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CURVATURES OF DIRECT IMAGE SHEAVES OF

VECTOR BUNDLES AND APPLICATIONS

Kefeng Liu & Xiaokui Yang

Abstract

Let p : X → S be a proper Kähler fibration and E → X
a Hermitian holomorphic vector bundle. As motivated by the
work of Berndtsson ([Bern09]), by using basic Hodge theory,
we derive several general curvature formulas for the direct image
p∗(KX/S ⊗ E) for general Hermitian holomorphic vector bundle
E in a simple way. A straightforward application is that, if the
family X → S is infinitesimally trivial and Hermitian vector bun-
dle E is Nakano-negative along the base S, then the direct image
p∗(KX/S⊗E) is Nakano-negative. We also use these curvature for-
mulas to study the moduli space of projectively flat vector bundles
with positive first Chern classes and obtain that, if the Chern cur-
vature of direct image p∗(KX ⊗ E)–of a positive projectively flat
family (E, h(t))t∈D → X–vanishes, then the curvature forms of
this family are connected by holomorphic automorphisms of the
pair (X,E).

1. Introduction

Let X be a Kähler manifold with dimension m + n and S a Kähler
manifold with dimensionm. Let p : X → S be a proper Kähler fibration.
Hence, for each s ∈ S,

Xs := p−1({s})
is a compact Kähler manifold with dimension n. Let (E , hE ) → X be a
Hermitian holomorphic vector bundle. Consider the space of holomor-
phic E-valued (n, 0)-forms on Xs,

Es := H0(Xs, Es ⊗KXs)
∼= Hn,0(Xs, Es)

where Es = E|Xs . It is well-known that, if the vector bundle E is
“positive” in certain sense, there is a natural holomorphic structure on

E =
⋃

s∈S
{s} × Es
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such that E is isomorphic to the direct image sheaf p∗(KX/S⊗E). Using
the canonical isomorphism KX/S |Xs

∼= KXs , a local smooth section u of
E over S can be identified as a holomorphic E-valued (n, 0) form on Xs.

By the identification above, there is a natural metric on E. For any
local smooth section u of E, one can define a Hermitian metric on E by

(1.1) h(u, u) = cn

∫

Xs

{u, u}

where cn = (
√
−1)n

2

. Here, we only use the Hermitian metric of Es on
each fiber Xs and we do not specify background Kähler metrics on the
fibers. Berndtsson defined in [Bern09, Lemma 4.1], a natural Chern
connection D on (E, h), and computed the curvature tensor of direct
image p∗(KX/S ⊗ L) of (semi-)positive line bundle L → X .

Next we would like to describe our results in this paper briefly. As
motivated by the work of Berndtsson ([Bern09]), we compute the cur-
vature tensor of the direct images p∗(KX/S ⊗E) for arbitrary Hermitian
vector bundles E → X by using basic Hodge theory which also simplify
Berndtsson’s original proofs mildly. In the following formulations, if not
otherwise stated, we do not make any positivity or negativity assump-
tion on the curvature tensors of E or L, but we assume that every Es

has the same dimension.
Let (X,ωg) be a compact Kähler manifold with complex dimension

n and F → X a Hermitian vector bundle with Chern connection ∇ =
∇′ + ∇′′. At first, by Hodge theory on vector bundles( Lemma 2.1),
we observe that if α ∈ Ωn,0(X,F ), and it has no harmonic part, then
v = ∇′∗

G
′α is a solution to ∇′v = α where G

′ is the Green’s operator
with respect to ∇′. Moreover, ∇′′v is a primitive (n − 1, 1) form. We
can apply this observation to the Kähler fibration p : X → S. Let
(t1, · · · , tm) be local holomorphic coordinates on the base S centered
at some point s ∈ S. Let ∇E = ∇′ + ∇′′ be the Chern connection of
the Hermitian vector bundle (E , hE ) over X and ∇X = ∇′

X + ∇′′
X be

the restriction of ∇E on the fiber Es → Xs. For any local holomorphic
section u of E = p∗(KX/S ⊗ E), by the identification stated above, it
can be represented by a local smooth E-valued (n, 0) form u on X with
the property that

∇′u = dti ∧ νi, ∇′′u = dtj ∧ ηj
where νi and ηj are forms on X of bidegree (n, 0) and (n− 1, 1) respec-
tively. It is easy to see that νi and ηj are not uniquely determined as
forms on X , but their restrictions to fibers are( see Section 2.3 for more
details). It is worth pointing out that, when restricted to each fiber,
[ηj ] is closely related to the Kodaira-Spencer class of the deformation
X → S (See Remark 2.6). We set

vi = −∇′
XG

′π⊥ (νi)
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where π⊥ = I−π and π : Ωn,0(Xs, Es) → Hn,0(Xs, Es) is the orthogonal
projection on each fiber. At first, we derive a curvature formula for
E = p∗(KX/S ⊗ E) by a simple method (see Theorem 3.3).

Theorem 1.1. Let ΘE be the Chern curvature of E = p∗(KX/S⊗E).
For any local holomorphic section u of E, the curvature ΘE has the
following “negative form”:

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1

{
ΘEu, u

}
− (∆′

Xvi, vj) · (
√
−1dti ∧ dtj)

+(ηi, ηj) · (
√
−1dti ∧ dtj).(1.2)

We shall explain this curvature formula in details in the following sec-
tions, and also make a simple example in Section 4 to explain why this
“negative form” is “natural”.

By a decomposition for the second term on the right hand side of
(1.2),

(∆′
Xvi, vj) = (∆′

Xvi,∆
′
Xvj) + (∆′

Xvi, vj −∆′
Xvj)

we obtain a curvature form with significant geometric interpretations
and it is related to deformation theory of vector bundles. Let

(1.3) αi = ΘE
(
∂

∂ti

) ∣∣
Xs

∈ Ω0,1(Xs, End(Es)).

(Note that, if the family is infinitesimally trivial, [αi] ∈ H0,1(Xs,
End(Es)) is the Kodaira-Spencer class ([SchTo92, Proposition 1]) of
the deformation E → X → S in the direction of ∂

∂ti
∈ TsS.) We observe

that

∆′
Xvi = −

√
−1Λg (αi ∪ u)

when restricted to the fiber Xs where Λg is the contraction operator
with respect to the Kähler metric ω on the fiber Xs.

Theorem 1.2. The curvature ΘE of E = p∗(KX/S ⊗ E) has the
following “geodesic form”:

(
√
−1ΘEu, u)

= cn

∫

Xs

√
−1

{
ΘEu, u

}
− (αi ∪ u, αj ∪ u) · (

√
−1dti ∧ dtj)

+(∆′
Xvi,∆

′
Xvj − vj) · (

√
−1dti ∧ dtj) + (ηi, ηj) · (

√
−1dti ∧ dtj).(1.4)

Rewriting each line on the right hand side of (1.4) a little bit, we reach
the following special case, which is also of particular interest, since the
first line in (1.4) is exactly in the geodesic form.

Corollary 1.3. Let (L, hL = e−ϕ) be a Hermitian line bundle over
X such that (L|Xs , h

L
Xs

) is positive on each fiber Xs. The curvature ΘEk
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of Ek = p∗(KX/S ⊗ Lk) has the form:

(
√
−1ΘEku, u)

= cn

∫

Xs

kcij(ϕ){u, u}(
√
−1dti ∧ dtj)

+
1

k

(
(∆′

X + k)−1
(
∇′′

X∆′
Xvi

)
,∇′′

X∆′
Xvj

)
· (
√
−1dti ∧ dtj)(1.5)

+(ηi, ηj) · (
√
−1dti ∧ dtj),

where cij(ϕ) is given by

(1.6) cij(ϕ) =
∂2ϕ

∂ti∂t
j
−

〈
∂X

(
∂ϕ

∂ti

)
, ∂X

(
∂ϕ

∂tj

)〉

g

.

