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ISOPARAMETRIC HYPERSURFACES
WITH FOUR PRINCIPAL CURVATURES, III

Quo-Shin Chi

Abstract

The classification work [5], [8] left unsettled only those anoma-
lous isoparametric hypersurfaces with four principal curvatures
and multiplicity pair {4, 5}, {6, 9}, or {7, 8} in the sphere.

By systematically exploring the ideal theory in commutative al-
gebra in conjunction with the geometry of isoparametric hypersur-
faces, we show that an isoparametric hypersurface with four prin-
cipal curvatures and multiplicities {4, 5} in S19 is homogeneous,
and, moreover, an isoparametric hypersurface with four principal
curvatures and multiplicities {6, 9} in S31 is either the inhomo-
geneous one constructed by Ferus, Karcher, and Münzner, or the
one that is homogeneous.

This classification reveals the striking resemblance between these
two rather different types of isoparametric hypersurfaces in the ho-
mogeneous category, even though the one with multiplicities {6, 9}
is of the type constructed by Ferus, Karcher, and Münzner and
the one with multiplicities {4, 5} stands alone. The quaternion and
the octonion algebras play a fundamental role in their geometric
structures.

A unifying theme in [5], [8], and the present sequel to them
is Serre’s criterion of normal varieties. Its technical side pertinent
to our situation that we developed in [5], [8] and extend in this
sequel is instrumental.

The classification leaves only the case of multiplicity pair {7, 8}
open.

1. Introduction

An isoparametric hypersurface M in the sphere is one whose principal
curvatures and their multiplicities are fixed constants. The classification
of such hypersurfaces has been an outstanding problem in submanifold
geometry, listed as Problem 34 in [27], as can be witnessed by its long
history. Through Münzner’s work [23], we know the number g of prin-
cipal curvatures is 1,2,3,4 or 6, and there are at most two multiplicities
{m1, m2} of the principal curvatures, occurring alternately when the
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principal curvatures are ordered, associated with M (m1 = m2 if g is
odd). Over the ambient Euclidean space in which M sits there is a
homogeneous polynomial F , called the Cartan-Münzner polynomial, of
degree g that satisfies

|∇F |2(x) = g2|x|2g−2, (ΔF )(x) = (m2 − m1)g2|x|g−2/2

whose restriction f to the sphere has image in [−1, 1] with ±1 the only
critical values. For any c ∈ (−1, 1), the preimage f−1(c) is an isopara-
metric hypersurface with f−1(0) = M . This 1-parameter of isopara-
metric hypersurfaces degenerates to the two submanifolds f−1(±1) of
codimension m1 + 1 and m2 + 1 in the sphere.

The isoparametric hypersurfaces with g = 1, 2, 3 were classified by
Cartan to be homogeneous [3], [4]. For g = 6, it is known that m1 =
m2 = 1 or 2 by Abresch [1]. Dorfmeister and Neher [13] showed that
the isoparametric hypersurface is homogeneous in the former case and
Miyaoka [22] settled the latter.

For g = 4, there are infinite classes of inhomogeneous examples of
isoparametric hypersurfaces, two of which were first constructed by
Ozeki and Tackeuchi [24, I] to be generalized later by Ferus, Karcher,
and Münzner [15], referred to collectively as isoparametric hypersurfaces
of OT-FKM type subsequently. We remark that the OT-FKM type in-
cludes all the homogeneous examples, barring the two with multiplicities
{2, 2} and {4, 5}. To construct the OT-FKM type, let P0, · · · , Pm1 be
a Clifford system on R

2l, which are orthogonal symmetric operators on
R

2l satisfying

PiPj + PjPi = 2δijI, i, j = 0, · · · , m.

The 4th degree homogeneous polynomial

F (x) = |x|4 − 2
m∑

i=0

(〈Pi(x), x〉)2

is the Cartan-Münzner polynomial. The two multiplicities of the OT-
FKM type are m and kδ(m) − 1 for any k = 1, 2, 3, · · · , where δ(m)
is the dimension of an irreducible module of the Clifford algebra Cm−1
(l = kδ(m)). Stolz [26] showed that these multiplicity pairs and {2, 2}
and {4, 5} are exactly the possible multiplicities of isoparametric hyper-
surfaces with four principal curvatures in the sphere.

The recent study of n-Sasakian manifolds [10]; Hamiltonian stability
of the Gauss images of isoparametric hypersurfaces in complex hyper-
quadrics as Lagrangian submanifolds [19], [20]; isoparametric functions
on exotic spheres [17]; and the realization of the Cartan-Münzner poly-
nomial of an isoparametric hypersurface with four principal curvatures
as the moment map of a Spin-action on the ambient Euclidean space,
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regarded as a cotangent bundle with the standard symplectic struc-
ture [16], [21], represent several new directions in the study of such
hypersurfaces.

Through [5] (see also [6], [7]) and [8] it has been clear by now that
isoparametric hypersurfaces with four principal curvatures and multi-
plicities {m1, m2}, m1 ≤ m2, fall into two categories: namely, the gen-
eral category where m2 ≥ 2m1 − 1, and the anomalous category where
the multiplicities are {2, 2}, {3, 4}, {4, 5}, {6, 9}, or {7, 8}. The former
category enjoys a rich connection with the theory of reduced ideals in
commutative algebra, and is exactly of OT-FKM type [5], [8]. The latter
is peculiar, in that all known examples of such hypersurfaces with mul-
tiplicities {3, 4}, {6, 9}, or {7, 8} are of the OT-FKM type and have the
property that incongruent isoparametric hypersurfaces with the same
multiplicity pair occur in the same ambient sphere, which is not the
case in the former category; in contrast, those with multiplicities {2, 2}
or {4, 5} can never be of OT-FKM type. The theory of reduced ideals
breaks down in the anomalous category. Yet, in [8], we were still able
to utilize more commutative algebra, in connection with the notion of
Condition A introduced by Ozeki and Takeuchi [24, I], to prove that
those hypersurfaces with multiplicities {3, 4} are of OT-FKM type. This
left unsettled only the anomalous isoparametric hypersurfaces with mul-
tiplicities {4, 5}, {6, 9}, or {7, 8}.

Of all known examples of isoparametric hypersurfaces with four prin-
cipal curvatures in the sphere, the homogeneous one (= SU(5)/Spin(4))
with multiplicities {4, 5} in S19 is perhaps one of the most intriguing.
First off, it stands alone (together with the (classified) one with mul-
tiplicities {2, 2}) as it does not belong to the OT-FKM type. More
remarkably, through the work in [10], one knows that there is a contact
CR structure of dimension 8 on its focal manifold of dimension 14 in
S19, giving rise to the notion of 13-dimensional 5-Sasakian manifolds
fibered over CP 4 that generalizes the 3-Sasakian ones. The 5-Sasakian
manifold constructed from the focal manifold carries a metric of positive
sectional curvature [2].

Intuitively, it seems remote that the homogeneous example Spin(10) ·
T 1/SU(4) ·T 1 of multiplicities {6, 9} in S31, which is of OT-FKM type,
would share any common feature with the above one of multiplicities
{4, 5}. We will, however, show through the classification in this paper
the striking resemblance between them.

In this paper, we will systematically employ the ideal theory, in con-
junction with the geometry of isoparametric hypersurfaces, to prove that
an isoparametric hypersurface with four principal curvatures and multi-
plicities {4, 5} is the homogeneous one, and moreover, an isoparametric
hypersurface with four principal curvatures and multiplicities {6, 9} is
either the homogeneous one mentioned above, or the inhomogeneous
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one constructed by Ferus, Karcher, and Münzner [15]. Serre’s criterion
of normal varieties, whose technical side pertinent to our situation we
developed in [5], [8], is instrumental. It turns out the quaternion and
octonion algebras also play a fundamental role in the structures of these
hypersurfaces.

The classification leaves open the only case when the multiplicity pair
is {7, 8}.

I would like to thank Josef Dorfmeister for many conversations, dur-
ing our visit to Tôhoku University in the summer of 2010, to share
the isoparametric triple system approach he and Erhard Neher intro-
duced [11].

2. Preliminaries

2.1. The basics. Let M be an isoparametric hypersurface with four
principal curvatures in the sphere, and let F be its Cartan-Münzner
polynomial. To fix notation, we make the convention, by changing F to
−F if necessary, that its two focal manifolds are M+ := F−1(1) and
M− := F−1(−1) with respective codimensions m1 + 1 ≤ m2 + 1 in
the ambient sphere S2(m1+m1)+1. The principal curvatures of the shape
operator Sn of M+ (vs. M−) with respect to any unit normal n are
0, 1 and −1, whose multiplicities are, respectively, m1, m2 and m2 (vs.
m2, m1 and m1).

On the unit normal sphere bundle UN+ of M+, let (x, n0) ∈ UN+ be
points in a small open set; here x ∈ M+ and n0 is normal to the tangents
of M+ at x. We define a smooth orthonormal frame na, ep, eα, eμ, where
1 ≤ a, p ≤ m1 and 1 ≤ α, μ ≤ m2, in such a way that na are tangent to
the unit normal sphere at n0, and ep, eα and eμ, respectively, are basis
vectors of the eigenspaces E0, E1 and E−1 of the shape operator Sn0 .

Convention 1. We will sometimes also use b, q, β, and ν in place of
a, p, α, and μ, respectively. Henceforth, a, p, α, μ are specifically reserved
for indexing the indicated normal and tangential subspaces.

Each of the frame vectors can be regarded as a smooth function from
UN+ to R

2(m1+m2). We have [5, p 14], in Einstein summation conven-
tion,

dx = ωpep + ωαeα + ωμeμ, dn0 = ωana − ωαeα + ωμeμ

dna = −ωan0 + θt
aet, dep = −ωpx + θt

pet

deα = −ωαx + ωαn0 + θt
αet, deμ = −ωμx − ωμn0 + θt

μet

(1)

where the index t runs through the p, α, and μ ranges, and
θp
a = −Sa

pαωα − Sa
pμωμ, θα

a = −Sa
pαωp − Sa

αμωμ

θα
p = −Sa

pαωa − Sp
αμωμ, θμ

a = −Sa
pμωp − Sa

αμωα

θμ
p = Sa

pμωa + Sp
αμωα, θμ

α = (Sa
αμ/2)ωa + (Sp

αμ/2)ωp

(2)
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where Sa
ij := 〈S(ei, ej), na〉 are the components of the second funda-

mental form S of M+ at x, and Sp
αμ are the αμ-components of S at

the “mirror” point n0 ∈ M+ where the normal x, ep, 1 ≤ p ≤ m1, and
the tangent na, 1 ≤ a ≤ 4, eα, eμ, 1 ≤ α, μ ≤ 5, form an adapted frame.
Knowing S at x does not necessarily mean knowing S at n0. This is
fundamentally the reason the classification of isoparametric hypersur-
faces can be rather entangling. In any event, there are two identities
connecting Sa

αμ and Sp
αμ as follows [5, p 16]:

∑
a

Sa
pαSa

qβ +
∑

a

Sa
qαSa

pβ

+ 1/2
∑

μ

(Sp
αμSq

βμ + Sq
αμSp

βμ) = δpqδαβ .
(3)

The other is entirely symmetric, obtained by interchanging the α and μ
ranges.

