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THE HALF-SPACE PROPERTY AND ENTIRE

POSITIVE MINIMAL GRAPHS IN M × R.

Harold Rosenberg, Felix Schulze & Joel Spruck

Abstract

We show that a properly immersed minimal hypersurface in
M × R+ equals someM ×{c} whenM is a complete, recurrent n-
dimensional Riemannian manifold with bounded curvature. If on
the other hand,M is not necessarily recurrent but has nonnegative
Ricci curvature with curvature bounded below, the same result
holds for any positive entire minimal graph over M .

1. Introduction

A problem that has received considerable attention is to give con-
ditions that force two minimal submanifolds S1, S2 of a Riemannian
manifold N to intersect. If they do not intersect, does this determine
the geometry of S1, S2 in N?

Perhaps the simplest example of this situation is when N is a strictly
convex ovaloid (i.e., the 2-dimensional sphere with a metric of positive
curvature) and S1, S2 are complete embedded geodesics of N . Then
S1 and S2 must intersect. This generalizes to compact 3-manifolds N
of positive sectional curvature: if S1, S2 are finite topology complete
minimal surfaces embedded in N , they must intersect. This follows from
the minimal lamination closure theorem [15]. There is also the classical
theorem of Frankel [7] that states that if N is a closed n-dimensional
manifold with positive Ricci curvature and S1, S2 are compact minimal
(n − 1)-dimensional submanifolds immersed in N , then they intersect.
For some other results on this problem, see [4, 5, 14, 6, 10].

In this paper we consider this question when N =M ×R whereM is
a complete n-dimensional Riemannian manifold, S1 =M × {0} and S2
is a properly immersed minimal hypersurface in M ×R+. Our problem
then becomes to determine what conditions on M imply that S = S2 is
the totally geodesic slice M × {c} for some positive c?

Perhaps the first result in this direction was the celebrated theorem
of Bombieri, De Giorgi, and Miranda [1], who proved that an entire
minimal positive graph over Rn is a totally geodesic slice. The hyperbolic

Received 6/29/2012.

321



322 H. ROSENBERG, F. SCHULZE & J. SPRUCK

plane H2 does not have this property; there are entire bounded minimal
graphs that are not slices.

For a proper immersed minimal surface S in R
3 = R

2 × R+, the
foundational result was discovered by Hoffman and Meeks [11], who
proved that S = R

2×{c}, c ≥ 0. They called this the half-space theorem.

Definition 1.1. We will say that M has the half-space property if a
minimal hypersurface S properly immersed in M × R+, equals a slice
M × {c}. Since there are rotationally invariant minimal hypersurfaces
in R

n+1, n > 2, that are bounded above and below (catenoids), M =
R
n, n > 2 does not have the half-space property, but entire minimal

positive graphs over Rn are slices.

Hence it is interesting to find conditions on M that ensure that M
has the half-space property or the property that positive entire minimal
graphs over M are slices. Our contributions to these questions are the
following two theorems.

Theorem 1.2. LetMn be a complete recurrent Riemannian manifold
with bounded sectional curvatures |Kπ| ≤ K0 for some constant K0.
Then M has the half-space property.

Theorem 1.3. Let Mn be a complete Riemannian manifold with
nonnegative Ricci curvature and sectional curvatures Kπ ≥ −K0 for a
nonnegative constant K0. Let S be an entire minimal graph in M × R

with height function u ≥ 0. Then S =M ×{c} for some constant c ≥ 0.

In the same spirit, an interesting question is to study those complete
embedded minimal hypersurfaces inM×R, whose angle function 〈N, ∂

∂t〉
does not change sign; see [6].

Definition 1.4. That M in Theorem 1.2 is recurrent means that for
any nonempty bounded open set U , every bounded harmonic function
on M \ U is determined by its boundary values. Furthermore, if M \ U
is quasi-isometric to N \ V , then M is recurrent if and only if N is
recurrent. For a detailed discussion see [9, 13].