Remark 1.4. 1) The curvature formula (1.5) is derived implic-
itly in some special cases by different authors (c.f. [Bern09a],
[LSYau09], [Sch13].)

2) In the real parameter case,

c(ϕ) = ϕ̈− |∂X ϕ̇|2g.
When c(ϕ) = 0, it is the geodesic equation in the space of Kähler
potentials. For this comprehensive topic, we just refer the reader
to [Semmes92], [Donald99], [Chen00], [PhoStu06], [Bern09a],
[Bern11a] and references therein.

3) For the vector bundle case, the authors also expect that the first
line on the right hand side of (1.4), i.e.

cn

∫

Xs

√
−1

{
ΘEu, u

}
− (αi ∪ u, αj ∪ u) · (

√
−1dti ∧ dtj)

can be written into certain geodesic form in the space of Hermitian
metrics on E when E has some stability property (see formula
(3.12) for the line bundle case).

4) If p : X → S is the universal curve with genus g ≥ 2, i.e.
p : Tg → Mg. If L = KTg/Mg

, one can deduce Wolpert’s cur-
vature formula ([Wolp86]) for the (dual) Weil-Petersson metric
on p∗(K

⊗2
Tg/Mg

) easily from (1.5) (see also [Siu86], [LSYau09]

[Bern11] and [Sch13]).
5) When k = 1, one can use (1.5) to study the convex and con-

cave property of the logarithm volume functional on a Fano man-
ifold ([Bern11a], see also Theorem 4.6, Proposition 4.7). Intrin-
sically, it amounts to the standard ∂-estimate ‖ψ‖ ≤ ‖∂ψ‖ on
functions with

∫
X ψ = 0 if the Fano manifold is polarized by its

anti-canonical class.

As the first application of Theorem 1.1, we obtain
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Theorem 1.5. Let X → S be infinitesimally trivial. If there exists
a Hermitian metric on E which is Nakano-negative along the base, then
p∗(KX/S ⊗ E) is Nakano-negative.

Next, we follow Berndtsson’s ideas in his remarkable papers [Bern09],
[Bern09a], [Bern11], [Bern11a] and set

ũ = u− dti ∧ vi.
By using “Berndtsson’s magic formula”

cn

∫

Xs

{u, u} = cn

∫

Xs

{ũ, ũ} ,

we obtain

Theorem 1.6. The curvature ΘE of p∗(KX/S ⊗E) has the following
“positive form”:

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1

{
ΘE ũ, ũ

}

+
(
ηi +∇′′

Xvi, ηj +∇′′
Xvj

)
· (
√
−1dti ∧ dtj).(1.7)

When E is a line bundle, the curvature formula (1.7) is implicitly ob-
tained by Berndtsson in [Bern09], [Bern09a], [Bern11] and[Bern11a].
When E is a Nakano-positive vector bundle, a similar formulation seems
to be obtained in [MouTak08] by using Berndtsson’s idea, but vi are
not given explicitly. As it is shown, these vi play a key role in these
curvature formulas and also their applications.

Let cij be the E-valued (n, 0)-form coefficient of dti ∧ dtj in the local
expression of

ΘE(u− dti ∧ vi),
and dij be the E-valued (n, 0)-form coefficient of dti ∧ dtj in the local
expression of √

−1∇′′∇′ũ.

Theorem 1.7. The curvature ΘE of E = p∗(KX/S ⊗ E) has the
following “compact form”:

(
√
−1ΘEu, u) = cn

∫

Xs

{dij , u} · (
√
−1dti ∧ dtj).

Moreover, if the family X → S is infinitesimally trivial,

(
√
−1ΘEu, u) = cn

∫

Xs

{dij , u} · (
√
−1dti ∧ dtj)

= cn

∫

Xs

{cij , u} · (
√
−1dti ∧ dtj).
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As applications, we use it to study the degeneracy of the curvature
tensor of p∗(KX/S ⊗ E) under the assumption that X → S is infinites-

imally trivial and (E , hE ) → X is Nakano semi-positive. In this case,
cij is closely related to the geometry of the family E → X → S. When

(E , hE = e−ϕ) is a relatively positive line bundle, cij is the same as the

geodesic term cij(ϕ)(u) defined in (1.6) when the curvature degenerates.

Furthermore, when Hn,1(Xs, Es) = 0, we show that vi are all holomor-
phic over the total space X and we can use it to construct holomorphic
automorphisms of the family E → X → S and study the moduli space
of projectively flat vector bundles.

We consider a family of projectively flat vector bundles (Es, hEs)s∈S
with polarization

(1.8)
√
−1ΘEs = ωg ⊗ hEs .

Let Wi be the dual vector of the Kodaira-Spencer form αi defined in
(1.3), i.e. Wi is an End(Es)-valued (1, 0) vector field. Then vi, u and
the Kodaira-Spencer vectors Wi are related by

(1.9) iWi
u = −vi

when the curvature of p∗(KX/S ⊗ E) is degenerated. In this case, Wi is
an End(Es)-valued holomorphic vector field on the fiber. We also see
that, the horizontal lift of ∂

∂ti
,

Vi =
∂

∂ti
−Wi

is a (local) End(E)-valued holomorphic vector field over the total space
X . Moreover, the Lie derivatives of the curvature tensor of Es with
respect to Vi are all zero, i.e.

LVi
ωg = 0.

That means, if the curvature of p∗(KX/S⊗E) degenerates at some point
s ∈ S, then the family E → X → S moves by an infinitesimal automor-
phism of E when the base point varies.

We can formulate it into a global version. Let X = X × D, where
D is a unit disk. Let E0 → X be a holomorphic vector bundle. If
(E0, h(t))t∈D → X is a smooth family of projectively flat vector bundles
with polarization (1.8). We denote by E , the pullback family p∗2(E0)
over p2 : X → X.

Theorem 1.8. If the curvature ΘE of E = p∗(KX/D ⊗ E) vanishes
in a small neighborhood of 0 ∈ D, then there exists a holomorphic vector
field V on X with flows Φt ∈ AutH(X,E0) such that

Φ∗
t (ωt) = ω0

for small t.
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Remark 1.9. We can also use the holomorphic vector field V to
study the uniqueness of Hermitian-Einstein metrics on stable bundles,
the stability of the direct image p∗(E) and the asymptotic stability of
p∗(E ⊗Lk) for large k. We shall carry it out in the sequel to this paper.

Acknowledgement. The second named author would like to thank V.
Tosatti, B. Weinkove and S. Zelditch for many helpful discussions. The
authors would like to thank S. Takayama and the anonymous referee for
pointing out an error in the earlier version of this paper.

2. Background materials

2.1. Hodge theory on vector bundles. Let (E, h) be a Hermitian
holomorphic vector bundle over the compact Kähler manifold (X,ω)
and ∇ = ∇′ + ∇′′ be the Chern connection on it. Here, we also have
the relation ∇′′ = ∂. With respect to metrics on E and X, we set

∆′′ = ∇′′∇′′∗ +∇′′∗∇′′,

∆′ = ∇′∇′∗ +∇′∗∇′.

Accordingly, we associate the Green operators and harmonic projections
G, H and G

′, H′ in Hodge decomposition to them, respectively. More
precisely,

I = H+∆′′ ◦G, I = H
′ +∆′ ◦G′.