The third fundamental form of M+ is the symmetric tensor

q(X, Y, Z) := (∇⊥
XS)(Y, Z)/3

where ∇⊥ is the normal connection. Write pa(X, Y ) := 〈S(X, Y ), na〉
and qa(X, Y, Z) = 〈q(X, Y, Z), na〉, 0 ≤ a ≤ m1. The Cartan-Münzner
polynomial F is related to pa and qa by the expansion formula of Ozeki
and Takeuchi [24, I, p 523]

F (tx + y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8(
m∑

i=0

piwi)t

+ |y|4 − 6|y|2|w|2 + |w|4 − 2
m∑

i=0

p2
i − 8

m∑
i=0

qiwi

+ 2
m∑

i,j=0

〈∇pi,∇pj〉wiwj

(4)

where w :=
∑m1

i=0 wini, y is tangential to M+ at x, pi := pi(y, y) and
qi := qi(y, y, y). Note that our definition of qi differs from that of Ozeki
and Takeuchi [24, I] by a sign.

Lemma 1. q0(y, y, y) = −
∑

pαμ Sp
αμXαYμZp, where y =

∑
α Xαeα +∑

μ Yμeμ +
∑

p Zpep.

Proof. One uses (4) and observes that at n0 ∈ M+, by (1), the normal
space is Rx ⊕ E0, the 0-eigenspace of the shape operator Sx is spanned
by n1, · · · , nm1 , and the ±1-eigenspaces of Sx are identical with E1 and
E−1, respectively. q.e.d.
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We remark that the symmetric matrices Sa of the components pa, 0 ≤
a ≤ m1, relative to E1, E−1, and E0, are

(5) S0 =

⎛
⎝Id 0 0

0 −Id 0
0 0 0

⎞
⎠ , Sa =

⎛
⎝ 0 Aa Ba

Atr
a 0 Ca

Btr
a Ctr

a 0

⎞
⎠ , 1 ≤ a ≤ m1,

where Aa : E−1 → E1, Ba : E0 → E1, and Ca : E0 → E−1.

2.2. The duality between M+ and M−. Let UN+ and UN− be
respectively the unit normal bundles of M+ and M−. The map

(x, n0) → (x∗ := (x + n0)/
√

2, n∗
0 := (x − n0)/

√
2)

is a diffeomorphism from UN+ to UN−. Finding dx∗ by (1), we see that
the normal space at x∗ is Rn∗

0 ⊕ E+. Finding −dn∗
0 by (1), we obtain

that E∗
1 , the +1-eigenspace of the shape operator Sn∗

0
, is spanned by

n1, · · · , nm1 ; E∗
−1, the −1-eigenspace, is E0; and E∗

0 , the 0-eigenspace,
is E−1. We leave it to the reader as a simple exercise to verify the
following duality property by exploring (1) and (2) on both M+ and
M− at x and x∗.

Lemma 2. Referring to (5), let the counterpart matrices at x∗ and
their blocks be denoted by the same notation with an additional *. Then

A∗
α = −

√
2

(
Sa

pα

)
, 1 ≤ α ≤ m2,

B∗
α = −1/

√
2

(
Sa

αμ

)
, 1 ≤ α ≤ m2,

C∗
α = −1/

√
2

(
Sp

αμ

)
, 1 ≤ α ≤ m2,

(6)

where the upper scripts denote rows.

2.3. The homogeneous example of multiplicities {4, 5}. Consider
the complex Lie algebra so(5, C). The unitary group U(5) acts on it by

g · Z = gZg−1

for g ∈ U(5) and Z ∈ so(5, C). The principal orbits of the action
form the homogeneous 1-parameter family of isoparametric hypersur-
faces with multiplicities (m1, m2) = (4, 5). Let the (i, j)-entry of Z be
denoted by aij , and let aij = xij +

√
−1yij in which xij and yij are real.

The Euclidean space is so(5, C) coordinatized by xij and yij , and the
Cartan-Münzner polynomial is [24, II, p 27]

F (Z) = −5/4
∑

i

|Zi|4 + 3/2
∑
i<j

|Zi|2|Zj |2 − 4
∑
i<j

|〈Zi, Zj〉|2,

where Z1, . . . , Z5 are the row vectors of Z. It is readily seen that the
point x with coordinates x12 = x34 = 1/

√
2 and zero otherwise satisfies
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F (x) = 1, so that x ∈ M+ = SU(5)/Sp(2). Let us introduce new
coordinates

x12 := (t + w0)/
√

2, x34 := (t − w0)/
√

2,

x13 := (w3 − z4)/
√

2, x24 := (w3 + z4)/
√

2,

y13 := (−z3 − w4)/
√

2, y24 := (−z3 + w4)/
√

2,

x14 := (z2 − w1)/
√

2, x23 := (z2 + w1)/
√

2,

y14 := (w2 + z1)/
√

2, y23 := (w2 − z1)/
√

2.

Then w0, . . . , w4 are the normal coordinates, z1, . . . , z4 the E0-coord-
inates, and

x1 := x35, x2 := y35, x3 := x45, x4 := y45, x5 := y34,

y1 := x15, y2 := y35, y3 := x25, y4 := y25, y5 := y12

are the five E1 and five E−1 coordinates, in order. In fact, the compo-
nents of the second fundamental form of M+ at x are, by (4),

p0 = (x1)2 + · · · + (x5)2 − (y1)2 − · · · − (y5)2,

p1 = 2(x1y1 + x2y2 + · · · + x4y4) +
√

2(x5 + y5)z1,

p2 = 2(x2y1 − x1y2) + 2(x3y4 − x4y3) +
√

2(x5 + y5)z2,

p3 = 2(x3y1 − x1y3) + 2(x4y2 − x2y4) +
√

2(x5 + y5)z3,

p4 = 2(x2y3 − x3y2) + 2(x4y1 − x1y4) +
√

2(x5 + y5)z4.

(7)

Note that the 5-by-5 matrices Ai of pi, 1 ≤ i ≤ 4, given in (5) are

A1 :=

⎛
⎝I 0 0

0 I 0
0 0 0

⎞
⎠ , A2 :=

⎛
⎝J 0 0

0 −J 0
0 0 0

⎞
⎠ ,

A3 :=

⎛
⎝0 −I 0

I 0 0
0 0 0

⎞
⎠ , A4 :=

⎛
⎝0 J 0

J 0 0
0 0 0

⎞
⎠ ,

(8)

where I is the 2-by-2 identity matrix and J is the 2-by-2 matrix

(9) J :=
(

0 −1
1 0

)
.

It is readily checked that the upper 4-by-4 blocks of A1, . . . , A4, still
denoted by A1, . . . , A4 for notational convenience, satisfy

AjAk + AkAj = −2δjkI

with

(10) A2A3 = −A4.
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Note that A1, . . . , A4 are exactly the matrix representations of the mul-
tiplications by 1, i, j, k, respectively, on the right over H. The 5-by-4
matrices Bi = Ci of pi, 1 ≤ i ≤ 4, given in (5) are

B1 :=
(

0 0 0 0
1/

√
2 0 0 0

)
, B2 :=

(
0 0 0 0
0 1

√
2 0 0

)
,

B3 :=
(

0 0 0 0
0 0 1

√
2 0

)
, B4 :=

(
0 0 0 0
0 0 0 1/

√
2

)
,

(11)

where the first zero row in each matrix is of size 4-by-4.
Note that it follows from (11) that all nontrivial linear combinations

of B1, . . . , B4 are of rank 1, which will play a decisive role later.
A calculation with the expansion formula (4) gives the components

of the third fundamental form q̃ of the homogeneous example. We will
only display q̃0 for later purposes.

q̃0 = −2z4(x1y3 + x3y1 + x2y4 + x4y2)

− 2z3(−x1y4 − x4y1 + x2y3 + x3y2)

− 2z2(x1y1 + x2y2 − x3y3 − x4y4)

− 2z1(x1y2 − x2y1 + x3y4 − x4y3)

(12)

2.4. The homogeneous example of multiplicities {6, 9}. This is
the example of OT-FKM type with multiplicity pair (m1, m2) = (6, 9)
whose Clifford action is on M− of codimension 9 + 1 = 10 in S31, given
as follows.

Let J̌1, . . . , J̌8 be the unique (up to equivalence) irreducible represen-
tation of the (anti-symmetric) Clifford algebra C8 on R

16. Set

P0 : (c, d) �→ (c,−d),

P1 : (c, d) �→ (d, c),

P1+i : (c, d) �→ (J̌i(d),−J̌i(c)), 1 ≤ i ≤ 8,

over R
32 = R

16 ⊕ R
16. P0, P1, . . . , P9 form a representation of the (sym-

metric) Clifford algebra C ′
10 on R

32.
We know that M− with the Clifford action on it can be realized as

the Clifford-Stiefel manifold [15]. Namely,

M− = {(ζ, η) ∈ S31 ⊂ R
16 × R

16 :

|ζ| = |η| = 1/
√

2, ζ ⊥ η, J̌i(ζ) ⊥ η, i = 1, . . . , 8}.

At (ζ, η) ∈ M−, the normal space is

N = span〈f0 := P0((ζ, η)), . . . , f9 := P9((ζ, η))〉.

E0, the 0-eigenspace of the shape operator S0 := Sf0 , is

E0 = span〈g1 := P1P0((ζ, η)), . . . , g9 := P9P0((ζ, η))〉.
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E±, the ±1-eigenspaces of S0, are

E± := {X : P0(X) = ∓X, X ⊥ N}.

Since E+ (vs. E−) consists of (0, d) ∈ R
32 (vs. (e, 0) ∈ R

32), we obtain

E+ := {(0, d) : d ⊥ ζ, d ⊥ η, d ⊥ J̌i(ζ),∀i},

E− := {(e, 0) : e ⊥ ζ, e ⊥ η, e ⊥ J̌i(η),∀i}.
(13)

The second fundamental form Sa := Sfa at (ζ, η) is

Sa(X, Y ) = −〈Pa(X), Y 〉,

The representation J̌1, . . . , J̌8 can be constructed out of the octonion
algebra as follows. Let e1, e2, . . . , e8 be the standard basis of the octo-
nion algebra O with e1 the multiplicative unit. Let J1, J2, . . . , J7 be the
matrix representations of the octonion multiplications by e1, e2, . . . , e8
on the right over O. Then

(14) J̌i =
(

Ji 0
0 −Ji

)
, 1 ≤ i ≤ 7, J̌8 =

(
0 I

−I 0

)
.

We may set

η = (0, e1/
√

2), ζ = (e2/
√

2, 0)

(in fact any purely imaginary e in place of e2 is fine). Then it is easily
checked that (ζ, η) ∈ M−. Moreover,

E+ = {(0, d) ∈ R
16 × R

16 : d = (0, α) ∈ R
8 × R

8, α ⊥ e1, e2},

E− = {(e, 0) ∈ R
16 × R

16 : e = (β, 0) ∈ R
8 × R

8, β ⊥ e1, e2}.

