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ON ETA-FUNCTIONS FOR NILMANIFOLDS

Werner Ballmann

To the memory of Friedrich Hirzebruch

Abstract

Motivated by index formulas for Dirac-type operators over neg-
atively curved Riemannian manifolds of finite volume, we study
η-functions of certain differential operators on nilmanifolds.

1. Introduction

The index theorem of Atiyah, Patodi, and Singer for elliptic differ-
ential operators of first order over closed manifolds M with boundary
involves the η-invariant of an associated formally self-adjoint elliptic
operator of first order over ∂M . By definition, the η-invariant of such
an operator A is the value at 0 of the η-function of A, for s ∈ C with
sufficiently large real part given by the absolutely convergent series

(1.1) η(A, s) :=
∑
λ

sign(λ)|λ|−s,

where the summation is over the non-zero eigenvalues of A, each eigen-
value occuring as often as its multiplicity requires. The η-function of A
is a meromorphic function in the (whole) complex plane; see [3, p. 74].
It is a priori not clear whether η(A) = η(A, 0) is finite. However, in
relevant cases it is, by the work of Atiyah, Patodi, and Singer; see for
example [3, Theorem 4.5].

Our work on the η-function was motivated by index problems for gen-
eralized Dirac operators over non-compact Riemannian manifolds with
pinched negative sectional curvature and finite volume. A neighborhood
of infinity of such manifolds is of the form (0,∞) ×M0 with Riemann-
ian metric of the form dt2 + gt, where gt is a family of Riemannian
metrics on M0; see [6]. The connected components of the cross sections
Mt = {t}×M0 are infra-nilmanifolds; for so-called neat lattices in sym-
metric spaces of negative sectional curvature they are of the form Γ\N ,
where N is a nilpotent Lie group of a specific Heisenberg type. The η-
invariant of importance here is the limit, as t → ∞, of the η-invariants
of the induced operators over Mt; see [4, Theorem 8.10]. Up to sign, its
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so-called high-energy part is given by the asymptotic η-invariant of as-
sociated operators over the connected components of the cross sections
Mt, by [4, Theorem 9.29], and the η-function of such operators is the
objective of our study.

To set the stage, let N be a simply connected nilpotent Lie group of
dimension n, endowed with a left-invariant Riemannian metric and the
spin structure induced by the Lie algebra n of left-invariant vector fields
on N . Denote by Cliff(n) and Σn the complex Clifford algebra and the
complex vector space of spinors associated to n, respectively, and recall
that Σn is a Cliff(n)-module.

Let Γ ⊆ N be a lattice, and let τ : Γ → U(V ) be a unitary represen-
tation of Γ on a finite-dimensional Hermitian vector space V . We refer
to τ as the twist. For ease of notation, we extend τ trivially to a unitary
representation on Σn ⊗ V ,

(1.2) τ : Γ → U(Σn ⊗ V ), τ(γ) := id⊗τ(γ).

Associated to τ , we obtain a Hermitian vector bundle

(1.3) Eτ = N ×τ (Σn ⊗ V ) → Γ\N,

where the elements of Eτ are Γ-orbits {(γx, τ(γ)w)} in N × (Σn ⊗ V ).
Sections of Eτ correspond to maps

(1.4) σ : N → Σn ⊗ V such that σ(γx) = τ(γ)σ(x),

for all γ ∈ Γ and x ∈ N . Clifford multiplication by vector fields on the
factor Σn commutes with τ , since τ acts trivially on Σn. Hence Clifford
multiplication on Eτ is well-defined. The Levi–Civita connection and
the left-invariant flat connection on N induce Hermitian connections on
Eτ , and, with respect to both, Eτ turns into a Dirac bundle in the sense
of Gromov and Lawson; see [8].

Example 1.5 (Spinor bundles). Spin structures of Γ\N are deter-
mined by representations τ : Γ → {±1} ⊆ U(1). The corresponding
spinor bundles are given as Eτ = N ×τ (Σn⊗C). The left-invariant spin
structure N × Spin(n) corresponds to the trivial representation τ ≡ 1.