Example 1.5. Some interesting examples of allowable M may be
constructed as follows. LetN be a closed manifold and takeM = N×R

2,
or M = N × R, or M = N × S, S a complete surface with quadratic
area growth or finite total curvature. These examples have quadratic vol-
ume growth so they are recurrent. Thus, removing a bounded nonempty
open set from M , what is left is parabolic, i.e., any bounded harmonic
function is determined by its boundary values.
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2. Local formulas for minimal graphs

Let u be the height function of an n dimensional minimal graph
S = {(x, u(x)) : x ∈ BR(p)} in Mn × R where M is complete with
nonnegative Ricci curvature and BR(p) is a geodesic ball of radius R
about p. If ds2 = σijdxidxj is a local Riemannian metric on M , then
M ×R is given the product metric ds2 + dt2 where t is a coordinate for
R. Then the height function u(x) ∈ C2(Ω) satisfies the divergence form
equation

(2.1) divM
( ∇Mu√

1 + |∇Mu|2

)
= 0

where the divergence and gradient ∇Mu are taken with respect to the
metric on M . Equivalently, equation (2.1) can be written in nondiver-
gence form

(2.2)
1

W
gijDiDju = 0 , where W =

√
1 + |∇Mu|2 ,

D denotes covariant differentiation on M and

gij = σij − uiuj

W 2
, ui = σijDju .

This can be seen as follows. Let x1, . . . xn be a system of local coordi-
nates for M with corresponding metric σij. Then the coordinate vector
fields for S and the upward unit normal to S are given by

(2.3) Xi =
∂

∂xi
+ ui

∂

∂t

and

(2.4) N =
1

W

(
− uj

∂

∂xj
+
∂

∂t

)
, ui = σijuj .

The induced metric on S is then

(2.5) gij = 〈Xi,Xj〉 = σij + uiuj

with inverse

(2.6) gij = σij − uiuj

W 2
.

It is easily seen that

(2.7) g = det(gij) = σW 2 , σ = det(σij) .

The second fundamental form bij of S is given by (D is covariant
differentiation on M × R)

bij =
〈
DXi

Xj , ν
〉
=

〈
D ∂

∂xi

∂

∂xj
+ uij

∂

∂t
,N

〉

=
〈
Γk
ij

∂

∂xk
+ uij

∂

∂t
, ν

〉
=

1

W

(
− Γk

iju
lσkl + uij

)
.

(2.8)
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Hence,

(2.9) bij =
DiDju

W
,

and so the mean curvature H of S is then given by

(2.10) nH =
1

W
gijDiDju .

The area functional of S is given in local coordinates by

A(S) =

∫
W

√
σ dx .

As a functional of u, this gives the Euler-Lagrange equation

(2.11) divM
(∇Mu

W

)
=

1√
σ
Di

(√
σ
ui

W

)
= 0 .

It is easily seen that (2.2) is the nondivergence form of (2.11).

We will also need the well-known formulae

∆S u = 0(2.12)

∆SW−1 = −
(
|A|2 + R̃ic(N,N)

)
W−1 ,(2.13)

where |A| is the norm of the second fundamental form of S, R̃ic is the
Ricci curvature of M × R, and ∆S is the Laplace-Beltrami operator of
S given in local coordinates by

(2.14) ∆S ≡ divS
(
∇S ·

)
=

1√
g
Di

(√
ggijDj ·

)
= gijDiDj .

Since τ := d
dt is a Killing vector field onM×R, W−1 = 〈N, τ〉 is a Jacobi

field and so satisfies the Jacobi equation (2.13). For a clean derivation
of (2.13) using moving frames, see [17, section 2] where M is three di-
mensional but the derivation is valid in all dimensions. Equation (2.12)
is easily seen to be equivalent to (2.2).

From (2.14) follows the important formulae

(2.15) ∆Sϕ(x) = gijDiDj ϕ

and

(2.16) ∆S g(ϕ) = g′(ϕ)∆S ϕ+ g′′(ϕ)gijDiϕDjϕ .

