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Abstract

This article considers inverse problems on closed Riemannian
surfaces whose geodesic flow is Anosov. We prove spectral rigidity
for any Anosov surface and injectivity of the geodesic ray trans-
form on solenoidal 2-tensors. We also establish surjectivity results
for the adjoint of the geodesic ray transform on solenoidal tensors.
The surjectivity results are of independent interest and imply the
existence of many geometric invariant distributions on the unit
sphere bundle. In particular, we show that on any Anosov surface
(M, g), given a smooth function f on M , there is a distribution in
the Sobolev space H−1(SM) that is invariant under the geodesic
flow and whose projection to M is the given function f .

1. Introduction

Let (M,g) be a closed oriented Riemannian manifold with geodesic
flow φt acting on the unit sphere bundle SM . Recall that the geodesic
flow is said to be Anosov if there is a continuous invariant splitting
TSM = E0 ⊕ Eu ⊕ Es, where E0 is the flow direction, and there are
constants C > 0 and 0 < ρ < 1 < η such that for all t > 0,

‖dφ−t|Eu‖ ≤ C η−t and ‖dφt|Es‖ ≤ C ρt.

We will say that (M,g) is Anosov, if its geodesic flow is Anosov. It
is very well known that the geodesic flow of a closed negatively curved
Riemannian manifold is a contact Anosov flow [29]. The Anosov prop-
erty automatically implies that the manifold is free of conjugate points
[30, 3, 35] and absence of conjugate points simply means that between
two points in the universal covering of M there is a unique geodesic
connecting them.

There is a purely Riemannian way of characterizing this uniform hy-
perbolicity of the geodesic flow which is relevant for us [46]: (M,g)
is Anosov if and only if the metric g lies in the C2-interior of the set
of metrics without conjugate points. One reason for mentioning this
characterization is to motivate the present results in terms of an inter-
esting analogy between Anosov manifolds (that have no boundary) and
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compact simple manifolds with boundary. Recall that a compact ori-
ented Riemannian manifold (M,g) is said to be simple if its boundary
is strictly convex and any two points are joined by a unique geodesic
depending smoothly on the end points. The notion of simple manifold
appears naturally in the context of the boundary rigidity problem [36]
and it has been at the center of recent activity on geometric inverse
problems; see the surveys [51, 26, 40, 42]. As in the Anosov case, sim-
ple manifolds are free of conjugate points (this follows directly from the
definition) and are C2-stable under perturbations.

1.1. Ray transforms and spectral rigidity. Inverse problems fre-
quently lead to the study of geodesic ray transforms. These transforms
could be acting on functions, or more generally on tensors depending
on the problem at hand. We consider here the geodesic ray transform
acting on symmetric tensor fields on M . Given a symmetric (covari-
ant) m-tensor field f = fi1···im dx

i1 ⊗ · · · ⊗ dxim on M , we define the
corresponding function on SM by

f(x, v) = fi1···imv
i1 · · · vim .

Let us consider first the case of simple manifolds with boundary.
Geodesics going from ∂M into M are parametrized by ∂+(SM) =
{(x, v) ∈ SM ; x ∈ ∂M, 〈v, ν〉 ≤ 0} where ν is the outer unit nor-
mal vector to ∂M . For (x, v) ∈ SM we let t 7→ γ(t, x, v) be the geodesic
starting from x in direction v. The ray transform of f is defined by

Imf(x, v) =

∫ τ(x,v)

0
f(φt(x, v)) dt, (x, v) ∈ ∂+(SM),

where τ(x, v) is the exit time of γ(t, x, v). If h is a symmetric (m− 1)-
tensor field, its inner derivative dh is a symmetric m-tensor field defined
by dh = σ∇h, where σ denotes symmetrization and ∇ is the Levi-Civita
connection. It is easy to see that

dh(x, v) = Xh(x, v),

where X is the geodesic vector field associated with φt. If additionally
h|∂M = 0, then clearly Im(dh) = 0. The transform Im is said to be
s-injective if these are the only elements in the kernel. The terminology
arises from the fact that any tensor field f may be written uniquely as
f = f s + dh, where f s is a symmetric m-tensor with zero divergence
and h is an (m− 1)-tensor with h|∂M = 0 (cf. [48]). The tensor fields
f s and dh are called respectively the solenoidal and potential parts of
f . Saying that Im is s-injective is saying precisely that Im is injective
on the set of solenoidal tensors.

In [41] we proved that when (M,g) is a simple surface, then Im
is s-injective. Here we would like to investigate the analogous tensor
tomography problem when (M,g) is a closed Anosov surface. The anal-
ogy proceeds as follows. Let G be the set of closed geodesics on (M,g),
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parametrized by arc length. The ray transform of a symmetric m-tensor
field f on M is defined by

Imf(γ) =

∫ T

0
f(γ(t), γ̇(t)) dt, γ ∈ G has period T.

As before, Im(dh)(γ) = 0 for all γ ∈ G if h is a symmetric (m−1)-tensor.
The question of s-injectivity is whether these are the only tensors in the
kernel of Im.

Our first main result is:

Theorem 1.1. Let (M,g) be a closed oriented Anosov surface. Then

I2 is s-injective.

A basic inverse problem in spectral geometry, inspired by the famous
question “Can you hear the shape of a drum?” of M. Kac [27], is to de-
termine properties of a compact Riemannian manifold (M,g) from the
spectrum Spec(−∆g) of the Laplace-Beltrami operator (with Dirichlet
boundary condition if the manifold has nonempty boundary). Two Rie-
mannian manifolds are said to be isospectral if their spectra and also
the multiplicities of eigenvalues coincide. There is a large literature on
isospectral manifolds with both positive results and counterexamples:
we refer to the survey [12] for positive results and [18, 19] for negative
ones.

In particular, for manifolds with no boundary, there are examples of
isospectral but non-isometric manifolds even having constant negative
sectional curvature [52, 53]. On the other hand, one has local audibility
for metrics of constant negative sectional curvature [49], meaning that
any such metric g has a C∞ neighborhood where g is uniquely spectrally
determined. For metrics of variable negative curvature, local audibility
is an open question even in two dimensions. However, spectral rigidity is
known: any isospectral smooth family (gs) where s ∈ (−ε, ε) and g0 has
negative curvature must satisfy gs = g0 up to isometry [8, 20]. There
are also compactness results stating that the set of metrics isospectral
to a negative curvature metric g is precompact in the C∞ topology up
to isometry [5, 37].

By the work of Guillemin and Kazhdan [20], we obtain the following
spectral rigidity result as a consequence of Theorem 1.1.

Theorem 1.2. Let (M,g) be a closed oriented Anosov surface. If

(gs) is a smooth family of Riemannian metrics on M for s ∈ (−ε, ε)
such that g0 = g and the spectra of −∆gs coincide up to multiplicity,

Spec(−∆gs) = Spec(−∆g0), s ∈ (−ε, ε),
then there exists a family of diffeomorphisms ψs :M →M with ψ0 = Id

and

gs = ψ∗
sg0.
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The work of Guillemin and Kazhdan implicitly uses the fact that
along an isospectral family gs (with g0 Anosov), the marked length
spectrum remains unchanged. Recall that the marked length spectrum
is the function which associates to each free homotopy class, the length
of the unique closed geodesic representing the class. J.-P. Otal [38] and
C. Croke [7] have independently shown (with different methods) that
two negatively curved surfaces with the same marked length spectrum
must be isometric. It is reasonable to expect that a similar result should
hold for the larger open set of Anosov metrics, but both proofs seem
to use in a rather substantial way the sign of the curvature and at the
time of writing we do not know how to address this non-linear problem.
Also, we mention that the work of Otal involves geodesic currents that
are somewhat related to the invariant distributions used in this paper.

To state the results on s-injectivity of Im for m ≥ 3, we first give
a definition involving conjugate points for a modified Jacobi equation.
Here K is the Gaussian curvature.

Definition. Let (M,g) be a closed oriented Riemannian surface. We
say that (M,g) is free of β-conjugate points if for any geodesic γ(t), all
nontrivial solutions of the equation ÿ + βK(γ(t))y = 0 with y(0) = 0
only vanish at t = 0. The terminator value of (M,g) is defined to be

βTer = sup {β ∈ [0,∞] : (M,g) is free of β-conjugate points}.
Clearly 1-conjugate points correspond to conjugate points in the usual

sense. For a closed oriented surface (M,g), we will show in Section 7
that

• if (M,g) is free of β0-conjugate points for some β0 > 0, then (M,g)
is free of β-conjugate points for β ∈ [0, β0];

• (M,g) is Anosov if and only if βTer > 1 and there is no geodesic
trapped in the region of zero Gaussian curvature (see Corollary
7.10 below; this seems to be a new geometric characterization of
the Anosov property generalizing [16, Corollary 3.6]);

• if (M,g) has no focal points (see definition below), then βTer ≥ 2;
• (M,g) has non-positive curvature if and only if βTer = ∞.

Theorem 1.3. Let (M,g) be a closed oriented surface such that no

geodesic is trapped in the region of zero Gaussian curvature. Suppose in

addition that βTer ≥ (m+1)/2, where m is an integer ≥ 2. Then Im is

s-injective.

This theorem was proved earlier for m = 0, 1 [10] (dimM arbitrary),
for the case m = 2 if additionally the surface has no focal points [50],
and for m ≥ 2 if the surface has negative curvature [20]. In [8] the the-
orem was proved for non-positive curvature and dimM arbitrary and it
is also known that the kernel of Im is finite dimensional [10]. Certainly,
for m = 2, Theorem 1.3 is weaker than Theorem 1.1; nevertheless even
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this weaker version is new. In Section 8 we provide open sets of Anosov
surfaces with 3/2 ≤ βTer < 2, thus showing that Theorem 1.3 for m = 2
already improves the main result of [50]. One could take the view point
that the more refined argument which is involved in the proof of The-
orem 1.1 deals with the harder case when βTer ∈ (1, 3/2). However,
at the moment on Anosov surfaces we need the additional condition
βTer ≥ (m + 1)/2 for m ≥ 3. This condition is closely related to the
works [43, 9] where absence of β-conjugate points also appears in the
case of manifolds with boundary.

