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PROPERLY EMBEDDED, AREA-MINIMIZING
SURFACES IN HYPERBOLIC 3-SPACE

Francisco Mart́ın & Brian White

Abstract

We prove a bridge principle at infinity for area-minimizing sur-
faces in the hyperbolic H3, and we use it to prove that any open,
connected, orientable surface can be properly embedded in H3 as
an area-minimizing surface. Moreover, the embedding can be con-
structed in such a way that the limit sets of different ends are
disjoint.
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1. Introduction

The construction of new examples of complete minimal surfaces in hy-
perbolic space has had a very powerful tool: the solvability of the asymp-
totic Plateau problem. The asymptotic Plateau problem in hyperbolic
space basically asks the existence of an area-minimizing submanifold in
H

n+1 which is asymptotic to a given submanifold Γn−1 ⊂ ∂Hn+1, where
∂Hn+1 represents the sphere of infinity of Hn+1, which we also call the
ideal boundary of hyperbolic space.
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Using methods from geometric measure theory, Michael Anderson [1]
solved the asymptotic Plateau problem for absolutely area-minimizing
submanifolds in any dimension and codimension.

Anderson did not impose any restriction to the topology of the solu-
tions he gets, so we cannot get any idea about their topological prop-
erties. In this way, it becomes interesting (as in the classical Plateau
problem) to find the area-minimizing solution but fixing a priori the
topological type. In [2], Anderson focused on the asymptotic Plateau
problem with the type of a disk and provided an existence result in
dimension 3.

Moreover, in [2], Anderson built a special Jordan curve in ∂H3, such
that the surface obtained as a solution to the asymptotic Dirichlet prob-
lem cannot be a plane. In fact, he built examples of genus g > g0 for
a particular genus g0. In the same context, de Oliveira and Soret [6]
demonstrated the existence of complete and stable minimal surfaces in
hyperbolic 3-space for any orientable finite topological type. (A surface
has finite topological type if it has the topology of a compact surface
minus a finite number of points.) They also studied the isotopy type
of these surfaces in some special cases. The main difference with the
result of [2] is that Anderson begins with asymptotic data, and gives
an area-minimizing surface with that particular data but without any
kind of control over the topological type, while Oliveira and Soret start
with a surface with boundary and build a stable embedded minimal
surface in the hyperbolic space whose asymptotic (or ideal) boundary is
determined essentially by the surface. In this setting, we can frame the
following conjecture:

Conjecture (A. Ros). Every open, connected, orientable surface can
be properly and minimally embedded in H

3.

(Recall that a connected surface is open if it is non-compact and has
no boundary.) In this paper, we prove the conjecture. More precisely,
we prove:

Theorem A. Every open, connected, orientable surface can be prop-
erly embedded in H

3 as an area-minimizing surface. Moreover, the em-
bedding can be constructed in such a way that the limit sets of different
ends are disjoint.

The definition of “area-minimizing” and “uniquely area-minimizing”
surfaces can be found in Section 3 (Definition 3.1). The fundamental
tool in solving this problem has been the bridge principle at infinity
(Section 6) which can be stated in these terms:

Theorem B (Bridge principle at infinity). Let S be an open,
properly embedded, uniquely area-minimizing surface in H

3 whose clo-
sure S ⊂ H3 is a smooth manifold-with-boundary. Let Γ be a smooth arc
in ∂H3 meeting ∂S orthogonally and satisfying Γ ∩ ∂S = ∂Γ.
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Consider a sequence of bridges Pn on ∂H3 that shrink nicely to Γ. If
S is strictly L∞ stable (see Definition 4.1), then for all large enough
n, there exists a strictly L∞ stable, uniquely area-minimizing surface Sn
that is properly embedded in H

3 such that:

1) Sn is a smooth, embedded manifold-with-boundary in H3.
2) ∂Sn = (∂S \ ∂Pn) ∪ (∂Pn \ ∂S).
3) The sequence Sn converges smoothly to S on compact subsets of

H3 \ Γ.
4) The surface Sn is homeomorphic to S ∪ Pn.

This bridge principle gives us some flexibility in order to construct
properly embedded area-minimizing surfaces in H

3 with arbitrary infi-
nite topology and some kind of regularity at infinity.

Theorem C. If S is a connected, open, orientable surface with in-
finite topology, then there exists a proper, area-minimizing embedding
of S into H

3 such that S is a smooth embedded manifold-with-boundary
except at a single point of ∂S ⊂ ∂H3.

Finally, we would like to point out that the same methods allow us to
construct properly embedded area-minimizing surfaces so that the limit
set is the whole ideal boundary ∂H3.

Acknowledgments. The authors would like to thank Christos Man-
touldis for carefully reading the manuscript and making many useful
suggestions. The first author was partially supported by MCI-FEDER
grants MTM2007-61775 and MTM2011-22547. The second author was
partially supported by National Science Foundation grants DMS-0406209
and DMS 1105330.

2. Preliminaries

Throughout this paper H
n+1 will represent the (n+1)-dimensional

hyperbolic space. We will use the models:

(1) Poincaré’s ball model: the open unit ball Bn+1 of Rn+1 en-

dowed with Poincaré’s metric ds2 := 4

∑n+1
i=1 dx

2
i

(1−
∑n+1

i=1 x
2
i )

2
.

(2) Poincaré’s half-space model: the upper half-space {xn+1 >

0} ⊂ R
n+1, endowed with the metric ds2 :=

1

x2n+1

n+1
∑

i=1

dx2i .

Let H
n+1

denote the usual compactification of Hn+1. As we mentioned
in the introduction, we shall denote the ideal boundary as ∂Hn+1 :=

H
n+1
\ Hn+1. Observe that ∂Hn+1 is diffeomorphic to the sphere S

n.
(In the ball model, it is ∂Bn+1 and in the upper half-space model, it is
{x : xn+1 = 0} ∪ {∞}.)
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2.1. Simple exhaustions. One of the main tools in the proofs of the
theorems stated in the introduction is the existence of a particular kind
of exhaustion for any open surface. In [3], Ferrer, Meeks, and the first
author proved that every open, connected, orientable surface M has a
simple exhaustion, i.e., a smooth, compact exhaustion M1 ⊂ M2 ⊂ · · ·
such that:

(1) M1 is a disk.
(2) For all n ∈ N, each component of Mn+1 \ Int(Mn) has one bound-

ary component in ∂Mn and at least one boundary component in
∂Mn+1.

(3) IfM has infinite topology, then for all n ∈ N,Mn+1\Int(Mn) con-
tains a unique nonannular component; that component is topo-
logically a pair of pants or an annulus with a handle.

(4) If M has finite topology (with genus g and k ends), property (3)
holds for n ≤ g + k, and when n > g + k, all of the components
of Mn+1 \ Int(Mn) are annular.

See Figure 1.

Figure 1. A simple exhaustion of M .

Remark 2.1. For the purposes of this paper, one could replace (3)
in the definition of simple exhaustion by the slightly weaker condition:
each component of Mn+1 \ Int(Mn) is an annulus, a pair of pants, or an
annulus with a handle. Which definition one uses does not affect any of
the proofs.

2.2. Limit sets. We are also interested in the asymptotic behavior
of the minimal surfaces we are going to construct. So, we need some
background about the limit set of an end.
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Definition 2.2. Let ψ : S → H
3 be an immersion of a surface S

with possibly non-empty boundary. The limit set of S is L(S) =
⋂

α∈I ψ(S \ Cα), where {Cα}α∈I is the collection of compact subdomains

of S and the closure ψ(S \ Cα) is taken in H3. The limit set L(E) of
an end E of S is defined to be the intersection of the limit sets of
all properly embedded subdomains of S with compact boundary which
represent E.

Note that L(S) is a closed set, and that if E is an end of S, then L(E)
is a closed subset of L(S). Note also that ψ : S → H

3 is proper if and
only if L(S) ⊂ ∂H3. (Recall that a continuous map f : X → Y between
topological spaces is called proper provided the inverse image of every
compact set is compact.) Thus if S is an open, proper submanifold of
H3, then L(S) is the equal to the set theoretic boundary ∂S = S \ S.
More generally, if S is an open, proper submanifold of an open subset
U of H3, then L(S) = ∂S = S \ S, where S denotes the closure of S in

H3.

Proposition 2.3 (Convex Hull Property). LetM be an open minimal
surface in H

3. Then M is contained in the convex hull of its limit set.
In other words, if Σ ⊂ H

3 is a totally geodesic plane and if L(M) lies
in the closure N of one component of H3 \Σ, then M also lies in N .

Recall that, in general, L(M) may include points in H
3 and also points

in ∂H3.

Proof. We can assume in the upper half-space model that

N = {(x, y, z) : z ≥ 0 and x2 + y2 + z2 ≥ 1}.

The level sets of the function (x, y, z) 7→ x2+y2+z2 are minimal surfaces,
so by the strong maximum principle, its restriction to M cannot attain
its minimum at a point of M . q.e.d.