For hα = (0, eα) ∈ E+ and kμ = (eμ, 0) ∈ E−, 3 ≤ α, μ ≤ 8, we calculate
to see

〈P1(hα), kμ〉 = 0, 〈P9(hα), kμ〉 = −〈eα, eμ〉,
〈P1+i(hα), kμ〉 = 0, 1 ≤ i ≤ 7.

(15)

The point is that what we are after is the second fundamental form
of M+ of codimension 6 + 1 = 7 in S31. Observe that

((e2, 0), 0) = ((ζ, η) + P0((ζ, η)))/
√

2 ∈ M+,

where by (6) the six 9-by-9 matrices A3, . . . , A8 (to be compatible with
the octonion setup, we do not denote them by A1, A2, . . . , A6), similar
to the ones in (8), are given by, for 3 ≤ α ≤ 8, 1 ≤ a, p ≤ 9,

(16) Aα =
(√

2〈Pa(hα), gp〉
)
,

where Aα is skew-symmetric with the (i, j)-entry = 〈eα, ejei〉 for 1 ≤
i < j ≤ 8, and the ninth row and column = 0. That is, the upper 8-by-8
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block of Aα is the matrix representation of the multiplication of −eα on
the right over O. Explicitly,

A3 =

⎛
⎜⎜⎜⎜⎝

0 I 0 0 0
−I 0 0 0 0
0 0 0 −I 0
0 0 I 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , A4 =

⎛
⎜⎜⎜⎜⎝

0 −J 0 0 0
−J 0 0 0 0
0 0 0 J 0
0 0 J 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

A5 =

⎛
⎜⎜⎜⎜⎝

0 0 I 0 0
0 0 0 I 0

−I 0 0 0 0
0 −I 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , A6 =

⎛
⎜⎜⎜⎜⎝

0 0 −J 0 0
0 0 0 −J 0

−J 0 0 0 0
0 −J 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

A7 =

⎛
⎜⎜⎜⎜⎝

0 0 0 K 0
0 0 −K 0 0
0 K 0 0 0

−K 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ , A8 =

⎛
⎜⎜⎜⎜⎝

0 0 0 L 0
0 0 −L 0 0
0 L 0 0 0

−L 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

where J is given in (9) and

(17) K :=
(

1 0
0 −1

)
, L :=

(
0 1
1 0

)
.

The upper 8-by-8 blocks of A3, . . . , A8, still denoted by the same symbols
for notational convenience, satisfy

AαAβ + AβAα = −2δαβI;

this is the unique (up to equivalence) Clifford representation of C6 on
R

8. We will employ later the five matrices

(18) αj = −A3Aj , 4 ≤ j ≤ 8,

which generate the unique (up to equivalence) representation of C5
on R

8. Note that I, α4, . . . , α8 are compatible with (8). Meanwhile,
B3, . . . , B8, similar to the ones in (11), are given, in view of (6), by

(19) Bα =
(
〈Pa(hα), kμ〉/

√
2
)
, 1 ≤ a ≤ 9, 3 ≤ α, μ ≤ 8,

whose (9, α)-entry is 1/
√

2 and is zero elsewhere, in complete agreement
with (11).

We remark that the third fundamental form of M− is

〈q(X, Y, Z), W 〉 = C
9∑

b=0

(〈Sb(X, Y )Pb(Z), W 〉)/3,

where C denotes the cyclic sum over X, Y, Z. In particular,

q0(hα, kμ, gp) = C
9∑

b=0

〈Sb(hα, kμ)Pb(gp), f0〉 = Sb=p(hα, kμ),
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which implies, by Lemma 1, Bα = Cα for 3 ≤ α ≤ 8, as in the (4, 5)
case.

3. Normal varieties and codimension 2 estimates

This section gives a brief account of the background commutative
algebra and algebraic geometry needed for the subsequent development.
Though we can proceed in an algebraic way as done in [25], we choose
to present it in an analytic way as done in [18] for more geometric
intuition.

Let V be an affine variety in C
n defined by the zeros of m+1 polyno-

mials p0, p1, . . . , pm, and let S be its singular set. A function f is weakly
holomorphic in an open set O of V if it is holomorphic on O \ S and
is locally bounded in O. Passing to the limit as O shrinks to a point
p, we can talk about the germs of weakly holomorphic functions at p.
The variety is said to be normal at p if the germs of weakly holomor-
phic functions at p coincide with the germs of holomorphic functions at
p. That is, the Riemann extension theorem holds true in the germs of
neighborhoods around p. V is said to be normal if it is normal at all its
points.

If V is normal, then its irreducible components are disconnected [18];
or else a constant function with different values on different local irre-
ducible branches, which is not even continuous, would give rise to a
weakly holomorphic function that could be extended to a holomorphic
function, a piece of absurdity. Each irreducible component is normal
whose singularity set is of codimension ≥ 2. The key point to this is
that if we realize an irreducible normal variety X of dimension l locally
as a finite branched covering π : X → C

l, then the local irreducibility of
X gives that the branch locus B of X and π(B) are both of dimension
l − 1, and so the singular set Sπ(B) of π(B) is of codimension at least
2 in C

l. Then observe that the singular set of X is contained in the
preimage of Sπ(B).

In particular, if V is normal and connected, then V is irreducible with
the singular set of codimension ≥ 2.

Corollary 1. If p0, p1, . . . , pm are homogeneous polynomials whose
zeros define a normal variety V , then V is irreducible and the singular
set of V is of codimension ≥ 2.

The corollary holds because V defined by the zeros of homogeneous
polynomials is a cone, which is clearly connected.

Conversely, if V is defined by the zeros of homogeneous polynomials
p0, . . . , pm, what are the conditions that guarantee that V is normal? A
necessary condition is that the singular set of V is of codimension ≥ 2.
The other crucial condition is that p0, . . . , pm form a regular sequence
in the polynomial ring of C

n.
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Definition 1. A regular sequence in a commutative ring R with
identity is a sequence a1, . . . , ak in R such that the ideal (a1, . . . , ak) is
not R, and moreover, a1 is not a zero divisor in R and ai+1 is not a zero
divisor in the quotient ring R/(a1, . . . , ai) for 1 ≤ i ≤ k − 1.

We have the criterion of normality of Serre [14, p 457].

Theorem 1. (Special case) Let V ⊂ C
n be defined by the zeros of

homogeneous polynomials p0, . . . , pm that form a regular sequence in the
polynomial ring of C

n. Let J be the subvariety of V where the Jacobian
matrix of p0, . . . , pm is of rank < m+1. Then V is an irreducible normal
variety if the codimension of J is at least 2 in V, in which case the ideal
(p0, p1, . . . , pm) is prime.

The criterion provides a scheme for checking whether a sequence of
homogeneous polynomials p0, . . . , pm of the same degree ≥ 1 in the
polynomial ring of C

n is a regular sequence [5, p 57].

Proposition 1. Let p0, . . . , pm be a sequence of linearly independent
homogeneous polynomials of the same degree ≥ 1 in the polynomial ring
of C

n. For each 0 ≤ k ≤ m−1, let Vk be the variety defined by the zeros
of p0, . . . , pk and let Jk be the subvariety of Vk where the Jacobian of
p0, . . . , pk is of rank < k+1. Then p0, p1, . . . , pm form a regular sequence
if Jk is of codimension at least 2 in Vk for 0 ≤ k ≤ m − 1.

In fact, repeated applications of Theorem 1 establish that the ideals
(p0, . . . , pk) are all prime for 0 ≤ k ≤ m− 1. The linear independence of
p0, . . . , pm of equal degree then demands that pk+1 cannot be a zero divi-
sor in the quotient ring P [n]/(p0, . . . , pk) by Nullstellensatz, where P [n]
stands for the polynomial ring of C

n. The homogeneity of p0, . . . , pm1

of degree ≥ 1 shows that (p0, . . . , pm1) is a proper ideal.
The components p0, . . . , pm1 of the second fundamental form of M+

of an isoparametric hypersurface with four principal curvatures are lin-
early independent homogeneous polynomials of second degree, which
fits perfectly in Proposition 1. By exploring more commutative algebra
(the algebraic independence of a regular sequence) and investigating the
codimension 2 condition in Proposition 1, it is established in [8]:

Theorem 2. Let M be an isoparametric hypersurface with four prin-
cipal curvatures and multiplicities (m1, m2), m1 < m2. Assume the com-
ponents p0, p1, . . . , pm1 of the second fundamental form of the focal sub-
manifold M+ form a regular sequence in the ring of polynomials of
C

m1+2m2. Then M is of OT-FKM type.

Corollary 2. p0, . . . , pm1 of M+ do not form a regular sequence in
general when (m1, m2) = (4, 5), (3, 4), (7, 8), or (6, 9).

Proof. For (m1, m2) = (3, 4), (7, 8), (6, 9), consider an OT-FKM type
hypersurface whose Clifford action is on M−. If p0, . . . , pm1 formed a
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regular sequence, then the isoparametric hypersurface would be of OT-
FKM type with the Clifford action on M+; this is impossible because
such an OT-FKM type hypersurface whose Clifford action is on M− is
incongruent to one whose Clifford action is on M+. On the other hand,
a hypersurface with (m1, m2) = (4, 5) can never be of OT-FKM type.
q.e.d.

It is shown in [8] that p0, . . . , pm1 do form a regular sequence when
m2 ≥ 2m1 − 1 so that the isoparametric hypersurface is of OT-FKM
type. This leaves open only (m1, m2) = (4, 5), (3, 4), (6, 9), and (7, 8). On
the other hand, though p0, . . . , p3 no longer form a regular sequence in
general for (m1, m2) = (3, 4), an argument in [8] that explores Proposi-
tion 1 and the notion of Condition A [24, I] shows that the isoparametric
hypersurface with (m1, m2) = (3, 4) is of OT-FKM type. We will carry
this scheme one step further in the next section when (m1, m2) = (4, 5)
or (6, 9).

4. The second fundamental form

We show in this section that the second fundamental form of M+ of
an isoparametric hypersurface with multiplicities (m1, m2) = (4, 5) in
S19 is, up to an orthonormal frame change, identical with that of the
homogeneous example given in Section 2.3. Furthermore, in the case
(m1, m2) = (6, 9) in S31, either the isoparametric hypersurface is the
inhomogeneous example constructed by Ferus, Karcher, and Münzner,
or, after an orthonormal frame change, the second fundamental form of
M+ is identical with that of the homogeneous example.

Let us first recall the codimension 2 estimates in [8] that are crucial
for the classification of isoparametric hypersurfaces with four principal
curvatures when the multiplicity pair (m1, m2) is either where m2 ≥
2m1 − 1, or is (3, 4).

