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STRONGER VERSIONS OF THE ORLICZ-PETTY

PROJECTION INEQUALITY

Károly J. Böröczky

Abstract

We verify a conjecture of Lutwak, Yang, and Zhang about the
equality case in the Orlicz-Petty projection inequality, and provide
an essentially optimal stability version.

The Petty projection inequality (Theorem 1), its Lp extension, and
its analytic counterparts, the Zhang-Sobolev inequality [43] and its Lp

extension by A. Cianchi, E. Lutwak, D. Yang, and G. Zhang [8, 32],
are fundamental affine isoperimetric and affine analytic inequalities (see
in addition, e.g., D. Alonso-Gutierrez, J. Bastero, and J. Bernués [1];
R.J. Gardner and G. Zhang [14]; C. Haberl and F.E. Schuster [21, 22];
C. Haberl, F.E. Schuster and J. Xio [23]; E. Lutwak, D. Yang, and G.
Zhang [31, 33, 34]; M. Ludwig [27, 28]; M. Schmuckenschläger [40],
F.E. Schuster, T. Wannnerer [41] and J. Xiao [42]). The notion of the
projection body and its Lp extension has found its natural context in
the work of E. Lutwak, D. Yang, and G. Zhang [34], where the authors
introduced the concept of the Orlicz projection body. The fundamental
result of [34] is the Orlicz-Petty projection inequality. The goal of this
paper is to strengthen this latter inequality, extending the method of E.
Lutwak, D. Yang, and G. Zhang [34] based on Steiner symmetrization.

When the equality case of a geometric inequality is characterized, it
is a natural question how close a convex body K is to the extremals
if almost inequality holds for K in the inequality. Precise answers to
these questions are called stability versions of the original inequalities.
Stability results for geometric estimates have important applications;
see for example B. Fleury, O. Guédon and G. Paouris [12] for the central
limit theorem on convex bodies, and D. Hug and R. Schneider [24] for
the shape of typical cells in a Poisson hyperplane process.

Stability versions of sharp geometric inequalities have been around
since the days of Minkowski; see the survey paper by H. Groemer [17]
about developments until the early 1990s. Recently essentially optimal
results were obtained by N. Fusco, F. Maggi and A. Pratelli [13] con-
cerning the isoperimetric inequality, and by A. Figalli, F. Maggi and
A. Pratelli ([10] and [11]) for the Brunn-Minkowski inequality; see F.
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Maggi [35] for a survey of their methods. In these papers, stability
is understood in terms of the volume difference of normalized convex
bodies. In this paper we follow J. Bourgain and J. Lindenstrauss [5],
who used the so-called Banach-Mazur distance for their result (5) about
projection bodies quoted below.

We write o to denote the origin in R
n, u · v to denote the scalar

product of the vectors u and v, H to denote the (n − 1)-dimensional
Hausdorff measure, and [X1, . . . ,Xk] to denote the convex hull of the
sets X1, . . . ,Xk in R

n. For a non-zero u in R
n, let u⊥ be the orthogonal

linear (n−1)-subspace, and let πu denote the orthogonal projection onto
u⊥. In addition, let Bn be the Euclidean unit ball, and let κn be its
volume. For x ∈ R

n, ‖x‖ denotes the Euclidean norm. We write A∆B
to denote the symmetric difference of the sets A and B.

Throughout this article, a convex body in R
n is a compact convex

set with non-empty interior. In addition, we write Kn
o to denote the set

of convex bodies in R
n that contain the origin in their interiors. For

a convex body K in R
n, let hK(u) = maxx∈K x · u denote the support

function of K at u ∈ R
n, and let K∗ be the polar of K, defined by

K∗ = {u ∈ R
n : hK(u) ≤ 1}.

Let SK be the surface area measure of K on Sn−1. That is, if σ is an
open subset of Sn−1, then SK(σ) is the (n− 1)-dimensional Hausdorff-
measure of all x ∈ ∂K, where there exists an exterior unit normal lying
in σ. Minkowski’s projection body ΠK is the o-symmetric convex body
whose support function is

hΠK(x) = ‖x‖ · H(πxK) =
1

2

∫

Sn−1

|x · w| dSK(w) for x ∈ R
n\o.

We write Π∗K to denote the polar of ΠK, and note that V (Π∗K)V (K)n−1

is invariant under affine transformations of R
n (see E. Lutwak [29]).

Petty’s projection inequality can now be stated as follows.

Theorem 1 (Petty). If K is a convex body in R
n, then

V (Π∗K)V (K)n−1 ≤ (κn/κn−1)
n,

with equality if and only if K is an ellipsoid.

To define the Orlicz projection body introduced by E. Lutwak, D.
Yang, and G. Zhang [34], we write C to denote the set of convex func-
tions ϕ : R → [0,∞) such that ϕ(0) = 0, and ϕ(−t) + ϕ(t) > 0 for
t 6= 0. In particular,
(1)

every ϕ ∈ C is

{
either strictly monotone decreasing on (−∞, 0],
or strictly monotone increasing on [0,∞).
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Let ϕ ∈ C, and letK ∈ Kn
o . The corresponding Orlicz projection body

ΠϕK is defined in [34] via its support function such that if x ∈ R
n, then

(2)

hΠϕK(x) = min

{
λ > 0 :

∫

Sn−1

ϕ

(
x · w

λhK(w)

)
hK(w) dSK(w) ≤ nV (K)

}
.

Since the surface area measure of every open hemisphere is positive, (1)
yields that the minimum in (2) is attained at a unique λ > 0.

An important special case is when ϕ(t) = |t|p for some p ≥ 1. Then
ΠϕK is the Lp projection body ΠpK introduced by E. Lutwak, D. Yang,
and G. Zhang [31] (using a different normalization):

(3) hΠpK(x)p =
1

nV (K)

∫

Sn−1

|x · w|phK(w)1−p dSK(w).

In particular, if p = 1, then

Π1(K) =
2

nV (K)
·ΠK.

In addition, if p tends to infinity, then we may define the L∞ polar
projection body Π∗

∞ to be K ∩ (−K).
Unlike ΠK, the Orlicz projection body ΠϕK is not translation in-

variant for a general ϕ ∈ C, and may not be o-symmetric. However, E.
Lutwak, D. Yang, and G. Zhang [34] show that

(4) Π∗
ϕAK = AΠ∗

ϕK holds for any A ∈ GL(n), K ∈ Kn
o , and ϕ ∈ C.

The following Orlicz-Petty projection inequality is the main result of
[34].

Theorem 2 (Lutwak, Yang, Zhang). Let ϕ ∈ C. If K ∈ Kn
o , then

the volume ratio
V (Π∗

ϕK)

V (K)

is maximized when K is an o-symmetric ellipsoid. If ϕ is strictly convex,
then the o-symmetric ellipsoids are the only maximizers.

If ϕ(t) = |t|, which is the case of the normalized classical projection
body, then every ellipsoid is a maximizer in the Orlicz-Petty projection
inequality (see Theorem 1). Thus, to summarize what to expect for an
arbitrary ϕ ∈ C, E. Lutwak, D. Yang, and G. Zhang [34] conjecture
that every maximizer is an ellipsoid. Here we confirm this conjecture.

Theorem 3. Let ϕ ∈ C. If K ∈ Kn
o maximizes the volume ratio

V (Π∗
ϕK)/V (K), then K is an ellipsoid.

A natural tool for stability results of affine invariant inequalities is
the Banach-Mazur distance δBM(K,M) of the convex bodies K and M
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defined by

δBM(K,M) = min{λ ≥ 0 : K − x ⊂ Φ(M − y) ⊂ eλ(K − x)

for Φ ∈ GL(n), x, y ∈ R
n}.

In particular, if K and M are o-symmetric, then x = y = o can be
assumed. In addition, for a line l passing through the origin o, we write
Kl to denote the set of o-symmetric convex bodies with axial rotational
symmetry around the line l. If K ∈ Kl, then

δBM(K,Bn) = min{λ ≥ 0 : E ⊂ K ⊂ eλE, where E ∈ Kl is an ellipsoid}.
It follows, for example, from a theorem of F. John [25] that δBM(K,Bn) ≤
lnn for any convex body K in R

n.
We strengthen Theorem 3 as follows, where we set ϕ̃(t) = ϕ(−t)+ϕ(t)

for ϕ ∈ C.
Theorem 4. If ϕ ∈ C and K ∈ Kn

o with δ = δBM (K,Bn), then

V (Π∗
ϕK)

V (K)
≤ (1− γ · δcn · ϕ̃(δc)) ·

V (Π∗
ϕB

n)

V (Bn)
,

where c = 840 and γ > 0 depends on n and ϕ.

Next we discuss what Theorem 4 yields for Petty’s projection inequal-
ity.

Corollary 5. If K is a convex body in R
n with δ = δBM (K,Bn),

then
V (Π∗K)V (K)n−1 ≤ (1− γ · δcn) (κn/κn−1)

n,

where c = 1680 and γ > 0 depends only on n.

The example below shows that the exponent cn for an absolute con-
stant c > 0 is of optimal order. G. Ambrus and the author [2] recently
proved Corollary 5 with an exponent of the form cn3 instead of the op-
timal cn.

Example Let K = [Bn,±(1 + ε)v)] for some v ∈ Sn−1. In this case,
the Banach-Mazur distance of K from any ellipsoid is at least ε/2, and

V (Π∗K)V (K)n−1 ≥ (1− γ0ε
n+1
2 )(κn/κn−1)

n,

where γ0 > 0 depends only on n.

As a related result, J. Bourgain and J. Lindenstrauss [5] proved that
if K and M are o-symmetric convex bodies in R

n, then

(5) δBM (ΠK,ΠM) ≥ γ · δBM (K,M)n(n+5)/2

where γ > 0 depends only on n, and they conjectured that the opti-
mal order of the exponent is cn for an absolute constant c > 0. The
exponent in (5) has been slightly improved by S. Campi [7] if n = 3,
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and by M. Kiderlen [26] for any n, but the conjecture is still wide open.
Corollary 5 is in accordance with this conjecture of J. Bourgain and J.
Lindenstrauss in the case when M is an ellipsoid. Actually, if K and M
are not o-symmetric, then their projection bodies may coincide even if
δBM (K,M) 6= 0 (see R. Schneider [38]).