Theorem 2.4 (Strong local uniqueness theorem). Let M be an open
minimal surface in H

3 and Γ be a curve in ∂H3 such that M ′ =M∪Γ is
a smooth, embedded submanifold (with boundary) of H3. Then each point

p ∈ Γ has a neighborhood U ⊂ H3 with the following property: if S ⊂ H
3

is an open minimal surface with L(S) ⊂M ′ ∩ U , then S ⊂M ∩ U .

Proof. We use the upper half-space model. Let v be a vector normal
to M at p. Note that v is horizontal. (One easily shows, using totally
geodesic barriers, that M ′ meets ∂H3 orthogonally. See, for example,
[5].) We may assume that each line in R

3 parallel to v intersects M ′ at
most once. (Otherwise replace M ′ by M ′ ∩ B(p,R) with R sufficiently
small.) It follows that M ′ and its translates by multiples of v foliate

an open subset W of H3. Choose r > 0 small enough that B(p, r) ∩ H3

is contained in W . Then U := B(p, r) has the desired property. To see
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that it does, suppose that S is a minimal surface in H
3 with L(S) ⊂

M ′ ∩ U . By the convex hull property (Proposition 2.3), S ⊂ U . The
strong maximum principle then forces S to lie in M . (Consider the
maximum value of |t| such that S intersects M ′ + tv.) q.e.d.

3. Area-minimizing surfaces

In this section, we present some fundamental theorems about area-
minimizing surfaces in hyperbolic space. Those theorems will be used
repeatedly in the rest of the paper.

Definition 3.1. Suppose S ⊂ H
3 is a (possibly nonorientable) com-

pact surface with unoriented boundary. The surface S is called area-
minimizing if S has least area among all surfaces (orientable or nonori-
entable) with the same boundary. For a noncompact surface S, we say
that S is area-minimizing provided each compact portion of it is area-
minimizing.

Now suppose that S is an open, properly embedded, area-minimizing
surface in H

3. We say that S is uniquely area-minimizing if it is the
only area-minimizing surface with boundary ∂S.

(In the literature, “area-minimizing” as defined here is usually re-
ferred to as “area-minimizing mod 2.”)

For example, the convex hull property (Proposition 2.3) implies that
a totally geodesic plane is uniquely area-minimizing.

Theorem 3.2 (Boundary Regularity Theorem). Let M be an open,

area-minimizing surface in H
3. Suppose that W is an open subset of H3

with the following property:

L(M) ∩W ⊂ Γ

where Γ is a smooth, connected, properly embedded curve in W ∩ ∂H3.
Then either L(M) ∩W is empty, or L(M) ∩W = Γ and M ∪ Γ is a
smooth manifold-with-boundary.

Proof. Hardt-Lin [5] prove that in a neighborhood U of each point
of Γ, M ∩ U is a union of some finite number κ of C1 manifolds-with-
boundary, the boundary being either Γ ∩ U or the empty set, and that
those manifolds are disjoint except at the boundary. Their result is
stated for integral currents, but their proof also works for chains mod
2 and in that case actually gives more: κ must then be 0 or 1 (because
in Lemma 2.1 of their paper, if δ is sufficiently small, then κ must be
0 or 1). A priori the number κ might depend on the point, but since it
is locally constant and since Γ is connected, it must in fact be constant
on Γ. In case κ = 1, Tonegawa [7] improves the boundary regularity by
showing that M ∪ Γ is C∞. q.e.d.



AREA MINIMIZING SURFACES IN H3 521

Theorem 3.3 (Compactness Theorem). Let Mi be a sequence of
open, area-minimizing surfaces that are properly embedded in an open
subset U of H3. Then (after passing to a subsequence) the Mi converge
smoothly with multiplicity 1 on compact subsets of U to such a sur-
face M .

Now suppose that U = W ∩ H
3, where W is an open subset of H3.

Suppose also that L(Mi)∩W is a smooth embedded curve Γi inW∩ ∂H
3,

and that Γi converges smoothly and with multiplicity m to an embedded
curve Γ in W ∩ ∂H3.

Then Mi ∪ Γi (which is a smooth manifold-with-boundary by Theo-
rem 3.2) converges (in the Hausdorff topology on the space of relatively
closed subsets of W ) to M ∪ Γ. Furthermore:

(1) If m is odd, then M ∪ Γ is a smooth manifold-with-boundary.
(2) If m is even, then M is disjoint from Γ.
(3) If m = 1, then Mi∪Γi converges smoothly on compact subsets of W

to M ∪ Γ.

Proof. The statement about smooth convergence on compact sub-
sets of U is very standard. (The areas of the Mi are uniformly locally
bounded, since if Ω is a bounded, open region in H

3, then

(3.1) area(Mi ∩ Ω) ≤
1

2
area(∂Ω).

Also, the curvatures of the Mi are uniformly bounded on compact sub-
sets by standard curvature estimates for area-minimizing hypersurfaces
of dimension < 8. That the multiplicity of M is 1 follows from (3.1).)

The convergence of Mi ∪Γi to M ∪Γ (as a relatively closed subset of
W ) follows from the convergence of Mi to M in U , the convergence of
Γi to Γ in W , and the convex hull property. (The convex hull property
ensures that points pi ∈Mi cannot converge subsequentially to a point
in W∞ \ Γ, where W∞ :=W ∩ ∂H3.)

Since the remaining assertions are local, we can assume (in the upper-

half space model) that W is H3 ∩ B for some open Euclidean ball cen-
tered at a point in ∂H3. We can also assume that Γ is connected, so
that it divides W∞ := W ∩ ∂H3 into two components. Let p and q be
a pair of points lying in different components of W∞ \ Γ, and let C be
a smooth curve joining p to q such that C \ {p, q} lies in U . By per-
turbing C slightly, we may assume it intersects M transversely. Let ν
be the mod 2 number of points of M ∩ C; that number is independent
of C (for C transverse to M). By the smooth convergence, Mi inter-
sects C transversely for large i and the mod 2 number νi of intersection
points is independent of C. The smooth convergence Mi → M also
implies that νi = ν for all sufficiently large i. By elementary topology
that νi ∼= m (mod 2) for i sufficiently large. (If this is not clear, note
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that C can be homotoped in W to a curve in W∞ that intersects Mi

transversely in exactly m points.)
Thus m even implies that ν = 0 and m odd implies that ν = 1.

Assertions (1) and (2) now follow immediately from the Boundary Reg-
ularity Theorem 3.2. Assertion (3) follows from the boundary regularity
estimates of Hardt-Lin and Tonegawa. q.e.d.

We remark that ifm > 1, then the convergence ofMi∪Γi toM∪Γ fails
to be smooth along Γ. For example, suppose in the ball model B = H

3

that Γi is the union of the two circles ∂B ∩ {z = ±ǫi} where ǫi → 0.
Then Γi converges smoothly with multiplicity m = 2 to the equator
Γ := ∂B∩{z = 0}. LetMi be an area-minimizing surface with boundary
Γi. (Such a surface exists by a theorem of Anderson—see Theorem 3.5
below.) For small ǫi, one can prove that Mi is a minimal annulus that
lies within Euclidean distance O(ǫi) from Γ. Thus Mi ∪ Γi converges to
M ∪ Γ, whereM is the empty set. Note that the convergence of Mi∪Γi

to Γ is not smooth.

Definition 3.4. We say that a closed set K ⊂ ∂H3 has piecewise
smooth boundary provided

(1) K is the closure of its interior, and
(2) there is a finite set S of points such that (∂K) \ S is the disjoint

union of a finite set of smooth curves.

Theorem 3.5 (Basic Existence Theorem). Let K ⊂ ∂H3 be a closed
region with piecewise smooth boundary. Then there is an area-minimizing
surface M in H

3 such that ∂M = ∂K. Furthermore, if M is any area-
minimizing surface in H

3 with ∂M = ∂K, then

(1) M is a smooth embedded manifold-with-boundary except at the
finite set of points where ∂K is not a smooth embedded curve.

(2) There is a unique open subset E(M,K) of H3 whose boundary in

H3 is K ∪M .

Proof. Anderson [1, Theorem 3] proves existence of a smooth, area-
minimizing surface M ⊂ H with the property that ∂M = ∂K as flat
chains mod 2 with respect to the Euclidean metric on the ball. (He states
the theorem for integral currents, but exactly the same proof works for
chains mod 2.) In particular, this implies thatM \M = ∂K as sets (i.e.,
in the notation of 2.2, that L(M) = ∂K).

The smoothness ofM at the regular points of ∂K follows immediately
from the Boundary Regularity Theorem 3.2.

If we identify H
3 conformally with a ball B in R

3, then M ∪K be-
comes (except possibly at finitely many points) a compact, embedded,
piecewise-smooth closed manifold of R3 contained in B. By elementary
topology, there is a unique open subset E(M,K) of B whose boundary
is M ∪K. q.e.d.
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Lemma 3.6. Let M be an area-minimizing surface. Let M ′ be a
compact region in the interior of M such that M ′ has piecewise smooth
boundary. ThenM ′ is the unique area-minimizing surface with its bound-
ary.