Let p0, p1, . . . , pm1 be the components of the second fundamental form
of M+. We agree that C

2m2+m1 consists of points (u, v, w) with coor-
dinates uα, vμ and wp, where 1 ≤ α, μ ≤ m2 and 1 ≤ p ≤ m1. For
0 ≤ k ≤ m1, let

Wk := {(u, v, w) ∈ C
2m2+m1 : p0(u, v, w) = · · · = pk(u, v, w) = 0}.

We want to estimate the dimension of the subvariety Uk of C
2m2+m1 ,

where

Uk := {(u, v, w) ∈ C
2m2+m1 : rank of the Jacobian of p0, . . . , pk < k+1}.

p0, . . . , pk give rise to a linear system of cones Cλ defined by

c0p0 + · · · + ckpk = 0

with

(20) λ := [c0 : · · · : ck] ∈ CP k.
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The singular subvariety of Cλ is

Sλ := {(u, v, w) ∈ C
2m2+m1 : (c0Sn0 + · · · + ckSnk

) · (u, v, w)tr = 0},

where 〈Sni(X), Y 〉 = 〈S(X, Y ), ni〉 is the shape operator of the focal
manifold M+ in the normal direction ni; we have

(21) Uk = ∪λSλ.

We wish to establish

(22) dim(Wk ∩ Uk) ≤ dim(Wk) − 2

for k ≤ m1 − 1 to verify that p0, p1, . . . , pm1 form a regular sequence.
We first estimate the dimension of Sλ. We break it into two cases. If

c0, . . . , ck are constant multiples of either all real or all purely imaginary
numbers, then

dim(Sλ) = m1,

since c0Sn0 + · · ·+ ckSnk
= cSn for some unit normal vector n and some

nonzero constant c, and we know that the null space of Sn is of dimension
m1. Otherwise, after a normal basis change we can assume that Sλ

consists of elements (u, v, w) of the form (Sn∗
1

− τλSn∗
0
) · (u, v, w)tr = 0

for some nonzero complex number τλ, relative to a new orthonormal
normal basis n∗

0, n
∗
1, . . . , n

∗
k in the linear span of n0, n1, . . . , nk. That is,

in matrix form,

(23)

⎛
⎝ 0 A B

Atr 0 C
Btr Ctr 0

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ = τλ

⎛
⎝I 0 0

0 −I 0
0 0 0

⎞
⎠

⎛
⎝x

y
z

⎞
⎠ ,

where x, y, and z are (complex) eigenvectors of (real) Sn∗
0

with eigen-
values 1,−1, and 0, respectively.

Remark 1. We agree to choose n∗
0 and n∗

1 as follows. Decompose
n := c0n0 + · · · + cknk into its real and imaginary parts n = α +

√
−1β.

Define n∗
0 and n∗

1 by performing the Gram-Schmidt process on α and β.

Lemma 49 [5, p 64] ensures that we can assume

(24) B = C =
(

0 0
0 σ

)
,

where σ is a nonsingular diagonal matrix of size rλ-by-rλ with rλ the
rank of B, and A is of the form

(25) A =
(

I 0
0 Δ

)
,

where Δ = diag(Δ1, Δ2, Δ3, . . .) is of size rλ-by-rλ, in which Δ1 = 0 and
Δi, i ≥ 2, are nonzero skew-symmetric matrices expressed in the block
form Δi = diag(Θi, Θi, Θi, . . .) with Θi a 2-by-2 matrix of the form(

0 fi

−fi 0

)
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for some 0 < fi < 1. We decompose x, y, z into x = (x1, x2), y =
(y1, y2), z = (z1, z2) with x2, y2, z2 ∈ C

rλ . Equation (23) is

x1 = −τλy1, y1 = τλx1,

−Δx2 + σz2 = −τλy2, Δy2 + σz2 = τλx2,

Δ(x2 + y2) = 0.

(26)

This can be solved explicitly to obtain that x2 = −y2 and z2 can be
solved (linearly) in terms of x2. Conversely, x2 = −y2 can be solved in
terms of z2 when τλ �= ±fi

√
−1 for all i, so that z can be chosen to be

a free variable in this case. So, either x1 = y1 = 0, in which case

dim(Sλ) = m1,

or both x1 and y1 are nonzero, in which case y1 = ±
√

−1x1 and so

(27) dim(Sλ) = m1 + m2 − rλ.

Since eventually we must estimate the dimension of Wk ∩ Uk, let us cut
Sλ by

0 = p∗
0 =

∑
α

(xα)2 −
∑

μ

(yμ)2.

Case 1. x1 and y1 are both nonzero. This is the case of nongeneric
λ ∈ CP k. We substitute y1 = ±

√
−1x1 and x2 and y2 in terms of z2

into p∗
0 = 0 to deduce

0 = p∗
0 = (x1)2 + · · · + (xm2−rλ

)2 + z terms;

hence p∗
0 = 0 cuts Sλ to reduce the dimension by 1, i.e., by (27),

(28) dim(Wk ∩ Sλ) ≤ m1 + m2 − rλ − 1,

noting that Wk is also cut out by p∗
0, p

∗
1, . . . , p

∗
k. Meanwhile, only a sub-

variety of λ of dimension k − 1 in CP k assumes τλ = ±
√

−1. (In fact,
the subvariety is the hyperquadric Q. See Remark 2 below.) Therefore,
if we stratify Q into subvarieties Lj over which rλ = j, then by (28) an
irreducible component Wj of Wk ∩ (∪λ∈Lj

Sλ) will satisfy

(29) dim(Wj) ≤ dim(Wk ∩ Sλ) + k − 1 ≤ m1 + m2 + k − 2 − j.

Case 2. x1 = y1 = 0. This is the case of generic λ, where dim(Sλ) = m1,
so that an irreducible component V of Wk ∩ (∪λ∈GSλ), where G is the
Zariski open set of CP k of generic λ, will satisfy

(30) dim(V) ≤ m1 + k.

On the other hand, since Wk is cut out by k + 1 equations, we have

(31) dim(Wk) ≥ m1 + 2m2 − k − 1.
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Lemma 3. When (m1, m2) = (4, 5) (respectively, (m1, m2) = (6, 9))
and j ≥ 2, there holds in equation (29) the estimate

(32) dim(Wj) ≤ dim(Wk) − 2

for k ≤ m1 − 1 = 3 (respectively, k ≤ 5).

Proof. For (32) to be true, we must have both

m1 + m2 + k − 2 − j ≤ m1 + 2m2 − k − 3,

m1 + k ≤ m1 + 2m2 − k − 3

by (29), (30), and (31). The second inequality is 2m2 ≥ 2k + 3, which
is always true, while the first is m2 ≥ 2k + 1 − j, which is true if j ≥ 2.

q.e.d.

Remark 2. In view of the proof of Lemma 3, the codimension 2
estimate for the case of generic λ ∈ G always holds true. Henceforth,
we may ignore this case and consider only the nongeneric case where
τλ = ±

√
−1.

Observe that if we write (c0, . . . , ck) = α +
√

−1β where α and β
are real vectors, then τλ = ±

√
−1 is equivalent to the conditions that

〈α, β〉 = 0 and |α|2 = |β|2. That is, the nongeneric λ in (20) is the
hyperquadric Q in CP k.

Lemma 4. Suppose (m1, m2) = (4, 5) or (6, 9), and in the latter
case suppose the isoparametric hypersurface is not the inhomogeneous
one constructed by Ferus, Karcher, and Münzner. Then rλ ≤ 1 for all
λ in Q.

Proof. Suppose the contrary. Generic λ in Q would have rλ ≥ 2.
We will only consider the (4, 5) case; the other case is verbatim. The

multiplicity pair (4, 5) cannot allow any points of Condition A on M+.
Hence, one of the four pairs of matrices (B1, C1), (B2, C2), (B3, C3), and
(B4, C4) of the shape operators Sn1 , Sn2 , Sn3 , and Sn4 , similar to the one
given in (23), must be nonzero; we may assume one of (B1, C1), (B2, C2),
and (B3, C3) is nonzero in the neighborhood of a given point, over which
generic λ ∈ Q have rλ ≥ 2.

Firstly, Lemma 3 would reduce the proof to considering rλ ≤ 1.
Case 1. On L1 where rλ = 1: The codimension 2 estimate would still go
through. This is because (29) is now replaced by (j = 1)

(33) dim(Wj) ≤ m1 + m2 + k − 3 − j = m1 + m2 + k − 4

due to the fact that such nongeneric λ in Q constitute a subvariety of
Q of dimension at most k − 2.
Case 2. On L0 where rλ = 0: Now

dim(Wj) ≤ m1 + m2 + k − 3
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with j = 0. We need to cut back one more dimension to make (33) valid.
Since rλ = 0, we see B∗

1 = C∗
1 = 0 and A∗ = I in (23) for Sn∗

1
. It follows

that p∗
0 = 0 and p∗

1 = 0 cut Sλ in the variety

(34) {(x,±
√

−1x, z) :
∑
α

(xα)2 = 0}.

(B∗
2 , C∗

2 ) or (B∗
3 , C∗

3 ) of Sn∗
2

or Sn∗
3

must be nonzero now; we may assume
it is the former. Since z is a free variable in (34), p∗

2 = 0 will have
nontrivial z-terms,

0 = p∗
2 =

∑
αp

Sαpxαzp +
∑
μp

Tμpyμzp +
∑
αμ

Uαμxαyμ

=
∑
αp

(Sαp ±
√

−1Tαp)xαzp,
(35)

taking y = ±
√

−1x into account and remarking that the xαxμ terms are
gone because Uαμ = −Uμα (see (41) below), where Uαμ := 〈S(X∗

α, X∗
μ),

n∗
2〉, Sαp := 〈S(X∗

α, Z∗
p), n∗

2〉, and Tμp := 〈S(Y ∗
μ , Z∗

p), n∗
2〉 are (real) en-

tries of A∗
2, B∗

2 , and C∗
2 , respectively, and X∗

α, 1 ≤ α ≤ m2, Y ∗
μ , 1 ≤

μ ≤ m2, and Z∗
p , 1 ≤ p ≤ m1, are orthonormal eigenvectors for the

eigenspaces of Sn∗
0

with eigenvalues 1,−1, and 0, respectively. Hence
the dimension of Sλ will be cut down by 2 by p∗

0, p
∗
1, p

∗
2 = 0, so that

again

(36) dim(W2 ∩ Sλ) ≤ m1 + m2 − 2,

noting that p∗
0, p

∗
1, p

∗
2 = 0 also cut out W2. In conclusion, we deduce

(37) dim(Wj) ≤ dim(Wk ∩ Sλ) + k − 2 ≤ m1 + m2 + k − 4,

so that the codimension 2 estimate would also go through. In conclusion,
we obtain that (22) holds true.

However, the validity of (22) would imply that the isoparametric
hypersurface is of OT-FKM type by Proposition 1 and Theorem 2, which
is absurd in the (4, 5) case.

In the (6, 9) case, the same arguments as above imply that the isopara-
metric hypersurface is the inhomogeneous one constructed by Ferus,
Karcher, and Münzner since the Clifford action is on M+, contradicting
the assumption. The lemma is proven. q.e.d.