If ϕ is strictly convex, then E. Lutwak, D. Yang, and G. Zhang [34]
proved that the o-symmetric ellipsoids are the only maximizers in the
Orlicz-Petty projection inequality (see Theorem 2). We prove a stability
version of this statement for even ϕ. For K ∈ Kn

o , let

δ∗EL(K) = min{λ ≥ 0 : E ⊂ K ⊂ eλE for some o-symmetric ellipsoid E}.
Since δ∗EL(K) becomes arbitrarily large if K is translated in a way such
that the origin gets close to ∂K, it is more natural to consider

δEL(K) = min{1, δ∗EL(K)}.
Theorem 6. Let ϕ ∈ C be even such that ϕ′′(t) is continuous and

positive for t > 0. If K ∈ Kn
o with δ = δEL(K), then

V (Π∗
ϕK)

V (K)
≤ (1− γ · δcn · ϕ(δc)) · V (Π∗

ϕB
n)

V (Bn)
,

where c = 2520 and γ > 0 depends only on n and ϕ.

Under the conditions of Theorem 6, let K ∈ Kn
o be such that

V (Π∗
ϕK)/V (K) is very close to V (Π∗

ϕB
n)/V (Bn). Then Theorem 4

yields that there exists a translate K ′ of K such that δEL(K
′) is small,

while Theorem 6 implies that already δEL(K) is small.
For the Lp projection body for p > 1, and for c = 2520, we have

V (Π∗
pK)

V (K)
≤
(
1− γ · δEL(K)c(n+p)

)
·
V (Π∗

pB
n)

V (Bn)
.

Here the order of the error term gets smaller and smaller as p grows. It
is not surprising, because Π∗

∞(K) = K ∩ (−K) for K ∈ Kn
o , and hence

V (Π∗
∞K)/V (K) is maximized by any o-symmetric convex body K.

Our arguments to prove Theorems 3, 4, and 6 are based on Steiner
symmetrization, and are variations of the method developed in E. Lut-
wak, D. Yang, and G. Zhang [34]. The novel ideas to prove Theorems 3
and 4 are to compare shadow boundaries in two suitable independent
directions, and to reduce the problem to convex bodies with axial ro-
tational symmetry around Ru for a u ∈ Sn−1. In the latter case, the
shadow boundaries parallel to u and orthogonal to u are well under-
stood, which makes it possible to perform explicit calculations.

For Theorem 4, the proof of the reduction to convex bodies with
axial rotational symmetry is rather technical, so the argument for the
corresponding statement, Theorem 14, is deferred to Section 5.

We note that W. Blaschke [3] characterized ellipsoids as the only
convex bodies such that every shadow boundary is contained in some
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hyperplane. A stability version of this statement was proved by P.M.
Gruber [19].

Acknowledgments. I am grateful for fruitful discussions with Gergő
Ambrus, Erwin Lutwak, Rolf Schneider, and Gaoyong Zhang during
a stay at NYU-Poly. Very special thanks are due to the anonymous
referees, whose remarks gave a whole new direction to the paper, and
helped it to be much more clear and readable.

1. Some facts about convex bodies

Unless we provide specific references, the results reviewed in this sec-
tion are discussed in the monographs by T. Bonnesen, and W. Fenchel
[4], P.M. Gruber [20], and R. Schneider [39]. We note that the L∞-
metric on the restriction of the support functions to Sn−1 endows the
space of convex bodies with the so-called Hausdorff metric. It is well-
known that volume is continuous with respect to this metric, and Lemma
2.3 in E. Lutwak, D. Yang, and G. Zhang [34] says that the polar Orlicz
projection body is also continuous for fixed ϕ ∈ C.

We say that a convex body M in R
n, n ≥ 3, is smooth if the tangent

hyperplane is unique at every boundary point, and we say that M is
strictly convex if every tangent hyperplane intersects M only in one
point.

Let K be a convex body in R
n. For v ∈ Sn−1, let SvK denote the

Steiner symmetral of K with respect to v⊥. In particular, if f, g are the
concave real functions on πvK such that

K = {y + tv : y ∈ πvK,−g(y) ≤ t ≤ f(y)},
then

(6) SvK = {y + tv : y ∈ πvK, |t| ≤ f(y)+g(y)
2 }.

Fubini’s theorem yields that V (SvK) = V (K). It is known that for any
convex body K, there is a sequence of Steiner symmetrizations whose
limit is a ball (of volume V (K)).

Next there exists a sequence of Steiner symmetrizations with respect
to (n − 1)-subspaces containing the line Rv such that their limit is
a convex body RvK whose axis of rotational symmetry is Rv. This
RvK is the Schwarz rounding of K with respect to v. In particular, a
hyperplane H intersects intK if and only if it intersects intRvK, and
H(H ∩K) = H(H ∩RvK) in this case.

For our arguments, it is crucial to have a basic understanding of the
boundaries of convex bodies. For x ∈ ∂K, let wx be a unit exterior
normal to ∂K at x. The following two well-known properties are con-
sequences of the fact that Lipschitz functions are almost everywhere
differentiable.

(i) wx is uniquely determined at H almost all x ∈ ∂K.
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(ii) The supporting hyperplane with exterior normal vector u inter-
sects ∂K in a unique point for almost all u ∈ Sn−1.

The shadow boundary Ξu,K of K with respect to a u ∈ R
n\o is

the family of all x ∈ ∂K such that the line x + Ru is tangent to K.
In addition, we call the shadow boundary Ξu,K thin if it contains no
segment parallel to u. According to G. Ewald, D.G. Larman, and C.A.
Rogers [9], we have

Theorem 7 (Ewald-Larman-Rogers). If K is a convex body in R
n,

then the shadow boundary Ξu,K is thin for H-almost all u ∈ Sn−1.

If a connected Borel U ⊂ ∂K is disjoint from the shadow boundary
with respect to a v ∈ Sn−1, then for any measurable ψ : πv(U) → R, we
have

(7)

∫

πv(U)
ψ(y) dy =

∫

U
ψ(πvx)|v · wx| dx.

If K ∈ Kn
o , then let ̺K be the radial function of K on Sn−1, defined

such that ̺K(v) v ∈ ∂M for v ∈ Sn−1. It follows that

(8) V (K) =

∫

Sn−1

̺K(w)n

n
dH(w).

In addition, for the polar K∗ of K, and v ∈ Sn−1, we have

(9) ̺K∗(v) = hK(v)−1.

We say that a convex body M is in isotropic position if V (M) = 1,
the centroid of M is the origin, and there exists LM > 0 such that∫

M
(w · x)2 dx = LM for any w ∈ Sn−1

(see A. Giannopoulos [15], A. Giannopoulos, and V.D. Milman [16];
and V.D. Milman, and A. Pajor [36] for main properties). Any convex
body K has an affine image M that is in isotropic position, and we set
LK = LM . We also note that if E is an o-symmetric ellipsoid in R

n,
then for any w ∈ Sn−1, we have

(10)

∫

E
(w · x)2 dx = hE(w)

2V (E)
n+2
n LBn .

Let ϕ ∈ C, and let K ∈ Kn
o . We collect some additional properties

of the Orlicz projection body. The cone volume measure VK associated

to K on Sn−1 defined by dVK(w) = hK(w)
nV (K) dSK(w) is a probability

measure whose study was initiated by M. Gromov, and V. Milman [18]
(see, say, A. Naor [37] for recent applications). The definition (2) of
ΠϕK yields (see Lemma 2.1 in E. Lutwak, D. Yang, and G. Zhang [34])
that

(11) x ∈ Π∗
ϕK if and only if

∫

Sn−1

ϕ

(
x · w
hK(w)

)
dVK(w) ≤ 1.
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2. Characterizing the equality case in the Orlicz-Petty

projection inequality

Our method is an extension of the argument by E. Lutwak, D. Yang,
and G. Zhang [34] to prove the Orlicz-Petty projection inequality, The-
orem 2, using Steiner symmetrization. The core of the argument of [34]
is Corollary 3.1, and here we also include a consequence of Corollary 3.1
from [34] for Schwarz rounding.

Lemma 8 (Lutwak, Yang, Zhang). If ϕ ∈ C, K ∈ Kn
o , and v ∈ Sn−1,

then
SvΠ

∗
ϕK ⊂ Π∗

ϕSvK.

In particular, V (Π∗
ϕSvK) ≥ V (Π∗

ϕK) and V (Π∗
ϕRvK) ≥ V (Π∗

ϕK).

We recall various facts from [34] that lead to the proof of Lemma 8,
because we need them in the sequel. We note that a concave function
is almost everywhere differentiable on convex sets.

Let ϕ ∈ C, let K ∈ Kn
o , and let v be a unit vector in R

n. We write
wx to denote an exterior unit normal at some x ∈ ∂K. In addition, we
frequently write an x ∈ R

n in the form x = (y, t) if x = y+ tv for y ∈ v⊥

and t ∈ R. If h is a concave function on πv(intK), then we define

〈h〉(z) = h(z) − z · ∇h(z) for z ∈ πv(intK) where ∇h(z) exists.
If µ1, µ2 > 0, and h1, h2 are concave functions on πv(intK), then

〈µ1h1 + µ2h2〉 = µ1〈h1〉+ µ2〈h2〉.
Let f, g denote the concave real functions on πvK such that

K = {(y, t) : y ∈ πvK,−g(y) ≤ t ≤ f(y)}.
If x = (z, f(z)) ∈ ∂K and x̃ = (z,−g(z)) ∈ ∂K for a z ∈ πv(intK), and
both f and g are differentiable at z, then

wx =

(
−∇f(z)√

1 + ‖∇f(z)‖2
,

1√
1 + ‖∇f(z)‖2

)
(12)

wx̃ =

(
−∇g(z)√

1 + ‖∇g(z)‖2
,

−1√
1 + ‖∇g(z)‖2

)
.(13)

From this, we deduce that for any (y, t) ∈ R
n, we have

(14)

(y, t) · wx = (−y · ∇f(z) + t) · (v · wx)
(y, t) · wx̃ = (−y · ∇g(z)− t) · (v · wx̃)
hK(wx) = (z, f(z)) · wx = 〈f〉(z) · (v · wx)
hK(wx̃) = (z,−g(z)) · wx = −〈g〉(z) · (v · wx̃)

Since for any u ∈ R
n, the definitions of the cone volume measure and

the surface area measure yield that

nV (K)

∫

Sn−1

ϕ

(
u · w
hK(w)

)
dVK(w) =

∫

∂K
ϕ

(
u · wx

hK(wx)

)
hK(wx) dH(x),
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we deduce from (7) and (14) the following formula, which is Lemma 3.1
in [34]. We note that Lemma 3.1 in [34] assumes that Ξv,K is thin, but
only uses this property to ensure that the corresponding integral over
Ξv,K is zero.