Proof. Standard. q.e.d.

Theorem 3.7. Let K1 and K2 be disjoint, closed regions in ∂H3 with
piecewise smooth boundaries. Let M1 and M2 be least area surfaces with
boundaries ∂K1 and ∂K2, and let Ui be the region enclosed by Mi ∪Ki.
Then U1 and U2 are disjoint.

Proof. Let Z = U1 ∩ U2. Note that Z is a compact subset of H
3.

Suppose it is nonempty. Then U1 ∩ U2 is nonempty by the maximum
principle (applied toM1 andM2). By Lemma 3.6, U1∩M2 is the unique
least area surface with its boundary. Likewise, U2 ∩M1 is the least area
surface with its boundary. But U1 ∩M2 and U2 ∩M1 have the same
boundary, a contradiction. q.e.d.

Corollary 3.8. Suppose for i = 1, 2 that Ki is a closed region in
∂H3 and that Mi is a least area surface in H

3 with ∂Mi = ∂Ki. Let Ui

be the region enclosed by Mi ∪Ki. If K1 is contained in the interior of
K2, then U1 ∪M1 is contained in U2.

(This corollary is not really a corollary—but it is proved in exactly
the same way as the theorem. Actually, we use the corollary but not the
theorem.)

Theorem 3.9. Let K be a closed region in ∂H3 with piecewise smooth
boundary. Let F be the collection of all least area surfaces in H

3 with
boundary ∂K. Then F contains surfaces Min and Mout with the follow-
ing property. If M ∈ F , then

E(Min,K) ⊂ E(M,K) ⊂ E(Mout,K).

Recall the E(M,K) is the region enclosed byM and K. (We think of
Min andMout as the innermost and outermost surfaces in the family F .)

Proof. Let K1 ⊂ K2 ⊂ . . . be a sequence of closed subsets of the
interior of K such that each Ki has smooth boundary, such that ∪Ki is
the interior of K, such that ∂Ki → ∂K, and such that convergence ∂Ki

to ∂K is smooth except at the points where ∂K is not smooth.
Let Mi be a least area surface with boundary ∂Ki, and let Min be a

subsequential limit of the Mi. Then Min ∈ F .
Furthermore, if M ∈ F , then

E(Mi,Ki) ⊂ E(M,K)

for all i (by the lemma), and thus E(Min,K) ⊂ E(M,K).
The assertions about Mout are proved in a very analogous manner.

q.e.d.
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Remark 3.10. Note that Min is unique, as is Mout. Hence if g is an
isometry of H3 such that g(K) = K, then g(Min) =Min and g(Mout) =
Mout.

Of courseMin =Mout if and only if there is only one least area surface
with boundary K.

4. Strict L∞ stability

In this section, we define strict L∞ stability and we prove some of its
basic properties. Let Ω be a Riemannian manifold that is connected but
not compact.

Definition 4.1 (strict L∞ stability). Let J be a self-adjoint 2nd-
order linear elliptic operator on a surface Ω. Let us say Ω is strictly
L∞ stable (with respect to J) if the first eigenvalue of any compact sub-
domain is strictly positive and if there are no nonzero bounded Jacobi
fields (i.e. solutions of Ju = 0) on Ω.

Throughout this paper, we will use the concept of strict L∞ stabil-
ity only for minimal surfaces, and the operator J will always be the
Jacobi operator. (However, the following three results hold for general
manifolds Ω and operators J .)

Lemma 4.2. Let w be a positive solution of J w = 0 on Ω. Then
the first eigenvalue of J on every compact subdomain of Ω is strictly
positive.

The proof is standard. See, for example, Theorem 1 of [4].

Lemma 4.3. Let u and w be Jacobi fields on a connected minimal
hypersurface M . Suppose that u/w has a positive local maximum λ at a
point p where u and w are both positive. Then u = λw.

Proof. By hypothesis, u − λw has a local maximum value 0. Thus
by the strong maximum principle, u − λw vanishes in a neighborhood
of p. By the unique continuation property for solutions of second order
elliptic equations, u− λw ≡ 0. q.e.d.

Theorem 4.4. Suppose w is a positive solution of Jw = 0 such that
limp→∂Ωw(p) =∞. Then Ω is strictly L∞ stable.

Proof. We have to show that each compact subdomain is stable and
that there are no nonzero bounded Jacobi fields on Ω. By Lemma 4.2,
each compact subdomain is stable. Thus we need only show that there
are no nonzero, bounded Jacobi fields.

Suppose u : Ω→ R is a nonzero, bounded Jacobi field on Ω. We may
suppose that u > 0 at some points. Since u/w is positive at some points
and tends to 0 on ∂Ω, it has a local maximum λ > 0 at some point Ω.
By Lemma 4.3, u ≡ kw, which is impossible since u is bounded and w
is unbounded. q.e.d.
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Corollary 4.5. A totally geodesic plane in H
3 is strictly L∞ stable.

Proof. Without loss of generality we can assume that the plane is a
hemisphere centered at the origin in the upper half-space model of H3.
Consider the Jacobi field w that comes from dilations about 0. q.e.d.

Theorem 4.6. Let M be an area-minimizing surface in H
3 with

∂M ⊂ ∂H3. Let p be a regular point of ∂M , so that (in the upper
half-space model) M ∪ ∂M is a regular manifold-with-boundary near p.

Let u be a bounded, nonnegative Jacobi field onM . Then limq→p u(q) =
0.

Proof. Without loss of generality, p = 0 in the upper half-space model
of H3. Let pn ∈M be points such that pn → 0 and such that

u(pn)→ lim sup
q→0

u(q).

Suppose the supremum limit is nonzero. Then we may assume it is
1. Now make a Euclidean translation and dilation of H

3 that moves
M to Mn and that moves pn to (0, 0, 1). Let un be the Jacobi field
on Mn corresponding to u on M . After passing to a subsequence, the
Mn converge to a totally geodesic plane M∗ and the un converge to
a bounded Jacobi field u∗ on M∗ that attains its maximum value (1)
at the point (0, 0, 1). But that contradicts the strict L∞ stability of a
totally geodesic plane. q.e.d.

5. Minimal strips and skillets

In this section we define and analyze minimal strips and minimal
skillets. They will be important for us because they arise as blowups in
the proof of the Bridge Theorem 6.2.

Theorem 5.1. In the upper half-space model of H3, let K be the strip

[−1, 1]× R× {0} = {(x, y, z) : |x| ≤ 1, z = 0}

together with the point at infinity.
Then there is a unique area-minimizing surface M ⊂ H

3 with bound-
ary ∂K, and M has the form

{(x, y, z) : z = u(x), |x| < 1}

where u : (−1, 1)→ R is a smooth function such that

u′′ < 0,

u(x) ≡ u(−x),

lim
x→±1

u(x) = 0.

Furthermore, the surface M is strictly L∞ stable.
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Definition 5.2. The surface M in Theorem 5.1 will be called the
standard minimal strip. A surface related to M by an isometry of H3

will be called a minimal strip.

Proof of Theorem 5.1. Note that each of the planes x = 1 and x = −1
is uniquely area minimizing. However:

Claim. For a > 0, let Pa be the pair of planes x = a and x = −a.
Then Pa is not area-minimizing.

To prove the claim, note that Pa and Pλa are related by the hyperbolic
isometry

(x, y, z) 7→ (λx, λy, λz).

Thus it suffices to prove the claim for one value of a. Let C be a solid
Euclidean cylinder in {(x, y, z) : z > 0} that is perpendicular to the
planes x = ±a. Note that the hyperbolic area of the two disks Pa ∩C is
independent of a, but that the hyperbolic area of the annular portion of
C between the two planes y = ±a tends to 0 as a → 0. Thus for small
a, the pair Pa ∩ C is not area-minimizing, which implies that Pa is not
area-minimizing, proving the claim.

Now supposeM is an area-minimizing surface with boundary ∂Pa. If
M were not connected, it would be equal to Pa since the planes x = a
and x = −a are each uniquely area minimizing, contradicting the claim.
Thus M must be connected.

LetMin andMout be the innermost and outermost least area surfaces
with boundary ∂K, as in Theorem 3.9. As we have just seen, Min and
Mout are connected.

Then (see Remark 3.10), Min and Mout are both invariant under
translations (x, y, z) 7→ (x, y + c, z). It follows that

Min = Π−1Cin

and

Mout = Π−1Cout,

where Π : (x, y, z) 7→ (x, z) and where Cin and Cout are smooth curves
in {(x, z) : z > 0} joining (−1, 0) to (1, 0).

Now if Min 6= Mout, there is some λ > 0 such that λCin intersects
Cout. Thus there is a largest λ (since Cin and Cout have the same end
points and have compact closures). But then λMin and Mout violate the
maximum principle.

Thus there is a unique least area surface M = Min = Mout with
boundary ∂K.