For any ϕ,ψ ∈ Ω•,•(X,E), there is a sesquilinear pairing

(2.1) {ϕ,ψ} = ϕα ∧ ψβ〈eα, eβ〉
if ϕ = ϕαeα and ψ = ψβeβ in the local frame {eα} of E. By the metric
compatible property,

(2.2) ∂{ϕ,ψ} = {∇′ϕ,ψ} + (−1)p+q{ϕ,∇′′ψ}
if ϕ ∈ Ωp,q(X,E).

Let ΘE be the Chern curvature of (E, h). It is well-known

(2.3) ∆′′ = ∆′ + [
√
−1ΘE,Λg]

where Λg is the contraction operator with respect to the Kähler metric ω.
The following observation plays an important role in our computations.

Lemma 2.1. Let E be any Hermitian vector bundle over a compact
Kähler manifold (X,ω). For any α ∈ Ωn,0(X,E) with no harmonic part
with respect to ∆′′, i.e. H(α) = 0, then

1) H
′(α) = 0;

2) The (n− 1, 0) form v = ∇′∗
G

′α is a solution to the equation

∇′v = α;
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3) ∇′′v is primitive.

Proof. The first statement follows from the Bochner identity on E-
valued (n, 0)-forms. More precisely, by (2.3)

∆′′β = ∆′β

for any β ∈ Ωn,0(X,E). Hence H
′(β) = H(β). For (2), by Hodge

decomposition, we have

∇′v = ∇′∇′∗
G

′(α)

= α−H
′(α)−∇′∗∇′

G
′(α)

= α−H
′(α) = α.

For (3), let Lg = ω∧. By Hodge identity [∇′∗, Lg] = −
√
−1∇′′,

ω ∧ ∇′′v = Lg∇′′v = Lg∇′′∇′∗
G

′α

= −Lg∇′∗∇′′
G

′α

=
(
−
√
−1∇′′ −∇′∗Lg

)
∇′′

G
′α

= 0

since Lg∇′′
G

′α is an (n+ 1, 2) form. q.e.d.

The following Riemann-Hodge bilinear relation will be used frequently,
and the proof of it can be found in [Huyb05, Corollary 1.2.36] or
[Voisin02, Proposition 6.29].

Lemma 2.2. If ϕ,ψ ∈ Ωp,q(X,E) ⊂ Ωn(X,E) are primitive, then

(2.4) (ϕ,ψ) =
(√

−1
)n(n−1)+(p−q)

∫

X
{ϕ,ψ}

where (•, •) is the standard inner product (norm) induced by metrics on
X and E.

2.2. Positivity of vector bundles. Let {zi}ni=1 be the local holomor-
phic coordinates onX and {eα}rα=1 be a local frame of E. The curvature
tensor ΘE ∈ Γ(X,Λ2T ∗X ⊗ E∗ ⊗ E) has the form

(2.5) ΘE = Rγ

ijα
dzi ∧ dzj ⊗ eα ⊗ eγ ,

where Rγ

ijα
= hγβRijαβ and

(2.6) Rijαβ = −
∂2hαβ
∂zi∂zj

+ hγδ
∂hαδ
∂zi

∂hγβ
∂zj

.

Here and henceforth we adopt the Einstein convention for summation.
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Definition 2.3. A Hermitian vector bundle (E, h) is said to be
Griffiths-positive, if for any nonzero vectors u = ui ∂

∂zi
and v = vαeα,

(2.7)
∑

i,j,α,β

Rijαβu
iujvαvβ > 0.

(E, h) is said to be Nakano-positive, if for any nonzero vector u =
uiα ∂

∂zi
⊗ eα,

(2.8)
∑

i,j,α,β

Rijαβu
iαujβ > 0.

(E, h) is said to be dual-Nakano-positive, if for any nonzero vector u =
uiα ∂

∂zi
⊗ eα,

(2.9)
∑

i,j,α,β

Rijαβu
iβujα > 0.

It is easy to see that (E, h) is dual-Nakano-positive if and only if (E∗, h∗)
is Nakano-negative. The notions of semi-positivity, negativity and semi-
negativity can be defined similarly. We say E is Nakano-positive (resp.
Griffiths-positive, dual-Nakano-positive, · · · ), if it admits a Nakano-
positive (resp. Griffiths-positive, dual-Nakano-positive, · · · ) metric.

2.3. Direct image sheaves of vector bundles. Let X be a Kähler
manifold with dimensionm+n and S a Kähler manifold with dimension
m. Let p : X → S be a smooth Kähler fibration. That means, for each
s ∈ S,

Xs := p−1({s})
is a compact Kähler manifold with dimension n. Let (E , hE ) → X be
a Hermitian holomorphic vector bundle. In the following, we adopt
the setting in [Bern09, Section 4]. Consider the space of holomorphic
E-valued (n, 0)-forms on Xs,

Es := H0(Xs, Es ⊗KXs)
∼= Hn,0(Xs, Es)

where Es = E|Xs . Here, we assume all Es has the same dimension. With
a natural holomorphic structure,

E =
⋃

s∈S
{s} × Es

is isomorphic to the direct image sheaf p∗(KX/S ⊗ E) if E has certain
positive property.

For every point s ∈ S, we can take a local holomorphic coordinate
(W ; t = (t1, · · · , tm)) centered at s such that (W ; t) is a unit ball in C

m,
and a system of local coordinates U = {(Uα; zα = (z1α, · · · , znα), t)} of
p−1(W ) ⊂ X . We would like to drop the index α in the sequel when
no confusion arises. By the canonical isomorphism KX/S |Xs

∼= KXs , we
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make the following identification which will be used frequently in the
sequel. For more details, we refer the reader to [Bern09, Section 4] and
[MouTak08, Section 2].

1) a local smooth section u of E over S is an E-valued (n, 0) form
on Xs. In the local holomorphic coordinates on the total space,
(z, t) := (z1, · · · , zn, t1, · · · , tm) on X , it is equivalent to the fact
that u∧dt1∧· · ·∧dtm is a local section ofKX . Hence, for example, if
u′ is an E-valued (n, 0) form on X , such that u′∧dt1∧· · ·∧dtm = 0,
then u+ u′ and u are the same local smooth section of E over S.
That means, if we use an E-valued (n, 0) form u on X to represent
a given local smooth section of E, in general, u is not unique.
Moreover, two representatives differ by a form dti∧γi on X where
γi are (n− 1, 0) forms on X .

2) u is a local holomorphic section of E over S, if ∂Xu restricted to
the zero form on each fiber Xs, that is

(2.10) ∂Xu =
∑

j

dti ∧ ηi

where ηi are (n− 1, 1) forms when restricted on each fiber Xs. Clearly,
ηi are not uniquely determined, but their restrictions to fibers are.

By the identification above, there is a natural metric on the E induced
by metrics hEs on Es. For any local smooth section u of E, we define a
Hermitian metric h on E by

(2.11) h(u, u) = cn

∫

Xs

{u, u}

where cn = (
√
−1)n

2

.
Next, we want to define the Chern connection for the Hermitian holo-

morphic vector bundle (E, h) → S. Let ∇E = ∇′ + ∇′′ be the Chern
connection of (E , hE ) over the total space X . Therefore ∇′′ = ∂X . For
any local smooth section u of E, it is also an E-valued (n, 0)-form on X .
It is obvious that

(2.12) ∇′′u = dt
j ∧ τj + dti ∧ ηi.

Similarly,

(2.13) ∇′u = dti ∧ νi.
Here, τj , ηi and νi are local sections over X , and again, they are not
unique on X , but there restrictions to fibers are. The following lemma
is given in [Bern09, Lemma 4.1].

Lemma 2.4. Let D = D′ +D′′ be the Chern connection of the Her-
mitian holomorphic vector bundle (E, h) → S, then for any local smooth
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section u of E,

(2.14) D′′u = τjdt
j
, D′u = π(νi)dt

i

where π is the orthogonal projection

(2.15) π : Ωn,0(Xs, Es) → Hn,0(Xs, Es).
The following result is contained in [Bern11, Lemma 2.1]. For the

sake of completeness, we include a proof here.