1.2. Invariant distributions and surjectivity of I∗m. When proving
s-injectivity of the geodesic ray transform on both simple and Anosov
manifolds, a first step is to consider the transport equation (or cohomo-

logical equation). If Im(f) = 0 it is possible to show the existence of a
smooth function u : SM → R such that

Xu = f

and u|∂(SM) = 0 (for closed manifolds this condition is empty). In
the Anosov case, this is a consequence of one of the celebrated Livsic
theorems [31, 32] together with the regularity addendum from [33]. For
surfaces of negative curvature the existence of a smooth solution to the
transport equation was first proved by Guillemin and Kazhdan in [21],
motivated by spectral rigidity for such surfaces [20].

The main result in [41] admits the following extension which exposes
the various ingredients needed to solve the tensor tomography problem
for a simple surface. Recall that a surface is said to be non-trapping if
every geodesic reaches the boundary in finite time (perhaps the correct
replacement of this notion in the case of closed manifolds is ergodicity
of the geodesic flow). Let C∞

α (∂+(SM)) denote the set of functions h ∈
C∞(∂+(SM)) such that the unique solution w toXw = 0, w|∂+(SM) = h

is smooth. In natural L2 inner products, the adjoint of I0 is the operator

I∗0 : C∞
α (∂+(SM)) → C∞(M), I∗0h(x) =

∫

Sx

w(x, v) dSx(v).

Here Sx = {(x, v) ∈ TM ; |v| = 1} and dSx is the volume form on Sx.
For more details see [44], where it is also proved that the adjoint I∗0 is
surjective on any simple manifold.

Theorem ([41]). Let (M,g) be a compact non-trapping surface with

strictly convex smooth boundary. Suppose in addition that I0 and I1 are

s-injective and that I∗0 is surjective. Then Im is s-injective for m ≥ 2.

We already mentioned that I0 and I1 are known to be s-injective for
an Anosov surface and one of the purposes of the present paper is to
show that I∗0 is surjective. To discuss the adjoint it is convenient to give
a brief preliminary discussion.
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For the following facts on function spaces we refer to [14, 47]. De-
noting by δγ the measure on SM which corresponds to integrating over
the curve (γ(t), γ̇(t)) on SM , we have in the distributional pairing

If(γ) = 〈δγ , f〉, γ ∈ G.
Denote by D′(SM) the set of distributions (continuous linear function-
als) on C∞(SM), and equip this space with the weak∗ topology. These
spaces are reflexive, so the dual of D′(SM) is C∞(SM). The geo-
desic vector field X acts on D′(SM) by duality (since it is a differential
operator with smooth coefficients). We consider the set of invariant
distributions (a closed subspace of D′(SM)),

D′
inv(SM) = {µ ∈ D′(SM) ; Xµ = 0}.

Thus µ ∈ D′(SM) is invariant iff 〈µ,Xϕ〉 = 0 for all ϕ ∈ C∞(SM).
Now the set {δγ ; γ ∈ G} is dense in D′

inv(SM), since if f ∈ C∞(SM)
satisfies 〈δγ , f〉 = 0 for all γ ∈ G, then by the Livsic theorem f = Xu for
some u ∈ C∞(SM) and consequently 〈µ, f〉 = 0 for all µ ∈ D′

inv(SM).
It follows that we may without loss of generality define I as the map

I : C∞(SM) → L(D′
inv(SM),R), If(ν) = 〈ν, f〉 for ν ∈ D′

inv(SM).

Here L(E,R) denotes the set of continuous linear maps from a locally
convex topological vector space E to R. Equipping this set with the
weak∗ topology, it follows that I is a continuous linear map from the
Frechét space C∞(SM) into the locally convex space L(D′

inv(SM),R).
Since D′

inv(SM) is reflexive as a closed subspace of a reflexive space, the
dual of L(D′

inv(SM),R) is D′
inv(SM). Therefore the adjoint of I is the

map

I∗ : D′
inv(SM) → D′(SM), 〈I∗ν, ϕ〉 = 〈ν, Iϕ〉 for ϕ ∈ C∞(SM).

Restricting the domain of I gives rise for instance to the ray transform
on 0-forms

I0 : C
∞(M) → L(D′

inv(SM),R), I0f(ν) = 〈ν, f ◦ π〉
where π : SM → M is the natural projection. The adjoint of this map
is

I∗0 : D′
inv(SM) → D′(M), I∗0ν = 2πν0

where for any µ ∈ D′(SM), the average µ0 is the element in D′(M)
given by 〈µ0, ψ〉 = 1

2π 〈µ,ψ ◦π〉 for ψ ∈ C∞(M). On an oriented surface
(see Section 2) any smooth function u ∈ C∞(SM) admits a Fourier
expansion u =

∑

m∈Z um where

um(x, v) :=
1

2π

∫ 2π

0
u(ρt(x, v))e

−imt dt

and ρt is the flow of the vertical vector field V determined by the princi-
pal circle fibration π : SM →M . Similarly, distributions admit Fourier
expansions as above, and µ0 is just the zeroth Fourier coefficient. We
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can now state our next result, which expresses the surjectivity of I∗0 in
terms of the existence of invariant distributions.

Theorem 1.4. Let (M,g) be an Anosov surface. Given f ∈ C∞(M),
there exists w ∈ H−1(SM) with Xw = 0 and w0 = f . Moreover, if we

write w =
∑

k∈Zwk, then wk ∈ C∞(SM) for all even k.

Note that there are no L2 solutions to Xw = 0 (not even L1) due
to the ergodicity of the geodesic flow [2, 24], so H−1 is the optimal
regularity in the Hk Sobolev scale. This is a crucial difference with
the boundary case. Using Theorem 1.4 one can show as in [41] that
given any 1-form A on M orthogonal to the space of harmonic 1-forms,
there is w ∈ H−1(SM) which is holomorphic in the velocity variable (i.e.
wk = 0 for all k < 0) for which Xw = A. These holomorphic integrating
factors are the key to proving s-injectivity on simple surfaces in [41],
but unfortunately we have been unable to put to use their distributional
version in the Anosov case.

In [11] (see also [45, Theorem 4.2]) the authors show the surjectivity
of I∗1 for compact simple manifolds. The version for Anosov surfaces is
as follows. We say that a 1-form A is solenoidal if it has zero divergence.

Theorem 1.5. Let (M,g) be an Anosov surface and let A be a

solenoidal 1-form. Then there exists w ∈ H−1(SM) such that Xw = 0
and w−1 + w1 = A. Moreover, if we write w =

∑

k∈Zwk, then wk ∈
C∞(SM) for all odd k.

As we will see in Section 9, this result will be the key for proving
solenoidal injectivity of I2.

Next let us discuss surjectivity of I∗m for m ≥ 2. The conformal class
of the Riemannian metric g determines a complex structure. Given a
positive integer m, let Hm denote the space of holomorphic sections of
the m-th power of the canonical line bundle. By the Riemann-Roch
theorem this space has complex dimension (2m − 1)(g − 1) for m ≥ 2
and complex dimension g for m = 1, where g is the genus of M . (For
m = 1 we get the holomorphic 1-forms and for m = 2 the holomorphic
quadratic differentials.) Note that the elements in Hm can be regarded
as functions on SM . (Sections of the m-th power of the canonical line
bundle can be regarded as functions on SM which transform according
to the rule f(x, ρt(x, v)) = eimtf(x, v).)

Theorem 1.6. Let (M,g) be a closed oriented surface having no

geodesic trapped in the set of zero curvature.

1) If (M,g) has no focal points, or more generally if βTer > 3/2, then
given q ∈ H2, there exists w ∈ H−1(SM) such that Xw = 0 and

w2 = q. Moreover, w2j ∈ C∞(SM) for all j ≥ 1.
2) If (M,g) has non-positive curvature, or more generally if βTer >

(m + 1)/2 where m ≥ 2, then given q ∈ Hm, there exists w ∈
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H−1(SM) such that Xw = 0 and wm = q. Moreover, if m is

even, w2j ∈ C∞(SM) for all j ≥ m/2. Similarly, if m is odd,

w2j+1 ∈ C∞(SM) for all j ≥ (m− 1)/2.

Theorem 9.2 below gives a form of item (1) in Theorem 1.6 which
applies to any non-hyperelliptic Anosov surface, but it only gives H−5

regularity for the invariant distribution.
Recall that a Riemannian manifold is said to have no focal points if

for every unit speed geodesic γ(t) and every non-zero Jacobi field J(t)
along γ with J(0) = 0, the function t 7→ |J(t)|2 has positive derivative
for t > 0. Geometrically, this means that the manifold has no conjugate
points and geodesic balls in the universal covering are strictly convex.
It is easy to check that a manifold with non-positive sectional curvature
has no focal points.

A result of P. Eberlein [16] asserts that a surface with no focal points
is Anosov if and only if every geodesic hits a point of negative Gaussian
curvature, and using this it is possible to produce Anosov surfaces of
non-positive curvature which have open sets with zero Gaussian cur-
vature [16]. There are also examples of Anosov surfaces isometrically
embedded in R

3 [15] and Anosov surfaces with focal points [22].
The existence of distributions as in Theorems 1.4–1.6 was first es-

tablished by Guillemin and Kazhdan in [21] for surfaces of negative
curvature, but as far as we can see their proof does not extend to the
Anosov case; moreover, the precise regularity of the distributions was
not considered there. In general, an arbitrary transitive Anosov flow
has a plethora of invariant measures and distributions, but the ones in
Theorems 1.4–1.6 are geometric since they really depend on the geom-
etry of the circle fibration π : SM → M . In the case of surfaces of
constant negative curvature these distributions and their regularity are
discussed in [1, Section 2].