Now where the tangent to the curve C = Cin = Cout is not vertical,
it is locally the graph of a function z = u(x) that satisfies a 2nd order
ODE. (Note that (x, y) 7→ u(x) is a solution of the Euler-Lagrange
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equation for the hyperbolic area functional. That equation is a second-
order PDE, but since u is a function of x alone, the PDE reduces to an
ODE.) The ODE is

u(x) · u′′(x) + 2(1 + (u′(x)2) = 0,

from which we see that u′′ < 0 and thus that C has the form

C = {(0, y, u(y)) : |y| < 1}, lim
y→±1

u(y) = 0.

By Remark 3.10, M is invariant under (x, y, z) 7→ (−x, y, z) and hence
the function u is even.

So, summarizing all the information that we have, we are able to
deduce that x · u′(x) ≤ 0 for −1 < x < 1. Furthermore, we know that

lim
x→−1

u′(x) = +∞, and lim
x→+1

u′(x) = −∞.

Let w∗ be the Jacobi field on M associated to dilations (x, y, z) 7→
λ(x, y, z). Note that w∗(x, y, z) is independent of y:

(5.1) w∗(x, y, z) = w∗(x, 0, z).

Note also that w∗ is strictly positive everywhere, so compact domains
in M are strictly stable. A straightforward computation gives

w∗ =
−xu′ + u

u
√

1 + (u′)2
,

so

(5.2) w∗ →∞ uniformly as x→ ±1.

Now suppose that M is not L∞ strictly stable, i.e., that M has a
bounded, nonzero Jacobi field v. We may assume that v is strictly pos-
itive at some points. Let Λ be the supremum of v/w∗, and let pn :=
(xn, yn, zn) ∈M be a sequence of points such that

v(pn)/w
∗(pn)→ Λ.

By (5.2), the |xn| is bounded away from 1. Thus by passing to a sub-
sequence, we can assume that the points (xn, 0, zn) converge to a point
p ∈ M and that the Jacobi fields (x, y − yn, z) 7→ v(x, y, z) converge
smoothly to a limit Jacobi field v̂. Note that v̂/w∗ attains its maximum
value Λ at p. Thus the Jacobi field v̂−Λ ·w∗ attains its maximum value,
namely 0, at p. By the maximum principle, v̂−Λ ·w∗ must be identically
0. But that is impossible since v̂ is bounded and Λw∗ is unbounded.
q.e.d.

Definition 5.3 (Skillet). Suppose u : R → [0,+∞] is a continuous,
compactly supported function such that u(x) =∞ if and only if |x| ≤ 1
and such that A = {(x, y) ∈ R

2 : y ≤ u(x)} has a uniformly smooth
boundary, with u′′(x) ≥ 0 along the boundary of A (see Fig. 2). Then
the set A is called a skillet.
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Figure 2. The boundary of a skillet and the minimal
skillet M

Theorem 5.4. Let A be a skillet in H
3. Then there exists a properly

embedded, uniquely area-minimizing surface M satisfying ∂M = ∂A.
The surface is a radial graph in the following sense: if p = (0, yp, 0) with
yp < 0, if H is the vertical halfplane {(x, 0, z) : z > 0}, and if

Π :M → H

Π(q) =←→pq ∩H,

then Π is a diffeomorphism. Furthermore, M has a normal vector field
ν such that ν · (0, 1, 0) is everywhere strictly positive.

Definition 5.5. The minimal surface M in Theorem 5.4 is called a
minimal skillet.



AREA MINIMIZING SURFACES IN H3 529

Proof. By Theorem 3.5, there exists a properly embedded, area-
minimizing surfaceM with ∂M = ∂A. Furthermore,M is a smooth, em-
bedded manifold-with-boundary except at the point at infinity (where
∂A is not smooth).

Claim 5.6. The surface M is asymptotic to the standard minimal
strip (see Definition 5.2) as y → ∞, and is asymptotic to the geodesic
plane H as |x| → ∞. In other words, if M − (x, y, 0) is the result of
translating M by −(x, y, 0), then M − (0, y, 0) converges smoothly to the
standard minimal strip as y →∞, and M − (x, 0, 0) converges smoothly
to H as |x| → ∞.

This claim follows immediately from the fact that the standard mini-
mal strip and the totally geodesic plane H are uniquely area minimizing
(by Theorem 5.1 and by the convex hull property 2.3).

Claim 5.7. The surface M lies in the region {y ≥ 0}. Also, there is
an a > 0 such that

M ∩ {y > a}

lies in a cylinder x2 + z2 ≤ r2. Furthermore, as λ→ 0, the surface

λ(M ∩ {x2 + z2 ≥ r2})

converges smoothly on compact subsets of H3 \ {0} to H. (Here λ(S)
denotes the result of dilating S by λ about the origin.)

Proof. The first statement follows from the convex hull property
(Proposition 2.3). To prove the second, note that (by Claim 5.6) we
can choose a > 0 so that one component of M ∩ {y > a} lies in a
bounded Euclidean distance from the standard minimal strip and hence
lies in a cylinder x2 + z2 ≤ r2. If M ∩ {y > a} had another component
Σ, then Σ would be an open minimal surface whose limit set L(Σ) lies
in the totally geodesic plane {(x, a, z) : z ≥ 0}∪ {∞}, contradicting the
convex hull property.

We have shown that the boundary of M ∩ {x2 + z2 ≥ r2} coincides
(except in a ball around (0, 0, 0)) with ∂H. Thus the boundary of λ(M∩
{x2 + z2 ≥ r2}) converges to ∂H, and the convergence is smooth away
from the origin. The convergence statement of the claim now follows
from the Compactness Theorem 3.3 and from the fact that H is uniquely
area minimizing. q.e.d.

Claim 5.8. Fix a point p of the form (0, yp, 0) with yp < 0, and for

λ > 0, let Mλ be the result of dilating M by λ about the point p. Suppose
N is another area-minimizing surface such that ∂N = ∂M . Then Mλ

is disjoint from N for λ 6= 1.

Proof. It suffices to prove the claim for λ < 1, since the result for
λ > 1 follows by switching the roles of M and N .
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Since N is properly embedded in H
3, by elementary topology we can

write N as the boundary of an open region U of H3. We may assume
that (0, 0, 0) is not in U . (Otherwise replace U by the interior of H3\U .)

Note that if λ < 1 and if Mλ intersects N , then there are points of
Mλ ∩N where the intersection is transverse, from which it follows that
if we perturb λ slightly, Mλ still intersects N . Thus if Λ is the set of
λ ∈ (0, 1) for which Mλ intersects N , then Λ is open.

Note that there is an R > 0 with the following property: if λ ∈ Λ, then
Mλ ∩N contains points in the cylinder C = {(x, y, z) : x2 + z2 ≤ R2}.
To see this, first choose R larger than the r of Claim 5.6, from which it
follows that N \ C is a smooth manifold-with-boundary near ∞. Now
choose R even larger so that N ′ := N \C has the strong local uniqueness
property described in Theorem 2.4. If Mλ ∩N did not have any points
in C, then L(Mλ ∩ U) would be contained in N ′, and therefore (by
Theorem 2.4), M ∩ U would be contained in N ′, a contradiction.

We claim that Λ is also relatively closed in (0, 1). For suppose λ(i) ∈ Λ
converges to λ ∈ (0, 1). By the preceding paragraph, there exist points
(x(i), y(i), z(i)) in Mλ(i) ∩ N with x(i)2 + z(i)2 ≤ R2. It follows from
Claim 5.6 (applied to M and to N) that z(i) is bounded away from 0.
(Note that ∂Mλ and ∂N are a positive Euclidean distance apart.) Also,
y(i) is bounded since (by Claim 5.6) M and N are both asymptotic to
the standard minimal strip as y → ∞, and therefore Mλ and N are a
positive distance apart as y →∞. Hence, after passing to a subsequence,
(x(i), y(i), z(i)) converges to a point p ∈Mλ ∩N , proving that Mλ ∩N
is nonempty and thus that Λ is relatively closed in (0, 1).

Since Λ is an open and closed subset of (0, 1), either it is empty or
else it is all of (0, 1). To see that it is empty, note that Mλ is disjoint
for N for very small λ since, by Claim 5.7,

max
q∈Mλ

distR3(q, T )→ 0 as λ→ 0

and

min
q∈N

distR3(q, T ) > 0

where T is the union of {y = yp, z ≥ 0} and {(0, y, 0) : y ≥ yp}. This
completes the proof of Claim 5.8. q.e.d.

Now we can complete the proof of Theorem 5.4. It follows immediately
from Claim 5.8 that M is unique.

Let H = {(x, 0, z) : z > 0} and let

Π :M → H

Π(q) =←→pq ∩H.

Applying Claim 5.8 with N =M , we see that each straight (Euclidean)
line through p = (0, yp, 0) intersects M at most once. Thus the map
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Π is a diffeomorphism from M to an open subset of Ω. It follows from
Claim 5.6 that Π is proper. Hence Π is a surjective diffeomorphism.