Fix an orthonormal frame X1, . . . ,Xn of n. Then the (flat) Dirac
operator A on sections of Eτ induced by the left-invariant flat connection
on N can be written as

(1.6) Aσ =
∑

Xj · dσ(Xj),

where the dot indicates Clifford multiplication. In the case where N is
the Heisenberg group and τ is the trivial representation, this operator
occurs in the work [5] of Deninger and Singhof on e-invariants. Ideas
from their article were important for the determination of the asymp-
totic high-energy η-invariant in [4, Section 9].
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It is easy to see that A is a formally self-adjoint and elliptic differential
operator of order 1 with symbol

(1.7) σA(dϕ)σ = gradϕ · σ.

Denote by L2(Eτ ) the space of square integrable sections of Eτ . We con-
sider A as an unbounded self-adjoint operator in L2(Eτ ) with H1(Eτ )
as domain of definition, where H1(Eτ ) denotes the space of all H1-
sections of Eτ , that is, of square integrable sections σ of Eτ with square
integrable weak derivatives. If F ⊆ N is a fundamental domain for the
action of Γ, then

‖σ‖2L2 =

∫
F

|σ|2 and ‖σ‖2H1 =

∫
F

(|σ|2 + |dσ|2)

if we identify sections σ of Eτ with maps N → Σn ⊗ V as in (1.4).
We are concerned with the η-function η(A, s) of A as an unbounded

self-adjoint operator in L2(Eτ ). Note that the η-function of A is the
sum of the corresponding η-functions for the decomposition of V into
irreducible representations of Γ. Thus we may assume throughout that
τ is irreducible.

It is shown in [4, Theorem 9.31] that the η-function of A vanishes
identically if the center CN of N has dimension at least 2. Thus we
can restrict our attention to the case where CN is of dimension 1. Note
that this is precisely the interesting case in the representation theory of
nilpotent Lie groups.

We choose X1 as a generator of CN . The center CΓ = Γ ∩CN of Γ is
infinite cyclic and is generated by ζ := exp(ℓX1), for some ℓ > 0. Then
Γ\N is foliated by closed geodesics of equal length ℓ, the translates of
CΓ\CN . For convenience, we rescale the metric so that ℓ = 2π.

Theorem 1.8. Up to the normalization ℓ = 2π, the η-function of A
does not depend on the left-invariant Riemannian metric on N .

Remarks 1.9. (1) Via Malcev polynomials, Γ determines N . Thus
we may consider the η-function of A as an invariant of the pair (Γ, τ).
(2) In [2], Atiyah, Patodi, and Singer discuss the stability of η-invariants
of twisted versions of the standard Dirac operators; see [2, Theorems 2.4
and 3.3]. They normalize by considering differences of such η-invariants
and get strong stability properties. For the operators considered here,
we do not need to take differences, but the stability property is much
more restricted.

The only simply connected two-step nilpotent Lie groups with one-
dimensional center are the standard Heisenberg groups Hm. We think
of Hm as Rm × Rm × R with group law given by

(1.10) (x, y, z)(x′, y′, z′) = (x+ x′, y + y′, z + z′ + 〈x, y′〉).
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Let Dm be the set of m-tupels d = (d1, . . . , dm) of natural numbers such
that di divides di+1, 1 ≤ i < m. Then, for any d ∈ Dm,

(1.11) Γd := {(x, y, z) | x, y ∈ Z
m, z ∈ Z, di divides xi}

is a lattice in Hm. Gordon and Wilson showed that the isomorphism
type of Γd is determined by d and that, up to automorphism of Hm, any
lattice in Hm is equal to some Γd; see [7, Section 2]. Note that (0, 0, 1) is
in the center of N and that, for any irreducible unitary representation
of Γd, τ(0, 0, 1) acts by multiplication with e2πic, for some constant c ∈
(0, 1].

Theorem 1.12. [4, Theorem 10.47] For any irreducible unitary rep-

resentation τ of Γd and any left-invariant Riemannian metric on Hm

with ℓ = 2π as above, we have

η(A, s) = d1 · · · dm dimV
∑

w≡c,w 6=0

ε(w)|w|m−s,

for all s ∈ C with sufficiently large real part, where τ(0, 0, 1) = e2πic id
and where ε(w) = sign(w) if m is even and ε(w) = −1 if m is odd.

The results of the present article can be used to simplify the proof of
the above theorem in [4]. We explain this in Section 4, below.

For c > 0 and ℜs > 1, the Hurwitz zeta function ζc is given by the
infinite sum

(1.13) ζc(s) =
∑

k≥0
(k + c)−s.