This implies that

∆SW = 2W−1|∇SW |2 +W
(
|A|2 + R̃ic(N,N)

)
.

Let us for the moment assume that at a point p ∈ S the normal N is
not equal to τ . We let

γ :=
pTM (N)

|pTM (N)| ,
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where pTM is the projection to the tangent space of the horizontal plane
through p in M × R. It then holds that

R̃ic(N,N) = RicM (pTM (N), pTM (N)) =
(
1−W−2

)
RicM (γ, γ) .

Noting that this is still trivially true if N = τ , we arrive at

(2.17) ∆SW = 2W−1|∇SW |2 +W |A|2 +W
(
1−W−2

)
RicM (γ, γ) .

Note that by (2.4) we have R̃ic(N,N) =W−2RicM (∇Mu,∇Mu), which
is always well defined.

Now let h(x) = η(x)W (x) with η ≥ 0 smooth. In the following we
introduce the auxiliary elliptic operator L. Using (2.17), a simple com-
putation gives

Lh := ∆Sh− 2gij
DiW

W
Djh

= η
(
∆SW − 2

W
gijDiWDjW

)
+W∆Sη(2.18)

=W
(
∆Sη + η

(
|A|2 + (1−W−2)RicM (γ, γ)

))
.

3. The recurrent case

The original proof by Hoffman and Meeks of the half-space theorem
in R

3 used the family of minimal surfaces obtained from a catenoid by
homothety. We will use a discrete family of minimal graphs in M × R,
like the catenoids in R

3.
Let D1 ⊂ M be open and bounded with ∂D1 smooth. Since M has

bounded sectional curvatures, we can apply Theorem 0.1 of Cheeger
and Gromov [2] to assert the existence of an exhaustion of M , D1 ⊂
D2 ⊂ · · · ⊂ Dn ⊂ · · · by domains with smooth boundaries, such that
the norm of the second fundamental form of the boundaries ∂Di is
uniformly bounded by C1 and Di ⊂ Di+1. We denote ∂Dn by ∂n and
by An the annular-type domain Dn \D1, with ∂An = ∂1 ∪ ∂n.

Note that M × {0} is a stable minimal hypersurface in M × R (it is
a leaf of the minimal foliation M × {c}, c ∈ R). Since An is a strict
subset of M × {0} it is strictly stable, so any sufficiently small smooth
perturbation of ∂An to Γn,t gives rise to a smooth family of minimal hy-
persurfaces Sn,t with ∂Sn,t = Γn,t, and Sn,0 = An. The Sn,t are smooth
up to their boundary (we will use C2).

We apply this to the deformation of ∂An, which is the graph over
∂An given by ∂1∪ (∂n×{t}), for t ≥ 0. Then for t sufficiently small, Sn,t
is the graph of a smooth function un,t defined on An, with boundary
values 0 on ∂1 and t on ∂n. Note that un,t satisfies the minimal surface
equation on An and by the maximum principle we have 0 ≤ un,t ≤ t.
Furthermore, as long as |∇Mun,t| is uniformly bounded, the DeGiorgi-
Nash-Moser and Schauder estimates imply uniform estimates for all
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higher derivatives up to the boundary. Thus to apply the method of
continuity, we need only show uniform gradient estimates.

We will first present a maximum principle for the function

W =
√

1 + |∇Mu|2

on S = graph(u) ⊂ M × R, where we assume that u : Ω → R is a
solution to the minimal surface equation on Ω ⊂ M . From (2.17), we
see that if the Ricci curvature of M is nonnegative then W is bounded
on S by its maximum on ∂S. To treat the case that the Ricci curvature
of M is only bounded from below, we consider the function

h = η ·W , η = eαu

where α > 0. From (2.12) and (2.16) we find

∆Sη = α2η|∇Su|2 = α2(1−W−2)η .

Then, using (2.18), we have

(3.1) Lh = h
(
|A|2 +

(
1−W−2

)(
α2 +RicM (γ, γ)

))
.