It follows that the Jacobi field onM corresponding to dilations about
p = (0, yp, 0) is everywhere positive. Letting yp → −∞, we see that the
Jacobi field on M corresponding to horizontal translations (x, y, z) 7→
(x, y + t, z) is everywhere nonnegative. By the strong maximum princi-
ple, if that Jacobi field vanished anywhere, it would vanish everywhere,
which implies that M would be invariant under those translations. But
that is impossible since y ≥ 0 for (x, y, z) ∈M . Thus the Jacobi field is
everywhere positive, which implies that ν ·(0, 1, 0) is everywhere positive.

q.e.d.

Theorem 5.9. A minimal skillet M in H
3 is strictly L∞ stable.

Proof. We will assume that the minimal skillet has been translated
by (x, y, z) 7→ (x, y + 1, z), so that it lies in the region {(x, y, z) :
z > 0 and y > 1} and is asymptotic as x2 + z2 → ∞ to the halfplane
y = 1, z ≥ 0. As y → ∞ with x2 + z2 bounded, the minimal skillet M
is smoothly asymptotic to the standard minimal strip. (See Claim 5.6.)

Let w be the Jacobi field on M corresponding to dilations about 0.
In other words, for p ∈M , w(p) is the (hyperbolic) length of p⊥. Then
because M is a radial graph about the origin (by Theorem 5.4), w > 0
everywhere, so compact subsets of M are strictly stable. Thus it suffices
to show that M has no nonzero, bounded Jacobi fields.

Suppose to the contrary that v is a nonzero, bounded Jacobi field.

Claim 5.10. zw(x, y, z) is bounded away from 0.

To prove the claim, note that w(x, y, z) is the hyperbolic length of
the vector (x, y, z)⊥ at the point (x, y, z), so zw(x, y, z) is the Euclidean
length |(x, y, z)⊥| of (x, y, z)⊥.

As x2 + z2 →∞ in M , Tan(x,y,z)M converges to the plane y = 0, so

(x, y, z)⊥ ∼ (0, y, 0). Also, y ≥ 1 on M , so

lim inf
x2+z2→∞

zw(x, y, z) ≥ 1.

On sets where x2 + z2 and y are both bounded, the Euclidean length
of (x, y, z)⊥ is bounded away from 0 because M is a radial graph.

Thus it remains to show that the Euclidean length |(x, y, z)⊥| is
bounded as y → ∞ with x and z bounded. But that holds because M
is asymptotic as y →∞ to the standard minimal strip (see Claim 5.6)
and because the corresponding Jacobi field w∗ on the standard minimal
strip is bounded away from 0 (by (5.1) and (5.2)). This completes the
proof of Claim 5.10.

Claim 5.11. If pn = (xn, yn, zn) is a divergent sequence in M , then
v(pn)→ 0.
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Proof of Claim 5.11. By passing to a subsequence, we can assume that
one of the following holds:

(1) (xn)
2 + (zn)

2 →∞.
(2) (xn)

2 + (zn)
2 is bounded and zn → 0.

(3) (xn)
2 + (zn)

2 is bounded and zn is bounded away from 0.

TranslateM by (−xn,−yn, 0) and then dilate by 1/zn to get a surface
Mn. Let vn be the Jacobi field on Mn corresponding to v on M . By
passing to a subsequence, we can assume that Mn converges smoothly
to a limit surface M̂ , and that vn converges to a bounded Jacobi field v̂
on M̂ . In case (1), M̂ is the vertical halfplane {y = 0} (by Claim 5.7).

In case (2), M̂ is also a vertical halfplane, since ∂M̂ is a line in ∂H3.

In case (3), M̂ is a minimal strip (see Definition 5.2) by Theorem 5.1.

In all three cases, M̂ is strictly stable. Thus v̂ = 0. Since v̂(0, 0, 1) =
lim vn(0, 0, 1) = lim v(pn), this completes the proof of Claim 5.11. q.e.d.

Claim 5.12. There exists a Jacobi field f on M and an R > 0 such
that

inf
M∩{x2+z2>R2}

f > 0.

Proof of Claim 5.12. Let S = SR be the surface obtained fromM∩{x2+
z2 > R2} by inversion in the sphere x2 + y2 + z2 = 1 (where M denotes

the closure of M in H3). Note that if R is sufficiently large, then S is
a smooth manifold-with-boundary on which y is a smooth function of
x and z. Indeed, by choosing R > 0 sufficiently large, we can guarantee
that the Euclidean unit normal to S is everywhere arbitrarily close to
(0, 1, 0). Consequently, the Jacobi field corresponding to translations
in the y-direction is bounded away from 0 on S. Now let f be the
corresponding Jacobi field onM . This completes the proof of Claim 5.12.

q.e.d.

Now let λ = sup(v/w). Since we are assuming that v > 0 at some
points, λ > 0. By Lemma 4.3, the supremum is not attained at any
point of M . (Note that v cannot be a multiple of w since v is bounded
and w is unbounded.) Thus if pn = (xn, yn, zn) is a sequence of points
in M with v(pn)/w(pn) → λ, then pn diverges in M . By Claim 5.11,
v(pn) → 0. Since λ > 0, this implies that w(pn) → 0, and therefore by
Claim 5.10 that zn →∞.

It follows that by choosing µ < λ sufficiently close to λ, we can
guarantee that

(v − µw)+

is supported in M ∩ {z > R}, where R is as in Claim 5.12. It follows
(using Claims 5.11 and 5.12) that

(v − µw)+/f
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attains a positive maximum value k at some point p. Consequently,

(v − µw)/f

has a positive local maximum k at p, so

v − µw − kf ≡ 0

by Lemma 4.3. But that is impossible since (v−µw) is negative at some
points of M ∩ {z > R}, whereas f > 0 everywhere on that set. The
contradiction proves that there is no such v, and therefore that M is
strictly L∞ stable. q.e.d.

6. Bridge principle at infinity

A key tool in the construction of our minimal embeddings with ar-
bitrary topology is a bridge principle at infinity for properly embedded
area-minimizing surfaces in H

3.
Let M ⊂ H

3 be a smooth, properly embedded, open surface whose

closure M is a smooth manifold-with-boundary in H3. Let Γ ⊂ ∂H3 be
a smooth embedded arc such that M ∩ Γ = ∂Γ and such that Γ meets
∂M orthogonally at each of its end points. A bridge on M along Γ is
the image P of a homeomorphism

φ : [0, 1] × [−1, 1] −→ ∂H3

such that φ(·, 0) parametrizes Γ and φ(t, s) ∈ M if and only if t = 0 or
t = 1.

By the (Euclidean) width of P we mean

w(P ) = sup
x∈P

distR3(x, ∂P ).

For the following proposition, we shall consider the half-space model
of H3. In this model, the homotheties centered at points p ∈ {z = 0}
induce isometries of the hyperbolic space.

From now on, it will be convenient to generalize the notions of skillet
and minimal skillet as follows: the image of a skillet (or minimal skillet)
under any isometry of H3 leaving ∞ fixed will also be called a skillet
(or minimal skillet).

Proposition 6.1. Let M and Γ be as above (in the preceding four
paragraphs). Then there exists a sequence of bridges {Pn}n∈N on M
along Γ satisfying:

(a) The widths wi := w(Pi) tend to 0 as i→∞.
(b) The symmetric difference (∂Pi) △ ∂M is smooth, and if xi ∈ Pi,

then every sequence of i’s tending to ∞ has a subsequence i(j) such
that

(

w−1
i(j)

)

#

(

(∂Pi(j)) △ ∂M − xi(j)
)

converges smoothly on compact sets of H3 \ {∞} to either:



534 F. MARTÍN & B. WHITE

(1) two parallel straight lines, or
(2) the boundary of a skillet.

Recall that A △ B := (A \B) ∪ (B \ A).
The proof of Proposition 6.1 is straightforward so we omit it. A se-

quence of bridges Pi that satisfies the conclusions of Proposition 6.1 is
said to shrink nicely to Γ.

Theorem 6.2 (Bridge Theorem). Let S ⊂ H
3 be an open, properly

embedded, uniquely area-minimizing surface whose closure S ⊂ H3 is
a smooth, embedded manifold-with-boundary. Let Γ be a smooth arc in
∂H3 meeting ∂S orthogonally and satisfying Γ ∩ ∂S = ∂Γ. Consider a
sequence of bridges Pn in ∂H3 that shrink nicely to Γ. If S is strictly
L∞ stable, then for all large enough n, there exists a strictly L∞ stable,
uniquely area-minimizing surface Sn that is properly embedded in H

3 and
that satisfies:

(1) ∂Sn = ∂S △ ∂Pn (in particular, Sn is a smooth, embedded manifold-

with-boundary in H3).
(2) The sequence Sn converges smoothly to S on compact subsets of

H3 \ Γ.
(3) The surface Sn is homeomorphic to S ∪ Pn.

Such a sequence of bridges exists by Proposition 6.1.