Finally, our methods also give new results for the transport equation;
for example:

Theorem 1.7. Let (M,g) be a closed surface of genus ≥ 2 without

focal points. Let f be a symmetric m-tensor with m ≤ 3 and assume

that there is a smooth solution u to Xu = f . Then f is a potential

tensor.

Note that in this theorem we do not need to assume that (M,g) is
Anosov, but if it is, then combining this result with the Livsic theorem
we obtain right away that I3 is s-injective.

This paper is organized as follows. Section 1 is the introduction, and
Section 2 contains some preliminaries on Fourier analysis on the unit
sphere bundle and the basic energy identity, called Pestov identity, that
will be used below. In Section 3 we introduce α-controlled surfaces mo-
tivated by the Pestov identity. Sections 4 and 5 contain the proofs of
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the surjectivity results for I∗m, based on subelliptic estimates for cer-
tain (non-local if m ≥ 1) second order operators on SM , and Section
6 gives the corresponding injectivity results. In Section 7 we consider
β-conjugate points and hyperbolicity of related cocycles, leading to a
sufficient condition for the injectivity and surjectivity results, and Sec-
tion 8 is devoted to examples. Section 9 contains the proof of Theorem
1.1 which builds on the surjectivity result for I∗1 . Finally we mention
that there are versions of Theorems 1.4 and 1.5 and of the results in
Section 7 in any dimensions, but we shall consider these elsewhere.
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2. Preliminaries

Let (M,g) be a closed oriented surface with unit circle bundle SM .
Let X be the geodesic vector field on SM , and let V be the vertical
vector field. We let X⊥ = [X,V ]. There are two additional structure
equations given by X = [V,X⊥] and [X,X⊥] = −KV , where K is the
Gaussian curvature.

There is an orthogonal decomposition of L2(SM) given by

L2(SM) =
∞
⊕

k=−∞

Hk

where Hk is the eigenspace of −iV corresponding to the eigenvalue k.
Let also Ωk = Hk ∩ C∞(SM). If f ∈ L2(SM) we write f =

∑∞
k=−∞ fk

where fk ∈ Hk. Then ‖f‖2 =∑‖fk‖2 where

(u, v) =

∫

SM
uv̄ d(SM), ‖u‖ = (u, u)1/2.

The volume form d(SM) is uniquely determined by the requirement
that it takes the value 1 on the frame {X,X⊥, V }. The volume form
is preserved by the three vector fields in the frame. If x = (x1, x2) are
isothermal coordinates in (M,g) and if θ is the angle between a tangent
vector and ∂/∂x1, then (x, θ) are local coordinates in SM . In these
coordinates, the elements in the Fourier expansion of f = f(x, θ) are
given by

fk(x, θ) =

(

1

2π

∫ 2π

0
f(x, θ′)e−ikθ

′

dθ′
)

eikθ.
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The H1-norm of a function u ∈ C∞(SM) will be defined as:

‖u‖2H1 := ‖Xu‖2 + ‖X⊥u‖2 + ‖V u‖2 + ‖u‖2.
There is a canonical Riemannian metric on SM , called the Sasaki met-
ric, which is defined by declaring the frame {X,X⊥, V } to be an or-
thonormal basis. If we consider the gradient ∇u with respect to the
Sasaki metric, then the H1-norm has the familiar form

‖u‖2H1 = ‖∇u‖2 + ‖u‖2.
We will make repeated use of the following fundamental L2-energy

identity (or Pestov identity) valid for any u ∈ C∞(SM) (see [41] for a
short proof):

(1) ‖XV u‖2 − (KV u, V u) + ‖Xu‖2 − ‖V Xu‖2 = 0.

We also make use of the splitting X = η+ + η− where

η+ =
1

2
(X + iX⊥), η− =

1

2
(X − iX⊥).

It is easy to check that these operators have the property η+ : Ωk →
Ωk+1 and η− : Ωk → Ωk−1 for any k ∈ Z and η∗+ = −η−. The operators
η± are elliptic [20] and, as seen in the proof below, they are essentially
∂ and ∂ operators.

Lemma 2.1. Assume (M,g) has genus g ≥ 2. Then η+ : Ωk → Ωk+1

is injective for k ≥ 1 and η− : Ωk → Ωk−1 is injective for k ≤ −1. The

dimension of Ker η− is (2k − 1)(g − 1) for k ≥ 2 and g for k = 1.
Moreover, η− is surjective for k ≥ 2 and η+ is surjective for k ≤ −2.

Proof. Consider isothermal coordinates (x, y) on M such that the
metric can be written as ds2 = e2λ(dx2+dy2) where λ is a smooth real-
valued function of (x, y). This gives coordinates (x, y, θ) on SM where
θ is the angle between a unit vector v and ∂/∂x. In these coordinates,
V = ∂/∂θ and the vector fields X and X⊥ are given by:

X = e−λ
(

cos θ
∂

∂x
+ sin θ

∂

∂y
+

(

−∂λ
∂x

sin θ +
∂λ

∂y
cos θ

)

∂

∂θ

)

;

X⊥ = −e−λ
(

− sin θ
∂

∂x
+ cos θ

∂

∂y
−
(

∂λ

∂x
cos θ +

∂λ

∂y
sin θ

)

∂

∂θ

)

.

Consider u ∈ Ωk and write it as u(x, y, θ) = h(x, y)eikθ. Using these
formulae, a calculation shows that

(2) η−(u) = e−(1+k)λ∂(hekλ)ei(k−1)θ,

where ∂ = 1
2

(

∂
∂x + i ∂∂y

)

. For completeness let us write the formula for
η+:

η+(u) = e(k−1)λ∂(he−kλ)ei(k+1)θ.
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Note that Ωk can be identified with the set of smooth sections of
the bundle κ⊗k where κ is the canonical line bundle. The identification
takes u = heikθ into hekλ(dz)k (k ≥ 0) and u = he−ikθ ∈ Ω−k into
hekλ(dz̄)k. Hence from (2) we see that for k ≥ 0, u is in the kernel
of η− if and only if the corresponding section of κ⊗k is holomorphic.
Hence the dimension of the kernel of η− for k ≥ 0 only depends on the
conformal structure of the surface. The argument for Ker η+ for k ≤ 0
is the same.

We can be a bit more precise about the above. Let Γ(M,κ⊗k) denote
the space of smooth sections of the k-th tensor power of the canonical
line bundle κ. Locally its elements have the form w(z)dzk for k ≥ 0 and
w(z)dz̄−k for k ≤ 0. Given a metric g on M , there is a map

ϕg : Γ(M,κ⊗k) → Ωk

given by restriction to SM . This map is a complex linear isomorphism.
Let us check what this map looks like in isothermal coordinates. An
element of Γ(M,κ⊗k) is locally of the form w(z)dzk (k ≥ 0). Consider
a tangent vector ż = ẋ1 + iẋ2. It has norm one in the metric g iff
eiθ = eλż. Hence the restriction of w(z)dzk to SM is

w(z)e−kλeikθ

as indicated above. Observe that ϕg is surjective because given u ∈ Ωk
(k ≥ 0), we can write it locally as u = heikθ and the local sections
hekλ(dz)k glue together to define an element in Γ(M,κ⊗k).

Moreover, there is also a restriction map

ψg : Γ(M,κ⊗k ⊗ κ̄) → Ωk−1

which is an isomorphism. The restriction of w(z)dzk ⊗ dz̄ to SM is

w(z)e−(k+1)λei(k−1)θ,

because e−iθ = eλ ¯̇z.
Given any holomorphic line bundle ξ over M , there is a ∂-operator

defined on:

∂ : Γ(M, ξ) → Γ(M, ξ ⊗ κ̄).

In particular we can take ξ = κ⊗k. Combining this with (2) we derive
the following commutative diagram:

Γ(M,κ⊗k)
ϕg−−−−→ Ωk





y∂





y

η−

Γ(M,κ⊗k ⊗ κ̄)
ψg−−−−→ Ωk−1

In other words:

(3) η− = ψg ∂ ϕ
−1
g .
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It is well known that on a Riemann surface of genus ≥ 2, ∂ is surjective
for k ≥ 2 (see for example [13]) and the dimension of its kernel can be
computed by Riemann-Roch if k ≥ 1. By (3) η− is surjective for k ≥ 2
and any metric. The result for η+ follows in a similar way (or we could
use that η∗+ = −η−). q.e.d.

For example, for k = 2, the elements in Ker η− are in 1-1 correspon-
dence with holomorphic quadratic differentials. From the lemma we see
that given u ∈ Ωk (k ≥ 1), there is a unique smooth function v ∈ Ωk+1

orthogonal to Ker η− such that η−(v) = u.
Using this lemma we can define “ladder” operators as in [21] as fol-

lows. Given fr ∈ Ωr, r ≥ 0, define a sequence of functions fr+2, fr+4, . . . ,
fr+2n by requiring:

η+(fr+2i−2) + η−(fr+2i) = 0 for 1 ≤ i ≤ n.

The functions fr+2i are uniquely determined by demanding them to
be orthogonal to the kernel of η− : Ωr+2i → Ωr+2i−1. Now define
Tn : Ωr → Ωr+2n by setting Tn(fr) = fr+2n. If we assume that the
Gaussian curvature of the surface is negative, then it is possible to show
that there is good control on the various Sobolev norms of Tn [21].
Using the operators Tn, Guillemin and Kazhdan prove the existence
of invariant distributions as in Theorems 1.4–1.6. Unfortunately these
estimates are not available in the general Anosov case, so we need to
proceed in a different manner. We derive our estimates from the Pestov
identity (1).

3. α-controlled surfaces

The following definition is motivated by the Pestov identity (1) and
it will be technically very useful in what follows.

Definition 3.1. Let α ∈ [0, 1]. We say that a closed surface (M,g)
is α-controlled if

‖Xψ‖2 − (Kψ,ψ) ≥ α‖Xψ‖2

for all ψ ∈ C∞(SM).