Lemma 2.5. For any local holomorphic section u of E, we can choose
a representative of u, i.e. an E-valued (n, 0) form on X such that

(2.16) ∇′′u = dti ∧ ηi
where ηi are primitive (n−1, 1) forms when restricted on each fiber Xs.

Proof. Let û be an arbitrary (n, 0) form on X which represents the
local holomorphic section u of E, i.e.

∂X û = dti ∧ η̂i.
Let ω be the (1, 1) form on X which restricted to the Kähler forms on
each fiber Xs. Since û ∧ ω is an (n+ 1, 1) form on X , it can be written
as

û ∧ ω = dti ∧ yi
for some (n, 1) forms yi on X . Hence

dti ∧ η̂i ∧ ω = ∂X û ∧ ω = ∂X (û ∧ ω) = −dti ∧ (∂X yi).

Then η̂i ∧ ω = −∂X yi when restricted on each fiber Xs. Let v̂i to be
any form on X such that

v̂i ∧ ω = yi.

If we set u = û− dti ∧ v̂i, then ∂Xu = dti ∧ ηi where
ηi = η̂i + ∂X v̂i.

It is obvious that ηi are primitive (n − 1, 1) forms when restricted on
each fiber Xs. q.e.d.

Remark 2.6. Let [ki] ∈ H0,1(Xs, T
1,0Xs ⊗ Es) be the Kodaira-

Spencer class in the direction of ∂/∂ti. It is shown in [Bern09, p.543]
and also [Bern11, Lemma 2.2], when restricted to each fiber, ηi and
ki ∪ u define the same class in Hn−1,1(Xs, Es). In particular, if X → S
is infinitesimally trivial, we can choose ηi to be zero.

Let ΘE be the Chern curvature of (E, h) → S. The following formula
is obvious.

Lemma 2.7. Let u be a local holomorphic section of E over S, then

(2.17) ∂∂(u, u) = (D′′D′u, u)− (D′u,D′u) = (ΘEu, u)− (D′u,D′u).
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To end this section, we list some notations we shall use in the sequel:

• D = D′+D′′ the Chern connection on the Hermitian vector bundle
(E, h) → S;

• ∇E = ∇′ +∇′′ the Chern connection of E over the total space X ;
We will also use ∂X for ∇′′ if there is no confusion;

• To simplify notations, we will denote the Chern connection ∇E |Xs

of the Hermitian vector bundle (Es, hEs) → Xs by ∇X = ∇′
X + ∇′′

X
although it depends on s ∈ S;

• d = ∂ + ∂ the natural decomposition of d on the base S;

• {ωs}s∈S a smooth family of Kähler metrics on {Xs}s∈S ;

• G
′ the Green’s operator for ∆′

X = ∇′
X∇′∗

X +∇′∗
X∇′

X ;

• π : Ωn,0(Xs, Es) → Hn,0(Xs, Es) the orthogonal projection on the
fiber;

• π⊥ = I− π.

3. Curvature formulas of direct images of vector bundles

3.1. A straightforward computation. In this section, we will derive
several general curvature formulas for direct image E = p∗(KX/S ⊗ E)
by using Lemma 2.1.
The following corollary is a special case of Lemma 2.1.

Corollary 3.1. For any local section u of E with ∇′u = dti ∧ νi, we
set

(3.1) vi = −∇′∗
XG

′π⊥ (νi) .

where νi is restricted on the fiber Xs. Then

1) ∇′
Xvi = −π⊥ (νi);

2) ∇′′
Xvi is primitive.

Before computing the curvature tensors of the direct images, we need a
well-known result:

Lemma 3.2. ∂ and ∂ commute with the fiber integration. More
precisely,

∂

∫

Xs

α =

∫

Xs

∂Xα, ∂

∫

Xs

α =

∫

Xs

∂Xα
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for any smooth α ∈ Ω•,•(X ).

Note that, in this paper, we make the following conventions. Let u be
a local holomorphic section of E = p∗(KX/S ⊗ E),

1) we always choose a representative, i.e. an E-valued (n, 0) form on
X such that

∇′′u = dti ∧ ηi, ∇′u = dti ∧ νi
where ηi are primitive (n − 1, 1) forms when restricted on each
fiber Xs, and νi are (n, 0) forms when restricted on each fiber Xs.

2) vi is fixed to be −∇′∗
XG

′π⊥ (νi), and we do not change it anymore.

Theorem 3.3. Let ΘE be the Chern curvature of E = p∗(KX/S⊗E).
For any local holomorphic section u of E, the curvature ΘE has the
following “negative form”:

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1

{
ΘEu, u

}
− (∆′

Xvi, vj) · (
√
−1dti ∧ dtj)

+(ηi, ηj) · (
√
−1dti ∧ dtj).(3.2)

Proof. Since u is a local holomorphic section of E = p∗(KX/S ⊗E), it
can be represented by a local smooth (n, 0) form on X with the property
∇′′u = dti ∧ ηi where ηi are local (n − 1, 1) forms over X . Moreover,
when restricted to each fiber Xs, ηi are all primitive. By comparing the
top degrees along the fiber direction, we conclude that

(3.3)

∫

Xs

∇′{∇′′u, u} =

∫

Xs

∇′
X{∇′′u, u} = 0,

where the second identity follows from Stokes’ theorem. It is equivalent
to the fact that

−cn
√
−1

∫

Xs

{∇′∇′′u, u} = cn
√
−1(−1)n+1

∫

Xs

{∇′′u,∇′′u}

= cn
√
−1(−1)n+1

∫

Xs

{dti ∧ ηi, dtj ∧ ηj}

= −cn
∫

Xs

{ηi, ηj} · (
√
−1dti ∧ dtj)

= (ηi, ηj) · (
√
−1dti ∧ dtj)

where the last identity follows from Lemma 2.2 since ηi, ηj are primitive
(n− 1, 1) forms on Xs. By taking the conjugate, we see

−cn
√
−1

∫

Xs

{∇′∇′′u, u} = cn
√
−1

∫

Xs

{u,∇′∇′′u}.



130 K. LIU & X.YANG

On the other hand, (ηi, ηj) · (
√
−1dti ∧ dtj) is a real (1, 1) form, and we

obtain

−cn
√
−1

∫

Xs

{∇′∇′′u, u} = (ηi, ηj) · (
√
−1dti ∧ dtj)

= cn
√
−1

∫

Xs

{u,∇′∇′′u}.(3.4)

By curvature formula (2.17),

(
√
−1ΘEu, u) =

√
−1(D′u,D′u)−

√
−1∂∂‖u‖2

=
√
−1(D′u,D′u)− cn

∫

Xs

√
−1∇′ {∇′′u, u

}

−cn
∫

Xs

√
−1(−1)n∇′{u,∇′u}

(3.3)
=

√
−1(D′u,D′u)− cn(−1)n

∫

Xs

{√
−1∇′u,∇′u

}

−cn
√
−1

∫

Xs

{u,∇′′∇′u}

=
√
−1(D′u,D′u)− cn(−1)n

∫

Xs

{√
−1∇′u,∇′u

}

+cn

∫

Xs

√
−1

{
ΘEu, u

}
+ (ηi, ηj) · (

√
−1dti ∧ dtj)

where the last identity follows from (3.4) and ΘE = ∇′∇′′ +∇′′∇′. By
definition (Lemma 2.4), we have D′u = π(νi)∧dti. From the orthogonal
decomposition, νi = π(νi) + π⊥ (νi), and the fact ∇′u = dti ∧ νi, we see
that