Proof. By Theorem 3.5, there is an area-minimizing surface Sn sat-
isfying (1). By the Compactness Theorem 3.3, every subsequence of Sn
has a further subsequence such that Sn converges smoothly on com-

pact subsets of H3 \Γ to Q, where Q is an area-minimizing surface with
boundary ∂S. Since S is uniquely area-minimizing, in fact Q = S, which
proves (2).

The key to proving the rest of the Bridge Theorem is the following:

Claim 6.3. Let (xn, yn, zn) be a sequence of points in with zn > 0
and zn → 0. Translate Sn by −(xn, yn, 0) and then dilate by 1/zn to get
a surface

S′
n := (Sn − (xn, yn, 0))/zn.

Then a subsequence of the S′
n converges smoothly on a compact subset

of H3 to one of the following surfaces S′: a vertical halfplane, a min-
imal skillet, a minimal strip (see Definition 5.2), or the empty set. In
particular, S′ is uniquely area-minimizing and strictly L∞ stable.

Furthermore, if Tn is another area-minimizing surface with ∂Tn =
∂Sn, and if T ′

n = (Tn − (xn, yn, 0))/zn, then the corresponding subse-
quence of the T ′

n converges to the same limit surface S′.

Proof of Claim 6.3. By the definition of nicely shrinking, after passing
to a subsequence, the curves ∂S′

n converge to a limit C ′, where C ′ is one
of the following configurations together with the point at infinity:
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(1) a straight line with multiplicity 1;
(2) a T -shaped configuration consisting of a straight line with mul-

tiplicity 1 together with a perpendicular half-line with multiplic-
ity 2;

(3) the boundary of a skillet with multiplicity 1;
(4) two parallel lines, each with multiplicity 1;
(5) a straight line with multiplicity 2;
(6) the empty set.

The convergence is smooth except at ∞ and, in case (2), at the vertex
of the T .

By the Compactness Theorem 3.3, the S′
n converge smoothly (after

passing to a subsequence) to a limit surface S′ whose boundary is a
closed subset of C ′ that contains the multiplicity 1 portion of C ′ but
none of the multiplicity 2 portion. Thus (in all these cases) ∂S′ is the
closure of the multiplicity 1 portion of C ′. In particular, ∂S′ is a straight
line in cases (1), and (2), a skillet boundary in case (3) and a pair of
parallel lines in case (4). It follows that S′ is a vertical halfplane, a
minimal skillet, or a minimal strip since each of those surfaces is uniquely
area-minimizing.

In cases (5) and (6), ∂S′ is the empty set, which implies (by the
convex hull property) that S′ is empty.

By passing to a further subsequence, we can assume that the T ′
n

converge smoothly on compact subsets of H
3 to a surface T ′ whose

boundary is (as proved above) the closure of the multiplicity 1 portion
of C ′. In other words, T ′ and S′ have the same boundary. Since in each of
the cases above, S′ is uniquely area-minimizing, it follows that T ′ = S′.

q.e.d.

Next we shall prove that Sn and S ∪ Pn are homeomorphic. The

surface Sn separates H
3
into two connected components, one of which

contains the curve Γ which we denote by Qn.
For a > 0, we define Ra := {(x, y, z) ∈ H3 : 0 ≤ z ≤ a}.

Claim 6.4. There exists a > 0 such that Sn ∩ Ra does not contain
any point at which the vector u := (0, 0, 1) is a normal vector to Sn that
points into Qn.

(Thus Sn∩Ra might have critical points of the height function z, but
at such critical points, the normal vector (0, 0, 1) must point out of Qn,
not into it.)

Proof. We proceed by contradiction. Suppose this were not the case.
Thus, after passing to a subsequence, we can assume that there exists a
critical point pn = (xn, yn, zn) ∈ Sn with u pointing into Qn at pn and
with zn → 0. Up to a subsequence, we can suppose that {pn} converges
to some point p0 = (x0, y0, 0) ∈ ∂H

3.
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Then, we apply the isometry (x, y, z) 7→ 1/zn ((x, y, z) − (x0, y0, 0)) to
Sn, pn, Qn, and Γ to obtain a new surface S′

n, a point p
′
n = (0, 0, 1) ∈ S′

n,
a region Q′

n, and a curve Γ′
n. By Claim 6.3, we can assume (by passing

to a subsequence) that the surfaces S′
n converge smoothly to one of

the following surfaces S′: a vertical halfplane, a minimal skillet, or the
standard area-minimizing strip bounded by two parallel lines. In our
case, S′ cannot be a vertical halfplane or a minimal skillet, because
those surfaces have no points at which u = (0, 0, 1) is a normal vector
(see Theorem 5.4), whereas u is normal to S′ at the point p′ = (0, 0, 1).

Thus S′ is a minimal strip. Note that the curves Γ′
n must converge

to the straight line Γ′ that is halfway between the two lines in ∂S′. It
follows that the regions Ω′

n converge to the region Ω′ that lies on the
other side of S′ from Γ′. It now follows from the description of S′ in
Theorem 5.1 that the vector u = (0, 0, 1) points into Ω′ at p′. However,
the smooth convergence and the choice of pn imply that u = (0, 0, 1)
points out of Ω′ at p′. The contradiction proves the claim. q.e.d.

Claim 6.5. The surfaces Sn and S ∪ Pn are homeomorphic.

Suppose Sn is not homeomorphic to S∪Pn. Then, because they have
the same boundary, Sn and S∪Pn cannot have the same genus. Consider
the positive constant a given by Claim 6.4. The smooth convergence on
compact sets implies Sn ∩ (H

3 \Ra) is homeomorphic to S ∩ (H3 \Ra),
so our assumption gives that Sn ∩Ra has nontrivial genus.

Up to a slight modification of the point of infinity in the upper half-
space model of H

3, we can assume that the function z is a Morse
function for the surface Sn. This implies the existence of a critical point
of the height function z in Sn ∩ Ra such that the vector u = (0, 0, 1)
points in the direction of the region Qn, which is contrary to Claim 6.4.
This contradiction completes the proof of this claim.

Claim 6.6. If n is large enough, then the surfaces Sn are uniquely
area-minimizing: if Tn is any area-minimizing surface in H

3 with ∂Tn =
∂Sn, then Tn = Sn (for all sufficiently large n).

Suppose the uniqueness is false. Then, up to a subsequence, we may
assume that Sn and Tn are different for all n. Note that all properties
we have proved for Sn also hold for Tn. In particular, Tn also converges

smoothly to S on compact subsets of H3 \ Γ.
As Sn and Tn are asymptotic at ∂H3, we can find a point pn =

(xn, yn, zn) ∈ Sn that maximizes the (hyperbolic) distance to Tn. (The
maximum exists because the hyperbolic distance from a point q in Sn
to Tn tends to 0 as q approaches the boundary of hyperbolic space. This
follows from the fact that Sn and Tn meet ∂H3 orthogonally along the
same curve.)

By passing to a subsequence, we can assume that pn converges to a
point p = (x, y, z). If p ∈ S, then the smooth convergence of Tn and Sn
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to S gives rise to a nonzero Jacobi field on S that attains its maximum
absolute value at p. But that is impossible by the strict L∞ stability
of S.

Thus p ∈ ∂S, so zn → 0. Translate Sn, Tn, and pn by −(xn, yn, 0)
and then dilate by 1/zn to get S′

n, T
′
n, and p

′ := (0, 0, 1) ∈ S′
n with

(6.1) dist(p′, T ′
n) = max

q∈S′

n

dist(q, T ′
n).

By Claim 6.3, we can assume (by passing to a subsequence) that S′
n and

T ′
n converge smoothly on compact subsets of H3 to the same strictly
L∞ stable limit surface S′. By (6.1), the smooth convergence of S′

n

and T ′
n to S′ gives rise to a nonzero Jacobi field on S′ that attains its

maximum absolute value at the point p′. But that contradicts the strict
L∞ stability of S′, thus proving Claim 6.6.

To complete the proof of the Bridge Theorem 6.2, it remains only to
prove that the surface Sn is strictly L∞ stable for all sufficiently large
n. The proof is almost the same as the proof of Claim 6.6. Suppose the
strict L∞ stability fails. Then we can assume that each Sn has a nonzero
bounded Jacobi field Vn. By Theorem 4.6, Vn(p) tends to 0 as p→ ∂Sn,
so |Vn(·)| attains its maximum at a point pn = (xn, yn, zn) in Sn. We
can normalize Vn so that |Vn(pn)| = 1. By passing to a subsequence, we
can assume that pn converges to a point p = (x, y, z).

If z > 0, then the Vn converge subsequentially to a Jacobi field V on
S that attains its maximum absolute value of 1 at the point p. But that
violates the strict L∞ stability of S.

Thus z = 0. Now translate Sn by −(xn, yn, 0) and dilate by 1/zn
to get a surface S′

n. By Claim 6.3, a subsequence of the S′
n converges

smoothly to a strictly L∞ stable surface S′. However, by construction,
S′ has a Jacobi field that attains a maximum absolute value 1 at the
point p′ := (0, 0, 1), a contradiction. q.e.d.