This implies the following estimate.

Lemma 3.1. Let Ω ⊂M be open and bounded, and let u ∈ C2(Ω) ∩
C1(Ω̄) be a solution of the minimal surface equation in Ω. Then

sup
Ω

√
1 + |∇Mu|2 ≤ sup

Ω
e−αu · sup

∂Ω

(
eαu

√
1 + |∇Mu|2

)
,

where α2 = sup{max{−RicM (γ, γ), 0} | γ ∈ TpM, |γ| = 1, p ∈ Ω}.
Proof. By our choice of α > 0, we see from (2.18) that Lh ≥ 0. The

result now follows from the maximum principle. q.e.d.

Remark 3.2. In the case that S has constant mean curvature H,
one can compute that

Lh = h
(
α
nH

W
+ |A|2 +

(
1−W−2

)(
α2 +RicM (γ, γ)

))
.

By considering −u instead of u if necessary, we can assume that H ≥ 0
and arrive at the same gradient estimate as before.

Lemma 3.1 implies that to use the method of continuity for the surfaces
Sn(t) we only need a priori gradient bounds on ∂An.

For convenience of notation, assume the sectional curvatures of M
are bounded from above by K0 = 1. Then the Riccati comparison es-
timates imply that for any point p in M , the exponential map expp :
TpM ⊃ Bπ(0) → Bπ(p) is a local diffeomorphism. Let us for the mo-
ment also assume that the injectivity radius of M is greater or equal
to 1; i.e., the exponential map expp : TpM ⊃ B1(0) → B1(p) is actually
a diffeomorphism.
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We now almost explicitly construct a catenoid-like supersolution w =
w(r; r0, p) of the minimal surface equation in an annulusA(p) := B4r0(p)\
B2r0(p) of height 2δ0 where r = d(x, p) is the distance function from x
to p. Here r0 will be chosen sufficiently small depending on the bound
K0 = 1 for the sectional curvatures of M and the lower bound 1 for the
injectivity radius of M.

Lemma 3.3. For r0 sufficiently small, there exists w = ϕ(r)−ϕ(2r0)
satisfying

divM
( ∇Mw√

1 + |∇Mw|2

)
< 0 in A(p)(3.2)

w = 0 on r = 2r0(3.3)

w = 2δ0 := ϕ(4r0)− ϕ(2r0) on r = 4r0(3.4)

where ϕ′(r) > 0, ϕ(r0) = 0, ϕ′(r0) = +∞ and the inverse function
r = γ(s) of ϕ(r) is implicitly defined by

(3.5) s =

∫ γ

r0

dt√
( t
r0
)2n − 1

.

Proof. From (2.2) it suffices to show that in A(p)

(3.6) Mw :=
(
σij − wiwj

W 2

)
DiDjw < 0 , where W =

√
1 + |∇Mw|2 .

When w = ϕ(r), we easily find from (3.6) that

(3.7) Mw = ϕ′(r)∆Mr +
ϕ′′(r)

1 + ϕ′2(r)
.

We fix r0 small enough that ∆Mr < n
r in B4r0(p). Then from (3.7),

(3.8) Mw <
ϕ′′(r)

1 + ϕ′2(r)
+
n

r
ϕ′(r),

and it suffices to solve

(3.9)
ϕ′′

1 + ϕ′2 +
n

r
ϕ′ = 0.

But (3.9) is the ode for the height function of the top half of the catenoid
in R

n+1 × R over {r > r0} ⊂ R
n+1 and its solution is well known to be

given as described. q.e.d.

Remark 3.4. Using the continuity method, it is immediate that we
can deform w to an exact solution of the minimal surface equation in
A(p).
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Lemma 3.5. For every 0 ≤ t ≤ δ0 the surfaces Sn,t exist and are

smooth graphs of un,t over An satisfying

0 < un,t < t in An(3.10)

|∇Mun,t| ≤ C3 on An(3.11)

for all 0 ≤ t ≤ δ0 and n ∈ N, with C3 independent of n and t.

