estimates to imply backward uniqueness

The key technical components which we will need to prove Theorem
2.2 are two pairs of Carleman estimates. In this section, we establish
the first of these, the pair which ultimately will imply the vanishing of
X and Y. A model for the sort of thing we are after is estimate (1.4) of
[30] (cf. Proposition 3.5 in [52]), which states that, for all R > 0, there
is a constant α∗ = α∗(R,n) such that

‖eα(T−τ)(|x|−R)+|x|2u‖L2(QR,T ) + ‖eα(T−τ)(|x|−R)+|x|2∇u‖L2(QR,T )

≤ ‖eα(T−τ)(|x|−R)+|x|2(∂τ +Δ)u‖L2(QR,T ) + ‖e|x|
2∇u(·, T )‖L2(Rn\BR(0))

for all α ≥ α∗ and u ∈ C∞c (QR,T ) satisfying u(·, 0) ≡ 0. Here QR,T �

(Rn\BR(0))×[0, T ]. We devote most of this section to proving a general-
ization of this result applicable to the components of the PDE portion of
(3.11), and then prove a compatible “Carleman-type” estimate for the
ODE portion; these estimates are contained in Proposition 4.9 below.

4.1. Notation and standing assumptions. It will be convenient to
perform our calculations relative to the metric g = g(τ) from Theorem
2.2 and its Levi-Civita connection. Thus, in this section and the next we
will operate under the standing assumption that R0 ≥ 1 and 0 < τ0 ≤ 1
are given, and g and its potential f = f(τ) satisfy (2.1)–(2.4) for some
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constant K0, relative to the regular cone (E0, gc). In most places, we
will suppress the dependency of the norms and connections on g, and
simply write | · | = | · |g(τ) and ∇ = ∇g(τ), and write dμ = dμg(τ)

for the Riemannian density associated to g(τ). We will continue to use
rc(x) to denote the radial distance in the conical metric gc, and use
A0 � volgΣ(Σ) for the area (relative to the conical metric gc) of the
cross-section of E0 at distance one from the vertex.
Also, for the next two sections, Z = T κ

ν (ER0) will denote a generic
tensor bundle over ER0 . Most of our constants will depend on some
combination of the “background” parameters n, A0, K0, κ, and ν; for
completeness, we add that we will say that a constant depends on K0

only if it depends on max{K0, 1} (and similarly for A0, κ, and ν).

4.2. A divergence identity. Both of the primary estimates (4.7) and
(5.23) arise from the following divergence identity, which generalizes
Lemma 1 of [30] and Lemma 3.2 of [52] to time-dependent backward-
heat operators acting on sections of tensor bundles. Here the Laplacian
on Z is defined by ΔZ � gij∇i∇jZ. We will use F and G to denote
arbitrary smooth-functions on Eτ0R0

with G > 0, and write φ � logG.

By analogy with [30], we then consider the operators

A �
∂

∂τ
−∇∇φ +

F

2
Id,

S � Δ+∇∇φ − F

2
Id,

(4.1)

acting on Z ∈ C∞(Z × [0, τ0]). Unlike their counterparts in [30], A
and S will not be quite antisymmetric and symmetric, respectively, in
L2(Gdμdτ), but will nevertheless be close enough to being so that we
may prove a useful perturbation of the formula in that reference. The
proof of the identity below is a lengthy but straightforward verifica-
tion.

Lemma 4.1. For all Z ∈ C∞(Z × [0, τ0]) and all smooth F and
G > 0, the following identity holds on Eτ0R0

:

∇i

{
2

〈
∂Z

∂τ
,∇iZ

〉
G+ |∇Z|2∇iG− 2 〈∇∇GZ,∇iZ〉

+
FG

2
∇i|Z|2 + 1

2
(F∇iG−G∇iF ) |Z|2

}
dμ

− ∂

∂τ

{(
|∇Z|2 + F

2
|Z|2

)
Gdμ

}(4.2)
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=

{
2

〈
AZ,

(
∂

∂τ
+Δ

)
Z

〉
G− 2 |AZ|2G

+

(
F −G−1

(
∂G

∂τ
−ΔG+RG

))(
|∇Z|2 + F

2
|Z|2

)
G

− 1

2

(
∂F

∂τ
+ΔF

)
|Z|2G− 2∇i∇jφ〈∇iZ,∇jZ〉G

− ∂g

∂τ
(∇Z,∇Z)G − FG

2

∂g

∂τ
(Z,Z) + 2E(Z,∇Z)G

}
dμ,

where ∂g
∂τ represents the τ -derivative of the metrics induced by g on Z

and T ∗(ER0)⊗Z, E(Z,∇Z) denotes the sum of commutators

E(Z,∇Z) �

〈[
∇i,

∂

∂τ

]
Z,∇iZ

〉
− 〈[∇i,∇j ]Z,∇iZ〉∇jφ

= gqm
(
∇iRpm +∇pRim −∇mRip +Rj

pmi∇jφ
) 〈
Θp

qZ,∇iZ
〉
,

(4.3)

and Θp
q is the operator

Θp
q(Z

β
α) = δpα1

Zβ1β2···βκ
qα2···αν

+ δpα2
Zβ1β2···βκ
α1qα3···αν

+ · · ·+ δpαν
Zβ1β2···βκ
α1α2···q

− δβ1
q Zpβ2···βκ

α1α2···αν
− δβ2

q Zβ1p···βκ
α1α2···αν

− · · · − δβκ
q Zβ1β2···p

α1α2···αν
,

i.e., Θp
qZi = δpi Zq, Θ

p
qZk

ij = δpi Z
k
qj + δpjZ

k
iq − δkqZ

p
ij , etc.

Remark 4.2. We note for later an important observation regarding
(4.3). In our applications below, we will have ∇φ = Υ∇f for some
function Υ and since

(4.4) ∇iRjk −∇jRik = Rp
ijk∇pf,

for τ ∈ (0, τ0] owing to (2.4), we have
(4.5) E(Z,∇Z) = (∇iRpq + (1 + Υ)(∇pRiq −∇iRpq)) 〈Θp

qZ,∇iZ〉,
so that, for some C = C(n, κ, ν),

(4.6) |E(Z,∇Z)| ≤ C|∇Rc |(|∇Z|2 + (1 + Υ2)|Z|2)
on all of Eτ0R0

, i.e., we may control E(Z,∇Z) by Υ, Rc, ∇Rc, Z, and
∇Z alone, and eliminate the dependency of the estimate on ∇φ.

4.3. A weighted L2-inequality for the operator ∂τ + Δ.When
Z(·, τ) has compact support in ER0 for each τ and vanishes at τ = 0,
the above identity can be integrated and used to control |Z| and |∇Z| by
|(∂τ +Δ)Z| in a suitably weighted L2-sense. Choosing F = G−1(∂τG−
ΔG+RG) to obtain some cancellation of terms on the right-hand side
of (4.2), integrating over Eτ0R0

and using the Cauchy-Schwarz inequality,

we obtain the following analog of Lemma 2 in [30].
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Lemma 4.3. There exists a constant N = N(n, κ, ν,K0) such that
if Z ∈ C∞(Z × [0, τ0]) is compactly supported in ER0 for each τ and
satisfies Z(·, 0) = 0, then, for any smooth G > 0, we have

1

2

∫∫
Eτ0R0

∣∣∣∣∂Z∂τ +ΔZ

∣∣∣∣2Gdμdτ +

∫
ER0

×{τ0}

(
|∇Z|2 + F

2
|Z|2

)
Gdμ

≥
∫∫

Eτ0R0

(
Q1(∇Z,∇Z) +Q2(Z,Z) − 2E(Z,∇Z)

)
Gdμdτ

(4.7)

where E(Z,∇Z) is given by (4.3), F � G−1(∂τG−ΔG) +R, and

Q1(∇Z,∇Z) = 2(∇i∇jφ)〈∇iZ,∇jZ〉 − N

r2c
|∇Z|2

Q2(Z,Z) =
1

2

(
∂F

∂τ
+ΔF

)
|Z|2 − N |F |

r2c
|Z|2.

(4.8)

4.4. A weighted L2-inequality for the ODE component. Next,
we establish a matching L2-inequality for the ODE component of the
system; its proof is essentially trivial.

Lemma 4.4. There exists a constant N = N(n, κ, ν,K0) such that
if Z ∈ C∞(Z × [0, τ0]) is compactly supported in ER0 for each τ and
satisfies Z(·, 0) = 0, then, for all smooth G > 0,

(4.9) −
∫∫

Eτ0R0

(
N +

∂φ

∂τ

)
|Z|2Gdμdτ ≤

∫∫
Eτ0R0

∣∣∣∣∂Z∂τ
∣∣∣∣2Gdμdτ.

Proof. Note that

(4.10)
∂

∂τ

(
|Z|2 G

)
= 2

〈
∂Z

∂τ
, Z

〉
G+ |Z|2 ∂G

∂τ
+

∂g

∂τ
(Z,Z)G.

The inequality (4.9) then follows upon integrating (4.10) over Eτ0R0
and

applying the Cauchy-Schwarz inequality together with (2.2). q.e.d.

4.5. An approximately radial function. Our next task is to con-
struct a suitable weight function G1 to substitute for G in inequalities
(4.7) and (4.9). As a first step we introduce the function h : Eτ0R0

→ R

defined by

(4.11) h(x, τ) �

{
2
√

τf(x, τ) for τ > 0,
rc(x) for τ = 0,

which will prove to be a useful approximation of the (conical) radial
distance on our evolving solution. Observe first that h ∈ C∞(Eτ0R0

);
indeed, using the asymptotics we have established for f in Proposition
2.1, limτ↘0 h(x, τ) = rc(x) in every Ck-norm and satisfies

(4.12) |∇h|2(x, 0) = 1, and ∇∇(h2)(x, 0) = 2g(x, 0) = 2gc(x)
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on ER0 . Also, from (2.3), we see that

(4.13)
1

2
rc(x) ≤ h(x, τ) ≤ 2rc(x)

on Eτ0R0
; in view of (2.2), we consequently have the inequalities

(4.14) h ≥ 1

2
and h2(|Rm |+ |∇Rm |) ≤ CK0

on Eτ0R0
for some universal constant C. The identities (2.3) and (2.4)

also directly imply the following expressions for the derivatives of h for
τ > 0.

Lemma 4.5. On ER0 × (0, τ0], the derivatives of h satisfy

∇h =
2τ

h
∇f, h∇∇h = g − 2τ Rc−∇h⊗∇h,(4.15)

and

|∇h|2 = 1− 4τ2R

h2
, hΔh = n− 2τR− |∇h|2,(4.16)

and
∂h

∂τ
=

h

2τ

(
1− |∇h|2) = 2τR

h
.(4.17)

Equation (4.17) can be used to obtain a useful refinement of (4.13).

Lemma 4.6. There exists a universal constant C such that

(4.18) |h(x, τ) − rc(x)| ≤ CK0τ
2

r3c (x)

for all (x, τ) ∈ Eτ0R0
.

Proof. Fix an arbitrary x ∈ ER0 and integrate both sides of (4.17)
with respect to τ . Using (4.14) and that we have normalized to achieve
h(x, 0) = rc(x), we obtain that |h2(x, τ)− r2c (x)| ≤ CK0r

−2
c (x)τ2, so

|h(x, τ) − rc(x)||h(x, τ) + rc(x)| ≤ CK0r
−2
c (x)τ2,

and the claim follows. q.e.d.

4.6. A weight function of rapid growth.With h in hand, we now
construct our weight function G1. We fix δ ∈ (0, 1) and define, for all
α > 0, the function

(4.19) G1 � G1;α,τ0(x, τ) = exp
[
α(τ0 − τ)h2−δ(x, τ) + h2(x, τ)

]
and, writing φ1 � φ1,α,τ0 � logG1, also define

(4.20) F1 � F1;α,τ0 �
∂φ1

∂τ
−Δφ1 − |∇φ1|2 +R.

Using Lemma 4.5, we may obtain expressions for the derivatives of φ1

up to second order. Eventually, we will simply estimate away the terms
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involving curvature, but we must be reasonably precise about them at
this point, since we will later need to compute two additional derivatives
of φ1 in order to estimate the expression involving F1 in (4.7).

Lemma 4.7. For any α and any τ0, δ ∈ (0, 1), φ1 = φ1;α,τ0 satisfies

∂φ1

∂τ
= 4τR− αh2−δ

(
1− 2(2− δ)τ(τ0 − τ)R

h2

)
,(4.21)

∇φ1 =
(
α(2 − δ)(τ0 − τ)h1−δ + 2h

)
∇h,(4.22)

and

∇∇φ1 =
α(2− δ)(τ0 − τ)

hδ
(g − 2τ Rc−δ∇h⊗∇h)

+ 2 (g − 2τ Rc) .
(4.23)

In particular, there exists a constant R1 ≥ R0 depending only on n, δ,
and K0, such that, on Eτ0R1

,

∇∇φ1 ≥ g, and

0 ≥ F1 ≥ −N
(
1 + h2 + αh2−δ + α2(τ0 − τ)2h2−2δ

)
,

(4.24)

for all α ≥ 1.