Lemma 5. Suppose (m1, m2) = (4, 5) or (6, 9), and in the latter case
suppose the isoparametric hypersurface is not the inhomogeneous one
constructed by Ferus, Karcher, and Münzner. Then rλ = 1 for generic
λ in Q.

Proof. We consider the (4, 5) case; the other case is verbatim. Suppose
the contrary. Then rλ = 0 for all λ in Q. It would follow that B1 of Sn1

is identically zero by considering λ = [1 :
√

−1 : 0 : 0 : 0], because
then B∗

0 and B∗
1 associated with Sn∗

0
and Sn∗

1
are zero. Likewise, Ba = 0
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for all 1 ≤ a ≤ 4. However, this would imply that the isoparametric
hypersurface is of Condition A. This is impossible. q.e.d.

Lemma 6. Suppose (m1, m2) = (4, 5) or (6, 9), and in the latter
case suppose the isoparametric hypersurface is not the inhomogeneous
one constructed by Ferus, Karcher, and Münzner. Then rλ = 1 for all
λ in Q.

Proof. For a λ with rλ = 0, we have that A in (23) is the identity
matrix by (25), so that its rank is full (= 5 or 9). It follows that generic
λ in Q will have the same full rank property. However, for a λ with
rλ = 1, the structure of A in (25) implies that Δ = 0 so that such A,
which are also generic, will be of rank 4 or 8. This is a contradiction.
q.e.d.

Lemma 7. Suppose (m1, m2) = (4, 5) or (6, 9), and in the latter
case suppose the isoparametric hypersurface is not the inhomogeneous
one constructed by Ferus, Karcher, and Münzner. Then up to an or-
thonormal frame change, the only nonzero row of the 5-by-4 (vs. 9-by-6)
matrices Ba, 1 ≤ a ≤ 4 (vs. 3 ≤ a ≤ 8), of Sna is the last row.

Proof. We will prove the (4, 5) case. The other case is verbatim with
obvious changes on index ranges. For λ in Q, we construct n∗

0 and n∗
1

as given in Remark 1 and extend them to a smooth local orthonormal
frame n∗

0, n
∗
1, . . . , n

∗
m1

such that Sn∗
0

and S∗
n1

assume the matrix form in
(23), (24), and (25). Note that Δ = 0 (= Δ1) in (25) because rλ = 1; it
follows that σ = 1/

√
2 in (24) [5, p 67]. Suppose there is a λ0 at which

Sn∗
2

in matrix form is such that the matrix B∗
2 associated with Sn∗

2
has

a nonzero row other than the last one; this property will continue to be
true in a neighborhood of λ0. Modifying (34), p∗

0 = 0 and p∗
1 = 0 now

cut Sλ in the variety
(38){

(x1, . . . , x4,
t√
2τλ

, τλx1, . . . , τλx4,−
t√
2τλ

, z1, . . . , z3, t) :
4∑

j=1

(xj)2 = 0

}

where
x = (x1, x2, x3, x4, x5 = t/

√
2τλ),

y = (y1, . . . , y5) = (τλx1, τλx2, τλx3, τλx4,−t/
√

2τλ)

z = (z1, z2, z3, z4 = t).

Meanwhile, (35) becomes

(39)
0 =

7,7∑
α=1,p=1

(Sαp ±
√

−1Tαp)xαzp +
7∑

p=1

(S8p − T8p)tzp/(
√

2τλ)

−
∑
α≤7

Uα8txα/(
√

2τλ) +
∑
μ≤7

U8μtxμ/
√

2 + U88t
2/2.
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The assumption that B∗
2 (or C∗

2 ) assumes an extra nonzero row other
than the last one implies that one more dimension cut can be achieved
since x1, . . . , x4, z1, . . . , z4 are independent variables and (39) is now
nontrivial (see the remark below). It follows that once more

dim(Wk ∩ Uk) ≤ m1 + m2 + k − 4

for k ≤ 3, so that (22) goes through in the neighborhood of λ0, which
is absurd as the hypersurface would be of OT-FKM type (respectively,
would be the inhomogeneous one constructed by Ferus, Karcher, and
Münzner in the (6, 9) case). We therefore conclude that no such λ0 exist
and so the only nonzero entry of B∗

2 (or C∗
2 ) is the last one. Since any

unit normal vector perpendicular to n∗
0 and n∗

1 can be n∗
2, the conclusion

follows. q.e.d.

Proposition 2. Suppose (m1, m2) = (4, 5) or (6, 9), and in the latter
case suppose the isoparametric hypersurface is not the inhomogeneous
one constructed by Ferus, Karcher, and Münzner. Then we can choose
an orthonormal frame such that the second fundamental form of M+ is
exactly that of the homogeneous example.

Proof. We will prove the (4, 5) case and remark on the (6, 9) case
at the end. Sn∗

0
is the square matrix on the right hand side of (23)

while Sn∗
1

is the square one on the left hand side, where the 1-by-1
matrix σ = 1/

√
2 in (24) and the 1-by-1 matrix Δ = 0 in (25). We

proceed to understand Sn∗
j

with the associated matrices Aj , Bj , and Cj

for 2 ≤ j ≤ 4 similar to what is given in (23). We know by Lemma 7
the 5-by-4 matrices Bj and Cj are of the form

Bj =
(

0 0
bj c

)
, Cj =

(
0 0
ej f

)
for some real numbers c and f . Write the 5-by-5 matrix Aj as

Aj =
(

αj β
γ δ

)
with δ a real number. Then the identities [24, II, p 45]

AjA
tr + AAtr

j + 2BjB
tr + 2BBtr

j = 0,

AjA
tr + AAtr

j + 2CjC
tr + 2CCtr

j = 0
(40)

result in

(41) αj = −αtr
j , γ = 0, c = f = 0.

On the other hand, the matrix

(42) AjCBtr + BjC
trAtr + ACjB

tr

being skew-symmetric [24, II, p 45] implies

β = 0, δ = 0.



488 Q.-S. CHI

Meanwhile, the identity [24, II, p 45]

(43) AjA
tr
j + 2BjB

tr
j = I

derives
αjα

tr
j = I, bjb

tr
j = 1/2.

Next, the identity [24, II, p 45]

(44) AjA
tr
k + AkA

tr
j + 2BjB

tr
k + 2BkB

tr
j = 0

with j �= k arrives at

αjαk = −αkαj , bib
tr
k = 0.

Lastly, the identity [24, II, p 45]

(45) Btr
j B + BtrBj = Ctr

j C + CtrCj

yields
bj = ej .

The upshot is that

A1 =
(

I 0
0 0

)
, Aj =

(
αj 0
0 0

)
, j = 2, 3, 4, Bj = Cj =

(
0 0
bj 0

)
of the same block sizes with

αjαk + αkαj = −2δjkI, 〈bj , bk〉 = δjk/2.

As a consequence, first of all we can perform an orthonormal basis
change on n∗

2, n
∗
3, n

∗
4 so that the resulting new bj is 1/

√
2 at the jth

slot and is zero elsewhere. Meanwhile, we can perform an orthonormal
basis change of the E1 and E−1 spaces so that I and αj , 2 ≤ j ≤ 4, are
exactly the matrix representations of the right multiplication of 1, i, j, k
on H without affecting the row vectors bj , 2 ≤ j ≤ 4. This is precisely
the second fundamental form of the homogeneous example.

In the (6, 9) case, I, α4, . . . , α8 can be chosen to be the ones in (18)
by a frame change; multiplying them through by A3 on the left, which
amounts to changing the E1-frame, will arrive at (16). q.e.d.

Remark 3. More generally, one can show that if all (Bj , Cj), j ≥ 2,
are of the form

Bj =
(

0 dj

bj cj

)
, Cj =

(
0 gj

ej fj

)
,

for some real numbers cj and fj , then dj = gj = cj = fj = 0. We will
be explicit in the (4, 5) case and remark on the similar (6, 9) case.

Indeed, with

Aj =
(

αj βj

γj δj

)
, A1 =

(
I 0
0 0

)
, B1 = C1 =

(
0 0
0 1/

√
2

)
,

one derives easily (we suppress the index for notational ease), by setting
i = 1, j ≥ 2, in (40) and (42) through (45), that c = f = δ = 0, and
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β = −
√

2g, γ = −
√

2dtr, αγtr = 0, |d| = |g|,
ααtr + ββtr + 2ddtr = I, b = e, |γ|2 + 2|b|2 = 1.

(46)

Suppose d �= 0. By a basis change we may assume d = (t, 0, 0, . . . , 0)tr

for some positive number t. The skew-symmetry of α and the second
and third identities of (46) ensure that the first row and column of α are
zero. If the first entry of β is not zero, then the fifth identity derives that
all the other entries of β are zero. Hence the fifth identity again implies,
ignoring the trivial first row and column of α, that the remainder of α
is a 3-by-3 (vs. 7-by-7) matrix in the (4, 5) (vs. (6, 9)) case that acts on
R

3 (vs. R
7) as a Clifford C1-module, so that an odd number (3 or 7)

is divisible by 2, a contradiction. It follows that the first entry of β is
zero, i.e., 〈d, g〉 = 0. So now the fourth and fifth identities assert that
t = 1/

√
2 = |d| = |g|, so that the second and the last identity arrive

at b = 0 = e in view of the sixth identity. As a consequence, if d2 �= 0
and d3 = 0, then β3 = γ3 = 0 and α3 is invertible by the preceding
proposition. However, (44) applied to j = 3, k = 2 results in α3γ2 = 0,
so that γ2 = 0 = d2, a contradiction. That is, we may assume now that
bj = 0 for all j. Then the last identity of (46) gives that |dj | = 1/

√
2

for all j ≥ 2.
Applying (40) and (42) through (45), for distinct i, j ≥ 2, we derive

(47) 〈di, dj〉 = 〈gi, gj〉 = 0, 〈di, gj〉 = −〈dj , gi〉.
In the (4, 5) case, performing a basis change, we may assume d2, d3, d4
constitute the last three standard basis elements of R

4. Then (47) im-
plies that the lower 3-by-3 block M of the 4-by-3 matrix G :=

(
β2 β3 β4

)
is skew-symmetric, and so M can be brought into the eigen-decomposition
block form. That is, upon making a basis change, if necessary, in the
span of β2, β3, β4, we may assume G is of the form

(48) G =

⎛
⎜⎜⎝

a2 a3 a4
0 0 0
0 0 u
0 −u 0

⎞
⎟⎟⎠ =

(
β2 β3 β4

)

for some positive number u. However, the orthogonality of β2, β3, β4
deduces that we may choose a2 = −1 and a3 = a4 = 0 and u = 1. Thus
we obtain

γ3 := (0, 0,−1, 0), γ4 = (0, 0, 0,−1), β3 = (0, 0, 0,−1)tr, β4 = (0, 0, 1, 0)tr.