For each c > 0, ζc can be extended to a meromorphic function on the
complex plane, defined for all s 6= 1 and with a simple pole at s = 1,
where the residue is equal to 1. We have ζ1 = ζ, the Riemann zeta

function. Setting ζ0 := ζ, the formula in Theorem 1.12 turns into

η(A, s) = d1 · · · dm dimV {(−1)mζc(s−m)− ζ1−c(s−m)}.

Acknowledgments. I would like to thank Gilles Carron and Dorothee
Schueth for helpful remarks. I am also grateful to the Hausdorff Center
and the Max Planck Institute for Mathematics in Bonn for their support.

2. First steps

Recall that we consider the case where the center CN of N has dimen-
sion 1. Throughout, we choose the first vector X1 in the orthonormal
frame X1, . . . ,Xn of n as a generator of the Lie algebra of CN . The cen-
ter CΓ = Γ∩CN of Γ is infinite cyclic and is generated by ζ := exp(ℓX1),
for some ℓ > 0. Then Γ\N is fibered by closed geodesics of equal length
ℓ, the translates of CΓ\CN . We multiply the Riemannian metric of N by
(2π/ℓ)2, and then ℓ = 2π. This changes the spectrum and the η-function
of A by a factor of (ℓ/2π)2 and (2π/ℓ)2s, respectively.
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We may assume that the representation τ of Γ is irreducible. Then
there is a constant c ∈ R such that, for ζ = exp(2πX1) as above,

(2.1) τ(ζ)v = e2πicv,

for all v ∈ V . Arguing as in [4, Section 10.1], we get that c is a rational
number. We obtain a corresponding Fourier decomposition,

(2.2) L2(Eτ ) ∼= ⊕w≡cL
2(Eτ , w),

where ≡ stands for congruence modulo integers and where L2(Eτ , w)
denotes the space of maps σ in L2(Eτ ) such that

(2.3) σ(xetX1) = eiwtσ(x),

for all x ∈ N . Now L2(Eτ , w) is invariant under Clifford multiplica-
tion with left-invariant vector fields. In particular, A is well-defined on
L2(Eτ , w) with domain H1(Eτ , w) = L2(Eτ , w)∩H1(Eτ ). For a section
σ in H1(Eτ , w), we have

Aσ = X1 · dσ(X1) +
∑
j>1

Xj · dσ(Xj)

= iwX1 · σ +
∑
j>1

Xj · dσ(Xj)

= wω0σ +
∑
j>1

Xj · dσ(Xj),

(2.4)

by (2.3), where ω0 denotes the unitary involution given by Clifford mul-
tiplication with iX1. We obtain

A(ω0σ) = −wσ − iX1 ·
∑
j>1

Xj · dσ(Xj)

= 2wσ − ω0Aσ.

(2.5)

Therefore, the anti-commutator of A and ω0 on H1(Eτ , w) is 2w id, or,
in other words, A−wω0 and ω0 anti-commute onH1(Eτ , w). The crucial
point in (2.4) and (2.5) is that Xj is parallel with respect to the flat
connection, and we actually need this only in the X1-direction.

Denote by L(w,α) the eigenspace of A in L2(Eτ , w) with respect to
α, and set

(2.6) L±(w,α) = {σ ∈ L(w,α) | ω0σ = ±σ}.

For σ ∈ L(w,α), we have

(2.7) Aσ = ασ and A(ω0σ) = 2wσ − αω0σ.

There are three cases with respect to possible contributions of ±α to
the η-function of A.
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Proposition 2.8. We have

(1) L+(w,α) = 0 if α 6= w and L(w,w) = L+(w,w) if w 6= 0;
(2) L−(w,α) = 0 if α 6= −w and L(w,−w) = L−(w,−w) if w 6= 0;
(3) dimL(w,α) = dimL(w,−α) if α 6= ±w.

Proof. Let σ ∈ L+(w,α) be non-zero. Then ασ = (2w−α)σ, by (2.7),
and hence α = w. Hence L+(w,α) = 0 if α 6= w. Conversely, assume
that w 6= 0, and let σ ∈ L(w,w) be non-zero. Then

A(σ − ω0σ) = −w(σ − ω0σ),

by (2.7), and hence σ − ω0σ ∈ L(w,−w). Since w 6= −w, L(w,w) and
L(w,−w) are orthogonal, and hence σ − ω0σ is orthogonal to σ. Since
ω0 is unitary, we have ‖ω0σ‖ = ‖σ‖ and conclude that σ = ω0σ. This
proves (2.8), and the proof of (2.8) is analogous.