Proof. Equations (4.21), (4.22), and (4.23) follow easily from the iden-
tities for the corresponding derivatives of h in Lemma 4.5. For the
first inequality in (4.24), observe that, by (2.2), we can arrange that
|Rc | ≤ (1 − δ)/4 on Eτ0R by selecting R ≥ R0 sufficiently large. Since
|τ0| ≤ 1, the first term on the right in (4.23) is then bounded below by g
on this set, and the tensor in the right factor of the first term is bounded
below by ((1+ δ)/2)g− δ∇h⊗∇h. For each (x, τ) ∈ Eτ0R0

, the restriction

of this latter tensor to the orthogonal complement of ∇h(x, τ) is clearly
positive definite, and since

1 + δ

2
|∇h|2 − δ|∇h|4 = |∇h|2

(
1− δ

2
+
4δτ2R

h2

)
,

by invoking (2.2) and increasing R if necessary, we may achieve that
this same tensor is fully positive definite on Eτ0R . This implies the desired
inequality on ∇∇φ1.
For the second inequality in (4.24), we begin with (4.21) and note

that

∂φ1

∂τ
= −αh2−δ

(
1− 2(2 − δ)τ(τ0 − τ)R

h2
− 4τR

αh2−δ

)
≤ −α

2
h2−δ,
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if α ≥ 1. Then, since our previous inequality for ∇∇φ1 implies Δφ1 ≥ n
on Eτ0R for R sufficiently large, we also have

F1 =
∂φ1

∂τ
−Δφ1 − |∇φ1|2 +R ≤ −α

2
h2−δ − n+ CK0r

−2
c

≤ −1
2

(
αh2−δ + n

)
,

after using (2.2) and possibly increasing R again by an amount deter-
mined by n and K0. This gives the upper bound on F1.
For the lower bound, note that equations (4.22) and (4.23) give that

|∇φ1|2 =
(
α(2− δ)(τ0 − τ)h1−δ + 2h

)2
|∇h|2, and

Δφ1 = 2n− 4τR+ α(2 − δ)(τ0 − τ)(n − 2τR− δ|∇h|2)h−δ ,
which, in combination with (4.16) and (4.21), yields

F1 = (4τ + 1)R− α
(
h2−δ − 2(2− δ)(τ0 − τ)τh−δR

)
− 2n

− α(2 − δ)(τ0 − τ)
(
(n − δ − 2τR)h−δ + 4δτ2h−2−δR

)
+ 4τR −

(
α(2− δ)(τ0 − τ)h1−δ + 2h

)2
(1− 4τ2h−2R).

(4.25)

So, using (4.14), we have

|F1| ≤ N + 4h2 +Nαh2−δ +Nα2(τ0 − τ)2h2−2δ

on Eτ0R . q.e.d.

Next we seek a lower bound on (∂τ + Δ)F1 in order to bound Q2

in (4.8) from below. We first return to the detailed expression (4.25)
and group the terms with like powers of α, writing F1 = B0 + αB1 +
α2B2. Before differentiating, we note that the derivatives of h and R
are bounded on Eτ0R0

by (2.2) and (4.15)–(4.17), and since we also have
0 ≤ τ ≤ τ0 ≤ 1, we will really only need to consider carefully the terms
of highest order in h in each Bi. From (4.25), we see that we in fact
have

B0 = −4h2 + P0, B1 = −(1 + 4(2 − δ)(τ0 − τ))h2−δ + P1,

and

B2 = −(2− δ)2(τ0 − τ)2h2−2δ + P2,

where P0, P1, and P2 satisfy

∂P0

∂τ
+ΔP0 ≥ −C(K2

0 + 1)h−2,
∂P1

∂τ
+ΔP1 ≥ −C(K2

0 + 1)h−δ,

and
∂P2

∂τ
+ΔP2 ≥ −C(K2

0 + 1)h−2δ ,

for some constant C = C(n).
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Lemma 4.8. For all δ ∈ (0, 1), there exists R2 ≥ R0 depending only
on n, δ, and K0, such that the function F1 = F1;α,τ0 satisfies

∂F1

∂τ
+ΔF1 ≥ 3αh2−δ + α2(τ0 − τ)h2−2δ(4.26)

on Eτ0R2
for all α ≥ 1 and τ0 ∈ (0, 1].

Proof. Using Lemma 4.5, we have

∂hβ

∂τ
+Δhβ = β(n+ β − 2)hβ−2 − 4β(β − 2)τ2hβ−4R

for any β. Consequently, using the definition of the Bi, we have

∂B0

∂τ
+ΔB0 ≥ −8n− C(K2

0 + 1)h−2,

∂B1

∂τ
+ΔB1 ≥ 4(2− δ)h2−δ − C(K2

0 + 1)h−δ , and

∂B2

∂τ
+ΔB2 ≥ 2(τ0 − τ)(2− δ)2h2−2δ − C(K2

0 + 1)h−2δ

for some C = C(n). Thus, since α ≥ 1 and δ ∈ (0, 1), we obtain that
F1 = B0 + αB1 + α2B2 satisfies

∂F1

∂τ
+ΔF1 ≥ 3α(2 − δ)h2−δ + α2(2− δ)2(τ0 − τ)h2−2δ

on Eτ0R for R chosen sufficiently large depending only on n, δ, and K0.
q.e.d.

4.7. Carleman inequalities for the PDE-ODE system. Substi-
tuting G1;α,τ0 for G in Lemmas 4.3 and 4.4 and using Lemmas 4.7 and
4.8 to estimate the error terms, we now prove the first set of our desired
Carleman inequalities.

Proposition 4.9. For all δ ∈ (0, 1), there exists a constant R3 =
R3(n, δ,K0) ≥ R0 such that, for all α ≥ 1 and all Z ∈ C∞(Z × [0, τ0])
satisfying Z(·, 0) = 0 and that Z(·, τ) is compactly supported in ER3 for
each τ ∈ [0, τ0], we have the estimate

α‖ZG
1/2
1 ‖2

L2(Eτ0R3
)
+ ‖∇ZG

1/2
1 ‖2

L2(Eτ0R3
)

≤ 1

2
‖(∂τ +Δ)ZG

1/2
1 ‖2

L2(Eτ0R3
)
+ ‖∇ZG

1/2
1 ‖2L2(ER3

×{τ0})
(4.27)

and

α‖ZG
1/2
1 ‖2

L2(Eτ0R3
)
≤ 2‖∂τZG

1/2
1 ‖2

L2(Eτ0R3
)
,(4.28)

where G1 = G1;α,τ0 .
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Proof. We apply Lemmas 4.7 and 4.8 and let R3 ≥ max{R1,R2}
initially. Below, N will denote a series of constants depending only on
n and K0. If α ≥ 1, then (4.13) and (4.24) imply that

r−2c |F1| ≤ Nα+Nα2(τ0 − τ)2h−2δ.

Then, from (4.24) and (4.26) (and since 0 ≤ (τ0 − τ) ≤ 1), we have

Q1(∇Z,∇Z) ≥
(
2− N

r2c

)
|∇Z|2,

and

Q2(Z,Z) ≥
(
3α

2
h2−δ − N |F1|

r2c

)
|Z|2 + α2

2
(τ0 − τ)h2−2δ |Z|2

≥ αh2−δ
(
3

2
− N

h2−δ

)
|Z|2 + α2(τ0 − τ)h2−2δ

(
1

2
− N

h2

)
|Z|2.

So, enlarging R3 if necessary, we can arrange that

Q1(∇Z,∇Z) +Q2(Z,Z) ≥ 3

2
|∇Z|2 +

(
4α

3
+

α2

3
(τ0 − τ)h2−2δ

)
|Z|2

on Eτ0R3
. For (4.27), then, it remains only to estimate the E(Z,∇Z) term

from Lemma 4.3. Writing ∇φ1 = Υ1∇f , where Υ1 � 2τ(α(2 − δ)(τ0 −
τ)h−δ + 2), we may apply (4.6) of Remark 4.2 to obtain

−E(Z,∇Z) ≥ −Nh−2
(
|∇Z|2 +

(
1 + α2τ2(τ0 − τ)2h−2δ

)
|Z|2

)
for some N = N(n, κ, ν,K0). Thus after potentially increasing R3 again,
we have

−E(Z,∇Z) ≥ −1
4
|∇Z|2 − 1

6
|Z|2 − α2(τ0 − τ)h2−2δ

6
|Z|2

on Eτ0R3
, and (4.27) follows from Lemma 4.3.

For inequality (4.28), observe that

∂φ1

∂τ
= 4τR− αh2−δ

(
1− 2(2− δ)τ(τ0 − τ)R

h2

)
≥ −2α

3
h2−δ

from (4.21), and thus the desired inequality follows from (4.9), by choos-
ing R3 sufficiently large. q.e.d.

5. Carleman estimates to imply rapid decay

Since the weight function G1;α,τ0 in the previous section has growth
of order exp(Nr2c ) at infinity, we cannot make use of estimates (4.27)–
(4.28) until we guarantee that any solution to the PDE-ODE system
(3.11) which vanishes on ER0 × {0} decays at a correspondingly rapid
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rate. We verify this decay with the help of another pair of Carleman esti-
mates. Our preliminary model is inequality (1.4) of [30], which, writing

σa(τ) = (τ + a)e−(τ+a)/3, asserts that, for some constant C = C(n),

√
α‖σ−α−

1
2

a e
− |x−y|2

8(τ+a)u‖L2(Rn×(0,1)) + ‖σ−αa e
− |x−y|2

8(τ+a)∇u‖L2(Rn×(0,1))

≤ C‖σ−αa e
− |x−y|2

8(τ+a) (∂τ +Δ)u‖L2(Rn×(0,1))

for all α ≥ 0, y ∈ Rn, a ∈ (0, 1), and u ∈ C∞c (Rn × [0, 1)) satisfying
u(·, 0) ≡ 0. We wish to find a generalization of this inequality to our
geometric setting.
Replacing α with α+n/2 in the above inequality, for example, one can

see that the basic ingredient in the weight is the time-shifted Euclidean

heat kernel (τ + a)−n/2e−|x−y|
2/(4(τ+a)). The proof and subsequent ap-

plication of this estimate in [30] are considerably simplified by the fact
that the weight is an exact solution to the heat equation and possesses
a translational invariance in y. Neither of these properties, however, are
essential to verifying the decay we are after, and with “approximately
radial, approximately caloric” weight G2, we are able to prove a weaker
but still sufficiently powerful variant of their estimate applicable to the
PDE component of our system. Our prototype is the inequality

√
α‖σ−α−

1
2

a e
− (|x|−ρ)2

8(τ+a) u‖L2(Rn×(0,1)) + ‖σ−αa e
− (|x|−ρ)2

8(τ+a) ∇u‖L2(Rn×(0,1))

≤ C(γ, n)‖σ−αa e
− (|x|−ρ)2

8(τ+a) (∂τ +Δ)u‖L2(Rn×(0,1))
with σa as above and γ ≥ 1 some fixed number, valid for all α ≥
α′(γ, n) ≥ 0, ρ ≥ 1, a ∈ (0, 1), and u ∈ C∞c ({ |x| > γρ} × [0, 1))
vanishing for τ = 0.
It is worth remarking that, e.g., via a scaling argument applied rela-

tive to a finite fixed atlas, the decay condition we seek can be reduced
in principle to a local verification. Escauriaza-Fernandez [29] (cf. [45])
have considered such problems for a very general class of parabolic equa-
tions with time-dependent coefficients, and their estimates offer another
potential model for the estimate on our PDE component. However, since
the elliptic operators in our problem are actually Laplacians relative to
g(τ) (and so also perturbations of a conical Laplacian), our situation is
fundamentally simpler than that of [29], and we find that the approach
of [30] yields estimates with somewhat more transparent geometric in-
terpretations. In this approach it is possible to get by with far less
complicated weights, the use of which also greatly simplifies the proof
of the corresponding estimates for the ODE components.