√
−1(D′u,D′u)− cn(−1)n

∫

Xs

{√
−1∇′u,∇′u

}

=
√
−1(D′u,D′u)− cn(−1)n

∫

Xs

{√
−1dti ∧ νi, dtj ∧ νj

}

= −cn(−1)n
∫

Xs

{√
−1dti ∧ π⊥(νi), dtj ∧ π⊥(νj)

}

= −cn
∫

Xs

{∇′
Xvi,∇′

Xvj}(
√
−1dti ∧ dtj).

where we use the fact that −π⊥(νi) = ∇′
Xvi in Corollary 3.1. Since

∇′
Xvi are top (n, 0) forms on each fiber, and so primitive. On the other
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hand, by formula (3.1), we know ∇′∗
Xvi = 0. Therefore, by Riemann-

Hodge bilinear relation (2.4), we obtain

√
−1(D′u,D′u)− cn(−1)n

∫

Xs

{√
−1∇′u,∇′u

}

= −(∇′
Xvi,∇′

Xvj) · (
√
−1dti ∧ dtj)

= −(∆′
Xvi, vj) · (

√
−1dti ∧ dtj).

Now the curvature formula (3.2) follows. q.e.d.

As a straightforward consequence of Theorem 3.3, we obtain

Corollary 3.4. The curvature ΘE has the following form:

(
√
−1ΘEu, u)

= cn

∫

Xs

√
−1

{
ΘEu, u

}
− (∆′

Xvi,∆
′
Xvj) · (

√
−1dti ∧ dtj)

+(∆′
Xvi,∆

′
Xvj − vj) · (

√
−1dti ∧ dtj) + (ηi, ηj) · (

√
−1dti ∧ dtj).(3.5)

In the following, we want to interpret the second term on the right
hand side of (3.5) into a geometric quantity. Let

(3.6) αi = ΘE
(
∂

∂ti

) ∣∣
Xs

∈ Ω0,1(Xs, End(Es)).

If the family is infinitesimally trivial, [αi] ∈ H0,1(Xs, End(Es)) is the
Kodaira-Spencer class ([SchTo92, Proposition 1]) of the deformation
E → X → S in the direction of ∂

∂ti
∈ TsS. We need to point out that,

all computations are restricted to the fixed fiber Xs(= X). By Hodge
identity [Λg,∇′′

X ] = −
√
−1∇′∗

X , ∇′∗
Xvi = 0 and ∇′′

X (π(νi)) = 0, we get

∆′
Xvi = ∇′∗

X∇′
Xvi =

√
−1Λg∇′′

X∇′
Xvi

(Corollary 3.1) = −
√
−1Λg∇′′

Xπ⊥(νi)(3.7)

= −
√
−1Λg∇′′

Xνi.

On the other hand, by the relation ∇′u = dti ∧ νi, it is obvious that
when restricted to Xs,

νi = ∇′
iu,

where we adopt the notation that ∇′
iu := (∇′u)( ∂

∂ti
). We get

∆Xvi = −
√
−1Λg∇′′

Xνi

= −
√
−1Λg

(
∇′′

X∇′
i +∇′

i∇′′
X

)
u+

√
−1Λg∇′

i∇′′
Xu

= −
√
−1Λg(αi ∪ u) +

√
−1Λg∇′

i∇′′
Xu(3.8)

= −
√
−1Λg(αi ∪ u).
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where the last step follows from the fact that
√
−1Λg∇′

i∇′′
Xu is zero

when restricted to Xs. In fact,

∇′′
Xu = ∇′′u− dt

ℓ ∧ ∂u

∂t
ℓ
= dtj ∧ ηj − dt

ℓ ∧ ∂u

∂t
ℓ
.

By Corollary 3.4, we obtain the following :

Theorem 3.5. The curvature ΘE has the following “geodesic form”:

(
√
−1ΘEu, u)

= cn

∫

Xs

√
−1

{
ΘEu, u

}
− (αi ∪ u, αj ∪ u) · (

√
−1dti ∧ dtj)

+(∆′
Xvi,∆

′
Xvj − vj) · (

√
−1dti ∧ dtj) + (ηi, ηj) · (

√
−1dti ∧ dtj).(3.9)

Next we want to explain why (3.9) is called a “geodesic form” by a little
bit more computations in some special cases. Let (E , e−ϕ) be a relative
positive line bundle over X , and we set ωg =

√
−1∂X∂Xϕ on each fiber.

Corollary 3.6. Let (L, hL = e−ϕ) be a Hermitian line bundle over
X such that (L|Xs , h

L
Xs

) is positive on each fiber Xs. Then the curvature

ΘE of E = p∗(KX/S ⊗ L) has the form:

(
√
−1ΘEu, u)

= cn

∫

Xs

cij(ϕ) {u, u} · (
√
−1dti ∧ dtj)

+
(
(∆′

X + 1)−1
(
∇′′

X∆′
Xvi

)
,∇′′

X∆′
Xvj

)
· (
√
−1dti ∧ dtj)(3.10)

+(ηi, ηj) · (
√
−1dti ∧ dtj).

where cij(ϕ) is given by

(3.11) cij(ϕ) =
∂2ϕ

∂ti∂t
j −

〈
∂X

(
∂ϕ

∂ti

)
, ∂X

(
∂ϕ

∂tj

)〉

g

.

Proof. By formula (3.8), we obtain

cn

∫

Xs

√
−1

{
ΘLu, u

}
− (∆′

Xvi,∆
′
Xvj) · (

√
−1dti ∧ dtj)

= cn

∫

Xs

cij(ϕ) {u, u} · (
√
−1dti ∧ dtj).(3.12)

On the other hand, we see that, the second line on the right hand
side of (3.5) is non-negative. In fact, by formula (2.3) and the fact
ωg =

√
−1ΘL|Xs , we have ∆′′

Xvi = ∆′
Xvi − vi since vi are (n − 1, 0)
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forms. Moreover, ∇′′
X∆′′

Xvi +∇′′
Xvi = ∇′′

X∆′
Xvi. Therefore,

(∆′
Xvi,∆

′
Xvj − vj) = (∆′′

Xvi + vi,∆
′′
Xvj)

= (∆′′
Xvi,∆

′′
Xvj) + (vi,∆

′′
Xvj)

= (∆′′
Xvi,∆

′′
Xvj) + (∆′′

Xvi, vj) = (∆′′vi,∆
′vj)

= (∇′′vi,∇′′∆′
Xvj).

Similarly, by (2.3), we have ∆′
X(∇′′

Xvi) = ∆′′
X(∇′′

Xvi) since ∇′′
Xvi are

(n− 1, 1) forms on the fiber. Therefore,

∆′
X(∇′′

Xvi) = ∆′′
X(∇′′

Xvi) = ∇′′(∆′′
Xvi) = ∇′′

X(∆′
Xvi − vi)

which is equivalent to

(∆′
X + 1)(∇′′

Xvi) = ∇′′
X∆′

Xvi,

or equivalently,

∇′′
Xvi = (∆′

X + 1)−1(∇′′
X∆′

Xvi).

Hence, we obtain

(∆′
Xvi,∆

′
Xvj − vj) = (∇′′vi,∇′′∆′

Xvj)

=
(
(∆′

X + 1)−1
(
∇′′

X∆′
Xvi

)
,∇′′

X∆′
Xvj

)
.

q.e.d.

Remark 3.7. Similar formulas are also obtained in [LSYau09],
[Bern11] and [Sch13].