Lemma 9 (Lutwak, Yang, Zhang). Using the notation as above, if
H(Ξv,K) = 0 and (y, t) ∈ R

n, then

nV (K)

∫

Sn−1

ϕ

(
(y, t) · w
hK(w)

)
dVK(w) =

∫

πvK
ϕ

(
t− y · ∇f(z)

〈f〉(z)

)
〈f〉(z) dz +

∫

πvK
ϕ

(−t− y · ∇g(z)
〈g〉(z)

)
〈g〉(z) dz.

We continue to use the notation of Lemma 9 and the condition
H(Ξv,K) = 0. If (y, t), (y,−s) ∈ ∂Π∗

ϕK for t > −s, then it follows
from (11) that

1

2

(∫

Sn−1

ϕ

(
(y, t) · w
hK(w)

)
dVK(w) +

∫

Sn−1

ϕ

(
(y,−s) · w
hK(w)

)
dVK(w)

)
= 1.

Therefore (6) and Lemma 9 yield that for (y, 12(t + s)) ∈ ∂SvΠ
∗
ϕK, we

have

nV (K)

[
1−

∫

Sn−1

ϕ

(
(y, 12(t+ s)) · w

hSvK(w)

)
dVSvK(w)

]
(15)

=
1

2

∫

πvK
ϕ

(
t− y · ∇f(z)

〈f〉(z)

)
〈f〉(z) dz

+
1

2

∫

πvK
ϕ

(
s− y · ∇g(z)

〈g〉(z)

)
〈g〉(z) dz

−
∫

πvK
ϕ

(
t
2 + s

2 −
y·∇f(z)

2 − y·∇g(z)
2

〈f〉(z)
2 + 〈g〉(z)

2

)(〈f〉(z)
2

+
〈g〉(z)

2

)
dz(16)

−
∫

πvK
ϕ

(
− t

2 − s
2 − y·∇f(z)

2 − y·∇g(z)
2

〈f〉(z)
2 + 〈g〉(z)

2

)(〈f〉(z)
2

+
〈g〉(z)

2

)
dz(17)

+
1

2

∫

πvK
ϕ

(−t− y · ∇f(z)
〈f〉(z)

)
〈f〉(z) dz

+
1

2

∫

πvK
ϕ

(−s− y · ∇g(z)
〈g〉(z)

)
〈g〉(z) dz.

If ϕ ∈ C, α, β > 0, and a, b ∈ R, then the convexity of ϕ yields that

(18) αϕ
(
a
α

)
+ βϕ

(
b
β

)
≥ (α+ β)ϕ

(
a+b
α+β

)
.

If in addition a · b < 0, then we deduce from ϕ(0) = 0 and (1) that

(19) αϕ
(
a
α

)
+ βϕ

(
b
β

)
> (α+ β)ϕ

(
a+b
α+β

)
.
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Applying (18) in (16) and (17) shows that

(20)

∫

Sn−1

ϕ

(
(y, 12 (t+ s)) · w

hSvK(w)

)
dVSvK(w) ≤ 1

in (15). We conclude (y, 12(t + s)) ∈ Π∗
ϕSvK from (11), and in turn

Lemma 8 in the case when H(Ξv,K) = 0.
So far we have just copied the argument of E. Lutwak, D. Yang, and

G. Zhang [34]. We take a different route only for analyzing the equality
case in Lemma 10, using (19) instead of (18) at an appropriate place.

For a convex body K in R
n and u ∈ R

n\o, let Ξ+
u,K and Ξ−

u,K be
the set of x ∈ ∂K where all exterior unit normals have positive and
negative, respectively, scalar product with u. In particular, if Ξu,K is
thin, then

(21) any x ∈ Ξu,K lies in the closures of both Ξ+
u,K and Ξ−

u,K.

Lemma 10. Let ϕ ∈ C, let K ∈ Kn
o , and let u, ũ ∈ ∂Π∗

ϕK and

v ∈ Sn−1 such that u and ũ are independent, both Ξu,K and Ξũ,K are
thin, v is parallel to u− ũ, and H(Ξv,K) = 0. If V (Π∗

ϕSvK) = V (Π∗
ϕK),

then πvΞu,K = πvΞũ,K .

Proof. Using the notation of (15) with u = (y, t) and ũ = (y,−s),
we write w(z) and w̃(z) to denote an exterior unit normal vector to
∂K at (z, f(z)) and (z, g(z)), respectively, for any z ∈ πv(intK). Since
we have equality in (20), it follows from (14), (15), and (19) that (u ·
w(z)) · (ũ · w̃(z)) ≥ 0 and (u · w̃(z)) · (ũ · w(z)) ≥ 0 for H-almost all
z ∈ πv(intK). We conclude by continuity that if both (z, f(z)) and
(z,−g(z)) are smooth points of ∂K for a z ∈ πv(intK), then

(22) (u · w(z)) · (ũ · w̃(z)) ≥ 0 and (u · w̃(z)) · (ũ · w(z)) ≥ 0.

If (z, f(z)) and (z,−g(z)) are both smooth points of ∂K for a z ∈
πv(intK), then we say that they are the double smooth twins of each
other. In particular, H-almost all points of ∂K have a double smooth
twin by H(Ξv,K) = 0.

It follows from (21) and H(Ξũ,K) = 0 that, for any x ∈ Ξu,K, we

may choose sequences {xn} ⊂ Ξ+
u,K and {yn} ⊂ Ξ−

u,K tending to x such
that πvxn, πvyn 6∈ πvΞũ,K , and xn and yn have double smooth twins x̃n
and ỹn, respectively. Thus the sequences {x̃n} and {ỹn} tend to the
same y ∈ ∂K, which readily satisfies πvy = πvx. We have {x̃n} ⊂ Ξ+

ũ,K

and {ỹn} ⊂ Ξ−
ũ,K by (22), πvx̃n = πvxn 6∈ πvΞũ,K , and πvỹn = πvyn 6∈

πvΞũ,K . Therefore y ∈ Ξũ,K . We deduce πvΞu,K ⊂ πvΞũ,K , and in turn
πvΞũ,K ⊂ πvΞu,K by an analogous argument. Q.E.D.

In our argument, we reduce the problem to convex bodies with axial
rotational symmetry. Concerning their boundary structure, we use the
following simple observation.
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Lemma 11. If K is a convex body in R
n such that the line l is an

axis of rotational symmetry, and the line l0 intersects ∂K in a segment,
then either l0 is parallel to l, or l0 intersects l.

Proof. For any x ∈ K, we write ̺(x) to denote the radius of the
section of K by the hyperplane passing through x and orthogonal to l,
where ̺(x) = 0 if the section is just the point x.

Let l0 intersect ∂K in the segment [p, q], and let m be the midpoint of
[p, q]. We write p′, q′,m′ to denote the orthogonal projections of p, q,m
respectively, onto l. It follows that

̺(m) ≥ 1
2(̺(p) + ̺(q)) = 1

2 (‖p− p′‖+ ‖q − q′‖)
≥ ‖1

2 (p− p′) + 1
2 (q − q′)‖ = ‖m−m′‖.

Since m ∈ ∂K, we have ̺(m) = ‖m − m′‖, and hence the equality
case of the triangle inequality yields that p − p′ and q − q′ are parallel.
Therefore l and l0 are contained in a two-dimensional affine subspace.

Q.E.D.

Proof of Theorem 3: It is equivalent to show that we have strict in-
equality in the Orlicz-Petty projection inequality if K is not an ellipsoid.
Let us assume this, and that K is in isotropic position. It is sufficient
to prove that there exist a unit vector v, and a convex body M with
V (M) = 1 such that

V (Π∗
ϕK) ≤ V (Π∗

ϕM) < V (Π∗
ϕSvM).

The idea is to reduce the problem to bodies with axial rotational sym-
metry because in this way we will have two shadow boundaries that are
contained in some hyperplanes.

Since K is not a ball of center o, hK is not constant; thus we may
assume that for some p ∈ Sn−1, we have

hK(p)2LBn 6= LK =

∫

K
(p · x)2 dx.

It follows from (ii) in Section 1 that we may assume that the supporting
hyperplanes with exterior normals p and −p intersect K in one point.

Let K1 be the Schwarz rounding of K with respect to Rp. In par-
ticular, V (K1) = V (K) = 1, hK1(p) = hK(p), and Fubini’s theorem
yields ∫

K1

(p, x)2 dx =

∫

K
(p · x)2 dx 6= hK1(p)

2LBn .

Therefore K1 is not an ellipsoid according to (10), and the supporting
hyperplanes with exterior normals p and −p intersect K1 in one point.
In particular, if q ∈ Sn−1 ∩ p⊥, then Ξq,K1 = q⊥ ∩ ∂K1 is thin. We fix

a q ∈ Sn−1 ∩ p⊥. Since K1 is not an ellipsoid, Ξq,K1 is not the relative
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boundary of some (n− 1)-ellipsoid.

Case 1 Ξp,K1 is thin
In this case, Ξp,K1 is the relative boundary of some (n−1)-ball. Choose
t1, s1 > 0 such that u1 = t1p ∈ ∂ΠK1 and ũ1 = s1q ∈ ∂ΠK1, and
let v1 = (u1 − ũ1). It follows from Lemma 11 that Ξv1,K1 contains at
most two segments parallel to v1, and hence its H-measure is zero. We
have already seen that Ξũ1,K1 = Ξq,K1 is thin; therefore we may apply
Lemma 10 to u1, ũ1, v1. Since πv1Ξu1,K1 is the relative boundary of
some (n− 1)-ellipsoid, and πv1Ξũ1,K1 is not, we deduce from Lemma 10
that

V (Π∗K) ≤ V (Π∗K1) < V (Π∗Sv1K1).

Case 2 Ξp,K1 is not thin
For some ̺, α > 0, there exists a segment of length α parallel to p
such that Ξp,K1 is the Minkowski sum of the segment and the relative

boundary of the (n− 1)-ball of radius ̺ centered at o in p⊥. Let K2 be
the Schwarz rounding of K1 with respect to Rq, and hence Ξp,K2 and
Ξq,K2 are both thin.