Obviously a surface of non-positive curvature is 1-controlled. The
converse is also true: if a surface is 1-controlled, then K ≤ 0, since
(Kψ,ψ) ≤ 0 must hold for any ψ. The objective of this section is to
prove the following theorem:

Theorem 3.2. Let (M,g) be a closed surface.

1) If (M,g) is free of conjugate points, then it is 0-controlled.
2) If (M,g) is free of focal points, then it is 1/2-controlled.
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3) If (M,g) is Anosov, then it is α-controlled for some α > 0. More-

over, the following stronger result holds:

‖Xψ‖2 − (Kψ,ψ) ≥ α(‖Xψ‖2 + ‖ψ‖2)
for all ψ ∈ C∞(SM).

Proof. If (M,g) has no conjugate points, a well known result due
to E. Hopf [25] gives the existence of a bounded measurable function
r : SM → R such that r is differentiable along the geodesic flow and
satisfies the Riccati equation:

(4) Xr + r2 +K = 0.

Let a : SM → R be any bounded measurable function differentiable
along the geodesic flow and let us compute

|Xψ − aψ|2 = |Xψ|2 − 2ℜ(a(Xψ)ψ̄) + a2|ψ|2

= |Xψ|2 + |ψ|2(Xa+ a2)−X(a|ψ|2).
Integrating this equality over SM and using that the volume form
d(SM) is invariant under the geodesic flow, we obtain

(5) ‖Xψ − aψ‖2 = ‖Xψ‖2 + (Xa+ a2, |ψ|2).
We now make use of the fact that a = r satisfies the Riccati equation
to obtain:

(6) ‖Xψ − rψ‖2 = ‖Xψ‖2 − (Kψ,ψ).

This clearly shows item (1). In fact, Hopf in [25] shows the existence
of two bounded measurable solutions to (4) which we call r+ and r−;
they are related by r+(x, v) = −r−(x, v). From the construction of
these functions it is immediate that if (M,g) is free of focal points then
r+ ≥ 0 and r− ≤ 0 (compare with [50]). Let a := r+ + r−. A simple
calculation shows that a satisfies

Xa+ a2 + 2K = 2r+r− ≤ 0.

Using this function a in equality (5) we derive

‖Xψ − aψ‖2 ≤ ‖Xψ‖2 − 2(Kψ,ψ)

which proves item (2).
To prove item (3) we shall exploit the fact that in the Anosov case we

have two continuous (in fact C1) solutions r+, r− of the Riccati equation
with r+ − r− > 0 everywhere. In [16], Eberlein shows that a surface
with no conjugate points is Anosov if and only if the limit solutions r+

and r− constructed by Hopf are distinct everywhere (later on in Section
7 we will generalize this result for the case of the β-Jacobi equation).
If this happens then −X⊥ + r+,−V spans the bundle Es,u. Since the
latter is known to be of class C1 for a surface [23], it follows that in the
Anosov case, r+ and r− are C1.
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Let A := Xψ − r−ψ and B := Xψ − r+ψ. Using equation (6) we see
that ‖A‖ = ‖B‖. Solving for ψ and Xψ we obtain

ψ = (r+ − r−)−1(A−B)

Xψ = λA+ (1− λ)B,

where

λ :=
r+

r+ − r−
.

From these equations it follows that there exists a constant α > 0 such
that

2α‖ψ‖2 ≤ ‖A‖2,
2α‖Xψ‖2 ≤ ‖A‖2

and item (3) is proved.
q.e.d.

Remark 3.3. The proof above shows the following general state-
ment: if there exists a bounded measurable function a : SM → R such
that

Xa+ a2 + βK ≤ 0

then the surface is (β − 1)/β-controlled.

4. Surjectivity of I∗0

In this section we will prove Theorem 1.4 in the introduction. The
strategy is to deduce properties of the ray transform I0 from properties
of the operator P = V X as in [41]. The following result characterizes
the injectivity of I0 in terms of P .

Lemma 4.1. Suppose (M,g) has Anosov geodesic flow. The map

I0 : C∞(M) → Maps(G,R) is injective if and only if the only solutions

u ∈ C∞(SM) of Pu = 0 in SM are the constants.

Proof. This follows immediately from the ergodicity of an Anosov
flow and the Livsic theorem [33]. q.e.d.

The next inequalities express the uniqueness properties of P under
various assumptions. If E is a subspace of D′(SM), we write E⋄ for the
subspace of those v ∈ E with 〈v, 1〉 = 0.

Lemma 4.2. Let (M,g) be a closed surface.

(a) If (M,g) has no conjugate points, then

‖Xu‖ ≤ ‖Pu‖, u ∈ C∞(SM).

(b) If (M,g) is Anosov, then there is a constant C such that

‖u‖H1 ≤ C‖Pu‖, u ∈ C∞
⋄ (SM).
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Proof. Item (a) follows from the energy identity (1). The identity
reads

‖Pu‖2 = ‖XV u‖2 − (KV u, V u) + ‖Xu‖2, u ∈ C∞(SM).

On a surface with no conjugate points, one has by item (1) in Theorem
3.2 that ‖XV u‖2 − (KV u, V u) ≥ 0 for any u ∈ C∞(SM). This proves
(a).

To prove (b) we use the identity above together with item (3) in
Theorem 3.2 to derive:

‖Pu‖2 ≥ ‖Xu‖2 + α(‖V u‖2 + ‖XV u‖2).
Using that X⊥u = XV u− V Xu = XV u− Pu, we also obtain

‖X⊥u‖2 ≤ 2(‖XV u‖2 + ‖Pu‖2)
and hence there is a constant C ′ for which

C ′‖Pu‖2 ≥ ‖X⊥u‖2 + ‖V u‖2 + ‖Xu‖2.
By the Poincaré inequality for closed Riemannian manifolds, there is
another constant D such that

‖u‖2 ≤ D(‖Xu‖2 + ‖X⊥u‖2 + ‖V u‖2)
for all u ∈ C∞

⋄ (SM) and hence there is a constant C such that

‖u‖H1 ≤ C‖Pu‖
for all u ∈ C∞

⋄ (SM) as desired. q.e.d.

We now convert the previous uniqueness result for P into a solvability
result for P ∗ = XV .

Lemma 4.3. Let (M,g) be an Anosov surface. For any f ∈ H−1
⋄ (SM)

there is a solution h ∈ L2(SM) of the equation

P ∗h = f in SM.

Further, ‖h‖L2 ≤ C‖f‖H−1 with C independent of f .

Proof. Consider the subspace PC∞
⋄ (SM) of L2(SM). Any element

v in this subspace has a unique representation as v = Pu for some
u ∈ C∞

⋄ (SM) by Lemma 4.2. Given f ∈ H−1
⋄ (SM), define the linear

functional

l : PC∞
⋄ (SM) → C, l(Pu) = 〈u, f〉.

This functional satisfies by Lemma 4.2

|l(Pu)| ≤ ‖f‖H−1‖u‖H1 ≤ C‖f‖H−1‖Pu‖L2 .

Thus l is continuous on PC∞
⋄ (SM), and by the Hahn-Banach theorem

it has a continuous extension

l̄ : L2(SM) → C, |l̄(v)| ≤ C‖f‖H−1‖v‖L2 .
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By the Riesz representation theorem, there is h ∈ L2(SM) with

l̄(v) = (v, h)L2(SM), ‖h‖L2 ≤ C‖f‖H−1 .

If u ∈ C∞
⋄ (SM), we have

〈u, P ∗h〉 = 〈Pu, h〉 = l(Pu) = 〈u, f〉
and since f is orthogonal to constants it follows that P ∗h = f . q.e.d.

We can now prove surjectivity of I∗0 .

Proof of Theorem 1.4. Given f ∈ C∞(M), we use Lemma 4.3 to find
h ∈ L2(SM) satisfying

P ∗h = −Xf.
Define w = V h+ f . Then

Xw = XV h+Xf = P ∗h+Xf = 0

and w0 = f as required. In order to show that w2j are smooth,
observe that Xw = 0 means that η+wk−1 + η−wk+1 = 0. Hence
η−w2 = −η+w0 = −η+f . Since the operators η± are elliptic and f
is smooth it follows that w2 is smooth. Inductively, we obtain that w2j

is smooth for every j. q.e.d.

In fact, the surjectivity of P ∗ easily implies a more general form of
Theorem 1.4.

Theorem 4.4. Let g ∈ H−1
⋄ (SM) and f ∈ L2(M). There exists

w ∈ H−1(SM) satisfying Xw = g in SM and w0 = f .

Proof. By Lemma 4.3 there is h ∈ L2(SM) with

P ∗h = g −Xf.

Then w = V h+ f ∈ H−1(SM) satisfies

Xw = XV h+Xf = g

and w0 = f . q.e.d.

5. Surjectivity of I∗m for m ≥ 1

In this section we prove Theorem 1.5 and we pave the way for the
proof of Theorem 1.6. Fix m ≥ 1, and let T : C∞(SM) →⊕

|k|≥m+1Ωk
be the projection operator

Tu =
∑

|k|≥m+1

uk.

In other words, T is defined by u =
∑

|k|≤m uk + Tu. Now let Q :=

TV X = TP ; clearly Q∗ = XV T , since T is self-adjoint. Directly from
the definitions we have

(7) ‖Pu‖2 =
∑

|k|≤m

k2‖(Xu)k‖2 + ‖Qu‖2.
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Lemma 5.1. Let (M,g) be an Anosov surface. Assume there exists

a constant C such that

‖Xu‖ ≤ C‖Qu‖
for any u ∈⊕|k|≥mΩk. Then there exists another constant D such that

‖u‖H1 ≤ D‖Qu‖
for any u ∈⊕|k|≥mΩk.

Proof. Using equation (7) we see that there is a constant c depending
on m such that

‖Pu‖2 ≤ c‖Xu‖2 + ‖Qu‖2

and therefore using the hypothesis we derive the existence of a constant
C ′ such that

‖Pu‖ ≤ C ′‖Qu‖
for any u ∈⊕|k|≥mΩk. The result now follows from Lemma 4.2. q.e.d.