Proof. By comparing with horizontal slices of height zero and δ0, the
height of the surfaces Sn,t is bounded from below by zero and from above
by δ0.

We now use the barrier Zr0,p = graph(w) near the boundary of An

to obtain a gradient bound for Sn,t, provided 0 ≤ t ≤ δ0. Let p0 ∈ ∂An.
Since the norm of the second fundamental form of each component of
∂An is bounded by C1, there is a p1 ∈ M such for r0 sufficiently small
depending only on C1, B2r0(p1) touches An from its exterior at p0. Note
that B2r0(p1) still might intersect An, but it touches An in p0 from its
exterior. See figure 1.
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Figure 1. Barrier at the inner boundary ∂1 of An.

We now consider the part of Zr0,p1 that is a graph over the connected
component of (B4r0(p1) \ B2r0(p1)) ∩ An which has p0 in its boundary.
Suppose first p0 ∈ ∂1. Note that on its boundary Zr0,p1 always lies above
Sn,t, as long as 0 ≤ t ≤ δ0. By the maximum principle this implies
that Zr0,p1 lies above Sn(t), which in turn implies a gradient bound for
un,t at p0. By reflecting Zr0,p through the plane of height 0 in M × R

and translating up by t, we can do a similar construction at the outer
boundary ∂n of An for Sn,t and obtain a gradient bound for un,t that is
uniform in n and t. See figure 2.

In the construction above, we have assumed that the injectivity radius
of M is bounded from below by 1. In the case that there is no positive
lower bound for the injectivity radius of M , we proceed as follows. As
pointed out earlier, expp : TpM ⊃ Bπ(0) → Bπ(p) is a local diffeomor-
phism. Thus we can pull back the metric of M to Bπ(0) ⊂ TpM . It
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Figure 2. Reflected and translated barrier at the outer
boundary ∂n of An.

is then easy to see that expp : TpM ⊃ B2(0) → B2(p) is a local Rie-
mannian covering map, and the injectivity radius at 0 of Bπ(0) ⊂ TpM
is π. To obtain the gradient bounds at p0 ∈ ∂An as discussed above,
we can lift the whole construction, including An and Sn,t, locally to
B1(0) ⊂ TpM and again use Zr0,p to obtain the same gradient bound
for the lift of un,t. But this implies the gradient bound for un,t itself.

The above construction of barriers at the boundary implies that

|∇Mun,t| ≤ |∇Mw| = ϕ′(2r0) = C2

on ∂An, independent of n and t. By Lemma 3.1, this implies the stated
a priori gradient bound for un,t on An. The DeGiorgi-Nash-Moser and
Schauder estimates then imply a priori bounds of all higher derivatives
of un,t on An. Thus we obtain existence by the method of continuity.
q.e.d.

Remark 3.6. Note that to get a gradient bound at the inner bound-
ary ∂1 for the surfaces Sn,t for 0 ≤ t ≤ δ, just for an implicit 0 < δ ≤ δ0,
one can argue that by the strict stability of S1,0, the graphs S1,t exist
for t ∈ [0, δ] and have bounded gradient. One can then use S1,δ as an
upper barrier for the surfaces Sn,t on the inner boundary ∂1 to obtain
an a priori gradient estimate there.

By construction, we have that Sn,t lies above Sm,t on An for m >
n. Since for 0 ≤ t ≤ δ0 the surfaces have uniform gradient bounds,
the DeGiorgi-Nash-Moser and Schauder estimates imply locally uniform
estimates for all higher derivatives. We take the limit n → ∞ of the
surfaces Sn,δ0 to obtain a limit surface S, which is a minimal graph
over M \D1 and has boundary value 0 on ∂1. Furthermore, the height
function u is bounded by δ0 and the gradient of u by C.