5.1. Another divergence identity. As in the previous section, our es-
timate will follow from integrating a general divergence identity against
an appropriate weight. In this case, our choice of weight G will be a
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perturbation of a fundamental solution and so not itself be logarithmi-
cally convex. In order to use an inequality of the form in Lemma 4.3
to control |∇Z| above by |(∂τ + Δ)Z|, we must first tinker with the
divergence identity to increase the effective logarithmic convexity of G.
Thus, as in [30], we introduce additional positive time dependent

functions σ = σ(τ) and θ = θ(τ), stipulating only for the time-being
that σ be increasing. Replacing G in (4.2) by σ−αG, multiplying both
sides by θ, and using the product rule to bring the θ factor inside the
time-derivative of the last term on the left-hand side of that equation,
we obtain the following perturbed identity.

Lemma 5.1. For any Z ∈ C∞(Z × [0, τ0]), F , G ∈ C∞(Eτ0R0
) with

G > 0, and positive σ, θ ∈ C∞([0, τ0]) with σ increasing, the following
identity holds:

θσ−α∇i

{
2

〈
∂Z

∂τ
,∇iZ

〉
G+ |∇Z|2∇iG− 2 〈∇∇GZ,∇iZ〉

+
FG

2
∇i|Z|2 + 1

2
(F∇iG−G∇iF ) |Z|2

}
dμ

− ∂

∂τ

{(
|∇Z|2 + F

2
|Z|2

)
θσ−αGdμ

}
=

{
2

〈
AZ, ∂Z

∂τ
+ΔZ

〉
− 2 |AZ|2 − 1

2

(
∂F

∂τ
+ΔF

)
|Z|2

+

(
F −

(
G−1

(
∂G

∂τ
−ΔG

)
+R− α

σ̇

σ

))(
|∇Z|2 + F

2
|Z|2

)
− θ̇

θ

(
|∇Z|2 + F

2
|Z|2

)
− 2∇i∇jφ〈∇iZ,∇jZ〉

− ∂g

∂τ
(∇Z,∇Z)− F

2

∂g

∂τ
(Z,Z) + 2E(Z,∇Z)

}
θσ−αGdμ.

(5.1)

Here, A and E(Z,∇Z) are defined as in (4.1) and (4.3), respectively,

and the instances of ∂g
∂τ are to be interpreted as in Lemma 4.1.

5.2. Two variations on the weighted L2-inequality for the PDE

component. In our application of interest, we will first choose

F �
1

G

(
∂G

∂τ
−ΔG

)
+R− α

σ̇

σ
� F̃ − α

σ̇

σ

to eliminate the fourth term on the right-hand side of (5.1). Then, choos-
ing θ � σ/σ̇ as in [30], we have

θ̇

θ

σ̇

σ
=

σ̇2

σ2

(
1− σ̈σ

σ̇2

)
= − ¨̂

log σ,
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which leads to a useful cancellation among the coefficients of |Z|2 in
equation (5.1):

∂F

∂τ
+ΔF +

θ̇

θ
F =

∂F̃

∂τ
+ΔF̃−α

¨̂
log σ+

θ̇

θ

(
F̃ − α

σ̇

σ

)
=

∂F̃

∂τ
+ΔF̃ +

θ̇

θ
F̃ .

Finally, using the good −2|AZ|2 term in (5.1) together with the Cauchy-
Schwarz inequality, we obtain the following estimate upon integration
over Eτ0R0

.

Lemma 5.2. There exists a constant N = N(n, κ, ν,K0) such that,
for any α and any Z ∈ C∞(Z × [0, τ0]) that is compactly supported in
ER0 × [0, τ0) and vanishes on ER0 × {0}, the inequality∫∫

Eτ0R0

σ1−α

σ̇

(
Q3(∇Z,∇Z) +Q4(Z,Z)− 2E(Z,∇Z)

)
Gdμdτ

≤
∫∫

Eτ0R0

σ1−α

σ̇

∣∣∣∣∂Z∂τ +ΔZ

∣∣∣∣2 Gdμdτ

(5.2)

holds, where

Q3(∇Z,∇Z) ≥
(
2∇i∇jφ− σ

σ̇

¨̂
log σgij

)
〈∇iZ,∇jZ〉 − N

r2c
|∇Z|2(5.3)

and

Q4(Z,Z) ≥ 1

2

(
∂F̃

∂τ
+ΔF̃ +

θ̇

θ
F̃

)
|Z|2 − N

r2c
|F ||Z|2.(5.4)

In order to use the above inequality to control |∇Z| above by |(∂τ +
Δ)Z|, we require an additional inequality to help us estimate |Z| above
by controllably small multiples of |∇Z| and |(∂τ + Δ)Z|. Its proof is
very simple. Observe that, on one hand, we have the identity(

∂

∂τ
+Δ

)
|Z|2 = ∂g

∂τ
(Z,Z) + 2

〈
∂Z

∂τ
+ΔZ,Z

〉
+ 2|∇Z|2,(5.5)

while on the other (with F̃ = G−1(∂τG−ΔG) +R as before), we have

σ−2α
(

∂

∂τ
+Δ

)
|Z|2Gdμ = σ−2α∇i

(∇i|Z|2G− |Z|2∇iG
)
dμ

+
∂

∂τ

{
σ−2α|Z|2Gdμ

}
+ σ−2α

(
2α

σ̇

σ
− F̃

)
|Z|2Gdμ.

(5.6)

The inequality follows by integrating (5.6) over Eτ0R0
for appropriately

supported sections Z, and using (5.5) together with Cauchy-Schwarz.

Lemma 5.3. There exists a constant N = N(n, κ, ν,K0) such that,
for all α > 0, all smooth positive G = G(x, τ), and all positive increasing



RIGIDITY OF ASYMPTOTICALLY CONICAL SHRINKING SOLITONS 81

σ = σ(τ), we have the inequality∫∫
Eτ0R0

σ−2α
(
α
σ̇

σ
− F̃ − N

r2c

)
|Z|2 Gdμdτ

≤
∫∫

Eτ0R0

σ−2α
(
2|∇Z|2 + σ

ασ̇

∣∣∣∣∂Z∂τ +ΔZ

∣∣∣∣2
)
Gdμdτ

(5.7)

for all Z ∈ C∞(Z × [0, τ0]) with compact support in ER0 × [0, τ0) van-
ishing on ER0 × {0}.

5.3. An approximate solution to the conjugate heat equation.

Let h : Eτ0R0
→ R be as defined in Section 4.5 and, for any a ∈ (0, 1) and

ρ ∈ (R0,∞), define

(5.8) G2(x, τ) � G2;a,ρ(x, τ) = (τ + a)−n/2 exp
(
−(h(x, τ)− ρ)2

4(τ + a)

)
on Eτ0R0

. In view of the bounds (4.13), G2 is localized around the set

{ rc(x) = ρ}, and, in a manner we will make precise below, approxi-
mately solves the (forwards) conjugate heat equation in τ . Note that

G2;0,0 = τ−n/2e−f exactly satisfies

∂τG2;0,0 −ΔG2;0,0 +RG2;0,0 = 0.

5.3.1. Estimates on the derivatives of G2.We first use Lemma 4.5
to compute the derivatives of G2 = G2;a,ρ. We have

G−12

∂G2

∂τ
=

(h− ρ)2

4(τ + a)2
− τR(h− ρ)

h(τ + a)
− n

2(τ + a)
,(5.9)

and since G−12 ∇G2 = −(h− ρ)/(2(τ + a))∇h, we compute that

G−12 ∇∇G2 = − 1

2(τ + a)
g +

τ

(τ + a)
Rc(g) +

ρ

2(τ + a)
∇∇h

+
(h− ρ)2

4(τ + a)2
∇h⊗∇h

(5.10)

and

G−12 ΔG2 = − n

2(τ + a)
+

τR

τ + a
+

ρ

2(τ + a)
Δh

+
(h− ρ)2

4(τ + a)2
|∇h|2.

(5.11)
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Thus, combining the above equations, we obtain

G−12

(
∂G2

∂τ
−ΔG2

)
=

(h− ρ)2

4(τ + a)2
(
1− |∇h|2)− τR

τ + a

(
2− ρ

h

)
− ρΔh

2(τ + a)

=

(
a2

(τ + a)2
− 1

)
R− (n− 1)ρ

2h(τ + a)

+
2τρR

h(τ + a)

(
1− τ

(τ + a)
+

ρτ

2h(τ + a)
− τ

h2

)
,

(5.12)

so

G−12

(
∂G2

∂τ
−ΔG2

)
+R = − (n− 1)ρ

2h(τ + a)
+

a2R

(τ + a)2

+
2τρR

h(τ + a)

(
a

(τ + a)
+

ρτ

2h(τ + a)
− τ

h2

)
.

(5.13)

We now combine the above observations with (4.14), using the notation

F2 � F2;a,ρ � G−12

(
∂G2

∂τ
−ΔG2

)
+R− α

σ̇

σ

and

F̃2 � F̃2;a,ρ � F2 + α
σ̇

σ
.

Lemma 5.4. For all a ∈ (0, 1), γ > 0, and ρ > R0 ≥ 1, there exist
constants C = C(n, γ) > 0 and R4 = R4(n, γ,K0) ≥ R0, such that

G2 = G2;a,ρ and F̃2 = F̃2;a,ρ satisfy

(5.14)
1

2
e
− (rc(x)−ρ)2

4(τ+a) ≤ (τ + a)n/2G2(x, τ) ≤ 2e
− (rc(x)−ρ)2

4(τ+a)

and

(5.15) − (n− 1)ρ

2h(τ + a)
− 1

8h
≤ F̃2 ≤ − (n − 1)ρ

2h(τ + a)
+

1

8h
≤ 0,

and φ2 � logG2 satisfies

(5.16) ∇∇φ2 ≥ − g

2(τ + a)
− g

48

on the set (ER4 ∩ Eγρ)× [0, τ0].

Proof. First note that, using our curvature decay assumption (4.14),
(4.18), and our assumption that a, τ0 ≤ 1, we have that

(rc − ρ)2

(τ + a)
− CK0τ

2

(τ + a)r3c
≤ (h− ρ)2

(τ + a)
≤ (rc − ρ)2

(τ + a)
+

CK0τ
2

(τ + a)r3c
.

Thus (5.14) is valid on Eτ0R for R ≥ R0 sufficiently large.
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For (5.15), observe that the second term on the right side of (5.13)
satisfies the estimate ∣∣∣∣ a2R

(τ + a)2

∣∣∣∣ ≤ |R| ≤ C ′K0

h2

for some constant C ′ = C ′(n), and, using ρh−1 ≤ 2ρr−1c ≤ 2γ−1, that
the third term on the right of the same equation satisfies

2τρ|R|
h(τ + a)

∣∣∣∣ a

(τ + a)
+

ρτ

2h(τ + a)
− τ

h2

∣∣∣∣ ≤ C ′′K0

h2

for some C ′′ = C ′′(γ, n). Summing these two inequalities, we see that
by choosing R large enough, we can ensure that (C ′ + C ′′)K0/h ≤ 1/8

(and, in particular, that F̃2 ≤ 0) on (ER ∩ Eγρ)× [0, τ0].
For (5.16), we may use Lemma 4.5 to compute that

∇∇φ2 = − 1

2(τ + a)
((h− ρ)∇∇h+∇h⊗∇h)

= − g

2(τ + a)
+

τ Rc

(τ + a)
+

ρ

2h(τ + a)
(g − 2τ Rc−∇h⊗∇h)

= − g

2(τ + a)
+

τ(h− ρ)Rc

h(τ + a)
+

ρg

2h(τ + a)
− ρ∇h⊗∇h

2h(τ + a)
,

and from the bounds |Rc | ≤ C(n)K0h
−2 and |∇h|2 ≤ 1+C(n)K0τ

2h−4
available to us on Eτ0R0

, we can obtain a constant C ′′′ = C ′′′(n, γ) such
that

τ(h− ρ)Rc

h(τ + a)
≥ −C ′′′K0g

h2
and

ρ∇h⊗∇h

2h(τ + a)
≤ ρg

2h(τ + a)
+

C ′′′K0g

h4
.

Thus, for large R we may achieve C ′′′K0/h ≤ 1/96 and hence the in-
equality (5.16) on (ER ∩ Eγρ)× [0, τ0]. q.e.d.

5.3.2. Estimates on the derivatives of F̃2. In order to estimate the
Q4 term from (5.2), we still need to compute (∂τ +Δ)F̃2. Returning to

(5.13), we group terms with like powers of h−1 and write F̃2 in the form

F̃2 = − (n− 1)ρ

2(τ + a)h
+RH

(ρ
h
, τ

)
,

where

H(s, τ) �
a2

(τ + a)2
+

2aτ

(τ + a)2
s+

τ2

(τ + a)2
s2 − 2τ2

ρ2(τ + a)
s3.