This simple lemma indicates that in order to obtain sub-elliptic es-
timates for the operator Q we must investigate when there exists a
constant C such that

‖Xu‖ ≤ C‖Qu‖
for any u ∈

⊕

|k|≥mΩk. Certainly this estimate implies solenoidal in-

jectivity of Im: indeed suppose Xv = f , where f has degree m, and let
u = v −∑|k|≤m−1 vk. Then Xu has degree m and Qu = TV Xu = 0.

Since u ∈ ⊕|k|≥mΩk, we deduce that Xu = 0 and hence u = 0, which

in turn implies that v has degree m−1 as required by s-injectivity. The
next proposition will be very useful for our purposes.

Proposition 5.2. Let (M,g) be a closed surface which is α-controlled
and let m be an integer ≥ 1. Then given any u ∈⊕|k|≥mΩk, we have

(8)
‖Qu‖2 ≥ (1−m2 + α(m+ 1)2)(‖η−um+1‖2 + ‖η+u−m−1‖2)

+ (1− (m− 1)2 + αm2)(‖η−um‖2 + ‖η+u−m‖2) + α‖w‖2 + ‖v‖2

where v :=
∑

|k|≥m+1(Xu)k and w :=
∑

|k|≥m+1(XV u)k.

Proof. Recall that X = η+ + η−. First note that if u ∈ ⊕|k|≥mΩk,

then

‖Xu‖2 = ‖η−um+1‖2 + ‖η+u−m−1‖2 + ‖η−um‖2 + ‖η+u−m‖2 + ‖v‖2,
where v =

∑

|k|≥m+1 vk =
∑

|k|≥m+1(Xu)k. Note now that (7) may be
written as

‖Pu‖2 = ‖Qu‖2 +m2(‖η−um+1‖2 + ‖η+u−m−1‖2)
+ (m− 1)2(‖η−um‖2 + ‖η+u−m‖2).
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A similar calculation shows that

‖XV u‖2 = (m+ 1)2(‖η−um+1‖2 + ‖η+u−m−1‖2)
+m2(‖η−um‖2 + ‖η+u−m‖2) + ‖w‖2,

where w =
∑

|k|≥m+1wk =
∑

|k|≥m+1(XV u)k.

We make use of the key energy identity (1):

‖Pu‖2 = ‖XV u‖2 − (KV u, V u) + ‖Xu‖2

and use the hypotheses to deduce

‖Pu‖2 ≥ α‖XV u‖2 + ‖Xu‖2.
Making the appropriate substitutions we obtain:

‖Qu‖2 ≥ (1−m2 + α(m+ 1)2)(‖η−um+1‖2 + ‖η+u−m−1‖2)
+ (1− (m− 1)2 + αm2)(‖η−um‖2 + ‖η+u−m‖2) + α‖w‖2 + ‖v‖2

as desired. q.e.d.

Corollary 5.3. Let (M,g) be an Anosov surface which is α-controlled
for α > (m− 1)/(m + 1). Then there exists a constant C such that

‖u‖H1 ≤ C‖Qu‖
for any u ∈⊕|k|≥mΩk.

Proof. From Proposition 5.2 we see that if α > (m−1)/(m+1), then
there is a positive constant C such that

‖Qu‖ ≥ C‖Xu‖.
We can now use Lemma 5.1 to prove the corollary. q.e.d.

Lemma 5.4. Let (M,g) be an Anosov surface which is α-controlled
for α > (m − 1)/(m + 1). Then given f ∈ H−1(SM) with fk = 0 for

|k| ≤ m− 1, there exists h ∈ L2(SM) such that

Q∗h = f.

Further, ‖h‖L2 ≤ C‖f‖H−1 for a constant C independent of f .

Proof. The proof is quite similar to that of Lemma 4.3. Consider
the subspace Q

⊕

|k|≥mΩk of L2(SM). Any element v in this subspace

has a unique representation as v = Qu for some u ∈ ⊕

|k|≥mΩk by

Corollary 5.3. Given f as in the statement of the lemma, define the
linear functional

l : Q
⊕

|k|≥m

Ωk → C, l(Qu) = 〈u, f〉.

This functional satisfies, by Corollary 5.3,

|l(Qu)| ≤ ‖f‖H−1‖u‖H1 ≤ C‖f‖H−1‖Qu‖L2 .
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Thus l is continuous on Q
⊕

|k|≥mΩk, and by the Hahn-Banach theorem

it has a continuous extension

l̄ : L2(SM) → C, |l̄(v)| ≤ C‖f‖H−1‖v‖L2 .

By the Riesz representation theorem, there is h ∈ L2(SM) with

l̄(v) = (v, h)L2(SM), ‖h‖L2 ≤ C‖f‖H−1 .

If u ∈ C∞(SM), we have

〈u,Q∗h〉 = 〈Qu, h〉 = 〈Q(u−
∑

|k|≤m−1

uk), h〉 = l(Q(u−
∑

|k|≤m−1

uk))

= 〈u−
∑

|k|≤m−1

uk, f〉 = 〈u, f〉,

where the last equality holds because fk = 0 for all k with |k| ≤ m− 1.
q.e.d.

Theorem 5.5 (Surjectivity of I∗1 ). Let (M,g) be an Anosov surface.

Suppose a−1 + a1 ∈ Ω−1 ⊕ Ω1 satisfies η+a−1 + η−a1 = 0. Then there

exists w ∈ H−1(SM) such that Xw = 0 and w−1 + w1 = a−1 + a1.

Proof. On account of Theorem 3.2, we know that any Anosov surface
is α-controlled for some α > 0; hence the hypotheses of Lemma 5.4 are
satisfied for m = 1. Let f := −X(a−1 + a1) and note that η+a−1 +
η−a1 = 0 is equivalent to saying that f0 = 0. Thus by Lemma 5.4 there
is a function h ∈ L2(SM) such that

Q∗h = XV Th = −X(a−1 + a1).

If we let w := V Th+ a−1 + a1, then Xw = 0 and w−1 +w1 = a−1 + a1.
q.e.d.

Actually, the proof shows that w = V Th + a−1 + a1 where h ∈
L2(SM), ‖h‖L2 ≤ C‖a−1 + a1‖L2 . This result easily implies the follow-
ing, which will be the main tool in the proof of Theorem 1.1. We use
the mixed norm spaces

L2
xH

s
θ (SM) = {u ∈ D′(SM) ; ‖u‖L2

xH
s
θ
<∞}, ‖u‖L2

xH
s
θ

=

(

∞
∑

k=−∞

〈k〉2s‖uk‖2L2

)1/2

,

where as usual 〈k〉 = (1 + k2)1/2.

Theorem 5.6. Let (M,g) be an Anosov surface. Suppose a1 ∈ Ω1

and η−a1 = 0. Then there exists w =
∑∞

k=1wk ∈ L2
xH

−1
θ (SM) such

that Xw = 0, w1 = a1, each wk is in C∞(SM), and

‖w‖L2
xH

−1
θ

≤ C‖a1‖L2 .
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Proof. Let w̃ be the distribution given by Theorem 5.5 in the case
where a−1 = 0, and let w be its holomorphic projection, w =

∑∞
k=1 w̃k.

It is easy to check that (Xw)k = η+wk−1 + η−wk+1 = 0 for all k, so
Xw = 0. The fact that each wk is C∞ follows by elliptic regularity
from the equations for (Xw)k . Finally, since w = V (

∑∞
k=2 hk)+a1 with

‖h‖L2 ≤ C‖a1‖L2 , we obtain the norm estimate. q.e.d.

Proof of Theorem 1.5. Theorem 1.5 follows from Theorem 5.5 if we prove
the following: let A = a−1+a1 be a 1-form. Then A is solenoidal if and
only if η+a−1 + η−a1 = 0. Note that the claim about smoothness of wk
for k odd follows as in the proof of Theorem 1.4 using the ellipticity of
η±.

The 1-form A is solenoidal if and only if d ⋆ A = 0, where ⋆ is the
Hodge star operator of the metric g. Let j denote the complex structure
of (M,g). It is easy to check that for any 1-form β we have

dβx(v, jv) = (X⊥(β)−X(⋆β))(x, v),

where (x, v) ∈ SM . Hence d ⋆ A = 0 if and only if

X⊥(⋆A) +X(A) = 0.

But if A = a−1+a1, then ⋆A = ia−1−ia1 and thus the previous equation
turns into

iX⊥a−1 − iX⊥a1 +Xa−1 +Xa1 = 0

or equivalently
η+a−1 + η−a1 = 0

as desired. q.e.d.

Theorem 5.7 (Surjectivity of I∗m for m ≥ 2). Let (M,g) be an

Anosov surface which is α-controlled for α > (m−1)/(m+1) and m ≥ 2.
Let qm ∈ Ωm be such that η−qm = 0. Then there exists w ∈ H−1(SM)
such that Xw = 0 and wm = qm.

Proof. Let f := −Xqm. By hypothesis, fk = 0 for all k 6= m + 1.
By Lemma 5.4 there is h ∈ L2(SM) such that XV Th = −Xqm. Hence
w = V Th+ qm is the desired distribution. q.e.d.

6. Injectivity of Im

In this section we prove Theorem 1.7 which is in turn a consequence
of a more general result.

Theorem 6.1. Let (M,g) be a closed surface of genus ≥ 2 which

is (m − 1)/(m + 1)-controlled. Let f be any symmetric m-tensor and

assume there exists a smooth solution a to the transport equation

Xa = f.

Then ak = 0 for |k| ≥ m and f is potential.
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Proof. Let u = a −∑|k|≤m−1 ak. Then Xu has degree m and Qu =

TV Xu = 0. Let us apply inequality (8) for α = (m − 1)/(m + 1) to
obtain that

XV u = i(m+ 1)η−um+1 − i(m+ 1)η+u−m−1,

Xu = η−um+1 + η+u−m−1.