For the proof of (2.8), we may assume α 6= 0. We get, for σ ∈ L(w,α),

A((ω0 − w/α)σ) = 2wσ − αω0σ − wσ

= −α(ω0 − w/α)σ,

by (2.7), and hence (ω0 − w/α)σ ∈ L(w,−α). Applying this to ±α, we
obtain linear maps

(ω0 − w/α) : L(w,α) → L(w,−α),

(ω0 + w/α) : L(w,−α) → L(w,α),
(2.9)

which satisfy

(ω0 − w/α)(ω0 + w/α) = (ω0 + w/α)(ω0 − w/α)

= 1− w2/α2.

If α 6= ±w, then the right-hand side is non-zero and, therefore, the above
linear maps are isomorphisms. q.e.d.

Corollary 2.10. For all s ∈ C with sufficiently large real part,

η(A, s) =
∑

w≡c,w 6=0

{dimL(w, |w|) − dimL(w,−|w|)}|w|−s .

Remark 2.11. Recall the normalization of the Riemannian metric
from the beginning of the section. Without that normalization, there
are factors of appropriate powers of ℓ/2π in our formulas.

3. The inert η-function

For σ : N → Σn ⊗ V and X ∈ n, we write X(σ) := dσ(X). With this
notation, we have

(3.1) Aσ = X1 ·X1(σ) +Bσ,

where B is a formally self-adjoint differential operator.
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Proposition 3.2. For all smooth sections σ of Eτ , we have

A2σ = −X1(X1(σ)) +B2σ.

Proof. Straightforward, using that X1 is in the center of n. q.e.d.

Let N̄ := CN\N = N/CN , a nilpotent Lie group of dimension n− 1.
Since the Riemannian metric on N is right-invariant under the center
CN of N , N̄ carries a left-invariant Riemannian metric such that the
projection

(3.3) N → N̄

is a Riemannian submersion. The projection factors through the action
of Γ and results in a Riemannian submersion and principal S1-bundle

(3.4) Γ\N → Γ̄\N̄

with closed geodesics of length 2π as fibers, where Γ̄ = CΓ\Γ.
For any w ≡ c, we can extend the representation τ of Γ to a unitary

representation of the subgroup G of N generated by Γ and CN by

(3.5) τw(exp(tX1)) := eiwt id .

Since CN commutes with all γ ∈ Γ and w ≡ c, τw is well-defined. The set
Eτ,w of G-orbits in N × (Σn ⊗V ) is a vector bundle over Γ̄\N̄ . Sections
of Eτ,w correspond to maps

(3.6) σ : N → Σn ⊗ V

satisfying both (1.4) and (2.3). Considered in this way, the space of
square integrable sections of Eτ,w is equal to L2(Eτ , w). Furthermore, B
descends to an elliptic differential operator Bw on Eτ,w, up to homothety
unitarily equivalent toB on L2(Eτ , w). The following result is immediate
from Proposition 3.2 or also from (2.5).

Proposition 3.7. Under the identification of L2(Eτ,w) with

L2(Eτ , w), we have

A2σ = w2σ +B2
wσ.

In particular, kerBw = L(w,w) ⊕ L(w,−w).

Now we observe that ω0 is a super-symmetry of Eτ,w that anticom-
mutes with Bw and, hence, gives rise to an operator B+

w from (sections
of) E+

τ,w to E−
τ,w, where E

+
τ,w and E−

τ,w denote the eigenbundles of ω0 for
the eigenvalues 1 and −1, respectively. For the Fredholm index of Bw, we
have indB+

w = dimL(w,w) − dimL(w,−w), by Proposition 2.8. Hence
we arrive at a formula that expresses the stability of the η-function:

Theorem 3.8. For all s ∈ C with sufficiently large real part,

η(A, s) =
∑

w≡c,w 6=0

sign(w) indB+
w |w|−s.
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Proof of Theorem 1.8. Under a change of the left-invariant Riemannian
metric on N , the associated Fredholm operators B+

w vary continuously
so that their index remains unchanged. q.e.d.