84 B. KOTSCHWAR & L. WANG

Then, differentiating, we obtain the equations

∂F̃2

∂τ
=

(n − 1)ρ

2(τ + a)2h
+

(n− 1)ρ

2(τ + a)h2
∂h

∂τ
+H

∂R

∂τ
+HτR− ρHsR

h2
∂h

∂τ
,

∇F̃2 =
(n− 1)ρ

2(τ + a)

∇h

h2
+H∇R− ρHsR

h2
∇h,

ΔF̃2 =
(n − 1)ρ

2(τ + a)h2
Δh− (n− 1)ρ

(τ + a)h3
|∇h|2 +HΔR− 2ρHs

h2
〈∇R,∇h〉

+
ρ2HssR

h4
|∇h|2 − ρHsR

h2
Δh+

2ρHsR

h3
|∇h|2.

Hence, we have

∂F̃2

∂τ
+ΔF̃2 =

(n− 1)ρ

2(τ + a)2h
+

(n− 1)ρ

2(τ + a)h2

(
∂h

∂τ
+Δh− 2|∇h|2

h

)
+H

(
∂R

∂τ
+ΔR

)
+HτR− ρHsR

h2

(
∂h

∂τ
+Δh

)
− 2ρHs

h2
〈∇R,∇h〉+ ρR

h3

(
2Hs +

ρHss

h

)
|∇h|2,

which, after applying Lemma 4.5 and rearranging terms, becomes

∂F̃2

∂τ
+ΔF̃2 =

(n− 1)ρ

2(τ + a)2h
+

(n− 1)ρ

2(τ + a)h3

(
(n− 3) +

12τ2R

h2

)
− 2H|Rc |2 +HτR− ρHsR

h3

(
(n− 1) +

4τ2R

h2

)
− 2ρHs

h2
〈∇R,∇h〉+ ρR

h3

(
2Hs +

ρHss

h

)(
1− 4τ2R

h2

)
.

Fortunately, we will not need to analyze the complicated right-hand
side of this equation too carefully. For our purposes, the critical term
is the first. The others, as we will see next, are either of lower order in
(τ + a)−1, or higher order in h−1 (e.g., through factors of |Rc | or R)
and can be made as small as we like by shrinking our end by a further
fixed amount.

Lemma 5.5. For all a ∈ (0, 1), γ > 0, and ρ > R0, there exist
constants N and R5 ≥ R0 both depending only on n, γ, and K0 such
that F̃2 = F̃2;a,ρ satisfies

(5.17)
∂F̃2

∂τ
+ΔF̃2 ≥ (n− 1)ρ

2h(τ + a)2
− N

(τ + a)

on the set (ER5 ∩ Eγρ)× [0, τ0].

Proof. Observe that, for R ≥ R0 sufficiently large (depending only
on γ), we can ensure that

|H(ρh−1, τ)|+ |Hs(ρh
−1, τ)| + |Hss(ρh

−1, τ)| ≤ C(n)(γ−1 + γ−3)
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on ER∩Eγρ×[0, τ ]. Indeed, estimating τ/(τ+a) and a/(τ+a) above by 1,
and using that h/ρ ≤ γ−1, we see that each term in H is bounded above
by a constant depending only on γ, and the statements for Hs(ρh

−1, τ)
and Hss(ρh

−1, τ) follow from the fact that H is polynomial in s. By
similar reasoning, we obtain a bound of the form |Hτ | ≤ C(n)(γ−1 +
γ−3)(τ+a)−1 for analogously restricted (x, τ). So |HτR| ≤ C(n, γ)/(τ+
a) on Eτ0R for R taken sufficiently large (depending on n, γ, and K0).
Using Lemma 4.5 and (4.14), we can bound all the remaining terms
similarly. q.e.d.

5.4. A Carleman inequality for the PDE component. Now we
return to the integral inequality (5.2) and substitute G2 = G2;a,ρ for
the weight G. For the time-dependent weight σ, following [30], we define

σ(τ) � τe−τ/3 and its translates σa(τ) � σ(τ + a) for a ∈ (0, 1). Note
that σa is approximately linear in that

1

3e
(τ + a) ≤ σa(τ) ≤ (τ + a) and

1

3e
≤ σ̇a(τ) ≤ 1(5.18)

for τ ∈ [0, 1]. Additionally, σa satisfies
(5.19) −σa

σ̇a

¨̂
log σa =

1

(τ + a)(1− (1/3)(τ + a))
.

We begin by establishing lower bounds for the forms Q3 and Q4 from
Lemma 5.2.

Lemma 5.6. For all α > 0, a ∈ (0, 1), and γ > 0, there exist N and
R6 ≥ R0 depending on n, γ, κ, ν, and K0, such that the quadratic forms
Q3 and Q4 from (5.3) and (5.4) and the commutator term E(Z,∇Z)
from (4.3) (depending on φ2;a,ρ = logG2;a,ρ) satisfy

Q3(∇Z,∇Z) +Q4(Z,Z) − 2E(Z,∇Z)

≥ 1

4
|∇Z|2 − σ−1a

(
N +

α

10000

)
|Z|2(5.20)

on (ER6 ∩ Eγρ)× [0, τ0].

Proof. We begin by assuming that R > max{R3,R4,R5}. In the
argument that follows, N will denote a sequence of positive constants
depending on n, γ, κ, ν, and K0 that may vary from line to line.
First, from (5.3), (5.16), and (5.19) we have

Q3(∇Z,∇Z) ≥
(
2∇i∇jφ− σa

σ̇a

¨̂
log σagij − N

r2c
gij

)
〈∇iZ,∇jZ〉

≥
(

1

(τ + a)(1− (1/3)(τ + a))
− 1

(τ + a)
− 1

24
− N

r2c

)
|∇Z|2.

Hence

Q3(∇Z,∇Z) ≥
(
7

24
− N

r2c

)
|∇Z|2(5.21)
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on (ER ∩ Eγρ)× [0, τ0].
Similarly, from (5.4), we have

Q4(Z,Z) ≥ 1

2

(
∂F̃2

∂τ
+ΔF̃2 +

θ̇

θ
F̃2

)
|Z|2 − N |F2|

r2c
|Z|2

on the same set, while from (5.15), (5.17), and (5.19), we have

1

2

(
∂F̃2

∂τ
+ΔF̃2 +

θ̇

θ
F̃2

)
≥ (n− 1)ρ

4h(τ + a)2

(
1− 1

(1− (1/3)(τ + a))

)
− N

(τ + a)
− 1

(τ + a)(1 − (1/3)(τ + a))

1

16h

≥ −Nσ−1a .

Since |F̃2| ≤ C(n, γ)σ−1a on (ER0 ∩ Eγρ)× [0, τ0] by (5.15), we have

|F2| = |F̃2 − α
˙̂

log σa| ≤ (C(n, γ) + α)σ−1a ,

and therefore, from the previous two inequalities and (5.18), that

(5.22) Q4(Z,Z) ≥ −σ−1a

(
N +

α

10000

)
|Z|2

on ER ∩ Eγρ × [0, τ0] for R sufficiently large.
Now observe that we may write

∇φ2 = −(h− ρ)∇h

2(τ + a)
= −τ(h− ρ)

h(τ + a)
∇f � Υ2∇f,

where Υ2
2 ≤ C(n, γ) on Eτ0γρ. By (4.6) we then have

|E(Z,∇Z)| ≤ N

r2c
(|∇Z|2 + (1 + Υ2

2)|Z|2) ≤
N

r2c
(|∇Z|2 + |Z|2),

which, with (5.21) and (5.22), implies (5.20) after increasing R still
further. q.e.d.

We are now ready to prove our second Carleman estimate.

Proposition 5.7. For any a ∈ (0, 1), γ > 0, and ρ ≥ R0, there exist
constants C = C(n) > 0, and α0 > 0, R7 > R0 depending only on n, γ,
κ, ν, and K0, such that, for any smooth section Z of Z× [0, τ0] which is
compactly supported in (ER7 ∩ Eγρ) × [0, τ0), and satisfies Z(·, 0) ≡ 0,
we have √

α‖σ−α−1/2a ZĜ
1/2
2 ‖L2(Eτ0R0

) + ‖σ−αa ∇ZĜ
1/2
2 ‖L2(Eτ0R0

)

≤ C‖σ−αa (∂τZ +ΔZ)Ĝ
1/2
2 ‖L2(Eτ0R0

)

(5.23)

for all α ≥ α0, where

Ĝ2(x, τ) � Ĝ2;a,ρ(x, τ) � exp

(
−(rc(x)− ρ)2

4(τ + a)

)
.
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Remark 5.8. An essentially identical inequality holds with G2 =
G2;a,ρ in place of Ĝ2—in fact, we will prove it first for G2 and appeal to
(5.14) to obtain (5.23). We find the inequality easier to apply with the

weight Ĝ2, but easier to prove with G2.

Proof. We begin by choosing R7 to be greater than the constant
R6 from Lemma 5.6, and we will continue to increase it as necessary
as the argument progresses. To further reduce clutter, we will use the
temporary shorthand E = (ER7 ∩ Eγρ) × [0, τ0], and use C and N to
denote sequences of positive constants depending, respectively, only on
n, and on n, γ, κ, ν, and K0.
First, combining (5.2) with (5.20) yields the estimate

1

12e
‖σ−αa ∇ZG

1/2
2 ‖2L2(E) ≤

(
N +

α

5000

)
‖σ−α−1/2a ZG

1/2
2 ‖2L2(E)

+ ‖σ−αa (∂τZ +ΔZ)G
1/2
2 ‖2L2(E),

(5.24)

valid for any α > 0. (Here we have renamed α to write the factors of
σ1−α
a as σ−2αa , and have used (5.18) to estimate the extra factors of σ̇a
in (5.2).)

Next, observe that, by (5.15) and our choice of R7, we have F̃2 ≤ 0 on
suppZ. Using Lemma 5.3, we can therefore choose an α0 = α0(n, γ, κ, ν,
K0) ≥ 1 such that

α

10
‖σ−α−1/2a ZG

1/2
2 ‖2L2(E) ≤ 2‖σ−αa ∇ZG

1/2
2 ‖2L2(E)

+
20

α
‖σ−αa (∂τZ +ΔZ)G

1/2
2 ‖2L2(E)

(5.25)

for all α ≥ α0. Increasing α0, if necessary, to ensure that 12e(N +
α/5000) ≤ α/40 for all α ≥ α0, we may combine (5.24) and (5.25) to
obtain that

(5.26) ‖σ−αa ∇ZG
1/2
2 ‖2L2(E) ≤ C‖σ−αa (∂τZ +ΔZ)G

1/2
2 ‖2L2(E)

for all α ≥ α0. An appropriate further combination of (5.25) and (5.26)
implies (5.23) with the substitute weight G2. Then, using (5.14), we can

replace G2 with Ĝ2 at the expense of increasing the constant C by a
factor of 4. Finally, relabeling α once more to be α − n/4, and using
(5.18) to adjust the constant by another universal factor, we obtain
(5.23). q.e.d.

5.5. A Carleman-type inequality for the ODE component. Now
we derive a matching L2-estimate for the ODE portion of our system.
Since we will not perform any spatial integrations-by-parts and the met-
rics g(τ) are uniformly equivalent, it will suffice to first prove the esti-
mate relative to the fixed metric gc = g(0) and density dμgc = dμg(0),
and doing so will eliminate some extra terms in our computations. We
will also work with the function Ĝ2 = Ĝ2;a,ρ from the outset.
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Thus far, we have only restricted the parameter a to the interval (0, 1);
going forward, we will assume that 0 < a ≤ a0 for some 0 < a0 ≤ 1/8.
We will also assume that 0 < τ0 ≤ 1/4 and that Z ∈ C∞(Z × [0, τ0]) is
both compactly supported on ER0 × [0, τ0) and vanishes identically on
ER0 × {0}. For convenience, we extend Z to a piecewise smooth family
of smooth sections of Z by declaring Z(x, τ) = 0 for τ �= [0, τ0]. The
basis for our estimate is the simple identity

σ−2αa

∂

∂τ
|Z|2gcĜ2 − ∂

∂τ

(
σ−2αa |Z|2gcĜ2

)
= σ−2αa

(
2α

(τ + a)
− 2α

3
− (rc − ρ)2

4(τ + a)2

)
|Z|2gcĜ2,

(5.27)

which is valid for any α and ρ. From it we derive the inequalities

3

α
σ−2αa

∣∣∣∣∂Z∂τ
∣∣∣∣2
gc

Ĝ2 − ∂

∂τ

(
σ−2αa |Z|2gcĜ2

)
≥ σ−2αa

(
α

(τ + a)
− (rc − ρ)2

4(τ + a)2

)
|Z|2gcĜ2

(5.28)

and

3

2α
σ−2αa

∣∣∣∣∂Z∂τ
∣∣∣∣2
gc

Ĝ2 +
∂

∂τ

(
σ−2αa |Z|2gcĜ2

)
≥ σ−2αa

(
(rc − ρ)2

4(τ + a)2
− 2α

τ + a

)
|Z|2gcĜ2,

(5.29)

on Eτ0R0
using Cauchy-Schwarz. Consider the sets

Ω′a,α,ρ �
{
(x, τ) | (rc(x)− ρ)2 ≤ 2α(τ + a)

}
and

Ω′′a,α,ρ �
{
(x, τ) | (rc(x)− ρ)2 ≥ 10α(τ + a)

}
.