7. Properly embedded area-minimizing surfaces in H
3

In this section, we are going to prove the main existence results for
properly embedded area minimizing surfaces with arbitrary (orientable)
topology. The techniques we use are inspired by those developed by Fer-
rer, Meeks and the first author for the study of the Calabi-Yau problem
in R3 (see [3]).

Theorem 7.1. Let S be an open, connected, oriented surface. Then
there exists a complete, proper, area-minimizing embedding ψ : S → H

3.
Moreover, the embedding ψ can be constructed in such a way that the
limit sets of different ends of S are disjoint.

Proof. Throughout this proof we are going to use the model of the
Poincaré ball. Let S = {S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · } be a simple
exhaustion of S. Our purpose is to construct a sequence of properly
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embedded minimal surfaces {Σn}n∈N and two sequences of positive real
numbers {εn}n∈N and {rn}n∈N satisfying:

(1) {εn} ց 0 and {rn} ր +∞;

(2)
∞
∑

n=1

εn < 1.

Moreover, for each n ∈ N, the minimal surface Σn satisfies:

(In) Σn is strictly L∞ stable and uniquely area minimizing;

(IIn) Σn admits a C∞ extension Σn to H
3
so that Σn is diffeomorphic

to Sn;
(IIIn) Σn ∩ B(0, rj) is diffeomorphic to Sj, for j = 1, . . . , n, where

B(0, r) represents the hyperbolic ball centered at 0 of radius r;
(IVn) Σn∩B(0, ri) is a normal graph over its projection Σi,n ⊂ Σi, for

i < n. Furthermore, if we write Σn ∩ B(0, ri) = {expp(fi,n(p)·
νi(p)) | p ∈ Σi,n}, where νi is the Gauss map of Σi, then:
• |∇fi,n| ≤

∑n
k=i+1 εk and

• |fi,n| ≤
∑n

k=i+1 εk, for i = 1, . . . , n− 1.

First, we fix a sequence which satisfies
∞
∑

n=1

εn < 1 (for instance εn =

3
π2n2 ). The above sequences are obtained by recurrence. In order to

define the first elements, we consider a totally geodesic disk in H
3. The

choice of r1 is irrelevant.
Assume now we have defined Σn and rn and satisfying items from

(In) to (IVn). We are going to construct the minimal surface Σn+1.
As the exhaustion S is simple, we know that Sn+1− Int(Sn) contains

a unique nonannular component N which topologically is a pair of pants
or an annulus with a handle. Label γ as the connected component of ∂N
that is contained in ∂Sn. We label the connected components of ∂Σn,
Γ1, . . . ,Γk, in such a way that γ maps to Γk by the homeomorphism
which maps Sn into Σn. Then, we apply Theorem 6.2 to Σn in the
following way.

Case 1. N is a pair of pants.
The curve Γk bounds a disk Dk in ∂H3 that does not intersect the

other boundary curves of Σn. Consider an arc Γ ⊂ Dk so that Γ∩ Γk =
∂Γ. Then we apply Theorem 6.2 to the configuration Σn ∪ Γ. In this
way, we construct a family {Tm}m∈N of properly embedded minimal
surfaces obtained from Σn by adding a bridge B1

m that “divides” Γk

into two different curves in ∂H3. Note that the surfaces Tm have the
same topology as Sn+1, for all m ∈ N.

Case 2. N is a cylinder with a handle.
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We construct the surface Tm, as in the previous case. But this time we
add a second bridge B2

m along a curve σ joining two opposite points in
∂B1

m (see Figure 3). Notice that, in this way, the old annular component
becomes an annulus with a handle. Again the resulting surfaces, which
we still call Tm, are homeomorphic to Sn+1.

Figure 3. The surfaces A1 and T1

In both cases, we obtain a sequence of properly embedded, area-
minimizing surfaces Tm satisfying:

(i) Tm is strictly L∞ stable and uniquely area minimizing.

(ii) Tm admits a smooth extension to H
3
and Tm is diffeomorphic to

Sn+1.

(iii) The surfaces Tm ∩B(0, rn) are diffeomorphic to Σn ∩B(0, rn) and

converge in the C∞ topology to Σn ∩B(0, rn), as m→∞.

Item (iii) and property (IVn) imply that Tm∩B(0, ri) can be expressed
as a normal graph over its projection Σi,m ⊂ Σi, i = 1, . . . , n;

Tm ∩B(0, ri) = {expp (hm,i(p) νi(p)) | p ∈ Σi,m}.

Since, as m→∞, the surfaces Tm converge smoothly to Σn in B(0, rn),
and since Σn satisfies (IVn), we have:

(7.1) max{|hm,i|, |∇hm,i|} <

n+1
∑

k=i+1

εk

for m large enough.

Then, we define Σn+1
def
= Tm, where m is chosen sufficiently large

in order to satisfy (7.1). We choose rn+1 big enough to guarantee that

Σn+1 ∩ B(0, rn+1) is diffeomorphic to Sn+1. It is clear that Σn+1 so
defined fulfills (In+1), . . . , (IVn+1).

Remark 7.2. Taking into account the way in which we are using the
bridge principle at infinity to modify the topology of Σn, it is important
to notice that the new boundary curves of Σn+1 are contained in the
disk Dk ⊂ ∂H

3.
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Now we have constructed our sequence of minimal surfaces {Σn}n∈N.
Taking into account properties (IVn), for n ∈ N, and using Ascoli-
Arzela’s theorem, we deduce that the sequence of surfaces {Σn}n∈N
converges to a properly embedded minimal surface Σ in the Cm topol-
ogy, for all m ∈ N. Moreover, Σ ∩ B(0, ri) is a normal graph over is
projection Σi,∞ ⊂ Σi, for all i ∈ N, and the norm of the gradient of the
graphing functions its at most 1 (see properties (IVn)).

Finally, we check that Σ satisfies all the statements in the theorem.

• Σ is diffeomorphic to S. If we consider the (simple) exhaustions {Σ∩

B(0, rn) | n ∈ N} of Σ and {Sn | n ∈ N} of S, then we know that there

exists a diffeomorphism ψn : Sn → Σ ∩ B(0, rn). Furthermore, due to
the way in which we have constructed Σ, we have that ψn|Si

= ψi, for
all i < n. Hence, we can construct a diffeomorphism ψ : S → Σ.

If we consider on S the pull back of the metric of Σ, then ψ is the
minimal embedding we are looking for.

• Σ is area minimizing. The limit of area-minimizing surfaces is area
minimizing.

• The limit sets of distinct ends are disjoint. We are going to assume
that Σ has at least two ends, as otherwise this property does not make
sense. Two different ends of Σ, E1 and E2, can be represented by two
disjoint components, C1 and C2, of Σ \B(0, rn), for a sufficiently large

n ∈ N. Consider ∂i = Ci ∩B(0, rn), i = 1, 2. Recall that Σ ∩B(0, rn) is
a graph over Σn. Then we label as ∂n1 and ∂n2 the projection over Σn of
∂1 and ∂2, respectively.

Observe that, from our method of construction, ∂i (and ∂
n
i ) is a con-

nected curve, for i = 1, 2. The curves ∂n1 and ∂n2 bound two different
annular ends of Σn that we call An

1 and An
2 , respectively. For i = 1, 2,

let Γn
i be the ideal boundary of An

i :

Γn
i := An

i ∩ ∂H
3.

The curve Γn
i bounds a disk Dn

i ⊂ ∂H3, i = 1, 2, and we know that
Dn

1 ∩D
n
2 = ∅. Taking Remark 7.2 into account, we deduce that L(E1) ⊂

Dn
1 and L(E2) ⊂ D

n
2 . This concludes the proof. q.e.d.

We would like to finish this section by pointing out that a suitable
modification of the methods allows us to construct properly embedded
area-minimizing surfaces so that the limit set is the whole ideal bound-
ary ∂H3.

Lemma 7.3. If R/r is sufficiently large, then there is no open, con-
nected, area-minimizing surface M in H

3 such that, in the upper half-
space model of H3,

(i) ∂M is disjoint from {p ∈ H3 : r < |p| < R}, and
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(ii) M ∩ {|p| ≤ r} and M ∩ {p : |p| ≥ R} are both nonempty.

Here |p| denotes the Euclidean distance from p to the origin.

Proof. Suppose not. Then there is a sequence of open, connected,
area-minimizing surfaces Mi in H

3 such that

(i) ∂Mi is disjoint from {p ∈ H3 : ri < |p| < Ri},
(ii) M ∩ {|p| ≤ ri} and M ∩ {p : |p| ≥ Ri} are both nonempty, and
(iii) Ri/ri →∞.

Since dilations are hyperbolic isometries, we can assume that Ri = 1/ri,
so that Ri → ∞ and ri → 0. By the Compactness Theorem 3.3, a
subsequence of the Mi converges smoothly on compact subsets of H3 to
a properly embedded minimal surface M ⊂ H

3 such that M intersects
each Euclidean sphere centered at the origin and such that the limit
set L(M) of M is contained in {0,∞}. By the convex hull property
(Proposition 2.3), M is contained in the z-axis, which is impossible.

q.e.d.