4. The case of the Heisenberg lattices

We discuss now the proof of Theorem 1.12. Simplifying the corre-
sponding discussion in [4, Section 10.2], we can assume from the outset
that the standard basis of the Lie algebra hm of Hm is orthonormal, by
Theorem 1.8. We label the standard basis such that the non-vanishing
Lie brackets between the basis vectors are given by

(4.1) [X2j ,X2j+1] = X1, for 1 ≤ j ≤ m,

so that X1 generates the center of hm as above.
By the choice of orthonormal basis (X1, . . . ,X2m+1) of n, we obtain an

identification Σn = Σ2m+1. Adding a perpendicular line to n, spanned by
a unit vectorX0, we get a further identification Σ2m+1 = Σ+

2m+2. Clifford
multiplication ωj with iX2jX2j+1, 1 ≤ j ≤ m, is a unitary Hermitian
involution of Σn. The involutions ωj commute pairwise, and hence we
have an orthogonal decomposition into simultaneous eigenspaces,

(4.2) Σn = ⊕Σε

with ε = (ε1, . . . , εm) ∈ {±1}m, where dimΣε = 1 and where ωj acts
on Σε by multiplication with εj. We obtain a corresponding orthogonal
decomposition of Eτ ,

(4.3) Eτ = ⊕εEτ,ε,

where ωj acts by multiplication with εj on Eτ,ε. We also obtain Fourier
decompositions

(4.4) L2(Eτ,ε) ∼= ⊕w≡cL
2(Eτ,ε, w),

where L2(Eτ,ε, w) = L2(Eτ,ε) ∩ L2(Eτ , w).
By straightforward calculation and (4.1), the square of A is given by

A2(σ) = ∆(σ) +
∑
j<k

Xj ·Xk · dσ([Xj ,Xk])

= ∆(σ) +
∑
j≥1

X2j ·X2j+1 · dσ(X1)

= ∆(σ)− i(ω1 + · · · + ωm) · dσ(X1),

= ∆(σ) +w(ω1 + · · · + ωm) · dσ(X1),

(4.5)

where ∆ = − trHess denotes the standard Laplace operator of N , here
acting on maps from N to Σn ⊗ V .

Now it is shown (along standard lines) in [4, Formula 10.30] that
L2(Eτ,ε) is d1 · · · dm dimV |w|m times the standard representation of Hm

associated to the linear maps hm → R, which sends X1 to w. Hence ∆
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has eigenvalues w2+|w|(2p1+· · ·+2pm+m) on these, labeled by integers
p1, . . . , pm ≥ 0, and all with multiplicity d1 · · · dm dimV |w|m.

By our discussion further up, we only need to consider the possible
eigenvalue w2 of A2, thus simplifying the corresponding discussion on
page 1952 in [4]. By what we just found and (4.5), w2 is an eigenvalue
of A2 precisely for the choices

p1 = · · · = pm = 0 and ε1 = · · · = εm = − signw.

The rest of the proof is along the lines in [4]: Since ω0 commutes with
the ωj, it leaves the subspaces Σε invariant. Moreover, since

(4.6) ω0 · · ·ωm = im+1X1 · · ·X2m+1

acts as the identity on Σ2m+1, ω0 acts by multiplication with ε1 · · · εm on
Σε. Now X1(σ) = iwσ, for any σ in L2(τ, w). Hence the eigenspace for
A2 in L2(τ, w) with eigenvalue w2 is an eigenspace of A with eigen-
value w if m is odd and |w| if m is even. Since the multiplicity is
d1 · · · dm dimV |w|m, we obtain, for all s ∈ C with sufficiently large real
part and even m,

(4.7) η(A, s) = d1 · · · dm dimV
∑

w≡c,w 6=0

sign(w)|w|m−s.

For odd m, we get

(4.8) η(A, s) = −d1 · · · dm dimV
∑

w≡c,w 6=0

|w|m−s.

This finishes the proof of Theorem 1.12.

Remark 4.9. In terms of Theorem 3.8, we get

indB+
w = ε(w)d1 · · · dm dimV |w|m,

where ε(w) = sign(w) for even m and ε(w) = −1 for odd m. Are there
formulas of a similar nature in the general case? What this comes down
to is the discussion of the kernels of the operators Bw, by Theorem 3.8.
I suspect that the kernels are trivial in many cases.
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