Ignoring the third and fourth rows and columns that the nonzero entries
of β3, β4, γ3, γ4 occupy, let A′

3 and A′
4 be the remainder, of size 2-by-2,

of the 4-by-4 α-block of A3 and A4. Then the identity

αiα
tr
j + αjα

tr
i + βiβ

tr
j + βjβ

tr
i + γtr

i γj + γtr
j γi = 0
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for i �= j establishes that A′
2 and A′

3 act on R
2 as a Clifford C2-module,

so that 2 is divisible by 4, a contradiction. Therefore, dj = gj = 0 for
all j ≥ 2.

In the (6, 9) case, we have mutually orthogonal 3-by-1 matrices
a2, . . . , a6 in (48), where the 8-by-5 matrix G is extended to accom-
modate one more 2-by-2 eigen-block along the main diagonal. It follows
by (47) that either (a3, a4) or (a5, a6) is zero; assume it is the former.
As in the (4, 5) case, ignoring the 4th and 5th rows and columns that
the nonzero entries of d3, d4, g3, g4 occupy, we see that the remainder
of the 8-by-8 α-block of A3 and A4, denoted by A′

3 and A′
4 of size 6-

by-6, act on R
6 as a Clifford C2-module, so that 6 is divisible by 4, a

contradiction.
Lastly, note that, a priori, (39) is made void by (46), in which case,

however, our analysis shows that we are led to the preceding proposition.
On the other hand, nontriviality of (39) lands us onto the example of
Ozeki and Takeuchi.

Corollary 3. Suppose (m1, m2) = (4, 5) or (6, 9), and in the latter
case suppose the isoparametric hypersurface is not the inhomogeneous
one constructed by Ferus, Karcher, and Münzner. Then Sp

αμ = 0 if
α = 5 or μ = 5 (respectively α = 9 or μ = 9).

Proof. Setting α = β = 5 or 9 and p = q in (3), the result follows
by (11) and (19). q.e.d.

5. The third fundamental form

In this section we express the third fundamental form of an isopara-
metric hypersurface with multiplicities (m1, m2) = (4, 5) or (6, 9) in
terms of Sp

αμ, provided in the latter case the hypersurface is not the in-
homogeneous one constructed by Ferus, Karcher, and Münzner. Again
for simplicity in exposition, we will only consider the (4, 5) case with an
obvious modification for the (6, 9) case.

Let us recall that if we let S(X, Y ) be the second fundamental form,
then the third fundamental form is q(X, Y )Z = (∇⊥

X)(Y, Z)/3 with ∇⊥

the normal connection. Relative to an adapted frame with the normal
basis na, 0 ≤ a ≤ m1, and the tangential basis ep, 1 ≤ p ≤ m1, eα, 1 ≤
α ≤ m2, and eμ, 1 ≤ μ ≤ m2, spanning E0, E+, and E−, respectively, of
M+, let S(X, Y ) =

∑
a Sa(X, Y )na and q(X, Y, Z) =

∑
a qa(X, Y, Z)na.

Then, with the Einstein summation convention,

3qa
ijkω

k = dSa
ij − θa

t St
ij + θt

iS
a
tj + θt

jS
a
it,

where ωk are the dual forms and θs
t are the normal and space connection

forms. By Proposition 2, choose an adapted orthonormal frame such
that (8) and (11) hold.
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Lemma 8. q0
ijk = 0 when two of the three lower indexes are in the

same p, α, or μ range.

Proof. This was proved in [24, I, p 537]. q.e.d.

Lemma 9. qa
pqk = 0 for 1 ≤ a ≤ 4 and all k.

Proof. Sa
pq = 0 for 0 ≤ a ≤ 4, Sp

αμ = 0 when either α = 5 or μ = 5 by
Corollary 3, and Sa

αp = Sa
μp = 0 when α, μ ≤ 4 by Proposition 2 and (8).

So, in Einstein summation convention,

3qa
pqk = 3qa

pqkω
k(ek)

= (θα=5
p Sa

α=5 q + θμ=5
p Sa

μ=5 q + θα=5
q Sa

p α=5 + θμ=5
q Sa

p μ=5)(ek) = 0

by (2) when k is in either the α or μ range. qa
pqk = 0 when k is in the

p-range [24, I, p 537]. q.e.d.

Lemma 10. For 1 ≤ α, β ≤ 4, there holds qa
αβμ = 0, while

3qa
αβp = 1/2

4∑
μ=1

(Sp
αμSa

βμ + Sp
βμSa

αμ).

For α = 5, there holds qa
αβp = 0, while

3qa
αβμ = Sp=a

βμ /
√

2.

Proof. For 1 ≤ α, β ≤ 4, similar calculations as above yield

3qa
αβp = θμ

α(ep)Sa
βμ + θμ

β(ep)Sa
αμ

which is the desired result by (2). Likewise,

3qa
αβν = θμ

α(eμ)Sa
βν + θμ

β(eν)Sa
αμ = 0.

For α = 5,

3qa
αβp = (θq

αSa
qβ + θq

βSa
qα + θμ

αSa
μβ + θμ

βSa
μα)(ep) = 0

by (2) and Corollary 3. Likewise,

3qa
αβμ = θq

β(eμ)Sa
αq = Sp=a

βμ /
√

2

by (2), Corollary 3, and (11). q.e.d.

A parallel argument gives the following.

Lemma 11. For 1 ≤ μ, ν ≤ 4, there holds qa
μνα = 0, while

3qa
μνp = −1/2

4∑
α=1

(Sp
αμSa

αν + Sp
ανS

a
αμ).

For μ = 5, there holds qa
μνp = 0, while

3qa
μνα = −Sp=a

αν /
√

2.

Lemma 12. 3q0
pαμ = −Sp

αμ.
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Proof. This is Lemma 1. q.e.d.

Lemma 13. For 1 ≤ a ≤ 4, suppose either α ≤ 4 (respectively,
μ ≤ 4). Then we have qa

pαμ = 0 if p �= a, and

3qa
pαμ = θ5

α(eμ)/
√

2 (respectively 3qa
pαμ = θ5

μ(eα)/
√

2)

if p = a. Here the superscript 5 is in the α-range (respectively, μ-range).

Proof. Suppose 1 ≤ α ≤ 4. Then

3qa
αpμ = 3qa

αpkω
k(eμ) = (−θa

t St
αp + θt

αSa
tp + θt

pS
a
αt)(eμ)

= θβ=5
α Sa

β=5 p(eμ) + θν=5
α Sa

ν=5 p(eμ) + θν
pSa

αν(eμ)

= θν
p(eμ)Sa

αν = 0

if p �= 5, because Sa
β=5 p = 0 by (11) and θν

p(eμ) = 0 by (2).
If p = 5, then

3qa
αpμ = (θβ=5

α Sa
β=5 p + θν

pSa
αν)(eμ).

It follows that

3qa
pαμ = θβ=5

α (eμ)/
√

2 + θν
p(eμ)Sa

αν = θβ=5
α (eμ)/

√
2

because θν
p(eμ) = 0. q.e.d.

Lemma 14. For α = μ = 5, we have qa
pαμ = 0.

Proof. We have, by (8), that the fifth row and column of Aa is iden-
tically zero, so that

3qa
μαp = (3qa

μαkω
k)(ep) = (−θa

t St
μα + θt

μSa
tα + θt

αSa
μt)(ep)

= (θq
μSa

qα + θq
αSa

μq)(ep) = 0

by (2). q.e.d.

It follows from Lemmas 8 through 14 that the third fundamental form
q of M+ of the isoparametric hypersurface under consideration is, for
1 ≤ a ≤ 4,

q0 := −2
4∑

p,α,μ=1

Sp
αμxαyμzp

qa := Fza +
√

2(x5 − y5)
4∑

α,μ=1

Sp=a
αμ xαyμ +

4∑
p,α,β=1

Ua
αβpxαxβzp

+
4∑

p,μ,ν=1

V a
μνpyμyνzp

where
F :=

∑
(α,μ) �=(5,5)

fαμxαyμ
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with fαμ either
√

2θ5
α(eμ) or

√
2θ5

μ(eα), and

Ua
αβp := 1/2

4∑
μ=1

(Sp
αμSa

βμ + Sp
βμSa

αμ)

V a
μνp := −1/2

4∑
α=1

(Sp
αμSa

αν + Sp
ανS

a
αμ)

(49)

with Sa
αμ the data in (8).

Lemma 15. F = 0.

Proof. paqa contributes

fαμxαxβyμyνza

for each 1 ≤ a ≤ 4, and 1 ≤ β, ν ≤ 4, that is not shared by any other
terms in the equation [24, I, p 530]

(50) p0q
0 + p1q

1 + · · · + p4q
4 = 0.

q.e.d.

6. The interplay between the second and third
fundamental forms

We show in this section that the third fundamental form of the
isoparametric hypersurface under consideration is that of the homo-
geneous example for the multiplicity pair (m1, m2) = (4, 5) or (6, 9),
provided in the latter case the hypersurface is not the inhomogeneous
one constructed by Ferus, Karcher, and Münzner. We thus arrive at the
classification in these two cases.

6.1. The (4, 5) case. To set it in the intrinsic quaternionic framework,
let us now identify the normal space of M+ spanned by n0, n1, . . . , n4
with Rn0 ⊕H, where n1, . . . , n4 are identified with 1, i, j, k, respectively.

Then the second fundamental form in (7) can be written succinctly
in the vector form as

〈p, w0n0 + W 〉
= (|X|2 + (x5)2 − |Y |2 − (y5)2)w0 + 2〈Y X, W 〉
+

√
2(x5 + y5)〈Z, W 〉

(51)

where
X := x1 + x2i + x3j + x4k, Y := y1 + y2i + y3j + y4k,

Z := z1 + z2i + z3j + z4k, W := w1 + w2i + w3j + w4k

with normal coordinates w0, w1, . . . , w4 in the respective normal direc-
tions n0, . . . , n4, and eα, eμ, and ep basis vectors are also identified with
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1, i, j, k in the natural way. (Recall X, Y , and Z parametrize respectively
the E1, E−1, and E0 spaces.) Thus there will be no confusion to set

(e1, e2, e3, e4) := (1, i, j, k)

for notational convenience. Let us define

(52) X ◦ Y :=
4∑

p=1

Sp(X, Y ) ep.

The vector-valued third fundamental form is now
〈q, w0n0 + W 〉
= −2〈X ◦ Y, Z〉w0 +

√
2(x5 − y5)〈X ◦ Y, W 〉

+
4∑

μ=1

〈X ◦ eμ, Z〉〈eμX, W 〉

−
4∑

α=1

〈eα ◦ Y, Z〉〈Y eα, W 〉

= −2〈X ◦ Y, Z〉w0 +
√

2(x5 − y5)〈X ◦ Y, W 〉
+ 〈X ◦ (XW ), Z〉 − 〈(Y W ) ◦ Y, Z〉

(53)

where Xeμ, eαY, XW , and Y W , etc., are quaternionic products.
Define the 4-by-4 matrices

(54) T p :=
(
Sp

αμ

)
, p = 1, . . . , 4.