For t ∈ R, let

H(q, t) = q⊥ + tq.

If τ ∈ (0, ̺), then

H(H(q, ̺− τ) ∩K2) = H(H(q, ̺− τ) ∩K1) > α
√
̺κn−2 · τ

n−2
2 .

If K2 were an ellipsoid, then there would exist a γ > 0 depending on K2

such that H(H(q, ̺− τ) ∩K2) < γ · τ n−1
2 for τ ∈ (0, ̺); therefore K2 is

not an ellipsoid. Now we choose t2, s2 > 0 such that u2 = t2q ∈ ∂ΠK2

and ũ2 = s2p ∈ ∂ΠK2, and let v2 = (u2 − ũ2)/‖u2 − ũ2‖. An argument
as above using Lemma 10 yields

V (Π∗K) ≤ V (Π∗K1) ≤ V (Π∗K2) < V (Π∗Sv2K2). Q.E.D.

3. Proof of Theorem 4

The proof is a delicate analysis of the argument of Theorem 3. For
example, we need a stability version of (19).

Lemma 12. If ϕ ∈ C, α, β, ω > 0, and a, b ∈ R such that a · b < 0,

and |a|
α ,

|b|
β ≥ ω, then

(23)

αϕ
(
a
α

)
+ βϕ

(
b
β

)
− (α+ β)ϕ

(
a+b
α+β

)
≥ min{|a|,|b|}

ω · (ϕ(−ω) + ϕ(ω)).

Proof. We write Ω to denote the left-hand side of (23). If µ ≥ 1 and
t ∈ R, then the convexity of ϕ and ϕ(0) = 0 yield

(24) ϕ(µ t) ≥ µ · ϕ(t).
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We may assume that a ≥ −b > 0. In particular, 0 ≤ a+b
α+β <

a
α , and we

deduce from (24) the estimate

ϕ

(
a+ b

α+ β

)
≤ α(a+ b)

a(α+ β)
· ϕ
( a
α

)
.

It follows from this inequality and (24) that

Ω ≥ αϕ
( a
α

)
+ βϕ

(
b

β

)
− α(a + b)

a
· ϕ
( a
α

)

= βϕ

(
b

β

)
+
α(−b)
a

· ϕ
( a
α

)
≥ |b|

ω
ϕ(−ω) + |b|

ω
ϕ(ω). Q.E.D.

We also need the stability version of Lemma 13 of (11). Let cϕ >
0 be defined by max{ϕ(−cϕ), ϕ(cϕ)} = 1 for ϕ ∈ C. According to
Lemma 2.2 by E. Lutwak, D. Yang, and G. Zhang [34] stated for the
Orlicz projection body, if rBn ⊂ K ⊂ RBn for K ∈ Kn

o and r,R > 0,
then

cϕrB
n ⊂ Π∗

ϕK ⊂ 2cϕRB
n.

Lemma 13. There exist γ0 ∈ (0, 1] depending on n and ϕ ∈ C such
that if η ∈ [0, 1), x ∈ R

n and K is an o-symmetric convex body, then
∫

Sn−1

ϕ

(
x · w
hK(w)

)
dVK(w) ≤ 1− η yields x ∈ (1− γ0 · η)Π∗

ϕK.

Proof. It follows from the linear covariance (4) of the polar Orlicz
projection body and from John’s theorem (see F. John [25]) that we
may assume

Bn ⊂ K ⊂ √
nBn.

Thus the form of Lemma 2.2 in [34] above yields Π∗
ϕK ⊂ 2cϕ

√
nBn.

According to (11), there exist y ∈ ∂Π∗
ϕK and ε ∈ (0, 1) such that

x = (1− ε)y, and hence if w ∈ Sn−1, then

|y · w|
hK(w)

≤ 2cϕ
√
n.

Setting γ1 = max{ϕ′(2cϕ
√
n),−ϕ′(−2cϕ

√
n)}, we deduce from the con-

vexity of ϕ and (1) that if t ∈ [−2cϕ
√
n, 2cϕ

√
n], then

ϕ((1 − ε)t) ≥ ϕ(t)− γ1ε · |t| ≥ ϕ(t)− 2cϕ
√
n · γ1ε.

For γ2 = 2cϕ
√
n · γ1, it follows from (11) that

∫

Sn−1

ϕ

(
(1− ε)y · w
hK(w)

)
dVK(w) ≥

∫

Sn−1

ϕ

(
y · w
hK(w)

)

− γ2ε dVK(w) = 1− γ2ε.

Therefore we may choose γ0 = min{1, 1/γ2}. Q.E.D.
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An essential tool to prove Theorem 3 was the reduction to convex
bodies with axial rotational symmetry such that the shadow boundaries
in the directions parallel and orthogonal to the axis are thin. The core
of the argument for Theorem 4 is a stability version of this reduction,
Theorem 14. To state Theorem 14, we use the following terminology.
We say that a convex body K in R

n spins around a u ∈ Sn−1, if K is
o-symmetric, u ∈ ∂K, the axis of rotation of K is Ru, and K ∩ u⊥ =
Bn ∩ u⊥.

Theorem 14. Let K be a convex body in R
n, n ≥ 3, such that

δBM(K,Bn) ≥ δ ∈ (0, δ0), where δ0 > 0 depends on n. Then there exist
ε ∈ (δ24, δ] and a convex body K ′ spinning around a u ∈ Sn−1, such
that K ′ is obtained from K by a combination of Steiner symmetrizations,
linear transformations, and taking limits, and satisfies δBM(K ′, Bn) ≤ ε,
and

(i) for any o-symmetric ellipsoid E with axial rotational symmetry
around Ru, one finds a ball x+ε2Bn ⊂ int(E∆K ′) where |x ·u| ≤
1− ε2;

(ii) (1− ε32)u+ ε3v 6∈ K ′ for v ∈ Sn−1 ∩ u⊥;
(iii) ε3 u+ (1− ε7)v 6∈ K ′ for v ∈ Sn−1 ∩ u⊥.
The proof of Theorem 14, being rather technical, is deferred to Sec-

tion 5.
As δBM(K,Bn) ≤ lnn, Theorem 4 follows from the following state-

ment. For ϕ ∈ C, if K ∈ Kn
o with δBM (K,Bn) ≥ δ ∈ (0, δ∗), then

(25)
V (Π∗

ϕK)

V (K)
≤ (1− γ · δ792n · ϕ̃(δ840)) V (Π∗

ϕB
n)

V (Bn)

where δ∗, γ > 0 depend on n and ϕ. In the following, the implied
constants in O(·) depend on n and ϕ.

We always assume that δ∗ in (25), and hence δ and ε, as well, are
small enough to make the argument work. In particular, δ∗ ≤ δ0 where
δ0 > 0 is the constant depending on n and ϕ of Theorem 14. It follows
from the continuity of the polar Orlicz projection body that we may
also assume the following. If M is a convex body spinning around a
u ∈ Sn−1, and δBM(M,Bn) < δ∗, then

(26) 0.9Bn ⊂M ⊂ 1.1Bn and 0.9Π∗
ϕB

n ⊂ Π∗
ϕM ⊂ 1.1Π∗

ϕ B
n.

Let u∗ and ũ∗ be orthogonal unit vectors in R
n, and let K ∈ Kn

o with
δBM(K,Bn) ≥ δ ∈ (0, δ∗). According to Theorem 14, there exist ε ∈
(δ24, δ] and a convex bodyK ′ spinning around u∗ with δBM(K ′, Bn) ≤ ε
and obtained from K by a combination of Steiner symmetrizations,
linear transformations, and taking limits such that

(i) for any o-symmetric ellipsoid E with axial rotational symmetry
around Ru∗, one finds a ball x+ε2Bn ⊂ int(E∆K ′) where |x·u∗| ≤
1− ε2;



THE ORLICZ-PETTY PROJECTION INEQUALITY 229

u∗

ũ∗

˜

K+

˜

K−

v x

x̃

z
q

Figure 1

(ii) (1− ε32)u∗ + ε3ũ∗ 6∈ K ′;
(iii) ε3 u∗ + (1− ε7)ũ∗ 6∈ K ′.

It follows from (4) and Lemma 8 that V (Π∗
ϕK

′)/V (K ′) ≥ V (Π∗
ϕK)/V (K).

We deduce that if K̃ is a smooth and strictly convex body spinning
around u∗ sufficiently close to K ′, then

(a) for any o-symmetric ellipsoid E with axial rotational symmetry

around Ru∗, one finds a ball x+ε2Bn ⊂ int(E∆K̃) where |x·u∗| ≤
1− ε2;

(b) (1− ε32)u∗ + ε3ũ∗ 6∈ K̃;

(c) ε3 u∗ + (1− ε7)ũ∗ 6∈ K̃;

(d)
V (Π∗

ϕK̃)

V (K̃)
≥ (1− ε33nϕ̃(ε35)) · V (Π∗

ϕK)

V (K) ;

(e) δBM(K̃,Bn) < δ∗.

We define v ∈ Sn−1 by

λ∗ v = ̺
Π∗

ϕK̃
(u∗) · u∗ − ̺

Π∗

ϕK̃
(ũ∗) · ũ∗

for some λ∗ > 0. It follows from (e) and (26) that

(27)
1

2
<

0.9√
0.92 + 1.12

≤ v · u∗ ≤
1.1√

0.92 + 1.12
<

√
3

2
.

We plan to apply Steiner symmetrization to K̃ with respect to v⊥,
and show that the volume of the polar Orlicz projection body increases
substantially. We consider v⊥ as Rn−1, and set

v⊥ ∩Bn = Bn−1.

For X ⊂ v⊥, the interior of X with respect to the subspace topology of
v⊥ is denoted by relintX.