Similarly, we get the “quantization” version:

Proposition 3.8. The curvature ΘEk of Ek = p∗(KX/S ⊗ Lk) has
the following form:

(
√
−1ΘEku, u)

= cn

∫

Xs

kcij(ϕ){u, u}(
√
−1dti ∧ dtj)

+
1

k

(
(∆′

X + k)−1
(
∇′′

X∆′
Xvi

)
,∇′′

X∆′
Xvj

)
· (
√
−1dti ∧ dtj)(3.13)

+(ηi, ηj) · (
√
−1dti ∧ dtj).

where cij(ϕ) is defined in (3.11).

Proof. By Theorem 3.3, we rewrite the curvature formula as

(
√
−1ΘEku, u)

= cn

∫

Xs

√
−1

{
ΘLk

u, u
}
− 1

k
(∆′

Xvi,∆
′
Xvj) · (

√
−1dti ∧ dtj)

+
1

k
(∆′

Xvi,∆
′
Xvj − kvj) · (

√
−1dti ∧ dtj)(3.14)

+(ηi, ηj) · (
√
−1dti ∧ dtj).
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As similar as the arguments in Corollary 3.6, we deduce

cn

∫

Xs

√
−1

{
ΘLk

u, u
}
− 1

k
(∆′

Xvi,∆
′
Xvj) · (

√
−1dti ∧ dtj)

= cn

∫

Xs

kcij(ϕ){u, u}(
√
−1dti ∧ dtj)

and

(∆′
Xvi,∆

′
Xvj − kvj) =

(
(∆′

X + k)−1
(
∇′′

X∆′
Xvi

)
,∇′′

X∆′
Xvj

)
.

Hence (3.14) follows. q.e.d.

3.2. Computations by using Berndtsson’s magic formula. In
this subsection, we will derive several curvature formulas for direct im-
age sheaf p∗(KX/S ⊗ E) following the ideas in [Bern09], [Bern09a],
[Bern11] and [Bern11a]. However, we do not make any assumption
on the curvature of E . We only make use of the following “Berndtsson’s
magic formula”:

Lemma 3.9. Let u be a local smooth section of E. If ũ = u−dti∧vi,
then

(3.15) cn

∫

Xs

{u, u} = cn

∫

Xs

{ũ, ũ} .

Proof. It follows by comparing the (n, n)-forms along the fiber Xs.
q.e.d.

In the following, u shall be a local holomorphic section to E, i.e. ∇′′u =
dti ∧ ηi. Moreover, we set

(3.16) ũ = u− dti ∧ vi
and thus fixed. Recall that, vi = −∇′∗

XG
′π⊥ (νi) as defined in (3.1). It

is easy to see, ∇′′vi = ∇′′
Xvi + dt

j ∧ ∂vi
∂t

j , and so

(3.17) ∇′′ũ = ∇′′u+ dti ∧ ∇′′vi = dti ∧ (ηi +∇′′
Xvi) + dti ∧ dtj ∧ ∂vi

∂t
j

and similarly,

∇′ũ = ∇′u+ dti ∧ ∇′vi

= dti ∧ νi + dti ∧ ∇′vi

= dti ∧
(
νi +∇′

Xvi
)
+ dti ∧ dtk ∧ ∇′

kvi

= dti ∧ π(νi) + dti ∧ dtk ∧ ∇′
kvi

since ∇′
Xvi = −π⊥(νi). To make the above formula into a compact

form, we define

(3.18) µi := π(νi)
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and so

(3.19) ∇′ũ = dti ∧ µi + dti ∧ dtk ∧∇′
kvi.

Therefore,

∇′′∇′ũ = ∇′′(dti ∧ µi + dti ∧ dtk ∧ ∇′
kvi)

= −dti ∧ dtj ∧ ∂µi

∂t
j
+ dti ∧ dtk ∧ ∇′′∇′

kvi.(3.20)

By curvature formula (2.17) and the magic formula (3.15), we obtain

(
√
−1ΘEu, u)

=
√
−1(D′u,D′u)−

√
−1∂∂‖u‖2

=
√
−1(D′u,D′u)−

√
−1∂∂‖ũ‖2

=
√
−1(D′u,D′u)− cn(−1)n

∫

Xs

{√
−1∇′ũ,∇′ũ

}

−cn
∫

Xs

√
−1

{
∇′∇′′ũ, ũ

}
− cn(−1)n+1

∫

Xs

√
−1

{
∇′′ũ,∇′′ũ

}
(3.21)

−cn
∫

Xs

√
−1

{
ũ,∇′′∇′ũ

}
.

Claim. The first line and second line on the right hand side of
(3.21) are all zero, i.e.

(3.22)
√
−1(D′u,D′u)− cn(−1)n

∫

Xs

{√
−1∇′ũ,∇′ũ

}
= 0

and
(3.23)

−cn
∫

Xs

√
−1

{
∇′∇′′ũ, ũ

}
− cn(−1)n+1

∫

Xs

√
−1

{
∇′′ũ,∇′′ũ

}
= 0.

Proof. In fact, thanks to (3.19), we have

−cn(−1)n
∫

Xs

{√
−1∇′ũ,∇′ũ

}

= −cn(−1)n
∫

Xs

√
−1

{
dti ∧ µi, dtj ∧ µj

}

= −cn
∫

Xs

{µi, µj} · (
√
−1dti ∧ dtj).

On the other hand,

D′u = π(νi) ∧ dti = µi ∧ dti.
Hence

√
−1(D′u,D′u) = cn

∫

Xs

{µi, µj} · (
√
−1dti ∧ dtj).
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We complete the proof of (3.22). On the other hand,

−cn
∫

Xs

√
−1

{
∇′∇′′ũ, ũ

}
− cn(−1)n+1

∫

Xs

√
−1

{
∇′′ũ,∇′′ũ

}

= −cn
∫

Xs

∇′{∇′′ũ, ũ}.

By formula (3.17), {∇′′ũ, ũ} is an (n, n+ 1) form on the total space X ,
and contains factors dti. To make a volume form on the fiber Xs, we
obtain

−cn
∫

Xs

∇′{∇′′ũ, ũ} = −cn
∫

Xs

∇′
X{∇′′ũ, ũ} = 0,

by Stokes’ theorem. Hence, (3.23) follows. q.e.d.

By taking conjugate of the real forms, the curvature formula (3.21)
can be written as

(
√
−1ΘEu, u)

= −cn
∫

Xs

√
−1

{
ũ,∇′′∇′ũ

}

= cn

∫

Xs

√
−1

{
∇′′∇′ũ, ũ

}

= cn

∫

Xs

√
−1

{
ΘE ũ, ũ

}
− cn

∫

Xs

√
−1

{
∇′∇′′ũ, ũ

}
(3.24)

(3.23)
= cn

∫

Xs

√
−1

{
ΘE ũ, ũ

}
+ cn(−1)n+1

∫

Xs

√
−1

{
∇′′ũ,∇′′ũ

}

= cn

∫

Xs

√
−1

{
ΘE ũ, ũ

}

−cn
∫

Xs

{
ηi +∇′′

Xvi, ηj +∇′′
Xvj

}
· (
√
−1dti ∧ dtj)

where the last identity follows from formula (3.17). Note that, since
∇′′

Xvi and ηi are primitive (n − 1, 1) forms on Xs, by Riemann-Hodge
bilinear relation (Lemma 2.2),

(3.25) −cn
∫

Xs

{
ηi +∇′′

Xvi, ηj +∇′′
Xvj

}
= (ηi +∇′′

Xvi, ηj +∇′′
Xvj).

In summary, we obtain,

Theorem 3.10. The curvature ΘE of p∗(KX/S⊗E) has the following
“positive form”:

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1

{
ΘE ũ, ũ

}

+
(
ηi +∇′′

Xvi, ηj +∇′′
Xvj

)
· (
√
−1dti ∧ dtj).(3.26)
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Let cij be the E-valued (n, 0)-form coefficient of dti ∧ dtj in the local
expression of

√
−1ΘE(ũ)

and dij be the E-valued (n, 0)-form coefficient of dti ∧ dtj in the local
expression of

√
−1∇′′∇′ũ.