Using that X⊥ = XV − V X we also obtain

X⊥u = iη−um+1 − iη+u−m−1.

Thus

η+u = η+u−m−1 ∈ Ω−m,

η−u = η−um+1 ∈ Ωm.

Since uk = 0 for |k| < m, we obtain η+uk = 0 for k 6= −m − 1 and
η−uk = 0 for k 6= m + 1. But from Lemma 2.1 we know that the
operator η+ is injective on Ωk for k ≥ 1 and η− is injective on Ωk for
k ≤ −1. This readily implies u = 0 and thus a must have degree m− 1.
This also implies easily that f is a potential tensor (see for example
[41]). q.e.d.

Proof of Theorem 1.7. This is now a direct consequence of the previous
theorem and Theorem 3.2. q.e.d.

7. SL(2,R)-cocycles, Hopf solutions, and

terminator values of surfaces

Let (M,g) be a closed oriented Riemannian surface. The usual Jacobi
equation ÿ +K(t)y = 0 determines the differential of the geodesic flow
φt: if we fix (x, v) ∈ SM and T(x,v)(SM) ∋ ξ = −aX⊥ + bV , then

dφt(ξ) = −y(t)X⊥(φt(x, v)) + ẏ(t)V (φt(x, v)),

where y(t) is the unique solution to the Jacobi equation with initial
conditions y(0) = a and ẏ(0) = b and K(t) = K(π ◦ φt(x, v)). The
differential of the geodesic flow determines an SL(2,R)-cocyle over φt
with infinitesimal generator:

A :=

(

0 1
−K 0

)

.

Given a real number β, we consider the following 1-parameter family of
infinitesimal generators:

Aβ :=

(

0 1
−βK 0

)

.
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They determine by integration a 1-parameter family of SL(2,R)-cocycles

Ψβ
t over the geodesic flow (see [28] for information on cocycles over dy-

namical systems). More precisely, Ψβ
t is the matrix given by

Ψβ
t (x, v) :

(

y(0)
ẏ(0)

)

7→
(

y(t)
ẏ(t)

)

where ÿ(t) + βK(π ◦ φt(x, v))y(t) = 0. Since Aβ has trace zero, Ψβ
t ∈

SL(2,R). Clearly Ψ1
t can be identified with dφt acting on the kernel of

the contact 1-form of the geodesic flow (i.e. the 2-plane spanned by X⊥

and V ). In this section we shall study this family of cocycles, putting
emphasis on two properties: absence of conjugate points and hyperbol-
icity. For completeness we first give the following two definitions.

Definition 7.1. The cocycle Ψβ
t is free of conjugate points if any non-

trivial solution of the β-Jacobi equation ÿ + βK(t)y = 0 with y(0) = 0
vanishes only at t = 0.

Definition 7.2. The cocycle Ψβ
t is said to be hyperbolic if there is a

continuous invariant splitting R
2 = Eu ⊕ Es, and constants C > 0 and

0 < ρ < 1 < η such that for all t > 0 we have

‖Ψβ
−t|Eu‖ ≤ C η−t and ‖Ψβ

t |Es‖ ≤ C ρt.

Note that Es and Eu are 1-dimensional subbundles over SM .

Of course, saying that Ψ1
t is hyperbolic is the same as saying that

(M,g) is an Anosov surface. The two properties are related by the
following:

Theorem 7.3. If Ψβ
t is hyperbolic then Es and Eu are transversal

to the line generated by (0, 1) and Ψβ
t is free of conjugate points.

Proof. For β = 1 this is exactly the content of Klingenberg’s theorem
[30] mentioned in the introduction. The proof presented in [39, Chapter

2] of this result extends to the cocycle Ψβ
t without any significant change.

The key point is that the projectivized action of Ψβ
t is transversal to

the section given by (0, 1). q.e.d.

Let us describe now the Hopf limit solutions when Ψβ
t is free of conju-

gate points [25] (see also Section 1 of [4]). Consider the Riccati equation

ṙ + r2 + βK = 0.

This equation is obtained from the Jacobi equation ÿ + βKy = 0 by
the change of variable r = ẏ/y. The times t1 < t2 are adjacent zeros
of a solution of the Jacobi equation if and only if the corresponding
solution r of the Riccati equation is defined on (t1, t2) and r(t) → +∞
as t decreases to t1 and r(t) → −∞ as t increases to t2.
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Assume now that Ψβ
t is free of conjugate points. Then the solu-

tions r+R(x, v, t) and r
−
R(x, v, t) of the Riccati equation ṙ + r2 + βK(π ◦

φt(x, v)) = 0 with r+R(x, v,−R) = +∞ and r−R(x, v,R) = −∞ are de-
fined for all t > −R and all t < R respectively.

Consider now a value of t with |t| < R. Then r+R(x, v, t) and r
−
R(x, v, t)

are both defined and are decreasing and increasing functions of R re-
spectively. Also r+R(x, v, t) > r−R(x, v, t). Then the limit solutions

r±(x, v, t) := lim
R→∞

r±R(x, v, t)

are defined for all t and r+ ≥ r−. Observe that r+(x, v, t) (resp.
r−(x, v, t)) is upper (resp. lower) semicontinuous in (x, v). Indeed,
if (xn, vn) → (x, v) for each fixed t we have

lim sup
n→∞

r+(xn, vn, t) ≤ lim
n→∞

r+R(xn, vn, t) = r+R(x, v, t).

Finally, since r±R(x, v, t + s) = r±R±t(φt(x, v), s) it follows that

r±(φt(x, v), s) = r±(x, v, s + t) and hence they define measurable func-
tions r± : SM → R solving Xr + r2 + βK = 0. A simple comparison
argument as in [25] shows that r± are actually bounded. We call these
functions on SM the Hopf solutions and often we shall use a subscript

β to indicate that they are associated with the cocycle Ψβ
t .

Theorem 7.4. Assume that Ψβ
t is free of conjugate points. Then Ψβ

t

is hyperbolic if and only if r+β and r−β are distinct everywhere.

Proof. For β = 1 this was proved by Eberlein in [16]. To prove the
theorem for arbitrary β we shall make use of Theorem 0.2 in [6]. When

applied to our situation, it says that Ψβ
t is hyperbolic if and only if

(9) sup
t∈R

‖Ψβ
t (ξ)‖ = +∞ for all ξ ∈ R

2, ξ 6= 0.

We shall also need the following proposition:

Proposition 7.5. Assume Ψβ
t is free of conjugate points and let γ

be a unit speed geodesic. Given A > 0, there exists T = T (A, γ) such

that for any solution w of ẅ + βK(γ(t))w = 0 with w(0) = 0 we have

|w(s)| ≥ A|ẇ(0)|
for all s ≥ T .

Proof. The proof of this is exactly like the proof of Proposition 2.9
in [16] and hence we omit it. q.e.d.

Suppose now we have a solution y to the β-Jacobi equation ÿ+βKy =
0 that is bounded in forward time, i.e., there is C such that |y(t)| ≤ C for
all t ≥ 0. We claim that r−β (x, v, 0)y(0) = ẏ(0). For R > 0, consider the

unique solution yR of the β-Jacobi equation with yR(R) = 0 and yR(0) =
1. By definition r−R(x, v, t) = ẏR(t)/yR(t). Let w(t) := y(t)− y(0)yR(t).
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Since w(0) = 0 we may apply Proposition 7.5 to derive for any A, the
existence of T such that

|w(s)| ≥ A|ẇ(0)|
for all s ≥ T . Consider R large enough so that R ≥ T . Then

C ≥ |y(R)| = |w(R)| ≥ A|ẇ(0)| ≥ A|ẏ(0) − r−R(x, v, 0)y(0)|.
Now let R→ ∞ to obtain

C ≥ A|ẏ(0) − r−β (x, v, 0)y(0)|

and since A is arbitrary the claim r−(x, v, 0)y(0) = ẏ(0) follows.
Similarly, if there is a solution y to the β-Jacobi equation that is

bounded backward in time, we must have r+β (x, v, 0)y(0) = ẏ(0). Thus

if there is a solution y bounded for all times, then r+β = r−β along γ.

Now it is easy to complete the proof of the theorem. Suppose Ψβ
t

is hyperbolic. Then if we consider a solution of the β-Jacobi equation
corresponding to the stable bundle, it must be bounded forward in time
by definition of hyperbolicity and hence by the above (1, r−β ) spans E

s.

Similarly, (1, r+β ) spans Eu. Since Es and Eu are transversal, r+β and

r−β are distinct everywhere.

Suppose now r+β and r−β are distinct everywhere. By the argument

above, any non-trivial solution y of the β-Jacobi equation must be un-
bounded. Since

‖Ψβ
t (ξ)‖2 = y(t)2 + ẏ(t)2,

where y is the unique solution to the β-Jacobi equation with (y(0), ẏ(0)) =

ξ, it follows that (9) holds and hence Ψβ
t is hyperbolic. q.e.d.

Below we will find convenient as in [4, Section 1] to use the following
elementary comparison lemma:

Lemma 7.6. Let ri(t), i = 0, 1 be solutions of the initial value prob-

lems

ṙi + r2i +Ki(t) = 0, ri(0) = wi, i = 0, 1.

Suppose w1 ≥ w0, K1(t) ≤ K0(t) for t ∈ [0, t0], and r0(t0) is defined.

Then r1(t) ≥ r0(t) for t ∈ [0, t0].

Theorem 7.7. Let β0 > 0. If Ψβ0
t is free of conjugate points, then for

any β ∈ [0, β0], Ψ
β
t is also free of conjugate points. If Ψβ0

t is hyperbolic,

then for any β ∈ (0, β0], Ψ
β
t is also hyperbolic.

Proof. Let r±β0 be the Hopf solutions associated with Ψβ0
t . Given

a ∈ [0, 1], we have

X(ar±β0) + (ar±β0)
2 + aβ0K = (r±β0)

2a(a− 1) ≤ 0.
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This already implies that the cocycle Ψaβ0
t is free of conjugate points.