Let q be the unit vector in the line lin{u∗, ũ∗}∩v⊥ satisfying q ·u∗ < 0

(see Figure 1). We observe that Ξu∗,K̃
= u⊥∗ ∩∂Bn and Ξũ∗,K̃

= ũ⊥∗ ∩∂K̃,
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moreover,

E∗ = πv(u
⊥
∗ ∩Bn),

K̃∗ = πv(ũ
⊥
∗ ∩ K̃)

are o-symmetric, and have Rq as their axis of rotation inside v⊥. We

define θ > 0 by θq ∈ ∂K̃∗, and the linear transform Φ : v⊥ → v⊥

by Φ(θq) = q, and Φ(y) = y for y ∈ v⊥ ∩ u⊥∗ . Thus θ ∈ (12 ,
√
3
2 ) by

(27). Since ΦK̃∗ is congruent to ũ⊥∗ ∩ K̃, (a) yields an (n − 1)-ball

z′ + ε2Bn−1 ⊂ relint Φ(E∗)∆Φ(K̃∗) where 0 ≤ z′ · q ≤ 1− ε2. We define
z∗ = Φ−1z′, and hence

(28) z∗ +
ε2

2 B
n−1 ⊂ relintE∗∆K̃∗.

Since v⊥ ∩ u⊥∗ ∩ E∗ = v⊥ ∩ u⊥∗ ∩ K̃∗, we also deduce that

(29) ε2/2 < z∗ · q < θ − (ε2/2).

We write wx to denote the exterior unit normal at an x ∈ ∂K̃, and
define

K̃+ = {x ∈ ∂K̃ : v · wx > 0 and q · x > 0};
K̃− = {x ∈ ∂K̃ : v · wx < 0 and q · x > 0}.

It follows from (29) that

(30) z∗ +
ε2

2 B
n−1 ⊂ πvK̃

±.

If z = πvx = πvx̃ ∈ z∗ +
ε2

4 B
n−1 for suitable x ∈ K̃+ and x̃ ∈ K̃−, then

z + ε2

4 B
n−1 ⊂ πvK̃

± by (30). We deduce from K̃ ⊂ 1.1Bn (compare

(26)) that wx · v, |wx̃ · v| > ε2/8, and hence (14) and (26) yield

(31) 0.9 ≤ 〈f〉(z), 〈g〉(z) < 9ε−2 for z ∈ z∗ +
ε2

4 B
n−1.

Lemma 15. If πvx = πvx̃ ∈ z∗ +
ε2

4 B
n−1 for x ∈ K̃+ and x̃ ∈ K̃−,

then

|u∗ · wx|, |ũ∗ · wx̃| > ε32/2 and (u∗ · wx) · (ũ∗ · wx̃) < 0.

Proof. Since K̃ is a smooth and strictly convex body, and has Ru∗ as
its axis of rotation, we have

Ξ+

u∗,K̃
= {x ∈ ∂K : x · u∗ > 0};

Ξ+

ũ∗,K̃
= {x ∈ ∂K : x · ũ∗ > 0}.

It follows from x ∈ K̃+ and Ξ
u∗,K̃

= u⊥∗ ∩ Sn−1 that

(32) u∗ · wx > 0 if and only if πvx ∈ relint πv(u
⊥
∗ ∩Bn) = relintE∗,

and from x̃ ∈ K̃− that

(33) ũ∗ · wx̃ > 0 if and only if πvx̃ ∈ relint πv(ũ
⊥
∗ ∩ K̃) = relint K̃∗.



THE ORLICZ-PETTY PROJECTION INEQUALITY 231

We deduce from (28), (32), and (33) that

(34) (u∗ · wx) · (ũ∗ · wx̃) < 0.

To have a lower estimate on |u∗ ·ux|, we observe that combining (28)
with ε2/4 > 2ε3 and the fact that πv does not increase distance yields

x 6∈ (u⊥∗ ∩ ∂K̃) + 2ε3Bn.

Thus, we conclude from (c) that ‖πu∗
x‖ ≤ 1 − ε7. It follows that

(πu∗
x) + ε7

2 B
n ⊂ K̃, and hence wx is an exterior normal also to the

convex hull at x of this ball and x. As |u∗ · x| ≤ 1, we deduce that

(35) |u∗ · wx| ≥ ε7/2.

Finally, we consider |ũ∗ · wx̃|. Using (28) again, we have

(36) x̃ 6∈ (ũ⊥∗ ∩ ∂K̃) + 2ε3Bn.

In particular, ‖x̃ − u∗‖ > 2ε3 and ‖x̃ − (−u∗)‖ > 2ε3, and hence (b)

implies that |x̃ · u∗| < 1 − ε32. As K̃ spins around u∗, we deduce from

(36) that (πũ∗
x̃) + ε32

2 Bn ⊂ K̃. Thus wx̃ is an exterior normal also to
the convex hull at x̃ of this ball and x̃, and hence |ũ∗ · x̃| ≤ 1 yields that

(37) |ũ∗ · wx̃| ≥ ε32/2.

Therefore Lemma 15 is a consequence of (34), (35), and (37). Q.E.D.

We continue with the proof of Theorem 4. We use the notation of
Lemma 9. In particular, we write (z, t) to denote z+ tv for z ∈ R

n−1 =

v⊥ and t ∈ R, and f and g to denote the concave functions on πvK̃ such

that for z ∈ relintπvK̃, we have f(z) > −g(z), and (z, f(z)), (z,−g(z)) ∈
∂K̃.

We write γ1, γ2, . . . to denote positive constants depending on n and
ϕ, and we define

y∗ = −πv
(
̺Π∗

ϕK̃
(u∗) · u∗

)
= −πv

(
̺Π∗

ϕK̃
(ũ∗) · ũ∗

)
,

Ψ =
{
α ∈ Sn−1 : α · v > 0 and πv

(
̺
SvΠ∗K̃(α) · α

)
∈ y∗ + ε33Bn−1

}
.

As 0.9Π∗
ϕB

n ⊂ SvΠ
∗
ϕK̃ ⊂ 1.1Π∗

ϕB
n by (e) and (26), we have

(38) H(Ψ) > γ1ε
33(n−1).

Let

y ∈ y∗ + ε33Bn−1,
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and let (y, t), (y,−s) ∈ ∂Π∗
ϕK̃ where −s < t, and hence (y, t+s

2 ) ∈
∂SvΠ

∗
ϕK̃. We define

u =
(y, t)

‖(y, t)‖

ũ =
(y,−s)
‖(y,−s)‖

α =
(y, t+s

2 )

‖(y, t+s
2 )‖ ∈ Ψ.

It follows from 0.9Π∗
ϕB

n ⊂ Π∗
ϕK̃ ⊂ 1.1Π∗

ϕB
n that

‖u− u∗‖, ‖ũ − ũ∗‖ < γ2ε
33.

Choose δ∗ small enough that γ2ε
33 < ε32/4. We deduce from Lemma 15

that if

z = πvx = πvx̃ ∈ z∗ + (ε2/4)Bn−1

for x ∈ K̃+ and x̃ ∈ K̃−, then

|u · wx|, |ũ · wx̃| > ε32/4 and (u · wx) · (ũ · wx̃) < 0.

Using now 0.9Π∗
ϕB

n ⊂ Π∗
ϕK̃ ⊂ 1.1Π∗

ϕB
n and (14), we deduce

(39)
|t−y·∇f(z)|, |s−y·∇g(z)| > γ3ε

32 and (t−y·∇f(z))·(s−y·∇g(z)) < 0.

It follows from (31) and (39) that we may apply Lemma 12 with

a = t− y · ∇f(z), b = s− y · ∇g(z), α = 〈f〉(z) and β = 〈g〉(z).

By (31), (39), and since γ3ε
34/9 > ε35, we may choose ω = ε35 in

Lemma 12, and hence (39) yields that

1

2

∫

πvK̃
ϕ

(
t− y · ∇f(z)

〈f〉(z)

)
〈f〉(z) dz

+
1

2

∫

πvK̃
ϕ

(
s− y · ∇g(z)

〈g〉(z)

)
〈g〉(z) dz

−
∫

πvK̃
ϕ

(
t
2 +

s
2 − y·∇f(z)

2 − y·∇g(z)
2

〈f〉(z)
2 + 〈g〉(z)

2

)(〈f〉(z)
2

+
〈g〉(z)

2

)
dz

≥ γ4 ε
−3ϕ̃(ε35).

Therefore (15), (18), and (26) lead to

(40)

∫

Sn−1

ϕ

(
(y, 12(t+ s)) · w

hSvK̃
(w)

)
dVSvK̃

(w) ≤ 1− γ4 ε
−3ϕ̃(ε35)

nV (1.1Bn)
.
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We conclude, first applying Lemma 13, then the consequence 0.9Π∗
ϕB

n ⊂
SvΠ

∗
ϕK̃ ⊂ 1.1Π∗

ϕB
n of (26), that if w ∈ Ψ, then

̺SvΠ∗

ϕK̃
(w)n ≤ (1− γ5 ε

−3ϕ̃(ε35))n · ̺Π∗

ϕSvK̃
(w)n

≤ ̺Π∗

ϕSvK̃
(w)n − γ6 ε

−3ϕ̃(ε35).

Since ̺
SvΠ∗

ϕK̃
(w) ≤ ̺

Π∗

ϕSvK̃
(w) for any w ∈ Sn−1 by Lemma 8, combin-

ing (8) and (38) leads to

V (Π∗
ϕK̃) = V (Π∗

ϕSvK̃) ≤ V (Π∗
ϕSvK̃)− γ7 ε

33(n−1)−3ϕ̃(ε35)

≤ (1− γ8 ε
33n−36ϕ̃(ε35)) · V (Π∗

ϕSvK̃).

We conclude from (d) and Theorem 2 that

V (Π∗
ϕK)

V (K)
≤ (1− ε33nϕ̃(ε35)))−1(1− γ8 ε

33n−36ϕ̃(ε35))) ·
V (Π∗

ϕK̃)

V (K̃)

≤ (1− γ9 ε
33nϕ̃(ε35))) ·

V (Π∗
ϕB

n)

V (Bn)
,

which, in turn, yields (25) by ε ≥ δ24. Q.E.D.

4. Proof of Theorem 6

Naturally, we again need a suitable stability version of (18).

Lemma 16. Let ϕ ∈ C be even, such that ϕ′′(t) is continuous and
positive for t > 0. If a, b, α, β, ω > 0 satisfy ω ≤ a

α ,
b
β ≤ ω−1, then

αϕ
(
a
α

)
+ βϕ

(
b
β

)
− (α+ β)ϕ

(
a+b
α+β

)

≥ min{ϕ′′(t) : t ∈ (ω, ω−1)} ·min{α2, β2}
2(α + β)

·
(
a

α
− b

β

)2

.

Proof. The Taylor formula around a+b
α+β yields the estimate. Q.E.D.

Given Theorem 4, what we need to consider are translates of a convex
body that are close to the unit ball.