There holds
T p

αμ = 〈eα ◦ eμ, ep〉.
We remark that in the homogeneous case these matrices are obtained
by collecting half of the coefficients, respectively, of the z1, . . . , z4 coef-
ficients of −q̃0 in (12), which are

T̃ 1 :=
(

−J 0
0 −J

)
, T̃ 2 :=

(
I 0
0 −I

)
,

T̃ 3 :=
(

0 J
−J 0

)
, T̃ 4 :=

(
0 I
I 0

)
.

(55)

Moreover, T p are orthogonal by (3) because Sa
pα = 0 for all 1 ≤ α ≤ 4

by (11). Note that

(56) 〈X ◦ Y, ep〉 = 〈T p(Y ), X〉.

Lemma 16.

(57) 〈(Y Z) ◦ Y, Z〉 = 0

for all Y, Z ∈ H.
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Proof. Let us set X = x5 = 0 in (51) and (53). Then

p0 = −|Y |2 − (y5)2, q0 = 0

and for 1 ≤ a ≤ 4

pa =
√

2y5〈Z, ea〉, qa = −〈(Y ea) ◦ Y, Z〉

so that (50) is

0 =
4∑

a=0

paq
a = −

√
2y5〈Z, ea〉〈(Y ea) ◦ Y, Z〉 = −

√
2y5〈(Y Z) ◦ Y, Z〉.

q.e.d.

Corollary 4. The matrices given in (54) are

T 1 =

⎛
⎜⎜⎝

0 a b c
−a 0 −d −e
−b d 0 f
−c e −f 0

⎞
⎟⎟⎠ , T 2 =

⎛
⎜⎜⎝

a 0 g −h
0 a −i −j
j −h −f 0
−i −g 0 −f

⎞
⎟⎟⎠

T 3 =

⎛
⎜⎜⎝

b −g 0 k
−j −e −k 0
0 −l b −j
l 0 −g −e

⎞
⎟⎟⎠ , T 4 =

⎛
⎜⎜⎝

c h −k 0
i d 0 −k

−l 0 d −h
0 −l −i c

⎞
⎟⎟⎠

for some twelve unknowns a to l.

Proof. Polarizing (57) with respect to Y and Z, respectively, we get

〈(Y1Z) ◦ Y2, Z〉 = −〈(Y2Z) ◦ Y1, Z〉,
〈(Y Z1) ◦ Y, Z2〉 = −〈(Y Z2) ◦ Y, Z1〉.

(58)

Setting Z = 1 in the first equation of (58), we see T 1
αμ = −S1

αμ so that
T 1 is skew-symmetric. Setting Z = i and letting Y1 = Y2 = 1, we obtain

T 2
21 = −T 2

21 = 0,

while setting Y1 = 1, Y2 = i yields

T 2
22 = T 2

11.

However, setting Z1 = 1, Z2 = i, and Y = 1 in the second equation
of (58), we see

T 2
11 = −T 1

21 = a.

Thus we get the upper left 2-by-2 block of T 2. Continuing this fashion
finishes the proof. q.e.d.

Corollary 5. We may assume a = f = 1 and the only nonzero
entries in the matrices in Corollary 4 are a, f, k, and l.
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Proof. Recall an automorphism σ of the quaternion algebra maps a
quaternion basis to a quaternion basis, and vice versa.

Observe that if we consider the new quaternion basis li := σ(ei), 1 ≤
i ≤ 4, to set

X = σ(X ′), Y = σ(Y ′), Z = σ(Z ′), W = σ(W ′),

then the second fundamental form in (51) remains the same form since
σ(Y ′X ′) = σ(Y ′)σ(X ′) = Y X. Meanwhile, by comparing the homoge-
neous types in (53), we conclude that the circle product ◦ relative to
the standard quaternion basis 1, i, j, k is converted to

(59) X ′ ◦′ Y ′ = σ−1(σ(X ′) ◦ σ(Y ′)) = σ−1(X ◦ Y )

relative to the new quaternion basis σ(1), σ(i), σ(j), σ(k). Therefore, to
verify the lemma, it suffices to find a quaternion basis l1 = e1, l2, l3, l4
for which

(60) 1 = 〈l2 ◦′ l1, l1〉 = 〈l2 ◦′ e1, e1〉 = 〈l2 ◦ e1, e1〉 = 〈T 1(e1), l2〉,

where the last equality is obtained by (56). It is now clear that if we
define l2 = T 1(e1), then (60) is verified readily by the orthogonality of
T 1. Complete l1, l2 to a quaternion basis l1, . . . , l4 (choose l3 ⊥ l1, l2 and
set l4 = l2l3). Now a = 1. It follows by the orthogonality of T 1 that
b = c = d = e = 0 so that f = ±1. If f = −1, change l3, l4 to −l3,−l4
so that we may also assume f = 1.

It follows that g = h = i = j = 0 by the orthogonality of T 2, etc.
The lemma is completed by the orthogonality of T p, 1 ≤ p ≤ 4. q.e.d.

Lemma 17. 〈∇qa,∇qb〉 = 〈∇q̃a,∇q̃b〉 for all 1 ≤ a, b ≤ 4.

Proof. This follows from Proposition 2 and the identities of Ozeki
and Takeuchi [24, I, p 530]:

8〈∇qa,∇qa〉 = 8(〈∇pa,∇pa〉(|X|2 + |Y |2 + |Z|2 + (x5)2 + (y5)2) − p2
a)

+ 〈∇〈∇pa,∇pa〉,∇G〉 − 24G − 2
4∑

b=0

〈∇pa,∇pb〉2, and

8〈∇qa,∇qb〉 = 8(〈∇pa,∇pa〉(|X|2 + |Y |2 + |Z|2 + (x5)2 + (y5)2) − papb)

+ 〈∇〈∇pa,∇pb〉,∇G〉 − 2
4∑

c=0

〈∇pa,∇pc〉〈∇pb,∇pc〉, a �= b,

where G = p2
0+· · ·+p2

4. Observe that the isoparametric hypersurface un-
der consideration and the homogeneous example have the same second
fundamental form. q.e.d.
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Let us now calculate ∇〈q, W 〉 with respect to the X, Y, Z (i.e., α, μ, p)
coordinates. By (53)

∇〈q, W 〉

=
4∑

α=1

(〈eα ◦ (XW ), Z〉 + 〈X ◦ (eαW ), Z〉)eα

+
√

2(x5 − y5)
4∑

α=1

〈eα ◦ Y, W 〉eα +
√

2〈X ◦ Y, W 〉ζ5

−
4∑

μ=1

(〈(eμW ) ◦ Y, Z〉 − 〈(Y W ) ◦ eμ, Z〉)eμ

+
√

2(x5 − y5)
4∑

μ=1

〈X ◦ eμ, W 〉eμ −
√

2〈X ◦ Y, W 〉η5

+
4∑

p=1

(〈X ◦ (XW ), ep〉 − 〈(Y W ) ◦ Y, ep〉)ep,

(61)

where ζ5 and η5 are basis vectors of x5 and y5, respectively.
Set

〈X ∗ Y, ep〉 := T̃ p(X, Y )

with T̃ p(eα, eμ) given in (55).

Corollary 6. k = l = 1 in Corollary 4.

Proof. Setting p = 1, q = 3, α = 1, and β = 4 in (3) with Corollary 3
in mind, we obtain by the structure of T p in Corollaries 4 and 5 (recall
T p

αμ := Sp
αμ) that

kf − al = 0

so that k = l since a = f .
Setting Z = x5 = y5 = 0 in

〈∇〈q, W1〉,∇〈q, W2〉〉

via (61) and comparing homogeneous types, we obtain

4〈X ◦ Y, W1〉〈X ◦ Y, W2〉
− 〈X ◦ (XW1), (Y W2) ◦ Y 〉
− 〈X ◦ (XW2), (Y W1) ◦ Y 〉
= 4〈X ∗ Y, W1〉〈X ∗ Y, W2〉
− 〈X ∗ (XW1), (Y W2) ∗ Y 〉
− 〈X ∗ (XW2), (Y W1) ∗ Y 〉.

(62)
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Setting W1 = e1 and W2 = e3, we expand the preceding identity to
derive that the x2

1y2y4 coefficient of the second term (on both sides) is

−(T 2
11T

2
44 − T 2

11T
2
22) = af + a2 = 2,

while that of the third term (on both sides) is

T 4
13T

4
24 + T 4

13T
4
42 = k2 + kl = 2k2 = 2,

so that the x2
1y2y4 coefficient of the first term satisfies

k = ak = T 1
12T

3
14 = T̃ 1

12T̃
3
14 = 1,

noting that the term T 1
14T

3
12 in the coefficient is zero. q.e.d.

As a consequence, we deduce that X ◦ Y = X ∗ Y . That is, the third
fundamental form of the isoparametric hypersurface under consideration
is that of the homogeneous example. We conclude that the isoparametric
hypersurface is precisely the homogeneous one.

6.2. The (6, 9) case. The necessary modifications are as follows. Let
e1, e2, . . . , e8 be the octonion basis with e1 the multiplicative identity.
Then in (51) the positive sign in front of 2〈Y X, W 〉 is changed to the
negative sign (octonion multiplication is understood now). However,
changing Z, W to −Z,−W will convert the sign. So, we will assume (51)
from now on. Meanwhile,
X := x1e1 + x2e2 + · · · + x8e8, Y := y1e1 + y2e2 + · · · + y8e8,

Z := z3e3 + z4e4 + · · · + z8e8, W := w3e3 + w4e4 + · · · + w8e8.

In (55) for the homogeneous case, the matrices are replaced, in view
of (6), by

(63) T̃μ =
(√

2〈Pa(kμ), gp〉
)
,

where 2 ≤ μ ≤ 8, T̃μ is skew-symmetric with the (1, j)-entry = 〈eμ, e2ej〉
for 2 ≤ j ≤ 8, the (i, j)-entry = 〈eμ, (e2ej)ei〉 for 2 ≤ i < j ≤ 8.
Explicitly,

T̃ 3 =

⎛
⎜⎜⎝

0 J 0 0
J 0 0 0
0 0 0 J
0 0 J 0

⎞
⎟⎟⎠ , T̃ 4 =

⎛
⎜⎜⎝

0 I 0 0
−I 0 0 0
0 0 0 I
0 0 −I 0

⎞
⎟⎟⎠ ,

T̃ 5 =

⎛
⎜⎜⎝

0 0 J 0
0 0 0 −J
J 0 0 0
0 −J 0 0

⎞
⎟⎟⎠ , T̃ 6 =

⎛
⎜⎜⎝

0 0 I 0
0 0 0 −I

−I 0 0 0
0 I 0 0

⎞
⎟⎟⎠ ,

T̃ 7 =

⎛
⎜⎜⎝

0 0 0 L
0 0 L 0
0 −L 0 0

−L 0 0 0

⎞
⎟⎟⎠ , T̃ 8 =

⎛
⎜⎜⎝

0 0 0 −K
0 0 −K 0
0 K 0 0
K 0 0 0

⎞
⎟⎟⎠ ,
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where J, K, and L are as given in (9) and (17).