(5.30)

For fixed x ∈ ER0 , the intervals

J ′(x) � J ′a,α,ρ(x) � { τ | (x, τ) ∈ Ω′a,α,ρ } and

J ′′(x) � J ′′a,α,ρ(x) � { τ | (x, τ) ∈ Ω′′a,α,ρ }

are of the form [b′(x),∞) and (−∞, b′′(x)], respectively, for

b′(x) � b′a,α,ρ(x) �
(rc(x)− ρ)2

2α
− a

and

b′′(x) � b′′a,α,ρ(x) �
(rc(x)− ρ)2

10α
− a.
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Then, upon integration, we obtain from (5.28) that

3

α

∫
J ′(x)

σ−2αa

∣∣∣∣∂Z∂τ
∣∣∣∣2
gc

Ĝ2 dτ + σ−2αa |Z|2gcĜ2

∣∣∣
(x,b′(x))

≥
∫
J ′(x)

σ−2αa

(
α

τ + a
− (rc − ρ)2

4(τ + a)2

)
|Z|2gcĜ2 dτ

≥ α

6e

∫
J ′(x)

σ−2α−1a |Z|2gcĜ2 dτ

and, similarly, from (5.29), that

3

2α

∫
(J ′)c(x)

σ−2αa

∣∣∣∣∂Z∂τ
∣∣∣∣2
gc

Ĝ2 dτ + σ−2αa |Z|2gcĜ2

∣∣∣
(x,b′(x))

≥
∫
(J ′)c(x)

σ−2αa

(
(rc − ρ)2

4(τ + a)2
− 2α

τ + a

)
|Z|2gcĜ2 dτ

≥ α

6e

∫
J ′′(x)

σ−2α−1a |Z|2gcĜ2 dτ

+

∫ b′(x)

b′′(x)
σ−2αa

(
(rc − ρ)2

4(τ + a)2
− 2α

τ + a

)
|Z|2gcĜ2 dτ

≥ α

6e

∫
J ′′(x)

σ−2α−1a |Z|2gcĜ2 dτ − 3α

2

∫ b′(x)

b′′(x)
σ−2α−1a |Z|2gcĜ2 dτ.

When combined, the above inequalities imply that, for some C = C(n),∫ τ0

0
σ−2α−1a |Z|2gcĜ2 dτ ≤ C

α2

∫ τ0

0
σ−2αa

∣∣∣∣∂Z∂τ
∣∣∣∣2
gc

Ĝ2 dτ

+ C

∫ b′(x)

b′′(x)
σ−2α−1a |Z|2gcĜ2 dτ +

C

α
σ−2αa |Z|2gcĜ2

∣∣∣
(x,b′(x))

,

(5.31)

for all a ∈ (0, a0), α > 0, ρ > 0, and x ∈ ER0 .
We pause to estimate the last term in (5.31). Note that, if b′(x) ∈

[0, τ0], then x ∈ A(r′, r′′) = { r′ ≤ |rc(x)− ρ| ≤ r′′ } with
(5.32) r′ � r′a,α,ρ �

√
2aα and r′′ � r′′a,α,ρ �

√
2α(τ0 + a).

Then, using the definition of b′(x), we see that

σ−2αa |Z|2gcĜ2

∣∣∣
(x,b′(x))

=
e

2α
3
(b′(x)+a)

(b′(x) + a)2α
|Z|2gc(x, b′(x))e−

α
2

≤
(

1

ae
1
8

)2α

|Z|2gc(x, b′(x)),

since, if x ∈ supp(Z), then b′(x) + a ≤ τ0 + a0 < 3/8 by assumption.
Also,

volgc(A(r
′
a,α,ρ, r

′′
a,α,ρ)) ≤ CA0(ρ+

√
α)n
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for some C = C(n), by (5.32).
Continuing on now from (5.31), upon integration over ER0 and an

application of Fubini’s theorem, we obtain that∫∫
Eτ0R0

σ−2α−1a |Z|2gcĜ2 dμgc dτ ≤
C

α2

∫∫
Eτ0R0

σ−2αa

∣∣∣∣∂Z∂τ
∣∣∣∣2
gc

Ĝ2 dμgc dτ

+ C

∫∫
Ωa,α,ρ∩Eτ0R0

σ−2α−1a |Z|2gcĜ2 dμgc dτ

+
C

α
A0(ρ+

√
α)n

(
1

ae
1
8

)2α

‖Z‖2∞,gc,

(5.33)

where

Ωa,α,ρ �
(
Ω′a,α,ρ ∪ Ω′′a,α,ρ

)c
= { (x, τ) | 2α ≤ (rc(x)− ρ)2(τ + a)−1 ≤ 10α }.(5.34)

By an argument similar to that in the preceding paragraph, on the
set Ωa,α,ρ ∩ Eτ0R0

, the integrand in the penultimate integral in (5.33)

can be bounded above by Ca−1(ae1/8)−2α‖Z‖∞,gc, and the (space-time)
measure of the set Ωa,α,ρ is again bounded above by CA0(ρ +

√
α)n.

Thus, combining (5.33) with the equivalence of the norms | · |gc and
| · | = | · |g(τ) and the densities dμgc and dμ = dμg(τ), we arrive at our
desired Carleman-type estimate.

Proposition 5.9. Suppose a0 ∈ (0, 1/8), τ0 ∈ (0, 1/4), and R0 ≥ 1.
Then there exist constants N and R8 ≥ R0, depending only on n, κ, ν,
A0, and K0, such that, for any smooth family Z = Z(τ) of sections of
Z with compact support in ER8 × [0, τ0) which satisfies Z(·, 0) ≡ 0, we
have, for all α > 0, that

‖σ−α−
1
2

a ZĜ
1
2
2 ‖L2(Eτ0R0

) ≤ Nα−1‖σ−αa ∂τZĜ
1
2
2 ‖L2(Eτ0R0

)

+Na−
1
2 (ρ+

√
α)

n
2

(
1

ae
1
8

)α

‖Z‖∞,gc .
(5.35)

6. Proof of backward uniqueness

We now have the components we need to assemble our proof of Theo-
rem 2.2. Below, we will continue to use one of the metrics, g = g(τ), from
the statement of that theorem as a reference metric in our estimates,
and so will continue to assume that g and its potential f satisfy equa-
tions (2.1)–(2.4) of Proposition 2.1. By the arguments in Sections 2 and
3, it is enough to show that the sections X = S⊕T and Y = U⊕V ⊕W
defined in Section 3.1 vanish identically on Eτ ′R for R sufficiently large
and τ ′ ∈ (0, 1) sufficiently small.
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First, we observe that, from Proposition 3.2, for any ε > 0, there
exists a constant R9 = R9(ε, n,K0,R0) ≥ R0, such that, on E1R9

,

|X|+ |∇X|+ |Y| ≤ N(6.1)

and ∣∣∣∣∂X∂τ +ΔX

∣∣∣∣ ≤ ε (|X|+ |Y|) ,
∣∣∣∣∂Y∂τ

∣∣∣∣ ≤ N (|X|+ |∇X|) + ε|Y|,(6.2)

for some N = N(n,K0). Next, we describe our spatial cutoff function.

Lemma 6.1. Given ρ > 12R0 and ξ > 4ρ, there exists a smooth
function ψρ,ξ ∈ C∞(ER0 , [0, 1]) satisfying ψρ,ξ ≡ 1 on E ρ

3
\ E2ξ and

ψρ,ξ ≡ 0 on (ER0 \Eρ/6) ∪ E3ξ whose derivatives satisfy

(6.3) |∇ψρ,ξ|+ |Δψρ,ξ| ≤ Nρ−1

for some N = N(n,K0). Here | · | = | · |g(τ) and ∇ = ∇g(τ).

Proof. It is a routine matter to construct such a function in the form
ψρ,ξ(x) = η1(rc(x)/ρ)−η2(rc(x)/ξ) for some ηi ∈ C∞c (R, [0, 1]). The only
potentially nonstandard detail to verify is the two-sided bound on the
Laplacian, which may be derived from the identity ∇∇gcrc = rcgΣ, the
uniform equivalence of the metrics g and gc, and the pointwise estimate
on |Γ − Γgc | one obtains from the bounds on ∇Rc. q.e.d.

From this point onward, the proof consists of two general steps. First,
we apply the Carleman inequalities of Section 5 to (suitably cut-off
versions of) X and Y, and use them to verify that X and Y have
quadratic exponential decay in space if they vanish at τ = 0. This
ensures the validity of our second step, in which we apply the Carleman
estimates in Section 4 to deduce that X and Y vanish identically.

6.1. Exponential decay.We now proceed with the first of these steps,
verifying the following ancillary claim.

Claim 6.2. There exist constants s0 = s0(n), C = C(n), N =
N(n,K0), and R10 = R10(n,K0), with s0 ∈ (0, 1] and R10 ≥ R0, such
that, for all R ≥ R10,

(6.4) ‖|X| + |∇X|+ |Y|‖L2(A((1−√s)ρ,(1+
√
s)ρ)×[0,s]) ≤ Ne−

ρ2

Cs

for any s ∈ (0, s0] and ρ > 12R. Here A(r1, r2) denotes the annular
region Er1 \Er2 .

Proof. We broadly follow the proof of Lemma 4 of [30], making ad-
justments to handle the additional error term contributed by the in-
equality (5.35), the lack of consistent scaling among the components of
X and Y, and the somewhat different form of our Carleman estimates.
Let R7 and R8 be the constants guaranteed by Propositions 5.7 and

5.9 with the choice γ = 1/12. We take s0 = 1/4 andR10 = max{R7,R8}
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initially, and adjust them as the argument progresses, always assuming
R ≥ R10. We then let ρ be a positive parameter satisfying ρ ≥ 12R and
choose a further large number ξ ≥ 4ρ. Below, C will denote a series of
constants depending only on the parameter n and N a series depending
only on n, A0, and K0.
Take ψρ,ξ to be the cutoff function guaranteed by Lemma 6.1, and

choose a temporal cutoff function ϕ ∈ C∞(R, [0, 1]) with ϕ ≡ 1 for
τ ≤ 1/6 and ϕ ≡ 0 for τ ≥ 1/5. ThenXρ,ξ � ϕψρ,ξX andYρ,ξ � ϕψρ,ξY

are compactly supported in A(ρ/6, 3ξ)× [0, 1/4). Applying Propositions
5.7 and 5.9, respectively, to the components of Xρ,ξ and Yρ,ξ, summing
the result, and using (6.1), we obtain constants k0 and N such that

k
1
2‖σ−k−

1
2

a Xρ,ξĜ
1
2
2 |‖L2(A( ρ

6
,3ξ)×[0, 1

5
]) + ‖σ−ka ∇Xρ,ξĜ

1
2
2 ‖L2(A( ρ

6
,3ξ)×[0, 1

5
])

+ ‖σ−k−
1
2

a Yρ,ξĜ
1
2
2 ‖L2(A( ρ

6
,3ξ)×[0, 1

5
])

≤ N‖σ−ka (∂τ +Δ)Xρ,ξĜ
1
2
2 ‖L2(A( ρ

6
,3ξ)×[0, 1

5
])

+Nk−1‖σ−ka ∂τYρ,ξĜ
1
2
2 ‖L2(A( ρ

6
,3ξ)×[0, 1

5
]) +N(ρ+ k

1
2 )

n
2 a−

1
2 (ae

1
8 )−k

for any a ∈ (0, 1/8) and any k ≥ k0. Here Ĝ2 = Ĝ2;a,ρ.
Now, by (6.2), for all ε > 0, there is R9 = R9(ε) such that∣∣∣∣∂Xρ,ξ

∂τ
+ΔXρ,ξ

∣∣∣∣ ≤ ε (|Xρ,ξ|+ |Yρ,ξ|) + ψρ,ξ|ϕ′||X|
+ ϕ (|Δψρ,ξ||X|+ 2|∇ψρ,ξ||∇X|) and∣∣∣∣∂Yρ,ξ