Lemma 17. Let ϕ ∈ C be even, such that ϕ′′(t) is continuous and
positive for t > 0. There exist ε0, γ > 0 depending on n and ϕ such that
if ‖θ‖ ≥ ε1/3 and Bn ⊂ K − θ ⊂ (1+ ε)Bn for K ∈ Kn

0 , ε ∈ (0, ε0), and
θ ∈ R

n, then

V (Π∗
ϕK)

V (K)
< (1− γε

2
3 )
V (Π∗

ϕB
n)

V (Bn)
.
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Proof. We write σ to denote the reflection through θ⊥. Possibly af-
ter applying Schwarz rounding with respect to v = θ/‖θ‖ (compare
Lemma 8), we may assume that Rv is the axis of rotation of K. It
follows that Π∗

ϕK also has Rv as its axis of rotation. Since ϕ is even,
we deduce that Π∗

ϕK is o-symmetric; therefore Π∗
ϕK is symmetric with

respect to σ. We may also assume that K is smooth, and we write wx

to denote the unique exterior unit normal at x ∈ ∂K.
We write γ1, γ2, . . . to denote positive constants depending on n and

ϕ. In addition the implied constant in O(·) depends also only on n and
ϕ. As K ⊂ 3Bn, Lemma 2.2 by E. Lutwak, D. Yang, and G. Zhang [34]
yields

(41) Π∗
ϕK ⊂ γ1B

n.

Since Π∗
ϕK is o-symmetric and Π∗

ϕK ⊂ γ1B
n, there exists γ2 > 0 de-

pending on n and ϕ, such that if hΠ∗

ϕK(u) ≤ γ2 for some u ∈ Sn−1, then

V (Π∗
ϕK) < 1

2 V (Π∗
ϕB

n). In particular, Lemma 17 readily holds in this
case. Therefore we may assume that

(42) γ2B
n ⊂ Π∗

ϕK.

We set Rn−1 = v⊥ and Bn−1 = v⊥ ∩ Bn, and write the point y + tv
of Rn with y ∈ R

n−1 and t ∈ R in the form (y, t). In addition, let f, g
be the concave functions on πvK satisfying

K = {(y, t) : y ∈ πvK and − g(y) ≤ t ≤ f(y)}.

We consider

Ξ = 3
5 B

n−1\1
2 B

n−1

Ψ = {(y, t)/‖(y, t)‖ ∈ Sn−1 : y ∈ 3γ2
5 Bn−1, t > 0 and (y, t) ∈ ∂Π∗

ϕK}.

It follows that

(43) H(Ψ) ≥ γ3.

For y ∈ 3γ2
5 Bn−1 and z ∈ Ξ, let t > 0 such that (y, t) ∈ ∂Π∗

ϕK,
and hence (y,−t) ∈ ∂Π∗

ϕK since σ(Π∗
ϕK) = Π∗

ϕK. We plan to apply
Lemma 16 with

(44) a = t− y · ∇f(z), b = t− y · ∇g(z), α = 〈f〉(z) and β = 〈g〉(z).

Let x, x̃ ∈ ∂K, and let x′, x̃′ ∈ ∂(θ +Bn) be defined in a way such that
πvx = πvx̃ = πvx

′ = π′vx̃
′ = z, (x− x̃) · v > 0 and (x′ − x̃′) · v > 0. We

observe that σ(x̃′ − θ) = x′ − θ. The condition z ∈ Ξ yields that

(45)
4

5
≤ v · (x′ − θ) = −v · (x̃′ − θ) ≤

√
3

2
< 0.9.
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Since the angles between v and both (y, t) and x′ − θ are at most γ4 =
arcsin 3

5 , and cos 2γ4 =
7
25 , we deduce from (41) and (42) that

(46)
7γ2
25

≤ (y, t) · (x′ − θ) = (y,−t) · (x̃′ − θ) ≤ γ1.

To compare x′−θ and wx, we observe that the tangent planes to θ+B
n

at both x′ and θ + wx separate x and θ + Bn. Since ‖x − θ‖ ≤ 1 + ε,
such points on θ + Sn−1 are contained in a cap cut off by a hyperplane
of distance at least (1 + ε)−1 from θ, and the diameter of the cap is at

most 2
√

1− (1 + ε)−2 < 4ε
1
2 . Therefore

(47) ‖wx − (x′ − θ)‖ < 4ε
1
2 and ‖wx̃ − (x̃′ − θ)‖ < 4ε

1
2 .

From (14), (44), (46), and (47), we deduce that

a

α
=

(
1 +O(ε

1
2 )
)
· (y, t) · (x

′ − θ)

hK(wx)
;(48)

b

β
=

(
1 +O(ε

1
2 )
)
· (y, t) · (x

′ − θ)

hK(wx̃)
.(49)

We have θ · w + 1 ≤ hK(w) ≤ θ · w + 1 + ε for any w ∈ Sn−1, and
‖θ‖ < 1 + ε by o ∈ intK. Therefore (45), (47), and the condition

‖θ‖ ≥ ε1/3 yield

(50) 1 + 3
5 ε

1/3 < hK(wx) < 1.9 and 0.1 < hK(wx̃) < 1− 3
5 ε

1/3

provided that ε0 > 0 is suitably small. We deduce from (46), (48), (49),
and (50) that there exist ω, γ5 > 0 depending on n and ϕ such that

b

β
− a

α
> γ5ε

1
3 ;(51)

ω <
a

α
<

b

β
< ω−1.(52)

In addition, (14), (45), (47), and (50) yield that

(53) γ6 < α, β < γ7.

We conclude from Lemma 16 the estimate

1

2

∫

πvK
ϕ

(
t− y · ∇f(z)

〈f〉(z)

)
〈f〉(z) dz + 1

2

∫

πvK
ϕ

(
t− y · ∇g(z)

〈g〉(z)

)
〈g〉(z) dz

−
∫

πvK
ϕ

(
t− y·∇f(z)

2 − y·∇g(z)
2

∇f(z)
2 + ∇g(z)

2

)(∇f(z)
2

+
∇g(z)

2

)
dz > γ8ε

2
3 .

(54)

Since (54) holds for any z ∈ Ξ, and SvΠ
∗
ϕK = Π∗

ϕK, we deduce from
(15) and (18) that

(55)

∫

Sn−1

ϕ

(
(y, t) · w
hSvK(w)

)
dVSvK(w) < 1− γ9ε

2
3 .
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Now we have (55) for all y ∈ 3γ2
5 Bn−1, and hence

̺Π∗

ϕK(u) < (1− γ10ε
2
3 )̺Π∗

ϕSvK(u)

for u ∈ Ψ ⊂ Sn−1 according to Lemma 13, where H(Ψ) ≥ γ3 by (43).
Therefore combining Lemma 8, (8), (41), and (42) yields Lemma 17.

Q.E.D.

Theorem 6 follows from the following statement. For ϕ ∈ C, there
exist η0, γ > 0 depending only on n and ϕ such that if K ∈ Kn

o , η ∈
(0, η0), and

(56) K 6⊂ (1 + η)E for any o-symmetric ellipsoid E ⊂ K,

then

(57)
V (Π∗

ϕK)

V (K)
≤
(
1− γ · η2376n · ϕ(η2520)

)
· V (Π∗

ϕB
n)

V (Bn)
.

If δBM (K,Bn) > η3/108, then Theorem 4 yields (57). Therefore we
assume that δBM (K,Bn) ≤ η3/108. In particular, we may assume that
θ + Bn ⊂ K for some θ ∈ R

n, and K is contained in a ball of radius

1 + η3

54 . It follows that

θ +Bn ⊂ K ⊂ θ +
(
1 + η3

27

)
Bn.

We deduce from (56) that
1+‖θ‖+ η3

27
1−‖θ‖ > 1 + η, and hence ‖θ‖ > η/3.

Therefore we may apply Lemma 17 with ε = η3

27 , which, in turn, com-
pletes the proof of (57). Q.E.D.

5. Class reduction based on Steiner symmetrization

In this section, we prove Theorem 14. Let

u ∈ Sn−1 and v ∈ Sn−1 ∩ u⊥.
Recall that a convex body K in R

n spins around u, if K is o-symmetric,
u ∈ ∂K, the axis of rotation of K is Ru, and K ∩u⊥ = Bn∩u⊥. In this
case, we call ±u the poles of K, and ∂K ∩u⊥ ⊂ Sn−1 the equator of K.
We show that to have a stability version of the Orlicz-Petty projection
inequality, we may assume that K is an o-symmetric convex body with
axial rotational symmetry such that the boundary sufficiently bends
near the equator and the poles.

We prepare the proof of Theorem 14 by a series of lemmas. First of
all, one may assume that K is an o-symmetric convex body with axial
rotational symmetry because of the following.
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Lemma 18. For any n ≥ 2 there exists γ > 0 depending only on n,
such that if K is a convex body in R

n such that δBM(K,Bn) ≥ ε ∈ (0, 1),
then one can find an o-symmetric convex body C with axial rotational
symmetry and δBM(C,Bn) = γε2 that is obtained from K using Steiner
symmetrizations, linear transformations, and taking limits.

Remark: If K is o-symmetric, then δBM(C,Bn) = γε is possible.

Proof. According to Theorem 1.4 in [6], there is an o-symmetric con-
vex body C with axial rotational symmetry that is obtained from K
using Steiner symmetrizations, linear transformations, and taking lim-
its, and that satisfies δBM(C0, B

n) ≥ γε2. We note that in Theorem 1.4,
it is stated that affine transformations are needed. But translations are
only used to translate K at the beginning by −σK where σK is the
centroid of K. If we perform all Steiner symmetrizations in the proof of
Theorem 1.4 in [6] through the same hyperplanes containing the origin,
then even without the translation at the beginning, the convex body C0

will still be o-symmetric.
We may assume that δBM(C0, B

n) > γε2; otherwise we are done.
Since some sequence of Steiner symmetrizations subsequently applied to
C0 converges to a Euclidean ball B0 of volume V (C0), there is a sequence
{Cm}, m = 0, 1, 2, . . . of o-symmetric convex bodies tending to B0 such
that Cm, m > 0, is a Schwarz rounding of Cm−1 with respect to some
wm ∈ Sn−1. In particular, there is m ≥ 0 such that δBM(Cm, B

n) > γε2

and δBM(Cm+1, B
n) ≤ γε2.