Since the gradient of u is bounded, S = graph(u) is quasi-isometric to
M \D1, and hence it is parabolic. Thus the height function u on S is a
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bounded harmonic function on graph(u) and so must be constant, equal
to zero. That is, u ≡ 0 and the graphs Sn,δ0 converge locally uniformly
to zero.

Now we can prove the half-space theorem.

Proof of Theorem 1.2. Suppose S is a minimal hypersurface properly
immersed in M × (−∞, c). Lowering M × {c} until it “touches” S, we
can suppose S is asymptotic to M × {c} at infinity. More precisely, if
M×{τ} touches S for the first time at some point of S, then S =M×{τ}
by the maximum principle and we are done. Otherwise, the first contact
is at infinity so we can assume S is asymptotic toM×{c}. By translating
S vertically we can assume that c = 0.

Since S is proper, we can assume that there is a point p0 ∈M and a
cylinder C = Br0(p0) × (−r0, 0) for some r0 > 0 such that S ∩ C = ∅.
We can assume that r0 is less than the injectivity radius at p. In our
construction of the surfaces Sn,t0 , we choose D1 = Br0/2(p0) and t0 =
min{δ0, r0/2}. Note that translating Sn,t0 vertically downwards by an
amount t0 keeps the boundaries of the translates of Sn,t0 strictly above
S. Thus by the maximum principle all the translates remain disjoint
from S. We call S′

n,t0 this final translate. Note that all the surfaces S′
n,t0

lie above S and converge as n→ ∞ to the planeM×{−t0}. Thus S lies
below M ×{−t0}, which contradicts that S is asymptotic to M ×{0}.
q.e.d.

4. The graphical case

Theorem 4.1. Assume M is complete with nonnegative Ricci cur-
vature and sectional curvatures Kπ ≥ −K0 for a nonnegative constant
K0. Let S = graph(u) be a minimal graph in M × R over BR(p) with
u ≥ 0. Then

|∇Mu(p)| ≤ C1e
C2u2(p)Ψ(R)

R2

where Ψ(R) = (n− 1)
√
K0R coth (

√
K0R) + 1.

Proof. Let h(x) = η(x)W (x) withW =
√

1 + |∇Mu|2, η(x) = g(ϕ(x)),

g(t) = eKt−1 for someK ≥ 0, and ϕ(x) = (−u(x)/2u(p)+(1− d(x,p)2

R2 ))+

where + denotes the positive part. Note that η(x) is nonnegative and
equal to zero iff ϕ(x) = 0. Let C(p) denote the cut locus of p and
U(p) = BR(p)\C(p) be the set of points q 6= p in BR(p) for which there
is a unique minimal geodesic γ joining p and q with q not conjugate to p
along γ. It is well known that d(x, p) is smooth on U(p), which is open.
Note that d(x, p)2 and so h(x) is smooth in a neighborhood of p.

Case 1: The max of h occurs at a point q ∈ U(p)



THE HALF-SPACE PROPERTY 331

From (2.18) we find since M has nonnegative Ricci curvature,

(4.1) Lh := ∆Sh− 2gij
DiW

W
Djh ≥ KeKϕW

(
∆Sϕ+KgijDiϕDjϕ

)
.

The point is now to choose K so that ∆Sϕ+KgijDiϕDjϕ > 0 on the
set where h > 0 and W is large. We will need a standard comparison
lemma [12].

Lemma 4.2. Suppose M has sectional curvatures Kπ ≥ −K0 for a
nonnegative constant K0. Let q ∈ U(p) Then the (nonzero) eigenval-
ues of D2d(p, x) at q (principal curvatures of the local distance sphere
through q) are bounded above by those of the corresponding distance
sphere in the hyperbolic space of curvature −K0.

We have ∆Su = 0, so

∆Sϕ = − 2

R2

(
d(x, p)∆Sd(x, p) + gijDid(x, p)Djd(x, p)

)
.

Using Lemma 4.2 and (2.14) we see that

(4.2) ∆Sϕ ≥ −Ψ(R)

R2

where Ψ(R) = (n− 1)
√
K0R coth

(√
K0R

)
+ 1 at a point q ∈ U(p).