∂τ

∣∣∣∣ ≤ N (|Xρ,ξ|+ |∇Xρ,ξ|) + ε|Yρ,ξ|+Nϕ|∇ψρ,ξ||X|+ ψρ,ξ|ϕ′||Y|

hold on E1R9
. Thus, if ε > 0 is taken sufficiently small, and k1 ≥ k0

sufficiently large, we may increase R10 to ensure R10 ≥ R9, assume
k ≥ k1, and return to the preceding inequality to absorb the terms
proportional to |Xρ,ξ|, |∇Xρ,ξ|, and |Yρ,ξ| on the right into the left-
hand side. (Here we also use that σa ≤ 1.) We obtain the inequality

‖σ−k−
1
2

a (|Xρ,ξ|+ |Yρ,ξ|)Ĝ
1
2
2 |‖L2(A( ρ

6
,3ξ)×[0, 1

5
])

+ ‖σ−ka ∇Xρ,ξĜ
1
2
2 ‖L2(A( ρ

6
,3ξ)×[0, 1

5
])

≤ N‖σ−k−
1
2

a (|X|+ |Y|)Ĝ
1
2
2 |‖L2(A( ρ

6
,3ξ)×[ 1

6
, 1
5
])

+N‖σ−ka (|X|+ |∇X|+ |Y|)Ĝ
1
2
2 ‖L2(A( ρ

6
, ρ
3
)×[0, 1

5
])

+N‖σ−ka (|X|+ |∇X|+ |Y|)Ĝ
1
2
2 ‖L2(A(2ξ,3ξ)×[0, 1

5
])

+N(ρ+ k
1
2 )

n
2 a−

1
2 (ae

1
8 )−k,

(6.5)
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valid for all k ≥ k1 and all 0 < a < 1/8.
Consider the penultimate term in (6.5). Since ξ ≥ 4ρ, we have rc−ρ ≥

7ξ/4 on A(2ξ, 3ξ) × [0, 1/5], and so, for some universal β, that

N‖σ−ka (|X|+ |∇X|+ |Y|)Ĝ
1
2
2 ‖L2(A(2ξ,3ξ)×[0, 1

5
]) ≤ N (e/a)k e−βξ

2
ξ

n
2 ,

where we have used the uniform equivalence of the metrics g(τ) and
gc to estimate the volume. It follows that this term tends to 0 as ξ →
∞. In fact, from (6.1) and the quadratic exponential decay of Ĝ2 we
see also that the integrals in the other terms in (6.5) will be finite as
ξ → ∞. Therefore, upon sending ξ → ∞ in (6.5), using the monotone
convergence theorem, and shrinking the domain of integration on the
left side, we see that, for some universal constant C,

‖(τ + a)−k(|X|+ |∇X|+ |Y|)Ĝ
1
2
2 ‖L2(E ρ

3
×[0, 1

6
])

≤ CkN‖(τ + a)−k(|X|+ |Y|)Ĝ
1
2
2 ‖L2(E ρ

6
×[ 1

6
, 1
5
])

+ CkN‖(τ + a)−k(|X|+ |∇X|+ |Y|)Ĝ
1
2
2 ‖L2(A( ρ

6
, ρ
3
)×[0, 1

5
])

+N(ρ+ k
1
2 )

n
2 a−

1
2 (ae

1
8 )−k.

(6.6)

The inequality is valid for all k ≥ k1 and a ∈ (0, 1/8).
Now, by (6.1), we can estimate the first term on the right of (6.6) as

‖(τ + a)−k(|X| + |Y|)Ĝ
1
2
2 ‖L2(E ρ

6
×[ 1

6
, 1
5
]) ≤ 6kN‖e− (rc−ρ)2

3 ‖L2(E ρ
6
×[ 1

6
, 1
5
])

≤ CkNρ
n
2

for all k ≥ k1 and a ∈ (0, 1/8). On the domain of the second term on

the right side of (6.6), we have e−(rc−ρ)2/(8(τ+a)) ≤ e−ρ2/(18(τ+a)), and,
by Stirling’s formula,

max
s>0

s−ke−ρ
2/(18s) = ρ−2k(18k)ke−k ≤ ρ−2kCkk!,

so, invoking (6.1), we can estimate this term as

‖(τ + a)−k(|X|+ |∇X|+ |Y|)Ĝ
1
2
2 ‖L2(A( ρ

6
, ρ
3
)×[0, 1

5
]) ≤ Nρ−2kCkk!ρ

n
2

for a universal constant C and all a ∈ (0, 1/8) and k ≥ k1.
Returning to (6.6) with these two estimates in hand, we obtain

‖(τ + a)−(k1+l)(|X|+ |∇X|+ |Y|)Ĝ
1
2
2 ‖L2(E ρ

3
×[0, 1

6
])

≤ Ck1+lNρ
n
2 (1 + ρ−2(k1+l)(k1 + l)!)

+N(ρ+ (k1 + l)
1
2 )

n
2 a−

1
2 (ae

1
8 )−(k1+l)

(6.7)
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for all l ≥ 0 and all a ∈ (0, 1/8). Noting that (l + k1)! ≤ Ck1+l(l!)(k1!)

and ln/4e−l/16 ≤ C for some universal C, we can multiply both sides of
(6.7) by ρ2l/((2C)ll!) and sum over all l ≥ 0 to obtain

‖(|X|+ |∇X|+ |Y|)e
ρ2

C(τ+a)
− (rc−ρ)2

8(τ+a) ‖L2(E ρ
3
×[0, 1

6
])

≤ Nρ
n
2

(
1 + e

ρ2

2 + a−(k1+
1
2
)e

ρ2

Cae1/16

)(6.8)

for some possibly increased universal C.
The e1/16 factor in the denominator of the exponent in the last term

on the right is crucial here, as it enables us to achieve a slightly smaller
relative value in the denominator of the exponent of the correspond-
ing factor on the left by suitably restricting τ . Specifically, if we write
e1/16 = 1 + 2δ, then

‖(|X| + |∇X|+ |Y|)e−
(rc−ρ)2

8(τ+a) ‖L2(E ρ
3
×[0,δa])

≤ Nρ
n
2

((
1 + e

ρ2

2

)
e
− ρ2

Ca(1+δ) + a−(k1+
1
2
)e

−δρ2

Ca(1+2δ)(1+δ)

)
.

Since a−(k1+1/2)e−δρ2/(2Ca(1+2δ)(1+δ)) is bounded above by a constant
depending only on k1, provided we increase N by an appropriate factor
(recall that k1 depends on the same parameters as N), it follows that
there is C = C(n) sufficiently large such that

‖(|X| + |∇X|+ |Y|)e−
(rc−ρ)2

8(τ+a) ‖L2(E ρ
3
×[0,δa]) ≤ Ne

−ρ2

Ca

for all 0 < a ≤ 1/C. On the other hand, e−|rc−ρ|
2/(8(τ+a)) ≥ N−1 on the

set A((1−
√
δa)ρ, (1 +

√
δa)ρ)× [0, δa], so we obtain that

‖|X| + |∇X|+ |Y|‖L2(A((1−√s)ρ,(1+
√
s)ρ)×[0,s]) ≤ Ne−

ρ2

Cs(6.9)

for s ∈ [0, 1/C] and arbitrary ρ ≥ 12R6. q.e.d.

6.2. The vanishing of X and Y. The proof of Theorem 2.2 is now
reduced to that of the following claim.

Claim 6.3. There exist τ ′ ∈ (0, 1) and R11 = R11(n,K0) such that

X ≡ 0 and Y ≡ 0 on Eτ ′R11
.

Proof. Below, we will continue to useN to denote a series of constants
which depend at most on the parameters n, A0, K0, and R0. We first

show that the (space-time) L2-norms of X and ∇X, weighted by e8r
2
c ,

are finite on EsR0
for s sufficiently small. According to (6.4), there is

s1 = s1(n) such that

‖|X| + |∇X|‖L2(AR,
√

s×[0,s]) ≤ e−16R
2
,
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provided R ≥ 12R10 and s ∈ [0, s1]. Here AR,ε = ER−ε \ ER+ε. Thus,
for any R′′ ≥ R′ � 12R10, we have that

‖(|X| + |∇X|)e4r2c ‖L2(ER0
\ER′′×[0,s1])

≤ ‖(|X| + |∇X|)e4r2c ‖L2(ER′\ER′′×[0,s1])

+ ‖(|X|+ |∇X|)e4r2c ‖L2(ER0
\ER′×[0,s1])

≤
k′∑
i=0

‖(|X|+ |∇X|)e4r2c ‖L2(AR′+(2i+1)
√

s1,
√

s1
×[0,s1])

+N‖e4r2c‖L2(ER0
\ER′×[0,s1])

≤
k′∑
i=0

N(R′ + 2(i+ 1)
√
s1)

n
2 e−12((R

′)2+i2s1) +N,

where k′ = �(R′′ −R′)/(2√s1)�. Sending R′′ →∞ it follows that

(6.10) ‖(|X|+ |∇X|)e4r2c ‖L2(Es1R0
) ≤ N

for some constant N = N(n,A0,K0). In particular, by the mean value
theorem, there is at least one τ∗ ∈ (0, s1) such that∫

ER0
×{τ∗}

(|X|+ |∇X|)2 e8r2c dμ = 1

s1
‖(|X| + |∇X|)e4r2c ‖2

L2(Es1R0
)

≤ N.

(6.11)

Now we are ready to apply our first Carleman estimate. By (6.2), we
can choose R12 ≥ R0 to ensure that∣∣∣∣∂X∂τ +ΔX

∣∣∣∣ ≤ 1

100
(|X|+ |Y|) ,∣∣∣∣∂Y∂τ

∣∣∣∣ ≤ N(|X|+ |∇X|) + 1

100
|Y|.

(6.12)

Next, as in Section 4, we take

G1(x, τ) � G1;α,τ∗ = eα(τ
∗−τ)h2−δ(x,τ)+h2(x,τ)

for α ≥ 0 and (x, τ) ∈ Eτ∗R0
. Observe that, by (4.13), we have G1(x, τ

∗) ≤
e4r

2
c (x) on ER0 and, generally, G1(x, τ) ≤ e8r

2
c (x) on Eτ∗R(α) for R(α)

sufficiently large. ChooseR ≥ max{12R0,R3,R12}, and, for all ξ > 4R,
let ψR,ξ : ER0 → [0, 1] be a cutoff function, constructed as in Lemma
6.1, satisfying ψR,ξ ≡ 1 for 2R ≤ rc(x) ≤ ξ, ψR,ξ ≡ 0 for rc(x) < R and
rc(x) > 2ξ, and |∇ψR,ξ|+ |ΔψR,ξ| ≤ L(n,R,K0). Then XR,ξ � ψR,ξX

and YR,ξ � ψR,ξY have compact support in ER for each τ ∈ [0, τ∗],
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and so, by Proposition 4.9, we have

α
1
2‖XR,ξG

1
2
1 ‖L2(Eτ∗R ) + ‖∇XR,ξG

1
2
1 ‖L2(Eτ∗R ) + ‖YR,ξG

1
2
1 ‖L2(Eτ∗R )

≤ 2‖(∂τ +Δ)XR,ξG
1
2
1 ‖L2(Eτ∗R ) + 4α−

1
2‖∂τYR,ξG

1
2
1 ‖L2(Eτ∗R )

+ 2‖∇XR,ξG
1
2
1 ‖L2(ER×{τ∗})

for all α ≥ 1 where G1 = G1;α,τ∗ .
On the other hand, by (6.12), XR,ξ and YR,ξ satisfy∣∣∣∣( ∂

∂τ
+Δ

)
XR,ξ

∣∣∣∣ ≤ 1

100
(|XR,ξ|+ |YR,ξ|) + 2|∇ψR,ξ ||∇X|

+ |ΔψR,ξ||X|∣∣∣∣ ∂∂τYR,ξ

∣∣∣∣ ≤ N(|XR,ξ|+ |∇XR,ξ|) + 1

100
|YR,ξ|+N |∇ψR,ξ||X|

on Eτ∗R , so there exists α4 = α4(n,A0,K0) such that

‖(|X| + |Y|)G
1
2
1 ‖L2(A(2R,ξ)×[0,τ∗])

≤ N‖(|X| + |∇X|)G
1
2
1 ‖L2(A(R,2R)×[0,τ∗])

+N‖(|X| + |∇X|)G
1
2
1 ‖L2(A(ξ,2ξ)×[0,τ∗])

+N‖XG
1
2
1 ‖L2(A(R,2R)×{τ∗}) +N‖XG

1
2
1 ‖L2(A(ξ,2ξ)×{τ∗})

+N‖∇XG
1
2
1 ‖L2(A(R,2ξ)×{τ∗})

(6.13)

for all α ≥ α4. Now,

‖(|X|+|∇X|)G
1
2
1 ‖L2(A(ξ,2ξ)×[0,τ∗]) ≤ L′‖(|X|+|∇X|)e4r2c ‖L2(A(ξ,2ξ)×[0,τ∗])

for some constant L′ = L′(α, δ), and since G1;α,τ∗(x, τ
∗) = eh

2(x,τ∗), we
have

‖XG
1
2‖L2(A(ξ,2ξ)×{τ∗}) ≤ ‖Xe4r

2
c‖L2(A(ξ,2ξ)×{τ∗}), and

‖∇XG
1
2
1 ‖L2(A(R,2ξ)×{τ∗}) ≤ ‖∇Xe4r

2
c‖L2(A(R,2ξ)×{τ∗}).