For w ∈ Sn−1, let Mw be the Schwarz rounding of Cm with respect
to Rw. Then δBM(Mw, B

n) is a continuous function of w. Since Cm =
Mwm and Cm+1 = Mwm+1 , there is a w ∈ Sn−1 with δBM(Mw, B

n) =

γε2.
IfK is o-symmetric, then Theorem 1.4 in [6] states that δBM(C0, B

n) ≥
γε, and hence the argument above gives δBM(C,Bn) = γε. Q.E.D.

In order to obtain a stability version of the Orlicz-Petty projection
inequality for an o-symmetric convex bodyK with axial rotational sym-
metry, it is hard to deal with K if it is close to being flat at the poles, or
close to being ruled near the equator. In these cases, we apply an extra
Schwarz rounding. The precise statements are the subjects of Lemma 19
and Proposition 23. For w ∈ Sn−1 and t ∈ R, we recall that

H(w, t) = w⊥ + tw.

The next observation considers the shape of a convex body with axial
rotational symmetry near the equator.

Lemma 19. There exist τ1, τ2 > 0 depending on n with the following
properties. If t ∈ (0, 13), the convex body K in R

n spins around u, and

τ1
√
t u+ (1− t)v ∈ K,
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then δBM(K ′, Bn) ≥ τ2t for the Schwarz rounding K ′ of K around Rv.

Proof. Let E0 be the o-symmetric ellipsoid with axial rotational sym-
metry around Rv such that v ∈ ∂E0, and H

(
E0 ∩ v⊥

)
= 2κn−1. For

any s ∈ (0, 23), we have

(58) γ1
√
s u+ (1− s)v 6∈ (1 + τ2s)E0

for suitable γ1 > 0 and τ2 ∈ (0, 1) depending only on n. We define τ1
by the equation

(τ1κn−2/κn−1)
1

n−1 = γ1
√
2.

Let E ⊂ K ′ be an o-symmetric ellipsoid with axial rotational symme-
try around Rv such that K ′ ⊂ λE, where lnλ = δBM(K ′, Bn). It follows
from the normalization of K that H

(
K ∩ v⊥

)
≤ 2κn−1; thus E ⊂ E0.

If τ1
√
t u+(1−t)v ∈ K for t ∈ (0, 13), then τ1

√
t u+(1−t)(u⊥∩Bn) ⊂

K and
√
t(2− 3t) >

√
t yield that

τ1
√
t u+ (1− 2t)v +

√
t(u⊥ ∩ v⊥ ∩Bn) ⊂ K.

Since H(v, 1 − 2t) ∩K contains an (n − 1)-dimensional cylinder whose
height is τ1

√
t, and whose base has radius

√
t, we have

H
(
H(v, 1 − 2t) ∩K ′) = H (H(v, 1 − 2t) ∩K) ≥ τ1κn−2t

n−1
2 .

In particular,

γ1
√
2t+ (1− 2t)v = (τ1κn−2/κn−1)

1
n−1

√
t u+ (1− 2t)v ∈ K ′.

We conclude from (58) that λ > 1+ τ22t, and hence δBM(K ′, Bn) > τ2t.

Q.E.D.

Now we consider the shape of a convex body with axial rotational
symmetry near the poles. To test whether a convex body is “flat” near
the poles, we will use the following statement.

Lemma 20. There exist δ0, τ0, τ ∈ (0, 1) depending on n with the
following property. Let δ ∈ (0, δ0), t ∈ (0, τ0δ), and let a convex body
K with δ = δBM(K,Bn) spin around u. If an o-symmetric ellipsoid E
with axial rotational symmetry around Ru satisfies that E∆K contains
no ball of the form x+ tBn with |x · u| ≤ 1− t, then

: (i) K ⊂ (1 + τt)E;
: (ii) assuming |x · u| ≤ 1− 4t, x ∈ ∂E implies (x+ 3tBn) ∩K 6= ∅,

and x ∈ ∂K implies (x+ 3tBn) ∩ E 6= ∅;
: (iii) θt ∈ ∂E where 1 + 1

2 δ ≤ θ ≤ 1 + τδ.

Proof. We write γ1, γ2, . . . to denote positive constants depending
only on n.

For an x ∈ R
n with |x ·u| ≤ 1−4t, we may assume that x ·u ≥ 0. Let

v ∈ u⊥ such that x · v ≥ 0 and x ∈ lin{u, v}. Since x + 3tBn contains
x− tu− tv + tBn, we deduce (ii) from the assumptions on E and K.
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As K spins around u, and δBM(K,Bn) = δ, we have

(1/2)Bn ⊂ (1− γ1δ)B
n ⊂ K ⊂ (1 + γ2δ)B

n.

This combined with (ii) implies (i). In addition, we deduce from (ii)
that

(1− γ3t)K ⊂ {x ∈ E : |x · u| ≤ 1− 7t} ⊂ (1 + γ4t)K,

which in turn yields that if θt ∈ ∂E for θ > 0, then

δ = δBM(K,Bn) ≤ ln
[
(1− γ3t)

−1 · θ(1− 7t)−1(1 + γ4t)
]
≤ ln θ + γ5t.

Therefore, assuming t < (2γ5)
−1δ, we have θ ≥ 1 + δ

2 . Q.E.D.

Corollary 21. There exist δ0, τ0 ∈ (0, 1) depending on n with the
following property. Let δ ∈ (0, δ0), t ∈ (0, τ0δ), and let a convex body
K with δ = δBM(K,Bn) spin around u. If an o-symmetric ellipsoid E
with axial rotational symmetry around Ru satisfies that E∆K contains
no ball of the form x+ tBn with |x · u| ≤ 1− t, then

(1− 7t)u+ (
√
δ/4)v ∈ K.

Proof. By Lemma 20 (iii), we have θu ∈ ∂E where θ > 1 + 1
2 δ. It

follows that √
1− (1− 4t)2

θ2
>

√
1− 1

1 + δ
>

√
δ/2,

and hence

w = (1− 4t)u+ (
√
δ/2)v ∈ E.

Thus, we obtain Corollary 21 from Lemma 20 (ii). Q.E.D.

If a convex body with axial rotational symmetry is “too flat” around
the poles then we modify it in the following way.

Lemma 22. If ε ∈ (0, ε0) for ε0 ∈ (0, 1) depending on n, and K
is a convex body with δBM(K,Bn) = ε spinning around u, then there
exists a convex body K ′ that spins around u, and is obtained from K
by combining linear transformations and one Schwarz rounding, such
that for any o-symmetric ellipsoid E with axial rotational symmetry
around Ru, one finds a ball of the form x + 4ε2 Bn in E∆K ′, where
|x · u| ≤ 1− 4ε2.

Proof. In the following the implied constants in O(·) depend only on
n, and we write γ1, γ2, . . . to denote positive constants depending only
on n. We assume that ε0 depends only on n and is small enough to
make the argument below work.

If for any o-symmetric ellipsoid E with axial rotational symmetry
around Ru, one finds a ball of the form x + ε3/2 Bn in E∆K where
|(x · u)| ≤ 1− ε3/2, then we are done. Therefore let us assume that this
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is not the case, and hence there exists an o-symmetric ellipsoid E0 with
axial rotational symmetry around Ru satisfying that E0∆K contains no
ball of the form x+ ε3/2 Bn with |x · u| ≤ 1− ε3/2. Let u be part of an
orthonormal basis for R

n, let Φ be the diagonal matrix that maps E0

into Bn, and let K0 = ΦK.
By Lemma 20 (iii) applied to K and E0, we have θu ∈ ∂E0 where

1 + 1
2 ε < θ < 1 + γ1 ε, and hence

(1− s)u ∈ ∂K0, where 1
4 ε < s < γ2 ε.

In addition, Lemma 20 (i) and (ii) yield

K ⊂
(
1 + γ3ε

3/2
)
E0,

(x+ 3ε
3
2Bn) ∩K 6= ∅ for all x ∈ ∂E0 with |x · u| ≤ 1− 4ε3/2.

Thus, we deduce that

K0 ⊂
(
1 + γ3ε

3
2

)
Bn,

(59)

(x+ 4ε
3
2Bn) ∩K 6= ∅ for all x ∈ Sn−1 with |x · u| ≤ 1− s− 4ε

3
2 .

(60)

Since 1
4 ε < s < γ2 ε implies

√(
1 + γ3ε

3
2

)2
−
(
1− s− 8ε

3
2

)2
>

√
2s− γ5ε,

we deduce from (60) that

(61) (1− s− 8ε
3
2 )u+

(√
2s − γ5ε

)
v ∈ K0.

We plan to apply Schwarz rounding of K0 with respect to Ru′, where

u′ =
√
1− s u+

√
s v.

It follows from
√
1− s = 1− 1

2 s+O(s2), (59), and (61) that

(62) 1−
(
3
2 −

√
2
)
s− γ6ε

3
2 ≤ hK0(u

′) ≤ 1 + γ3ε
3
2 .

Next let
ε

3
2/2 < p < 2ε

3
2 ,

let w be of the form w = (1 − s)u + t v with w · u′ = hK0(u
′) − p, and

let z = (hK0(u
′)− p)u′. In addition, let ̺ be the radius of

G = H(u′, hK0(u
′)− p) ∩ (1 + γ3ε

3
2 )Bn.

As H(u′, hK0(u
′)−p) cuts of a cap of depth at most (32 −

√
2+O(ε

1
2 )) ·s

from (1 + γ3ε
3
2 )Bn by (62), and 3

2 −
√
2 = 1

2 (
√
2− 1)2, we have

̺ ≤
(
(
√
2− 1) +O(ε

1
2 )
)√

s.
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In addition, for y =
√
1− s u′ (collinear with w and (1− s)u), we have

‖y − z‖ ≥
(√

2− 1−O(ε
1
2 )
)
s,

and therefore

‖w − z‖ =

√
1− s√
s

‖y − z‖ ≥
(√

2− 1−O(ε
1
2 )
)√

s.

Now H(u, 1− s) cuts of a cap of depth

̺− ‖w − z‖ ≤ O(ε
1
2 )
√
s = O(ε)

from G, and this cap contains H(u′, hK0(u
′)− p)∩K0. We deduce that

H
(
H(u′, hK0(u

′)− p) ∩K0

)
≤ O(ε)(ε ̺)

n−2
2 ≤ O(ε

1
4 )ε

3(n−1)
4 .