Lemma 18. T p, 3 ≤ p ≤ 8, in (54) are all skew-symmetric. The
upper left 2-by-2 block of each of them is zero.

Proof. Setting x9 = y9 = 0 in (51) and (53) (note that x5 and y5 in
the formulae are replaced by x9 and y9 in the present case), we compare
homogeneous types in (50) and set X = e1 to obtain

0 = |Y |2〈e1 ◦ Y, Z〉 −
8∑

α=3

〈Y , eα〉〈(Y eα) ◦ Y, Z〉

= |Y |2〈e1 ◦ Y, Z〉 − 〈(Y (Y − y1e1 + y2e2)) ◦ Y, Z〉
= y1〈Y ◦ Y, Z〉 − y2〈(Y e2) ◦ Y, Z〉,

of which the coefficient of y1yiyj , for 3 ≤ i, j ≤ 8, is

0 = 〈ei ◦ ej + ej ◦ ei, Z〉,
so that T p

ij = −T p
ji. This is also true for (i, j) = (1, j), j ≥ 3, or (i, j) =

(2, j), j ≥ 3. For (i, j) = (1, 2), the coefficients of (y1)3 and (y2)3 result
in the T p

11 = T p
22 = 0, while the coefficient of (y1)2y2 gives

2(T p
12 + T p

21) − T p
21 = 0

and the coefficient of y1(y2)2 gives

−T p
22 + T p

21 + T p
11 = 0.

From this we see T p
12 = T p

21 = 0. q.e.d.

Lemma 19. Suppose 〈e2 ◦ Z, Z〉 = 0 for all Z ⊥ e1, e2. Then there
is an octonion orthonormal pair of purely imaginary vectors (X, Y ) in
O such that X, Y ⊥ e2 and 〈Y ◦ X, X〉 �= 0.

Proof. Suppose the contrary. For any such pair (X, Y ), consider

TX :=
8∑

p=3

xpT
p : O → O.

Now 〈Y ◦ X, X〉 = 0 is equivalent to 〈TX(X), Y 〉 = 0 for all purely
imaginary Y ⊥ X, e2, and hence in fact for all purely imaginary Y ⊥ e2
because

〈TX(X), X〉 =
8∑

p=3,α=3,μ=3

T p
αμxαxμxp = 0

by the skew-symmetry of T p. Moreover, the assumption 〈e2 ◦X, X〉 = 0
is equivalent to 〈TX(X), e2〉 = 0. We thus conclude that TX(X) = ±e1.
Homogenizing 〈TX(X), e1〉 = ±1, we obtain

8∑
p=3,μ=3

T p
1 μxμxp = ±|X|2
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for all purely imaginary octonion vectors X. Hence we conclude that
T p

1p = ±1 for 3 ≤ p ≤ 8. However, the first identity of (58) with Z =
ep, Y1 = Y2 = e1 gives T p

1p = 0, which is a contradiction. q.e.d.

Lemma 20. We may assume T 3 = T̃ 3 and T 4 = T̃ 4.

Proof. We first show that, in view of (59), we can choose an octonion
basis l1 = e1, l2, . . . , l8 relative to which T 3

41 = 1, i.e.,

(64) 1 = 〈l4 ◦ l1, l3〉 = 〈l2 ◦ l3, l3〉,

in which the second equality is obtained by the first identity of (58)
with Y1 = l2, Z = l3, and Y2 = l1 and the skew-symmetry of T p. To this
end, note that if there is a Z ⊥ e1, e2 such that 〈e2 ◦ Z, Z〉 �= 0, we are
done. For then the orthogonal operator

U : z ⊥ (span〈e1, e2〉)⊥ → e2 ◦ z ∈ (span〈e1, e2〉)⊥

is not skew-symmetric and so the structure of an orthogonal matrix tells
us that U has an eigenvector v ⊥ e1, e2 with eigenvalue ±1. We may
assume it is 1 by changing e2 to −e2 and construct a new octonion basis
in which l2 = −e2, v = l3, etc., so that (64) holds. Otherwise, Lemma 19
gives rise to a pair (X, Y ) with X, Y ⊥ e1, e2. In a similar vein to U ,
the orthogonal operator

R : z ⊥ (span〈e1, Y 〉)⊥ → Y ◦ z ∈ (span〈e1, Y 〉)⊥

is not skew-symmetric because X is in (span〈e1, Y 〉)⊥. Therefore, we can
find an eigenvector w with eigenvalue 1, without loss of generality, for R.
Construct an octonion basis in which l1 := 1, l2 := Y, l3 := w, l4 := l2l3,
etc. This choice will leave the second fundamental form unchanged while
making T 3

41 = 1.
With T 3

41 = 1, the first identity in (58) with Z = l3, Y1 = l1, and
Y2 = l2 gives T 3

32 = −1. By skew-symmetry of T 3, its upper left 4-by-4
block is determined to be identical with that of T̃ 3. The orthogonality
of T 3 then implies that the upper right 4-by-4 and the lower left 4-by-4
blocks of T 3 are zero.

Now a calculation using the first identity of (58) establishes that the
lower right 4-by-4 block of T 3 is of the form⎛

⎜⎜⎝
0 −a 0 −b
a 0 b 0
0 −b 0 a
b 0 −a 0

⎞
⎟⎟⎠ .

On the other hand, setting W1 = W2 = l3, the coefficient of (x6)2(y5)2

of the first term on the left in (62) is

4(T 3
65)

2 = 4a2
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and is 0 on the right. The coefficient of (x6)2(y5)2 of the second and
third terms on the left is

8∑
i=3

T i
68T

i
75 = T 4

68T
4
75 = −b2

because the second identity in (58) derives that T 4
68 = −T 3

58 = b, T 4
75 =

−T 3
85 = −b, T 5

68 = T 3
48 = 0, T 7

75 = T 3
35 = 0, and T 8

68 = T 3
18 = 0; it is −1

on the right hand side. Therefore, we obtain

4a2 − 2b2 = −2, a2 + b2 = 1,

where the second identity is obtained by the orthogonality of T 3. It
follows that a = 0 and b = ±1. We may assume b = 1; otherwise,
changing l5 to −l5 does the job. In other words, T 3 = T̃ 3 now.

That T 4 = T̃ 4 follows from the second identity of (58) and that
T 3 = T̃ 3. For instance, choosing Z1 = e3, Z2 = e4, Y1 = e1, and Y2 = e2,
we obtain T 4

42 = T 3
32 = −1, etc. q.e.d.

Lemma 21. The upper left and lower right 4-by-4 blocks of T 5, T 6,
T 7, T 8 are all zero.

Proof. Applying the second identity of (58) to Z1 = e5, Z2 = e3, and
Y = e1, we obtain T 5

31 = T 3
51 = 0 by Lemma 20. Applying the first

identity of (58) to Z = e5, Y1 = e1, and Y2 = e7, we see T 5
57 = T 5

31 = 0.
Continuing in this fashion, we can verify that all the upper left 4-by-4
and lower right 4-by-4 entries of T 5 are zero except for T 5

34 = −T 5
43 =

T 5
78 = −T 5

87.
To show T 5

43 = 0, we let p = 5, q = 3, α = 4, and β = 2 in (3). The
matrix entries in (16) give Sa

αμ = Aa
αμ, and recall we set Sp

αμ = T p
αμ. We

derive

T 5
43 = T 5

43T
3
23 + T 3

41T
5
21 = −2

∑
a

(Aa
54A

a
32 + Aa

34A
a
52) = 0.

The same goes through for T 6, T 7, T 8 with p replaced by 6, 7, 8. q.e.d.

Lemma 22. The lower left 4-by-4 blocks of T 5, T 6, T 7, T 8 are

T 5 :

⎛
⎜⎜⎝

0 −a −b −c
a 0 −d −e
b d 0 −f
c e f 0

⎞
⎟⎟⎠ , T 6 :

⎛
⎜⎜⎝

−a 0 j −i
0 −a −h g
g i k 0
h j 0 k

⎞
⎟⎟⎠ ,

T 7 :

⎛
⎜⎜⎝

−b −j 0 m
−g e m 0
0 l −b g
l 0 j e

⎞
⎟⎟⎠ , T 8 :

⎛
⎜⎜⎝

−c i −m 0
−h −d 0 m
−l 0 −d i
0 l −h −c

⎞
⎟⎟⎠

a priori for some thirteen unknowns a through m.
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Proof. Assuming the unknowns a through f for the lower triangu-
lar block of the lower 4-by-4 block of T 5 and setting T 6

71 := g, T 6
81 :=

h, T 6
72 := i, T 6

82 := j, T 6
73 = k, T 7

81 = l, and T 7
54 = m, one uses the two

identities in (58) repeatedly to obtain all other entries in terms of these
thirteen unknowns. q.e.d.

Lemma 23. The only nonzero entries in the above matrices are
a, f, k, l, m of magnitude 1 with the property that a = −f = k and
l = m.

Proof. We know T iT j = −T jT i when i �= j by (3), (19), Corollary 3,
and Lemma 18.

Now, (i, j) = (3, 5) or (4, 5) gives a = −f and b = c = d = e = 0.
(i, j) = (3, 6) or (4, 6) gives a = k and g = h = i = j = 0. Lastly,
(i, j) = (3, 7) gives l = m. q.e.d.

Corollary 7. a = 1 and l = −1. In particular, T 5 = T̃ 5, T 6 =
T̃ 6, T 7 = T̃ 7, T 8 = T̃ 8.

Proof. The proof is similar to the one in Corollary 6. Choosing W1 =
e5 and W2 = e3, the x4x6(y1)2 coefficient of the second term (on both
sides) is

T 4
68T

4
31 − T 4

42T
4
31 = −2,

while that of the third term (on both sides) is

−T 6
62T

6
51 − T 6

48T
6
51 = −a2 − ka = −2.

Therefore, the x4x6(y1)2 coefficient of the first term satisfies

a = T 5
61T

3
41 = T̃ 5

61T̃
3
41 = 1,

so that k = 1. In particular, T 5 = T̃ 5 and T 6 = T̃ 6. Choosing W1 = e7
and W2 = e3, the x1x5(y4)2 coefficient of the second term (on both
sides) is

−T 4
57T

4
24 − T 4

13T
4
24 = −2,

while that of the third term (on both sides) is

T 8
53T

8
64 − T 8

17T
8
64 = −m2 − lm = −2.

Therefore, the x1x5(y4)2 coefficient of the first term is

−m = T 7
54T

3
14 = T̃ 7

54T̃
3
14 = 1.

In particular, T 7 = T̃ 7. It follows that T 8 = T̃ 8. q.e.d.

As a consequence, the isoparametric hypersurface is precisely the ho-
mogeneous one.
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Errata. After this paper went to press, the following corrections were
made:

• page 488, middle: A less-than sign and a greater-than sign were
changed to angle brackets.

• page 494, equation (53): A spurious “la” was removed from the
equation.

• page 495, second equation: A spurious “la” was removed from the
equation.
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