Theorem 3.11. The curvature ΘE of p∗(KX/S⊗E) has the following
“compact form”:
(3.27)

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1{∇′′∇′ũ, u} = cn

∫

Xs

{dij , u}·(
√
−1dti∧dtj).

Proof. By formula (3.24),

(
√
−1ΘEu, u) = −cn

∫

Xs

√
−1{ũ,∇′′∇′ũ} = cn

∫

Xs

√
−1{∇′′∇′ũ, ũ}.

We obtain from formula (3.20) that

∫

Xs

{∇′′∇′ũ, dti ∧ vi} = 0

for degree reasons. Therefore

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1{∇′′∇′ũ, u}.

By degree reasons again, we obtain the last identity in (3.27). q.e.d.

Remark 3.12. If X → S is infinitesimally trivial, we can choose a
representative u such that ∇′′u = 0 (i.e. ηi = 0, see Remark 2.6) and so

∫

Xs

{∇′∇′′ũ, u} = −
∫

Xs

{∇′(dti ∧ vi), u}

= −
∫

Xs

{∇′
X(dti ∧ vi), u}

= (−1)n
∫

X
{dti ∧ vi,∇′′

Xu} = 0.

Therefore
(3.28)

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1{ΘE ũ, u} = cn

∫

Xs

{cij , u} · (
√
−1dti ∧ dtj).
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4. Curvature positivity and negativity for direct images of

vector bundles

As applications of curvature formulas derived in Section 3, at first,
we obtain

Theorem 4.1. Let X → S be an infinitesimally trivial proper holo-
morphic fibration. If there exists a Hermitian metric on E which is
Nakano-negative along the base, then p∗(KX/S ⊗E) is Nakano-negative.

Proof. It follows from Theorem 3.3. Here, the curvature formula (3.2)
is reduced to
(4.1)

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1

{
ΘEu, u

}
− (∆′

Xvi, vj) · (
√
−1dti ∧ dtj).

We set u = uiα ∂
∂ti

⊗ eα. Naturally, eα can be viewed as a local holomor-

phic section of Hn,0(Xs, Es). We set

ΘE
ijαβ

= ΘE
(
∂

∂ti
⊗ eα,

∂

∂tj
⊗ eβ

)
,

then by (4.1),

(4.2) ΘE
ijαβ

uiαujβ = cn

∫

Xs

ΘE
ijαβ

{uiα, ujβ} − (∆′
Xv, v)

where v = −∑
i∇′∗

XG
′π⊥

(
νiαi ⊗ eα

)
. If E admits a Hermitian metric

which is Nakano-negative along the base, then the first term in the
formula (4.2) is negative. q.e.d.

Corollary 4.2 ([LSYang13]). If (E, h) is a Griffiths-positive vector
bundle, then E⊗detE is both Nakano positive and dual Nakano-positive.

Proof. The Nakano-positivity is well-known ([Demailly], [Bern09]).
Now we prove the dual Nakano-positivity. Let L = OP(E)(1) be the
tautological line bundle of P(E). Note that OP(E∗)(1) is ample, but L is
not. The metric on (E, h) induces a metric on L which is negative along
the base ([Demailly, Chapter V, formula 15.15], [LSYang13, (2.12)]).
On the other hand, it is easy to see

E∗ ⊗ detE∗ = p∗(KP(E)/S ⊗ Lr+1)

where p : P(E) → S is the projection. Hence, by Theorem 4.1, E∗ ⊗
detE∗ is Nakano-negative, or equivalently, E ⊗ detE is dual Nakano-
positive. q.e.d.

Similarly, for the Nakano-positivity, it follows from Theorem 3.10 and
the proof is similar to that of Theorem 4.1.

Corollary 4.3 ([MouTak08]). p∗(KX/S ⊗ E) is Nakano-positive if
E is Nakano-positive.
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Corollary 4.4 ([Bern09]). Let L be a line bundle over X . Then
p∗(KX/S ⊗ L) is Nakano-positive if L is ample.

Remark 4.5. Note that, in Corollary 4.3 and Corollary 4.4, the
family X → S are not necessarily infinitesimally trivial since the term
related to the Kodaira-Spencer class

(
ηi +∇′′

Xvi, ηj +∇′′
Xvj

)
· (
√
−1dti ∧ dtj)

is nonnegative.

Let X be a compact Fano manifold and h(t) = e−ϕ(t) be a family of
positive metrics on L = −KX . Let (z1, · · · , zn) be the local holomorphic
coordinates on X. We set the local volume form

dVC = (
√
−1)n(dz1 ∧ dz1 + · · ·+ dzn ∧ dzn)n.

It is easy to see that
e−ϕdVC

is a family of globally defined volume forms of X. Berndtsson in
[Bern11a] considers the logarithm volume

(4.3) F(t) = − log

(∫

X
e−ϕdVC

)

and deduces that

Theorem 4.6 ([Bern11a]). If e−ϕ(t) is a subgeodesics in the Kähler
cone KL of the class c1(L), i.e.

c(ϕ) = ϕ̈− |∂X ϕ̇|2 ≥ 0,

then F(t) is convex.

In fact, Theorem 4.6 can be obtained easily from Corollary 3.6, following
the setting in [Bern11a]. To formulate it efficiently, we use complex
parameter t in the unit disk D ⊂ C. When we consider the direct image
bundle E = p∗(KX ⊗ L), it is a trivial line bundle since L = −KX and
H0(X,KX ⊗ L) ∼= C. Since E is trivial, there is a constant section u =
1eE of E, and it is identified as a holomorphic section u of Hn,0(X,L),

u = dz1 ∧ · · · ∧ dzn ⊗ e

where e = ∂
∂z1 ∧ · · · ∧ ∂

∂zn . Hence

‖u‖2 = cn

∫

X
{u, u} =

∫

X
e−ϕdVC.

On the other hand, it is obvious that

(4.4) ‖u‖2
√
−1∂∂F = (

√
−1ΘEu, u).

Hence, if c(ϕ) ≥ 0, by Corollary 3.6,
√
−1∂∂F is Hermitian semi-

positive. In real parameters, it says that F is convex.
As a partial converse to Berndtsson’s result, we have
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Proposition 4.7. Let e−ϕ(t) be a curve in the Kähler cone KL. If
ϕ(t) is concave in t, then so is F(t).

Proof. It follows from Theorem 3.3. In fact, ϕ̈ ≤ 0 implies the first
term on the right hand side of (3.2) is negative. Note that, in this case,
the family is a trivial family and so the third term on the right hand
side of (3.2) is zero. Therefore, (

√
−1ΘEu, u) ≤ 0. By formula (4.4), we

see F is superharmonic and in the real case, it is concave. q.e.d.

We can also see how Theorem 4.6 and Proposition 4.7 work by the
following simple example. At first, we fix a positive metric e−ϕ(0) in
c1(L) and set

ϕ(t) = f(t) + ϕ(0)

where t is a real parameter. It is obvious that

c(ϕ) = ϕ̈ = f̈ , F(t) = f(t) + c.

Hence F is concave if ϕ is concave and vice visa.
For the general case, it is not hard to see that both Theorem 4.6 and

Proposition 4.7 amount to the basic ∂-estimate

(4.5) ‖ϕ̇‖ ≤ ‖∂X ϕ̇‖
if the Fano manifold X is polarized by its anti-canonical class.