We next compute

gijDiϕDjϕ = gijDi

(
u(x)

2u(p)
+

2d(x, p)

R2
Did(x, p)

)

·Dj

(
u(x)

2u(p)
+

2d(x, p)

R2
Djd(x, p)

)

=
|∇u|2

4u(p)2W 2
+

4d2(x, p)

R4

(
1−

〈∇u
W

,∇d(x, p)
〉2

M

)

+
2d(x, p)

u(p)R2

〈
∇u,∇d(x, p)

〉
M

W 2
.

Hence

(4.3) gijDiϕDjϕ ≥
( |∇u|
2u(p)W

− 2

RW

)2

.

Now assume that

(4.4) W (q) ≥ max

{
2√
3
,
16u(p)

R

}
.

Then from (4.3) and (4.4),

(4.5) gijDiϕDjϕ ≥ 1

64u(p)2
.
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Therefore from (4.2) and (4.5),

(4.6)
(
∆Sϕ+KgijDiϕDjϕ

)
(q) ≥ −Ψ(R)

R2
+

K

64u2(p)
.

Now choose

(4.7) K = 64u2(p)
Ψ(R)

R2
+ 2 .

Then (4.2) and (4.6) imply Lh(q) > 0, contradicting the maximum
principle. Hence (4.4) cannot hold, and so

(4.8) W (q) ≤ max

{
2√
3
,
16u(p)

R

}
.

Therefore h(p) = (e
K

2 −1)W (p) ≤ (eK−1)max
{

2√
3
, 16u(p)R

}
. After some

manipulation we see that Theorem 4.1 follows.

Case 2: q 6∈ U(p).
Lemma 4.3. (a) Suppose the maximum of h in BR(p) occurs at q.

Then there is a unique minimal unit speed geodesic γ(s) joining p and
q.
(b) For any ε > 0, let pε = γ(ε). Then d(x, pε) is smooth in a neighbor-
hood of q.

Proof. (a) Suppose the maximum of h occurs at q 6= p. Then since
h(x) ≤ h(q) and

d(x, p) = R

√
1− u(x)

2u(p)
− 1

K
log

(
1 +

h(x)

W (x)

)
,

we see that

d(x, p) ≥ ψ(x) := R

√
1− u(x)

2u(p)
− 1

K
log

(
1 +

h(q)

W (x)

)

with equality at q. Note that ψ(x) is possibly only well defined locally in
a small neighborhood B2ρ(q). In this case, we can let ψ(x) = λ(x)ψ(x)
where 0 ≤ λ(x) ≤ 1 is a smooth cutoff function with

λ(x) =

{
1 x ∈ Bρ(q),
0 x ∈ BR(p) \B2ρ(q).

Then d(x, p) ≥ ψ(x) in BR(p) with equality at q.
Hence we may assume ψ(x) is smooth on BR(p), and so

ψ(x)− ψ(q) ≤ d(x, p)− d(q, p) ≤ d(x, q) ;

hence |∇Mψ(q)| ≤ 1.
Now let γ(s) be a unit speed minimal geodesic joining p to q. Then

ψ(γ(s)) ≤ s .
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and
ψ(γ(d(q, p)) = ψ(q) = d(q, p) .

Hence ∇Mψ(q) = γ′(d(q, p)) and so there is only one minimal geodesic
joining p and q.

(b) Clearly q is not conjugate to pε. Moreover, since d(x, pε) + ε ≥
d(x, p) ≥ ψ(x) with equality at q, the argument of part (a) shows that
γ is the unique minimal geodesic joining pε and q. Hence q ∈ U(pε), so
d(x, pε) is smooth in a neighborhood of q. q.e.d.

We now complete the proof of case 2. Define

ϕε = − u(x)

2u(p)
+

(
1− (d(x, pε) + ε)2

R2

)+

, ηε = g(ϕε), hε = ηεW .