Thus, in view of (6.10) and (6.11), sending ξ →∞ in (6.13), we obtain

‖(|X|+ |Y|)G
1
2
1 ‖L2(E2R×[0,τ∗])

≤ N‖(|X|+ |∇X|)G
1
2
1 ‖L2(A(R,2R)×[0,τ∗]) +N.

But then, for any θ ≥ 1, we have G1 ≥ exp (16ατ∗(θR)2−δ) on Eτ∗/264θR,
while we will have G1 ≤ exp (16R2(ατ∗ + 1)) on A(R, 2R)× [0, τ∗]. So,
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for all α ≥ α4, we have

‖(|X| + |Y|)‖L2(E64θR×[0, τ∗2 ])

≤ Ne8R
2(1+ατ∗(1−θ2−δR−δ))‖(|X|+ |∇X|)‖L2(A(R,2R)×[0,τ∗])

+Ne−8ατ
∗(θR)2−δ

.

Choosing θ such that θ2−δ > Rδ, we can send α → ∞ to conclude at

last that X and Y must vanish identically on Eτ∗/264θR. q.e.d.

Appendix A. Asymptotically conical metrics

In this appendix, (Σ, gΣ) and (Σ̂, gΣ̂) will denote closed (n − 1)-
dimensional Riemannian manifolds and gc and ĝc regular cones on E0 �

(0,∞)×Σ and Ê0 � (0,∞)× Σ̂, respectively. We will denote the associ-
ated dilation maps by ρλ and ρ̂λ and use C � E0∪{O} and Ĉ � Ê0∪{Ô}
to denote the (completed) metric cones with vertices O and Ô and met-
rics dC and dĈ .

A.1. Some elementary consequences of Definition 1.1.

Lemma A.1. Let (M,g) be a Riemannian manifold, V an end of
M , and Φ : Ea → V a diffeomorphism for some a > 0. For all k =
0, 1, 2, . . ., define the proposition

(ACk) lim
λ→∞

λ−2ρ∗λΦ
∗g = gc in Ck

loc(E0, gc).

Then

(a) (ACk) holds if and only if

lim
b→∞

bl‖∇(l)
gc (Φ

∗g − gc)‖C0(Eb,gc) = 0

for each l = 0, 1, 2, . . . , k.
(b) If (AC0) holds, then the metrics Φ∗g and gc are uniformly equiv-

alent on Eb for any b > a, and, for all ε > 0, there exists b > a
such that, for (r, σ) ∈ Eb,

(A.1) (1− ε)|r − b| ≤ r̄b(r, σ) ≤ (1 + ε)|r − b|,
where r̄b(x) � dΦ∗g(x, ∂Eb).

(c) If (AC2) holds, then for any b > a, there exists a constant K =
K(b, gΣ) > 0 such that

(A.2) sup
x∈Eb

(r̄2b (x) + 1)|Rm(Φ∗g)|Φ∗g(x) ≤ K.

Proof. The proof of (a) is a direct application of the identity

sup
Eb\E2b

∣∣∣∇(k)
gc

(
λ−2ρ∗λΦ

∗g
)∣∣∣

gc
= sup

Eλb\E2λb

λk
∣∣∣∇(k)

gc (Φ∗g)
∣∣∣
gc
,
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valid for any k, λ ≥ 1, and b > a. The uniform equivalence assertion in
(b) follows immediately from (a).
To prove the estimate (A.1) in (b), first we invoke (a) to obtain b >

a+ 1 such that

(A.3) (1− ε)2gc ≤ Φ∗g ≤ (1 + ε)2gc

on Eb−1. Suppose x = (r, σ) ∈ Eb. Any curve γ in Eb joining x to a
point y = (b, σ̂) ∈ ∂Eb will satisfy that

(1− ε) lengthgc [γ] ≤ lengthΦ∗g[γ] ≤ (1 + ε) lengthgc [γ],

and so it follows from dgc(x, ∂Eb) = r − b that

(1− ε)|r − b| ≤ r̄b(x) ≤ (1 + ε)|r − b|.
Finally, for the curvature estimate in (A.2), fix any b > a and note

that, according to (a) and the uniform equivalence of Φ∗g and gc in Eb,
we have

sup
(r,σ)∈Eb

(r2 + 1)|Rm(Φ∗g)|Φ∗g(r, σ) ≤ K,

for some K depending on b and the curvature of gΣ. On the other
hand, by (A.1), there exists b′ > 0 (independent of b) such that for any
x = (r, σ) ∈ Eb′ , after possibly enlarging K,

r̄b(x) ≤ r̄b′(x) + diamΦ∗g(Eb \ Eb′) ≤ K(|r − b′|+ 1).

Thus, for a still larger K,

sup
x∈Eb

(r̄2b (x) + 1)|Rm(Φ∗g)|Φ∗g(x) ≤ K,

completing the proof. q.e.d.

A.2. Reparametrizing an asymptotically conical soliton. In the
next lemma, we will show that a shrinking soliton asymptotic to a cone
along some end admits a reparametrization on that end in which the
level sets of the potential function coincide with those of the radial
coordinate. We include the details since the ends we are working on
are incomplete (complete with boundary), but we note that there are
very precise estimates (see, e.g., [17]) on the growth of f on arbitrary
complete shrinking gradient solitons. Here our situation is far simpler,
owing to the decay of the curvature tensor, and an elementary argument
in the spirit of the first portion of Lemma 1.2 of [48] suffices.

Lemma A.2. Suppose (ER, g, f) is a shrinking soliton satisfying

(A.4) (r̄2(x) + 1)|Rm(g)| ≤ K

for some K, where r̄(x) � dg(x, ∂E2R), and limri→∞ r̄(ri, σi) → ∞
for all sequences (ri, σi) ∈ ER with ri → ∞ as i → ∞. Then there
exists S > 0, a closed (n − 1)-dimensional manifold Σ̄, and a map
Φ̄ : ĒS → ER, where ĒS � (S,∞)× Σ̄, with the following properties:
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(1) Φ̄ is a diffeomorphism onto its image, and Φ̄(ĒS) is an end of the
closure of E2R.

(2) For all (s, σ̄) ∈ ĒS ,

f̄(s, σ̄) =
s2

4
and

∂Φ̄

∂s
= f̄

1
2
∇̄f̄

|∇̄f̄ |2ḡ
.

(3) There exists a constant N > 0 such that, for all (s, σ̄) ∈ Ē2S ,

N−1(s− 1) ≤ s̄(s, σ̄) ≤ N(s+ 1) and (s2 + 1)|Rm(ḡ)|ḡ(s, σ̄) ≤ N.

Here, f̄ � f ◦ Φ̄, ḡ � Φ̄∗g, and s̄(x) � dḡ(x, ∂Ē2S ).

Proof. For any x ∈ E2R, if γ : [0, l] → E2R is a unit speed geodesic
with γ(0) = x0 ∈ ∂E2R, γ(l) = x, and l = r̄(x), then γ([0, l]) ⊂ E2R
and, by (1.1) and the assumed quadratic curvature decay, we have

1

2
− K ′

t2 + 1
≤ d2

dt2
(f ◦ γ)(t) ≤ 1

2
+

K ′

t2 + 1

for all t ∈ [0, l] for some K ′ = K ′(n,K). So

(A.5)
r̄2(x)

4
−N ′(r̄(x) + 1) ≤ f(x) ≤ r̄2(x)

4
+N ′(r̄(x) + 1)

for some constant N ′ depending on K ′ and sup∂E2R(|f | + |∇f |). In
particular, by the second equation in (1.1) (and the boundedness of R),
it follows that f is proper and ∇f �= 0 on ER′ for R′ > 2R sufficiently
large.
Let Ua � {x ∈ E2R | f > a }. Then there is b such that Ub′ ⊂ ER′ for

all b′ ≥ b, and a diffeomorphism ϕ : (b,∞) × Σ̄ → Ub for some smooth
compact (n− 1)-dimensional manifold Σ̄ diffeomorphic to the level sets
{x ∈ E2R | f = b′ } for b′ ≥ b. This diffeomorphism may be taken to
satisfy

f(ϕb(u, σ̄)) = u and
∂ϕb

∂u
=

( ∇f

|∇f |2
)
◦ ϕb.

Observe that Σ̄ must be connected since we assume Σ to be. For, suppose
that Σ̄ = ∪m

i=1Σ̄i for some disjoint closed Σ̄i. Equation (A.5) implies that

ER′′ ⊂ Ub for someR′′ > 0, and so ϕ−1b (ER′′) ⊂ (b,∞)×Σ̄i0 for some i0,
since ER′′ is connected. But, again in view of (A.5), ER′′ ∩ϕb((b,∞)×
Σ̄i) �= ∅ for all i. Thus Σ̄ = Σ̄i0 and is connected. Note also that E2R\Ub

is a closed subset of E3R/2 \ ER′′ , hence compact. So, taking S � 2
√
b,

and defining Φ̄ : (S,∞) × Σ̄ → ER by Φ̄(s, σ̄) � ϕb(s
2/4, σ̄), we obtain

Φ̄ satisfying (1) and (2).
For the first inequality in (3), note that, for any x = (s, σ̄) ∈ ĒS , it

follows from (A.5) that

N−1(s− 1) ≤ s̄(x) = dg(Φ̄(x), ∂U4b) ≤ N(s+ 1)
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for some N depending on N ′ and dg(∂E2R, ∂U4b). The second inequality
in (3) follows directly from (A.4) and (A.5) after suitably enlarging N .

q.e.d.

A.3. Uniqueness of asymptotically conical models. Next we wish
to determine conditions under which the two cones (E0, gc) and (Ê0, ĝc)
must be isometric if (M,g) is asymptotic to them both along some com-
mon end V ⊂ M . We will argue broadly as follows: if g is asymptotic
to (E0, gc) and (Ê0, ĝc) along V , then gc will be asymptotic to ĝc along
some end of E0 in the sense of Definition 1.1. But then, the asymptotic
cones of (C, dC) and (Ĉ, dĈ) (defined in the pointed Gromov-Hausdorff
sense) must be isometric, and these are separately isometric to the orig-
inal cones. The following lemma gives the precise (and somewhat more
general) statement.

Lemma A.3. Suppose that Φ : Êa0 → V is a diffeomorphism onto
some end V ⊂ (Eb0 , g), and

λ−2ρ∗λg → gc in C0
loc(E0, gc) and λ−2ρ̂∗λΦ

∗g → ĝc in C0
loc(Ê0, ĝc)

as λ→∞. Then (E0, gc) and (Ê0, ĝc) are isometric.