Corollary 7.4. Let M1 ⊂ H
3 be a uniquely area-minimizing surface

and let p be a point in H3 \M1. Then p has a neighborhood U ⊂ H3 with
the following property: if M2 is a uniquely area-minimizing surface that
lies in U , then M1 ∪M2 is also uniquely area-minimizing.

Proof. We can work in the half-space model of H3 with p = (0, 0, 0).
Choose R > 0 so that

M1 ⊂ {q : |q| ≥ R}.

Let U = {q : |q| < r}, where R/r is sufficiently large that the conclusion
of Lemma 7.3 holds.

Let M2 be a uniquely area-minimizing surface in U , and suppose
that M1 ∪M2 is not uniquely area-minimizing. Then there is an area-
minimizing surface M such that ∂M = ∂M1 ∪ ∂M2 and such that M 6=
M1 ∪M2. Since M1 and M2 are each uniquely area-minimizing, there
must be a connected component of M that contains points in {q : |q| ≤
r} and points in {q : |q| ≥ R}, contradicting Lemma 7.3. q.e.d.

Proposition 7.5. Let M be an open, connected, orientable surface.
Then there exists a complete, proper, area-minimizing embedding f : M →
H

3 such that the limit set is ∂H3.

Proof. We want to modify the proof of Theorem 7.1 as follows: we
construct a sequence {Σ′

n}n∈N in such a way that it satisfies Properties
(In), . . ., (IVn) (see page 538) and:

(Vn) The Euclidean distance from ∂Σn to any point in
∂H3 is less than 1/n.
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To do this, once we have obtained the minimal surface Σn satisfying
(In), . . . , (IVn), then we proceed as follows: Let Ω1,. . . , Ωk be the con-
nected components of ∂H3 \ ∂Σn. Take one of these components, Ωi,
i ∈ {1, . . . , k} and consider a complete, totally geodesic disk Di in H

3

satisfying:

• Di and Σn are disjoint;
• ∂Di ⊂ Ωi;
• diamR3(∂Di) <

1
2n ;

• Di ∪ Σn is uniquely area minimizing and strictly L∞ stable.

Such a disk exists by Corollary 7.4. Let Γi be a smooth arc in Ωi that
connects ∂Σn and ∂Di and that is 1

2n close to every point in Ωi. Then we
apply Theorem 6.2 to construct a new surface by connecting Σn with
Di by a bridge along the arc Γi. Notice that the surface obtained in
this way has the topology as Σn. We call Σ′

n the surface obtained by
repeating the above procedure for all i ∈ {1, . . . , k}. If the width of the
bridges is sufficiently small, we can guarantee that Σn satisfies (Vn). So,
the limit surface Σ would satisfy that its limit set L(Σ) is ∂H3. q.e.d.

7.1. Regularity of the boundary. Although the minimal embedding
constructed in Theorem 7.1 is a limit of surfaces with smooth boundary,
we cannot assert anything about the regularity at infinity of the minimal
surface that we have obtained. In the case of finite topology, Oliveira
and Soret [6] constructed minimal embeddings that extend smoothly to

H
3
. Hence, we shall center our attention on the case of open surfaces

with infinite topology. If we do not care about the property that the
limit sets of different ends are disjoint, then we can demonstrate the
following:

Theorem 7.6. Let S be an open surface with infinite topology. Then
there exists a proper area-minimizing embedding of S into H

3 such that
the limit set in ∂H3 is a smooth curve except for one point. Moreover,
the area-minimizing embedding extends smoothly to an embedding of S

into H
3
except for that point.

Proof. We will the upper half-space model of H
3, so ∂H3 = {z =

0}∪{∞}. Let S = {S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ · · · }, a simple exhaustion for

the surface S. For n ∈ N, we define Xn = {(x, y, z) ∈ H
3

: 2(n − 1) <

x < 2n− 1} and Yn = {(x, y, z) ∈ H
3
: 2n− 1 < x < 2n}.

Consider a totally geodesic disk Dn contained in the region Xn given
by the semi-sphere centered at (2n− 3/2, 0, 0) and radius rn < 1/2. Let
An be the minimal annulus obtained by adding a bridge to Dn along
a diameter of ∂Dn. Similarly, we can construct a minimal disk with a
handle Tn, included in the region Yn. First we add a bridge at infinity
B to a totally geodesic disk represented by a semi-sphere centered at
(2n − 1/2, 0, 0) and radius rn < 1/2. Later, we add a second bridge B′
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along a curve in ∂H3 joining to opposite points of the ideal boundary
of B. Notice that the surfaces An and Tn, n ∈ N, satisfy the hypothesis
of our bridge principle at infinity (Theorem 6.2).

As in the proof of Theorem 7.1, we construct our surface inductively.
The first element in our sequence is the totally geodesic disk Σ1 = D1.
The second element in the sequence, Σ2, is obtained by joining Σ1 with
W2 ∈ {A2, T2} by a bridge at infinity along a curve Γ2, which is con-
tained in ∂H3 ∩ {x < 4}. The choice of W2 depends on the topology of
S2 \ Int(S1). To add this bridge, we have to guarantee that Σ1∪W2 sat-
isfies the assumptions of Theorem 6.2. It is clear that Σ1∪W2 is strictly
L∞ stable, so we only need to check that it is uniquely area-minimizing.
By Corollary 7.4, this can be guaranteed by applying a suitable homoth-
etical shrinking toW2 with respect to (5/2, 0, 0) or (7/2, 0, 0) (depending
on the nature of W2). Observe that the ideal boundary ∂Σ2 is a set of
pairwise disjoint Jordan curves so that ∂H3 \ ∂Σ2 consists of a disjoint
union of disks (actually, either one or two disks) and one unbounded
connected component that is not simply connected and that we shall
denote C2.

Assume that the surface Σn is constructed in such a way that Σn

is diffeomorphic to Sn and ∂Σn consists of a finite set of pairwise dis-
joint Jordan curves and such that ∂H3 \∂Σn consists of a disjoint union
of finitely many topological disks together with one unbounded com-
ponent Cn. We are going to show how to construct the surface Σn+1.
We know that Sn+1 \ Int(Sn) contains exactly one non-annular con-
nected component that we call ∆n+1. Let σn+1 ⊂ ∂Σn be the con-
nected component of ∂Σn which corresponds to ∂∆n+1 ∩ ∂Sn and let
qn+1 = (xn+1, yn+1, zn+1) be the point of σn+1 with the highest x-
coordinate. We have that xn+1 ∈ [m,m+ 1] for some m ∈ N.

Then we are going to construct a curve Γn+1 ⊂ Cn ∩ {m ≤ x < 2(n+
1)} joining qn+1 andWn+1 ∈ {An+1, Tn+1}, whereWn+1 depends on the
topology of ∆n+1. To do this, we proceed as follows. The intersection
of {(t, 0, 0) : t ≥ xn+1} and Cn consists of a finite (disjoint) union
of segments α1 ∪ · · · ∪ αl and a half-line r. Let αl+1 be the piece of r
joining ∂Σn and ∂Wn+1. For j ∈ {1, . . . , l}, label βj the arc in ∂Σn that
joins the end point of αj and the initial point of αj+1. Notice that, from
our method of construction, the x-coordinate is non-decreasing along
βj , j = 1, 2, . . . , l. Let us define

γ = α1 ∗ β1 ∗ α2 ∗ · · · ∗ αl ∗ βl ∗ αl+1.

The curve Γn+1 is a suitable perturbation of γ satisfying that Γn+1 ⊂
Cn ∩ {m ≤ x < 2(n+ 1)}, and that Γn+1 does not touch the x-axis.

Again, up to a suitable shrinking of Wn+1 we can assume that we are
in the conditions for applying Theorem 6.2, and so we obtain Σn+1 by
adding a bridge along Γn+1 to Σn ∪Wn+1. Observe that the bridge can
be chosen so that it does not intersect the x-axis.
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It is important to notice that the sequence of surfaces {Σn}n∈N con-
structed in this way satisfies that, for all r > 0 , the ideal boundary ∂Σn

intersects the region {x ≤ r} in the same set of arcs, for n sufficiently
large.

It is important to note that for every r and n, (∂Σn) ∩ {x < r} is a
finite collection of arcs. Furthermore, there is an n such that

(7.2) (∂Σn) ∩ {x < r} = (∂Σk) ∩ {x < r}

for all k ≥ n.
Reasoning as in the proof of Theorem 7.1, we can guarantee that the

sequence {Σn}n∈N converges smoothly on compact sets to a properly
embedded minimal surface Σ. From (7.2) we see that ∂Σ ∩ {x ≤ r} =
∂Σn ∩{x ≤ r}, for n ∈ N large enough. Thus (∂Σ) \{∞} is smooth and
properly embedded in ∂H3 \ {∞}. q.e.d.
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