5. Direct images of projectively flat vector bundles

In this section we consider an infinitesimal trivial family X → S and
assume that the vector bundle (E , hE ) → X is Nakano semi-positive. In
this case, we can choose ηi to be zero in all formulas derived in Section
3.

Let’s recall that cij is the E-valued (n, 0)-form coefficient of dti ∧ dtj
in the expression

ΘE(u− dti ∧ vi).
There are four (linearly independent) terms in the expression of ΘE(u−
dti∧vi). However, if ΘE is Nakano semi-positive, then cij dominates the

degeneracy of ΘE(u− dti ∧ vi), i.e. cij = 0 implies ΘE(u− dti ∧ vi) = 0.
This is the content of the next theorem.

Theorem 5.1. Let (E , hE ) → X be Nakano semi-positive. Then

(
√
−1ΘEu, u) = 0

if and only if cij = 0.

Proof. Note that if (E , hE ) → X is Nakano semi-positive, then by
formula (3.26),

(
√
−1ΘEu, u) = cn

∫

Xs

√
−1

{
ΘE ũ, ũ

}
+
(
∇′′

Xvi,∇′′
Xvj

)
· (
√
−1dti ∧ dtj)
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is a Hermitian semi-positive (1, 1)-form. If (
√
−1ΘEu, u) = 0, we get

cn

∫

Xs

√
−1

{
ΘE ũ, ũ

}
= 0

and so ΘE ũ = 0. In particular, cij = 0 since ΘE ũ = ΘE(u− dti ∧ vi).
On the other hand, by Theorem 3.11, if cij = 0,

(
√
−1ΘEu, u) = cn

∫

Xs

{cij , u} · (
√
−1dti ∧ dtj) = 0.

q.e.d.

Now we continue to analyze the case (
√
−1ΘEu, u) = 0. In the fol-

lowing, we use an idea in [Bern11a].

Lemma 5.2. If Hn,1(Xs, Es) = 0, then vi is holomorphic on X for
any i.

Proof. We only need to show ∂vi
∂t

j = 0 since ∇′′
Xvi = 0 is obvious from

curvature formula (3.26) when (
√
−1ΘEu, u) = 0.

Next we claim

(5.1) ∇′
X

(
∂vi

∂t
j

)
= cij +

∂

∂t
j
π (νi) .

In fact,

−∇′∇′′(dti ∧ vi)
= −ΘE(dti ∧ vi) +∇′′∇′(dti ∧ vi)
= −ΘE(dti ∧ vi)−∇′′(dti ∧ ∇′

Xvi)−∇′′(dti ∧ dtk ∧ ∇′
kvi)

= −ΘE(dti ∧ vi) +∇′′ (dti ∧ (νi − π(νi))
)
−∇′′(dti ∧ dtk ∧∇′

kvi)

= −ΘE(dti ∧ vi) +∇′′∇′u−∇′′ (dti ∧ π(νi)
)
−∇′′(dti ∧ dtk ∧ ∇′

kvi)

= −ΘE(dti ∧ vi) + ΘEu−∇′∇′′u−∇′′ (dti ∧ π(νi)
)

−∇′′(dti ∧ dtk ∧ ∇′
kvi)

= ΘE(u− dti ∧ vi)−∇′(dti ∧ ηi)−∇′′ (dti ∧ π(νi)
)

−∇′′(dti ∧ dtk ∧ ∇′
kvi).

By comparing the coefficients of dti ∧ dtj on both sides, we get (5.1). If
the curvature is zero, we also have cij = 0. According to different types

in Hodge decomposition, i.e. ∇′
X

(
∂vi
∂t

j

)
∈ Im(∇′

X) and the holomorphic

(n, 0) form ∂

∂t
j π (νi) ∈ Ker(∆′′

X) = Ker(∆′
X) (when restricted on (n, 0)

forms), we conclude from (5.1) that

∇′
X

(
∂vi

∂t
j

)
=

∂

∂t
j
π (νi) = 0.
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Therefore, by Hodge relation [∇′′∗
X , ω] = −

√
−1∇′

X , we get ∇′′∗
X (ω ∧

∂vi
∂t

j ) = 0 and ∇′′
X(ω ∧ ∂vi

∂t
j ) = 0. The cohomology assumption ensures

the (n, 1) form ω ∧ ∂vi
∂t

j = 0 and so ∂vi
∂t

j = 0. q.e.d.

In the following, we assume that (Es, hEs) is projectively flat. Hence,
the curvature tensor can be written as (c.f. [Koba87, p.7])

(5.2)
√
−1ΘEs =

1

r
Ric(det Es)⊗ hEs

where r is the rank of Es. If det Es is positive, we set

(5.3) ωg =
1

r
Ric(Es) = −

√
−1

r
∂X∂X log det(hEs)

as the background Kähler metric on each fiber. Therefore,

(5.4)
√
−1ΘEs = ωg ⊗ hEs .

Recall that [αi] ∈ H0,1(Xs, End(Es)) is the Kodaira-Spencer class of the
deformation E → X → S in the direction of ∂

∂ti
, i.e.

(5.5) αi = ΘE
(
∂

∂ti

) ∣∣
Xs

∈ Ω0,1(Xs, End(Es)).

Let Wi be the dual vector of αi, i.e. Wi is an End(Es)-valued (1, 0)-
vector field on the fiber Xs. Then by formulas (5.4) and (5.5), we have

(iWi
ω) ∧ u =

√
−1αi ∧ u =

√
−1ΘE

(
∂

∂ti
, u

)

=
√
−1∇′′

Xνi(5.6)

since ∇′′
Xu = 0.

Proposition 5.3. We have the relation

(5.7) iWi
u = −vi.

Moreover, Wi is an End(Es)-valued holomorphic vector field on the fiber
Xs.

Proof. By formula (5.6), we obtain

(iWi
ωg) ∧ u =

√
−1∇′′

Xνi = −
√
−1∇′′

X∇′
Xvi

= −
√
−1ΘEs(vi)

since ∇′′
Xvi = 0. On the other hand, (iWi

ωg) ∧ u = (iWi
u) ∧ ωg. Hence

we obtain (5.7) by using (5.4) again. Since vi and u are all holomorphic
on each fiber, we know Wi is also holomorphic. q.e.d.

We can extend the vector field ∂
∂ti

to an End(Es)-valued vector field.

We still denote it by ∂
∂ti

. Then

(5.8) Vi =
∂

∂ti
−Wi
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is a (local) End(E)-valued holomorphic vector field over the total space
X . Let L be the type (1, 0), End(E)-valued Lie derivative, then we
have

(5.9) LVi
ωg = 0.

In fact, by relation (5.5), we have

LWi
ωg = ∇′

X(−
√
−1α) = −

√
−1∇′

X

(
ΘE

(
∂

∂ti

)
|Xs

)
= −∇′

∂

∂ti

ΘEs .

Hence, by formula (5.4), we get (5.9). That means, if the curvature ΘE

degenerates at some point s ∈ S, then the family E → X → S moves
by an infinitesimal automorphism of E .

We summarize the above into a global version. Let X = X × D,
where D is a unit disk. Let E0 → X be a holomorphic vector bun-
dle. If (E0, h(t))t∈D → X is a smooth family of projectively flat vec-
tor bundles. We assume Ric(detE, h(t)) > 0 for all t and set ωt =

−
√
−1
r ∂X∂X log det(h(t)) to be a smooth family of Kähler metrics on

X. We also denote by E , the pullback family p∗2(E0) over p2 : X → X.

Theorem 5.4. If the curvature ΘE of E = p∗(KX/D ⊗ E) vanishes
in a small neighborhood of 0 ∈ D, then there exists a holomorphic vector
field V on X with flows Φt ∈ AutH(X,E0) such that

Φ∗
t (ωt) = ω0

for small t.
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