Let K1 be the Schwarz rounding of K0 around Ru′, and let K ′ be the
convex body spinning around u that is the image of K1 by a linear
transformation that maps hK1(u

′)u′ into u, and K1 ∩ u′⊥ into Bn ∩ u⊥.
Thus K ′ satisfies

H
(
H(u, 1− ε

3
2 ) ∩K ′

)
≤ O(ε

1
4 )ε

3(n−1)
4 .

We conclude that δBM(K ′, Bn) ≥ γ6ε
3
2 on the one hand, and

(63) (1− ε
3
2 )u+ γ7ε

1
4(n−1) · ε 3

4 v 6∈ K ′

on the other hand.
Next we suppose that there exists some o-symmetric ellipsoid E with

axial rotational symmetry around Ru, such that no ball of the form
x+ 4ε2Bn with |x · u| ≤ 1 − 4ε2 is contained in E∆K ′. By Lemma 21

and δBM(K ′, Bn) ≥ γ6ε
3
2 , we have

(64) (1− 28ε2)u+ γ8ε
3
4 v ∈ K ′.

If ε0 is small enough, then (63) contradicts (64), completing the proof
of Lemma 22. Q.E.D.

Next, strengthening Lemma 22, we are even more specific about the
shape of the o-symmetric convex body with axial rotational symmetry
near the poles.

Proposition 23. If ε ∈ (0, ε0) for ε0 ∈ (0, 1) depending on n, and K
is a convex body spinning around u such that δBM(K,Bn) = ε, then there
exists a convex body K ′ that spins around u, and is obtained from K by
combining linear transformations and two Schwarz roundings, such that

(i) for any o-symmetric ellipsoid E with axial rotational symmetry
around Ru, one finds a ball x + 2ε2Bn ⊂ E∆K ′ where |x · u| ≤
1− 2ε2;

(ii) (1− ε32)u+ ε3v 6∈ K ′.
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Proof. In the following the implied constants in O(·) depend only on
n. We assume that ε0 depends only on n and is small enough to make
the argument below work.

According to Lemma 22, there exists a convex body K0 that spins
around u, and is obtained from K by combining linear transformations
and a Schwarz rounding, such that for any o-symmetric ellipsoid E with
axial rotational symmetry around Ru and E ∩ u⊥ = Bn ∩ u⊥, one finds
a ball of the form x + 2ε4Bn in E∆K0 where |x · u| ≤ 1 − 4ε2. If
(1−ε32)u+ε3v 6∈ K0, then we may take K ′ = K0. Therefore we assume
that

(65) (1− ε32)u+ ε3v ∈ K0.

To obtain K ′, first we apply Schwarz rounding around Ru′ for the unit
vector

ũ =
√

1− ε32 u+ ε16 v

to get a convex body K̃. Then we set K ′ = Φ̃K̃ where Φ̃ is a linear

transform that maps h
K̃
(ũ)ũ = hK0(ũ)ũ into u, and K̃∩ũ⊥ into Bn∩u⊥.

Since δBM(K0, B
n) ≤ ε, we have

(66) K0, K̃ ⊂ (1 +O(ε))Bn.

It follows from (65) and (66) that

(67) 1 ≤ hK0(ũ) = hK̃(ũ) ≤ 1 +O(ε).

For any s ∈ (0, 1), let r(s) and r̃(s) be the radii of K ∩ H(u, s) and

K̃ ∩H(ũ, s), respectively. We claim that

(68) r̃(s) = r(s) +O(ε14) if s ≤ 1− 4ε2.

For a fixed s ∈ (0, 1 − 4ε2], let s1 < s2 such that

[s1, s2]u = πRu [K0 ∩H(ũ, s)] .

Since K0 ⊂ Bn + Ru, it follows that

(69) s− 2ε16 < s1 < s2 < s+ 2ε16.

Since 1− s ≥ 4ε2 and u ∈ K0, we deduce that

‖z − sũ‖ = r(s) +O(ε14) for any z ∈ ∂K0 ∩H(ũ, s),

which in turn yields (68).
Now let E be any o-symmetric ellipsoid having Ru as an axis of

rotation. For some orthogonal linear transform Φ∗ that maps ũ into

u, we consider the o-symmetric ellipsoid E∗ = Φ−1
∗ Φ̃−1E having again

Ru as an axis of rotation. We know that there exists x∗ such that
x∗ +4ε2Bn ⊂ K0∆E∗ and x∗ ·u ≤ 1− 4ε2. It follows from (68) that for

x̃ = Φ∗x∗ and Ẽ = Φ∗E∗, we have x̃+3ε2 ⊂ K̃∆Ẽ and x̃·ũ ≤ 1−4ε2. We
conclude using (67) and (68) that x+2ε2Bn ⊂ E∆K ′ and |x·u| ≤ 1−2ε2

for x = Φ̃x̃, verifying (i).
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To prove (ii), let

ε32/4 < p < 4ε32.

If tu ∈ H(ũ, hK0(ũ)− p) ∩ intK0 for t > 0, then H(ũ, hK0(ũ)− p) cuts
of a cap of depth at most p/ε16 < 4ε16 from H(u, t) ∩ K0, and hence
H(ũ, hK0(ũ)−p)∩K0∩H(u, t) is an (n−2)-ball of radius at most O(ε8).
As K0 ⊂ 2Bn, we deduce that

H
(
H(ũ, hK0(ũ)− p) ∩ K̃

)
= H (H(ũ, hK0(ũ)− p) ∩K0)

= O(ε8(n−2)) = O(ε4(n−1)),

and thus for ṽ ∈ Sn−1 ∩ ũ⊥, we have

(hK0(ũ)− p)ũ+ γε4ṽ 6∈ K̃,

where γ > 0 depends on n. We conclude, again using (67) and (68),
that

(1− q)u+ 2γε4v 6∈ K ′ for any q ∈ (ε32/2, 2ε32),

which in turn yields (ii). Q.E.D.

Finally, we are in a position to prove Theorem 14.

Proof of Theorem 14: We assume that δ0 (and hence δ, as well) is
small enough to make the estimates below work. We write γ1, γ2, . . . to
denote positive constants depending only on n.

According to Lemma 18 and Proposition 23, there exists a convex
body K1 spinning around u and obtained from K by a combination of
Steiner symmetrizations, linear transformations and taking limits, such
that for some η ∈ (δ3, δ], we have δBM(K1, B

n) ≤ η, and

: (a) for any o-symmetric ellipsoid E with axial rotational symmetry
around Ru, one finds a ball x + 2η2 Bn ⊂ E∆K1 where |x · u| ≤
1− 2η2;

: (b) (1− η32)u+ η3v 6∈ K1.

In particular,

δBM (K1, B
n) ≥ γ1η

2.

If

δ3 + (1− δ7) v 6∈ K1,

then we simply take ε = η and K ′ = K1. If

δ3 + (1− δ7) v ∈ K1,

then let K2 be the Schwarz rounding of K1 around Rv, and hence
δBM(K2, B

n) ≥ γ2η
7 by Lemma 19. For ε = δBM(K2, B

n), we have

δ24 ≤ δBM(K2, B
n) = ε ≤ δ.
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Since K1 ⊂ (1 + γ2ε)B
n and K1 spins around u, if t ∈ (0, ε), then

H (K1 ∩H(v, 1− t)) ≤ γ3ε
1/2H

(
Bn ∩ u⊥ ∩H(v, 1 − t)

)

≤ γ4ε
1/2t

n−2
2 ,

H (H(v, t) ∩K1) ≤ (1− γ5t
2)H (H(v, 0) ∩K1) .

Using that n−2
2(n−1) ≥ 1

4 for n ≥ 3, we have

γ6ε
1

2(n−1) t1/4u+ (1− t) v 6∈ K2,

(1− γ7t
2)u+ t v 6∈ K2.

We transform K2 into a convex body K ′ spinning around u by a linear
map, which sends v into u, and v⊥ ∩K2 into u⊥ ∩Bn. We deduce that
if t ∈ (0, ε/2), then

(1− t)u+ γ8ε
1

2(n−1) t1/4 v 6∈ K ′,(70)

t u+ (1− γ9t
2)v 6∈ K ′.(71)

In (71), we choose t such that ε7 = γ9t
2, and hence

ε3 u+ (1− ε7) v 6∈ K ′.

We also deduce by substituting t > 0 with ε3 = γ8ε
1

2(n−1) t1/4 in (70)
that

(1− ε32)u+ ε3v 6∈ K ′.

Finally suppose that for some o-symmetric ellipsoid E with axial rota-
tional symmetry around Ru, there is no ball of the form x+ 2ε2 Bn in
E∆K ′, where |x · u| ≤ 1− 2ε2. It follows from Corollary 21 that

(72) (1− 14ε2)u+ γ10ε
1/2 v 6∈ K ′.

If δ0 is small enough, then substituting t = 14ε2 in (70) contradicts (72).
Therefore K ′ satisfies all requirements of Theorem 14. Q.E.D.
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inequality, Adv. Math. 225 (2010), 1914–1928, MR 2680195, Zbl 1216.52007.

[7] S. Campi, Recovering a centred convex body from the areas of its shadows: a

stability estimate, Ann. Mat. Pura Appl. (4), 151 (1988), 289–302, MR 0964515,
Zbl 0657.52001.

[8] A. Cianchi, E. Lutwak, D. Yang & G. Zhang, Affine Moser-Trudinger and

Morrey-Sobolev inequalities, Calc. Var. Partial Differential Equations, 36 (2009),
419–436, MR 2551138, Zbl 1202.26029.

[9] G. Ewald, D.G. Larman & C.A. Rogers, The directions of the line segments and

of the r-dimensional balls on the boundary of a convex body in Euclidean space,
Mathematika, 17 (1970), 1–20, MR 0270271, Zbl 0199.57002.

[10] A. Figalli, F. Maggi & A. Pratelli, A refined Brunn-Minkowski inequality for

convex sets, Annales de IHP (C) Non Linear Analysis, 26 (2009), 2511–2519,
MR 2569906, Zbl 1192.52015.

[11] A. Figalli, F. Maggi & A. Pratelli, A mass transportation approach to quan-

titative isoperimetric inequalities, Inventiones Mathematicae, 182, Number 1,
(2010), 167–211, MR 2672283, Zbl 1196.49033.
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1051 Budapest, Nádor u. 9, Hungary

E-mail address: kboroczky@gmail.com