Indeed, let q± := aβ0K − (r±β0)
2a(a− 1). Then

X(ar±β0) + (ar±β0)
2 + q± = 0

and q± ≥ aβ0K. Lemma 7.6 implies that the cocycle Ψaβ0
t is free of

conjugate points. Moreover, it also implies that

r+aβ0,R(x, v, t) ≥ ar+β0(x, v, t)

for all t > −R. By letting R→ ∞ we derive

r+aβ0 ≥ ar+β0

and similarly

ar−β0 ≥ r−aβ0 .

Putting everything together, we have

(10) r+aβ0 ≥ ar+β0 ≥ ar−β0 ≥ r−aβ0 .

Suppose now that Ψβ0
t is hyperbolic. Then by Theorem 7.3, Ψβ0

t

is free of conjugate points and by Theorem 7.4 r+β0 > r−β0 everywhere.

For a ∈ (0, 1], the chain of inequalities (10) implies that r+aβ0 > r−aβ0
everywhere and again by Theorem 7.4, Ψaβ0

t is hyperbolic.
q.e.d.

This theorem motivates the following definition.

Definition 7.8. Let (M,g) be a closed oriented Riemannian surface.
Let βTer ∈ [0,∞] denote the supremum of the values of β ≥ 0 for which

Ψβ
t is free of conjugate points. We call βTer the terminator value of the

surface.

It is easy to check from the definitions that ΨβTer
t is free of conjugate

points. Indeed if ΨβTer
t has conjugate points, there is a geodesic γ

and a non-trivial solution y(t) of the βTer-Jacobi equation along γ with
y(0) = 0 and y(a) = 0 for some a > 0. Since ẏ(a) 6= 0 we see that for β
near βTer, the β-Jacobi equation has conjugate points, which contradicts
the definition of βTer.

A surface has curvature K ≤ 0 if and only if βTer = ∞. Indeed,
suppose βTer = ∞ and there is a point x ∈ M with K(x) > 0. Then
K ≥ δ > 0 for points in a neighborhood U of x. By choosing β large
enough (depending on δ) we can produce β-conjugate points in U and
βTer <∞.

If a surface has no focal points, then the argument in the proof of
Theorem 3.2 shows that βTer ≥ 2.

We now have the following purely geometric characterization of hy-
perbolicity (the parameter β is always ≥ 0 in what follows).
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Theorem 7.9. The cocycle Ψβ
t is hyperbolic if and only if β ∈

(0, βTer) and there is no geodesic trapped in the region of zero Gaussian

curvature.

Proof. We know that if Ψβ
t is hyperbolic, then β ≤ βTer. Since hyper-

bolicity is an open condition we must have β < βTer. Finally, if there is
a geodesic trapped in zero curvature, the cocycle cannot be hyperbolic
since the solutions of ÿ = 0 have at most linear growth in t.

Consider β ∈ (0, βTer) and assume that Ψβ
t is not hyperbolic. By

Theorem 7.4 there is a geodesic γ along which r+β = r−β . Let a := β/βTer.

Using (10) for β0 = βTer we deduce that along γ we must have

u := r+β = ar+βTer
= ar−βTer

= r−β .

Hence u solves u̇+u2+βK(γ(t)) = 0 and u̇/a+(u/a)2+βTerK(γ(t)) = 0.
It follows that u2 = u2/a and hence u ≡ 0 and K(γ(t)) ≡ 0, which
contradicts our hypotheses. q.e.d.

As an immediate consequence we obtain the following geometric char-
acterization of Anosov surfaces which was announced in the introduc-
tion.

Corollary 7.10. A closed surface (M,g) is Anosov if and only if

there is no geodesic trapped in the region of zero Gaussian curvature

and βTer > 1.

We are now in good shape to complete the proofs of Theorems 1.3
and 1.6 from the introduction.

Proof of Theorem 1.3. By Corollary 7.10 the surface is Anosov. If βTer ≥
(m+1)/2, the surface is (m− 1)/(m+1)-controlled by Remark 3.3 and
the theorem follows from Theorem 6.1 and the Livsic theorem. q.e.d.

Proof of Theorem 1.6. This follows directly from Theorems 3.2 and 5.7
and Remark 3.3. The smoothness of the appropriate Fourier compo-
nents of w follows as in the proof of Theorem 1.4 using the ellipticity of
η±. q.e.d.

8. Examples

In this section we explain how we can perform alterations to the
examples in [22] to prove the following proposition:

Proposition 8.1. There are examples of closed orientable surfaces

with βTer < 2, but arbitrarily close to 2. Moreover, for these examples

there are no geodesics trapped in the region of zero Gaussian curvature.
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Proof. The construction in [22] has some parameters that can be
adjusted to suit our purposes. Following the notation in [22], consider
positive constants b and r1 such that br1 < π/2. There exists a unique
r2, 0 < r2 < r1, so that b−1 sin br1 = sinh(r1 − r2). Now choose ε > 0
small enough so that ε < r1−r2 and b(r1+ε) < π/2. Define r3 := r1+ε.

The main construction in [22] ensures that given any R > r3 − r2,
we can construct an orientable closed surface (M,g) with the following
properties:

1) There is a point p such that if D denotes the ball centered at p
with radius r3, then any geodesic segment in D has length at most
2r3. Moreover, the Gaussian curvature of D is ≤ b2 and on the
ball of radius r1 − ε centered at p the curvature is constant and
equal to b2.

2) Outside D the curvature equals −1.
3) Let Q denote the annulus centered at p with inner radius r3 and

outer radius R + r2. Then the distance from p to γ(s) (where γ
is a unit speed geodesic) is a convex function of s as long as γ
remains in D ∪ Q. Thus after leaving D, γ must cross Q to its
outer boundary travelling at least a distance R′ := R+ r2 − r3.

In other words, the Gaussian curvature along γ is at most b2 for s in
certain intervals of length at most 2r3; these intervals are separated by
intervals in which the curvature is −1 each of length at least R′.

Gulliver shows in [22, p. 196] that if

b tan br3 < tanhR′

then (M,g) has no conjugate points. Exactly the same proof shows that
if (β > 1)

√

βbr3 < π/2,(11)

b tan
√

βbr3 < tanh
√

βR′,(12)

then Ψβ
t is free of conjugate points.

Since the curvature is constant and equal to b2 on the ball of radius
r1 − ε, it follows easily that if b(r1 − ε) > π/2

√
2, then the 2-Jacobi

equation has conjugate points and βTer < 2. Note that this also implies
that (M,g) has focal points.

Now given any β ∈ (3/2, 2), select b > 0 and δ > 0 small enough such
that

√

β(π/2
√
2 + 2bδ) < π/2,(13)

b tan(
√

β(π/2
√
2 + 2bδ)) < 1/2.(14)

Define

r1 :=
π

2
√
2b

+ δ.
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With these choices of b and r1, r2 is defined as above and we choose
ε < r1 − r2 small enough so that ε < δ. Using (13) we see that

√
βπ

2
√
2
<
√

βb(r1 − ε) <
√

βb(r1 + ε) <
π

2
.

This ensures that (11) holds and that βTer < 2. Finally select R large
enough so that

tanh
√

βR′ > 1/2.

This together with (14) ensures that (12) holds and hence βTer ≥ β.
q.e.d.

Remark 8.2. An inspection of the proof also shows the following:
the set of values in (1,∞) which are realized as terminator values of
closed orientable surfaces is dense.

9. Proof of Theorem 1.1

The first step in the proof consists in showing that for any two holo-
morphic (in the angular variable) distributions u, v such that u ∈
L2
xH

−s
θ , v ∈ L2

xH
−t
θ for some s, t ≥ 0, it is possible to define their

product as an element w in H−N−2(SM) if N is sufficiently large.

Theorem 9.1. Let (M,g) be a closed oriented surface. Suppose u, v
are distributions in SM of the form u =

∑∞
k=0 uk, v =

∑∞
k=0 vk, where

u ∈ L2
xH

−s
θ , v ∈ L2

xH
−t
θ for some s, t ≥ 0. Define

wk =
k
∑

j=0

ujvk−j, k = 0, 1, . . . .

If N is an integer with N > s+ t+1/2, the sum
∑∞

k=0wk converges in

H−N−2(SM) to some w with ‖w‖H−N−2 ≤ C‖u‖L2
xH

−s
θ

‖v‖L2
xH

−t
θ
. Fur-

thermore,

(15) ‖wk‖L1(SM) ≤ 〈k〉s+t‖u‖L2
xH

−s
θ

‖v‖L2
xH

−t
θ
.

If Xu = Xv = 0, then also Xw = 0.

Proof. One has uk, vk ∈ L2(SM), so each wk is in L1(SM). Note
that

k
∑

j=0

‖uj‖2L2 =

k
∑

j=0

〈j〉2s〈j〉−2s‖uj‖2L2 ≤ 〈k〉2s‖u‖2
L2
xH

−s
θ

.

Similarly
∑k

j=0‖vj‖2L2 ≤ 〈k〉2t‖v‖2
L2
xH

−t
θ

. Consider the inner product

space (L2(SM))k with inner product

((a0, . . . , ak), (b0, . . . , bk)) = (a0, b0)L2(SM) + . . .+ (ak, bk)L2(SM).



ANOSOV SURFACES 175

The Cauchy-Schwarz inequality reads

∣

∣

∣

∣

∫

SM
(a0b0 + . . . + akbk)

∣

∣

∣

∣

≤





k
∑

j=0

‖aj‖2L2





1/2



k
∑

j=0

‖bj‖2L2





1/2

.

It follows that

∫

SM
|wk| ≤

∫

SM

k
∑

j=0

|uj ||vk−j | ≤





k
∑

j=0

‖uj‖2L2





1/2



k
∑

j=0

‖vj‖2L2





1/2

.

This implies (15).