Then since d(x, pε) + ε ≥ d(x, p) ≥ ψ(x) with equality at q, we have
that

ϕε ≤ ϕ, ηε ≤ η, hε ≤ h

with equality at q ∈ U(pε). Thus by Lemma 4.3 we may apply case 1
(and let ε→ 0) to complete the proof. q.e.d.

Corollary 4.4. Let M be as in Theorem 4.1. If S is a complete
minimal graph with height function u ≥ 0, then |∇Mu| ≤ C1.

Proof. Let R→ ∞ in Theorem 4.1. q.e.d.

Remark 4.5. As in [18], there is a version of Theorem 4.1 for graphs
with constant or variable mean curvature H(x) assuming the sectional
curvatures of M are bounded below with no assumption on Ricci cur-
vature. In particular, Corollary 4.4 holds for bounded solutions under
these hypotheses. The method presented here sharpens the result of [18]
in that no control of injectivity radius is needed.

Set m(R) = infBR(P ) u. Then more generally we have the following
corollary.

Corollary 4.6. Let M be as in Theorem 4.1 and let S is a complete
minimal graph with height function u.

a) If K0 > 0, assume lim supR→∞
m2(R)

R = 0.

b) if K0 = 0, assume lim supR→∞
|m(R)|

R = 0.

Then |∇Mu| ≤ C1.

Proof of Theorem 1.3. We will first give a proof, applying Theorem 7.4
in the work of Saloff-Coste [16]. Note that by Corollary 4.4 we have
that |∇Mu| ≤ C1. Thus equation (2.1) implies that u is L-harmonic in
the sense of Saloff-Coste (compare (8) in [16]), where the operator L is
given by

Lv = −m−1divM
(
m∇Mu)
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withm =W−1. Since the Ricci curvature ofM is nonnegative, Theorem
7.4 in [16] implies that u is equal to a constant.

In the following we will give a more explanatory proof, using the
Moser technique as developed by Saloff-Coste [16] and Grigor’yan [8].

Let L be a uniformly elliptic divergence form operator such that L1 =
0 (i.e. no zeroth order term) on a complete Riemannian manifold M .
We say the classical Moser Harnack inequality holds, if for any R > 0,
whenever u is a nonnegative solution of Lu = 0 on B2R(p), then

sup
BR(p)

u ≤ C inf
BR(p)

u

for a constant C depending only on L and M .
It is now well understood that the classical Harnack inequality (in

fact the stronger parabolic version) is equivalent to the following two
properties:

|B2R(p)| ≤ C1|BR(p)|(1)
∫

BR(p)
|f − f |2dV ≤ C2R

2

∫

B2R(p)
|∇f |2dV, f ∈ C∞(M)(2)

where f = 1
|BR(p)|

∫
BR(p) f dV and C1, C2 depend only on M ; see, for

example, Saloff-Coste [16] and Grigor’yan [8]. In particular under the
assumption of nonnegative Ricci curvature, then property (1) follows
from the classical comparison theorems and property (2) follows from
the work of Buser [3].

We now prove our graphical half-space theorem. Assume that S is
a complete minimal graph with height function u ≥ 0. According to
Corollary 4.6, |∇u| ≤ C1 globally on M . Thus the induced metric gij
given by (2.5) is uniformly elliptic and the Laplacian ∆S on S given
by (2.14) is a divergence form uniformly elliptic operator. We may by
translation assume infM u = 0 Thus given any ε > 0 there is a point
p ∈M with u(p) ≤ ε. Applying the Moser Harnack inequality yields for
all R

sup
BR(P )

u ≤ C inf
BR(P )

u ≤ Cε

for a uniform constant C independent of R. Letting R → ∞ and then
ε→ 0 gives u ≡ 0. q.e.d.

Remark 4.7. Theorem 1.3 can be improved somewhat to allow

lim sup
R→∞

|m(R)|
Rα

= 0

for some controlled small α ∈ (0, 12).
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