Proof. By part (a) of Lemma A.1, we have

(A.6) lim
b→∞

‖g − gc‖C0(Eb,gc) = lim
a→∞ ‖Φ

∗g − ĝc‖C0(Êa,ĝc)
= 0,

and we claim that lima→∞ ‖Φ∗gc − ĝc‖C0(Êa,ĝc)
= 0 also. By the first

portion of Lemma A.1 (b), there is a constant N such that

‖Φ∗gc − ĝc‖C0(Êa,ĝc)
≤ N‖Φ∗(gc − g)‖C0(Êa,Φ∗g) + ‖Φ∗g − ĝc‖C0(Êa,ĝc)

≤ N‖gc − g‖C0(Φ(Êa),g)
+ ‖Φ∗g − ĝc‖C0(Êa,ĝc)

,

so in view of (A.6), we only need to verify that, for all b > 0, there

exists a sufficiently large such that Φ(Êa) ⊂ Eb. If not, then there exists

b1 > b0 and a sequence of points x̂j = (r̂j , σ̂j) ∈ Ê2a0 such that r̂j →∞
while Φ(x̂j) ∈ V \Eb1 for all j. Then, by the second portion of Lemma
A.1 (b),

dg(Φ(x̂j),Φ(∂Ê2a0)) = dΦ∗g(x̂j , ∂Ê2a0)→∞
as j →∞, which gives a contradiction.
In fact, by Lemma A.1 (a), we know λ−2ρ̂∗λΦ

∗gc → ĝc in C0
loc(Ê0, ĝc)

as λ → ∞, and this is equivalent to the assertion that Φ∗λgc → ĝc in

C0
loc(Ê0, ĝc) where Φλ � ρλ−1 ◦Φ ◦ ρ̂λ. We write Φλ(x̂) = (rλ(x̂), σλ(x̂))

for x̂ ∈ Êλ−1a0 .
Now, applying the second assertion of Lemma A.1 (b) to Φ∗gc and ĝc

for some sufficiently large b2, we claim that we have E4b2 ⊂ V = Φ(Êa0).
To see this, observe that, since V is an end of Eb0 , V is the unique
unbounded connected component of Eb0 \Ω for some compact Ω. Thus,
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there exists b2 such that E4b2 ∩Ω = ∅, and since E4b2 is connected and
unbounded, we must have E4b2 ⊂ V .
Next, observe that, by Lemma A.1 (b), for all ε > 0, there exists

a = a(ε) > a0 such that whenever x̂ = (r̂, σ̂) ∈ Êa, the inequality

(1− ε)|r̂ − a| ≤ dgc(Φ(r̂, σ̂),Φ(∂Êa)) ≤ (1 + ε) |r̂ − a|
holds. Using that λ−1dgc(x, y) = dgc(ρλ−1(x), ρλ−1(y)) for λ > 0, we
then have

(1− ε)
∣∣∣r̂ − a

λ

∣∣∣ ≤ dgc(Φλ(r̂, σ̂), (ρλ−1 ◦ Φ)(∂Êa)) ≤ (1 + ε)
∣∣∣r̂ − a

λ

∣∣∣ ,
for all λ ≥ 1 and (r̂, σ̂) ∈ Êλ−1a. By the compactness of Φ(∂Êa), we have

dC((ρλ−1 ◦ Φ)(∂Êa),O) ≤ Cλ−1 for some constant C independent of λ,
and it follows that rλ(r̂, σ̂)/r̂ = dC(Φλ(r̂, σ̂),O)/r̂ converges uniformly
to 1 as λ → ∞ on Êa′ for any fixed a′ > 0. In particular, there is
a1 > a0 and λ0 > 0 such that Φλ(r̂, ·) ∈ Er̂/2 \ E2r̂ whenever λ ≥ λ0

and r̂ ≥ a1/λ.
With this and the local uniform convergence of Φ∗λgc to ĝc, we can

then find a sequence {λi}∞i=1 such that Φλi
(r̂, ·) ∈ Er̂/2 \ E2r̂ and

|dĝc(x̂1, x̂2)− dgc(Φλi
(x̂1),Φλi

(x̂2))| ≤ N0

i

on Ê1/4i \ Ê4i for some N0 depending only on the diameters of (Σ, gΣ)

and (Σ̂, gΣ̂). We define a sequence of maps Fi : (BĈ(Ô, i), dĈ)→ (C, dC)
by

Fi �

{
Φλi

on Ê1/i \ Êi

O on Ĉ \ Ê1/i.

Using the Fi in conjunction with the convergence of rλi
(r̂, σ̂) to r̂ and

the distance comparison above, the constant sequence {(Ĉ, dĈ , Ô)}∞i=1
can be seen to converge to (C, dC , O) in the pointed Gromov-Hausdorff
sense, and it follows (see, e.g., Theorem 8.1.7 in [10]) that there exists

a pointed isometry ϕ : (Ĉ, dĈ , Ô)→ (C, dC , O). The classical theorem of

Calabi-Hartman [11] then gives that the restriction of ϕ to Ê0 must in

fact be a smooth isometry between (Ê0, ĝc) and (E0, gc). q.e.d.

Appendix B. Existence of shrinking ends of revolution

In this appendix, we construct (incomplete) rotationally symmetric
gradient Ricci solitons on topological half-cylinders asymptotic to pre-
scribed rotationally symmetric cones. Our construction is based on the
analysis of a system of ODE which has been carefully treated, particu-
larly in the steady and expanding cases, in the unpublished notes [9] of
Bryant; the argument we present below is heavily indebted to his.
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Let gSn−1 be the standard round metric on the sphere Sn−1 of con-
stant sectional curvature 1 and, for 0 < R < R̃, consider the warped
product metric g = dr2+a(r)2gSn−1 on the annulus A(R, R̃) � (R, R̃)×
Sn−1. The Ricci curvature tensor of g is given by

Rc(g) = −(n− 1)
a′′

a
dr2 +

[
(n − 2)− aa′′ − (n− 2)(a′)2

]
gSn−1 ,

and the hessian of an arbitrary radial function f = f(r) relative to g
has the form

∇∇f = f ′′dr2 + aa′f ′gSn−1 ,

where the prime denotes differentiation with respect to r. Thus, the

triple (A(R, R̃), g, f) satisfies (1.1) if and only if a and f satisfy the
system {

2f ′′ = 1 + 2(n− 1)a
′′
a

2aa′f ′ = a2 − 2
[
(n− 2)− aa′′ − (n− 2)(a′)2

](B.1)

with a(r) > 0 for r ∈ (R, R̃).
Given α ∈ (0, 1) ∪ (1,∞), we seek to find solutions of the system

(B.1) with R > 0 and R̃ =∞ that satisfy a(r) > 0 and the asymptotic
conditions

(B.2)
a(r)

r
→ √

α, and
4f(r)

r2
→ 1 as r→∞.

We will be working exclusively in the region where a′ > 0, and there
(following [9]) it is convenient to change the radial coordinate from r to
a(r). In terms of a, g assumes the form

g =
da2

w(a2)
+ a2gSn−1 ,

where a′(r) =
√

w(a2(r)), and (B.1) becomes{
1 + 2(n− 1)w′ = 8swf ′′ + 4wf ′ + 4sw′f ′

4swf ′ = s− 2 [(n− 2)− sw′ − (n− 2)w] ,
(B.3)

where s = a2 and the prime now represents differentiation with respect
to s. We can now substitute the second equation in (B.3) into the first
to eliminate f and obtain a single second-order equation for w:

(B.4) 4s2ww′′ − [
2sw′ + s− 2(n− 2)

]
sw′ + 2(n − 2)(1 − w)w = 0.

Proposition B.1. Given α ∈ (0, 1) ∪ (1,∞) and n ≥ 2, there exists
S = S(n, α) > 0 and a positive solution w of the equation (B.4) on the
interval s > S such that lims→∞w(s) = α. In fact, w has the asymptotic
expansion

w(s) = α− 2(n − 2)α(1 − α)

s
+ ϕ(s),
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where ϕ(s) = O(s−2), ϕ′(s) = O(s−3), and ϕ′′(s) = O(s−3). Further-
more, up to an additive constant, the function f satisfies the expansion

f(s) =
s

4α
+ ψ(s),

where ψ(s) = O(s−1), ψ′(s) = O(s−2), and ψ′′(s) = O(s−3).

Remark B.2. The case n = 2 was proven in Section 5 of [50]; see
also [4].

Proof. Through the rest of the proof, we fix α ∈ (0, 1) ∪ (1,∞) and
suppose n ≥ 3. Our strategy is to seek to obtain solutions of (B.4) with
the desired asymptotic behavior as limits of sequences of solutions to
(B.4) on finite intervals satisfying appropriate initial conditions.
Given S0 > 1, the local theory of ODE implies that there is S1 ∈

[0,S0) and a unique solution, wS0(s), of (B.4) on (S1,S0] with initial
conditions wS0(S0) = α and w′S0(S0) = 0, such that (S1, S0] is the
maximal subinterval of (0, S0] on which wS0 exists and is positive. Note
that, if 0 < α < 1, w′′S0(S0) < 0 by (B.4) so wS0 is increasing in some
interval (S0− δ,S0). Moreover, by the strong maximum principle, there
are no local minimum points in the strip {0 < wS0(s) < 1, s > 0}.
Thus wS0 is increasing in the interval (S1,S0) for α ∈ (0, 1). A similar
argument gives that wS0 is decreasing in the interval (S1,S0) for α ∈
(1,∞).
Next we define S2 � inf{s ∈ (S1,S0) : α/2 ≤ wS0(s) ≤ 2α}. It follows

from the monotonicity of wS0 that α/2 ≤ wS0(s) ≤ 2α for S2 < s ≤ S0,
and so the equation (B.4) implies that

d

ds

{
exp

(
−

∫ s w′S0(ρ)
2wS0(ρ)

+
1

4wS0(ρ)
− n− 2

2ρwS0(ρ)
dρ

)
w′S0(s)

}
=

n− 2

2s2
(wS0(s)− 1) exp

(
−

∫ s w′S0(ρ)
2wS0(ρ)

+
1

4wS0(ρ)
− n− 2

2ρwS0(ρ)
dρ

)
on (S2,S0). Assume that S0 > 4(n− 2). Integrating the above equation
with respect to s, we have that if max{4(n − 2),S2} < s < S0, then

∣∣w′S0(s)∣∣ ≤ ∫ S0

s

n− 2

2σ2

√
wS0(s)
wS0(σ)

|1− wS0(σ)|

× exp

(
−

∫ σ

s

(
1

4
− n− 2

2ρ

)
dρ

wS0(ρ)

)
dσ

≤ (n− 2)(1 + 2α)

s2

∫ S0

s
exp

(
−σ − s

16α

)
dσ.

Hence there exists N � N(n, α) > 0 such that

(B.5)
∣∣w′S0(s)∣∣ ≤ Ns−2 for max{4(n − 2),S2} < s ≤ S0.
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Furthermore, we may obtain a uniform upper bound for S2 indepen-
dent of S0: if S2 ≥ 4(n − 2), integrating (B.5) from S2 to S0 implies
that

|wS0(S0)− wS0(S2)| ≤ N

(
1

S2 −
1

S0

)
.

Note that either wS0(S2) = α/2 if α ∈ (0, 1) or wS0(S2) = 2α if α ∈
(1,∞). Otherwise, we have S1 = S2 ≥ 4(n − 2) > 0, which, in view of
(B.5), violates the maximality of the interval (S1,S0). Since wS0(S0) =
α, we see that either way we have S2 ≤ 2N/α, and hence that S2 ≤
min{4(n − 2), 2N/α}. Thus, letting S0 → ∞, we obtain subsequential
convergence of wS0 to a positive solution w of (B.4) in (S,∞) satisfying

lim
s→∞w(s) = α, w(s)− α = O(s−1), w′(s) = O(s−2), w′′(s) = O(s−2).

Here S is defined to be min{4(n − 2), 2N/α}.
Next, define a function ϕ(s) by

w(s) = α− 2(n − 2)α(1 − α)

s
+ ϕ(s).

The second term in this equation is chosen after formally expanding w(s)
in a power series in terms of s−k and solving for the coefficient of the
s−1 term. On one hand, the asymptotics of w imply that ϕ(s) = O(s−1),
ϕ′(s) = O(s−2), and ϕ′′(s) = O(s−2). On the other hand, using (B.4),
we see that the function ϕ satisfies the equation

ϕ′′(s)− ϕ′(s)
4α

= Q(s),

where Q(s) = O(s−3). Thus we have

ϕ′(s) = e
s
4α

∫ ∞

s
Q(σ)e−

σ
4α dσ,

so ϕ′(s) = O(s−3), and hence also ϕ(s) = O(s−2) and ϕ′′(s) = O(s−3).
It remains to derive the asymptotic expansion of the function f . From

the second equation in (B.3), we have

d

ds

(
f(s)− s

4α

)
w(s) =

α− w(s)

4α
− 1

2s

[
(n− 2)(1 − w(s))− sw′(s)

]
=
(n− 2)(n − 1)α(1 − α)

s2
+
(n− 2)ϕ(s)

2s
− ϕ(s)

4α
+

ϕ′(s)
2

� ψ′(s)w(s).

Since α/2 ≤ w(s) ≤ 2α for s > S, it follows that ψ′(s) = O(s−2) and
ψ′′(s) = O(s−3). Moreover, we may assume that lims→∞ ψ(s) = 0 and
so achieve that ψ(s) = O(s−1). q.e.d.

Again invoking the results of [4] and [50] for the case n = 2, Proposition
B.1 can be restated to yield the following existence theorem.
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Proposition B.3. For each α ∈ (0, 1)∪(1,∞) and n ≥ 2, there exists
a rotationally symmetric shrinking gradient Ricci soliton asymptotic to
the rotationally symmetric cone ((0,∞) × Sn−1, dr2 + αr2gSn−1) in the
sense of Definition 1.1.

By Theorem 1.2, the maximal extensions of the metrics constructed
above are the unique rotationally symmetric examples asymptotic to
the given cone; however, according to the classification in [39], none of
these extensions yield complete metrics on Rn or R× Sn−1.
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