Let w(l) =
∑l

j=0wj, let N be an integer with N > s + t + 1/2, and

let ϕ be a function in HN+2(SM). Using (15), we have

|〈w(l), ϕ〉| =

∣

∣

∣

∣

∣

∣

l
∑

j=0

〈wj , ϕj〉

∣

∣

∣

∣

∣

∣

≤
l
∑

j=0

‖wj‖L1(SM)‖ϕj‖L∞(SM)

≤ ‖u‖L2
xH

−s
θ
‖v‖L2

xH
−t
θ

l
∑

j=0

〈j〉s+t‖ϕj‖L∞(SM).

By the Sobolev embeddingH2(SM) ⊂ L∞(SM) and by Cauchy-Schwarz,
we have

l
∑

j=0

〈j〉s+t‖ϕj‖L∞(SM) ≤ Cδ





l
∑

j=0

j2(s+t+δ)‖ϕj‖2H2(SM)





1/2

for any δ > 1/2. Choose δ = N − s − t. Using an equivalent norm on
H2(SM) involving Y1 = η+, Y2 = η−, and Y3 = V , it follows that

l
∑

j=0

j
2(s+t+δ)‖ϕj‖

2
H2 ≤

l
∑

j=0

[

‖V N
ϕj‖

2
L2 +

3
∑

q=1

‖V N
Yqϕj‖

2
L2 +

3
∑

q,r=1

‖V N
YqYrϕj‖

2
L2

]

≤
l+2
∑

j=−2

[

‖(V N
ϕ)j‖

2
L2 +

3
∑

q=1

‖(V N
Yqϕ)j‖

2
L2 +

3
∑

q,r=1

‖(V N
YqYrϕ)j‖

2
L2

]

≤ C‖ϕ‖2HN+2 .

Thus ‖w(l)‖H−N−2 ≤ C‖u‖L2
xH

−s
θ
‖v‖L2

xH
−t
θ
.

An argument using Cauchy sequences together with the previous com-
putations shows that we may define

〈w,ϕ〉 = lim
l→∞

〈w(l), ϕ〉, ϕ ∈ HN+2(SM).

Then w is an element of H−N−2(SM) with

‖w‖H−N−2 ≤ C‖u‖L2
xH

−s
θ

‖v‖L2
xH

−t
θ
.

The conditions Xu = Xv = 0 mean that η+uk−1 + η−uk+1 = 0 for
all k, and similarly for the vj. Recall also that uk = vk = 0 for k ≤ −1.
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We have (Xw)k = η+wk−1 + η−wk+1, so (Xw)k = 0 for k ≤ −2. Also

(Xw)−1 = η−w0 = (η−u0)v0 + u0(η−v0) = 0,

(Xw)0 = (η−u0)v1 + u0(η−v1) + (η−u1)v0 + u1(η−v0) = 0.

Now if l ≥ 0,

(Xw)l+1 = η+wl + η−wl+2 =
l
∑

j=0

η+(ujvl−j) +
l+2
∑

j=0

η−(ujvl+2−j) = 0.

Thus Xw = 0. q.e.d.

A combination of Theorems 5.6 and 9.1 yields the following:

Theorem 9.2. Let (M,g) be an Anosov surface. Suppose q ∈ Ω2 is

in the linear span of {ab ; a, b ∈ Ω1 and η−a = η−b = 0}. There exists

w =
∑∞

k=2wk ∈ H−5(SM) such that Xw = 0, w2 = q, ‖w‖H−5 ≤
C‖q‖L2 , and each wk is in C∞(SM).

Proof. Denote by E the linear span of {ab ; a, b ∈ Ω1 and η−a =
η−b = 0}. Then E is a subspace of the finite dimensional space {q ∈
Ω2 ; η−q = 0}, and E has a basis {a(1)b(1), . . . , a(N)b(N)} where η−a

(j) =

η−b
(j) = 0. By Theorem 5.6 there exist holomorphic distributions

u(j), v(j) ∈ L2
xH

−1
θ such that Xu(j) = Xv(j) = 0, u

(j)
1 = a(j), v

(j)
1 = b(j),

and
‖u(j)‖L2

xH
−1
θ

≤ C‖a(j)‖L2 , ‖v(j)‖L2
xH

−1
θ

≤ C‖b(j)‖L2 .

Theorem 9.1 implies that there are w(j) ∈ H−5(SM) with Xw(j) = 0,

w(j) =
∑∞

k=2w
(j)
k , w

(j)
2 = a(j)b(j), and

‖w(j)‖H−5 ≤ C‖a(j)‖L2‖b(j)‖L2 .

The Fourier coefficients of w(j) are in C∞(SM) since this is true for

the Fourier coefficients of u(j) and v(j) (or alternatively by using the
ellipticity of η−).

Let now q ∈ E be so that q =
∑N

j=1 λja
(j)b(j) for some uniquely

determined coefficients λj ∈ R. Define w =
∑N

j=1 λjw
(j). Then w has

all the required properties: the norm estimate holds since

‖w‖H−5 ≤ C

N
∑

j=1

|λj |, C = sup
j∈{1,...,n}

‖w(j)‖H−5 ,

where the norm
∑N

j=1|λj | is equivalent to ‖q‖L2 on the finite dimensional
space E. q.e.d.

Recall that (M,g) has an underlying complex structure determined
by g. We also recall that a Riemann surfaceM is said to be hyperelliptic
if there is a holomorphic map f : M → S2 of degree two. We are now
ready to prove:
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Theorem 9.3. Assume (M,g) is an Anosov non-hyperelliptic sur-

face. Let f ∈ C∞(SM) be of the form f = f−2 + f0 + f2. Assume that

there is u ∈ C∞(SM) such that Xu = f . Then uk = 0 for all k with

|k| ≥ 2 and hence f is potential.

Proof. Without loss of generality we may assume that both f and
u are real-valued; otherwise split the transport equation into real and
imaginary parts. Then f̄k = f−k and ūk = u−k for all k.

Now observe that we have the following orthogonal decomposition:

Ω2 = η+(Ω1)⊕Ker η−.

Then f2 = η+(v1) + q2 where q2 ∈ Ker η− and v1 ∈ Ω1. Thus

Xv1 = η+(v1) + η−(v1) = f2 − q2 + η−(v1).

But F := −η−(v1) + f0 ∈ Ω0, therefore

(16) X(u− v1) = f−2 + F + q2.

Since M is non-hyperelliptic, we may use Max Noether’s theorem
[17, p. 159] which asserts that for any m ≥ 2 the m-fold products of
the abelian differentials of the first kind span the space of holomorphic
m-differentials. This result form = 2, together with Lemma 2.1, implies
that q2 is in the linear span of the set of products a1b1 where a1, b1 ∈ Ω1

and η−a1 = η−b1 = 0. By Theorem 9.2 there is an invariant distribution
w =

∑∞
k=2wk with w2 = q2. Since u − v1 ∈ C∞(SM), applying w to

equality (16) we obtain

0 = 〈w,X(u − v1)〉 = 〈w2, q2〉 = ‖q2‖2L2 .

Thus q2 = 0. Since f−2 = f̄2 = η−(v̄1) we see using (16) that

X(u− (v1 + v̄1)) = f−2 + F −X(v̄1) = F − η+(v̄1) ∈ Ω0.

Since I0 is injective we derive that u− (v1 + v̄1) must be constant and
thus uk = 0 for all k with |k| ≥ 2. q.e.d.

We now remove the assumption of being non-hyperelliptic and we
complete the proof of Theorem 1.1.

Proof of Theorem 1.1. It is well known that a closed Riemann surface
M of genus g ≥ 2 admits normal covers of arbitrary degree. In other
words, given a positive integer n, there is a normal cover N 7→ M of
degree n and N has genus n(g− 1)+ 1. If M is hyperelliptic, N will be
hyperelliptic only when n = 2, 4 [34], so by taking n ≥ 5 we can ensure
that N will not be hyperelliptic.

The metric g can be lifted to N and the geodesic flow continues to
be Anosov. The transport equation also lifts to Xũ = f̃ , where ũ and f̃
are the lifts of u and f . We can now apply Theorem 9.3 in N to deduce
that ũ has degree one. Hence u has degree one and f is potential. q.e.d.
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Remark 9.4. To obtain solenoidal injectivity on tensors of order
m ≥ 3, it would be natural to consider products of m invariant distribu-
tions in H−1(SM) obtained from the surjectivity of I∗1 . However, even
though the Fourier coefficients of such distributions are in C∞(SM), we
are currently unable to obtain the required estimates to show that the
product makes sense as a distribution.
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MR 1712465, Zbl 0930.53001.

[40] G.P. Paternain, Inverse problems for connections. In Inverse problems and ap-
plications: Inside Out II, volume 60 of Math. Sci. Res. Inst. Publ., pp. 369–409.
Cambridge University Press, Cambridge, 2013, MR 3098662.

[41] G.P. Paternain, M. Salo & G. Uhlmann, Tensor tomography on surfaces, Invent.
Math. 193 (2013), 229–247, MR 3069117, Zbl 1275.53067.

[42] G.P. Paternain, M. Salo & G. Uhlmann, Tensor tomography: progress and chal-
lenges, Chinese Ann. Math. Ser. B 35 (2014) 399–428.

[43] L. Pestov, Well-Posedness Questions of the Ray Tomography Problems (Rus-
sian), Siberian Science Press, Novosibirsk, 2003.

[44] L. Pestov & G. Uhlmann, Two dimensional compact simple Riemannian man-
ifolds are boundary distance rigid, Ann. of Math. 161 (2005), 1089–1106,
MR 2153407, Zbl 1076.53044.

[45] L. Pestov & G. Uhlmann, On characterization of the range and inversion formu-
las for the geodesic X-ray transform, Int. Math. Res. Not. 2004 80 4331–4347,
MR 2126628, Zbl 1075.44003.

[46] R.O. Ruggiero, On the creation of conjugate points, Math. Z. 208 (1991), 41–55,
MR 1125731, Zbl 0749.58042.
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