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ZERO-ENERGY FIELDS
ON COMPLEX PROJECTIVE SPACE

MicHAEL EAsTWOOD & HUBERT GOLDSCHMIDT

Abstract

We consider complex projective space with its Fubini—-Study
metric and the X-ray transform defined by integration over its
geodesics. We identify the kernel of this transform acting on sym-
metric tensor fields.

1. Introduction

Suppose wgp.... is a smooth symmetric covariant tensor field defined
on a Riemannian manifold M. Suppose 7 is a smooth oriented curve on
M joining points p and q. Let X* denote the unit vector field defined
along v and tangent to v consistent with its orientation. We obtain a real
number fﬁ/ Wab...c by integrating the function X®X? ... X¢wg.... along v
with respect to arc length.

Suppose that ¢.... is a symmetric covariant tensor field such that
Wab-c = V(aPp..c) where V, is the Levi-Civita connection and round
brackets denote symmetrization over the indices they enclose. Suppose
7 is a geodesic. This means that X°V,X? = 0 and, in this case,

XV (X0 Xpe) = XX XV (0p) = XX+ X W
Therefore fv Wabc = [Xb e Xc(bb...c]g, and, in particular, if v is a closed
geodesic, then fy Wap-... = 0. On complex projective space CPP,, with its

standard Fubini-Study metric [3, 8], all geodesics are closed and the
X-ray transform on symmetric tensor fields associates to wgp.... the func-

tion
Y /wab---c
v

defined on the space of geodesics on CP,,. We shall refer to fields in the
kernel of this transform as having zero energy. We have just observed
that fields of the form V,¢....) have zero energy. The main aim of this
article is to prove the converse—namely, the following theorem.
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Theorem 1. On CP, for n > 2, a smooth symmetric covariant ten-
sor field wgap.... of valence p > 1 having zero energy must be of the form
V(a®b...c) for some smooth symmetric field ¢p.... of valence p— 1.

This theorem was first proved for p =1 in [21]. In case p = 2, it was
first proved by Tsukamoto [37]; other proofs in this case can be found
in [18, 19] and Chapter III of [22]. Tsukamoto’s proof for p = 2 heavily
relied on harmonic analysis on CPs. In [22, Theorem 3.40] harmonic
analysis on complex projective space was eliminated from the proof of
case p = 1 (and already in [19] harmonic analysis was severely reduced
for the case p = 2). In a proof of Theorem 1 for n = 2 given in [12],
harmonic analysis on CPy arose in the guise of twistor theory; this proof
relied on the Fubini-Study metric on CPs being (anti-)self-dual and was
therefore limited to the case n = 2. In this article, our proof is uniform
for all n and p; it completely eliminates any harmonic analysis on CP,,.

Inspired by a remark of J.-P. Demailly (see [19, Introduction]) in
case p = 1, our plan is to deduce Theorem 1 from the corresponding
statement for real projective space RP,, with its usual round metric
(inherited from the round n-sphere). The truth of this statement for RP,,
has been shown by various means [1, 3, 11, 15, 22, 23, 29, 30]. (The
precise method of proof for RPP,, will not enter our discussion for CP,,.)
The point is that the standard embedding RP,, — CP, induced by
R+ < C™*1 s totally geodesic. Furthermore, all translates of this
standard RP,, < CP,, by SU(n + 1), the isometry group of CP,, are
totally geodesic, and so this provides many submanifolds on which the
kernel of the X-ray transform is known. It is immediate, for example,
that injectivity of the X-ray transform on smooth functions on RP,
implies that the same is true on CIP,,. More generally, we shall require
some algebraic link between tensors on CP,, and on these embedded
real projective spaces. Such a link is the subject of the following two
sections.

A cknowledgments. Some of this work was done during the 2006 Sum-
mer Program at the Institute for Mathematics and its Applications at
the University of Minnesota. The authors would like to thank the IMA
for hospitality during this time. The first author is supported by the
Australian Research Council.

2. Some linear algebra

Let us call a tensor bundle on a smooth 2n-dimensional manifold
M irreducible if and only if it is induced from the co-frame bundle by
an irreducible representation of SL(2n,R). Sections of such a bundle
will be called irreducible tensors. Now the irreducible representations
of SL(2n,R) are classified by their highest weight [16], which we may
write as an integral combination of fundamental weights, the coefficients
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of which may be written over the corresponding nodes of the Dynkin
diagram. Let us restrict attention to those tensor bundles arising from
representations of the form

(1) al a2 an—1 Gan 0 0 0

These representations have the property that their restriction to the
subgroup Sp(2n,R) C SL(2n,R) has a leading term

(2) ai az an—1 an 0 0 0 ai az an—1 an

which is easily described in terms of tensors, namely
(3) Vabe-d = wcjz_bc---d + terms of the form J, < 6....4.

Here, J, is the non-degenerate skew form preserved by Sp(2n,R), the
tensor Q/Jljjcm g Satisfies the same symmetries as does Ygp....q but is, in
addition, totally trace-free with respect to the inverse form J%, and i is
some symmetry operation on the indices abc - - - d. Suppose, for example,
that Rgpeq has Riemann tensor symmetries. The relevant branching for
Sp(2n,R) C SL(2n,R) is

0 2 0 0 O 0,0

I SO T I U O VT S B R I

and may be written explicitly as

Rabcd = Xabcd
(4) + \I/achd - \I’bct]ad - \I/adt]bc + \Ilbdt]ac + 2\I’achd + 2\I/cd<]ab
+ L(Jacjbd - chJad + 2Jachd)a

where X ¢ has Riemann tensor symmetries and is trace-free while W,
is skew and trace-free (where “trace-free” means with respect to J).
It is the symplectic counterpart to the well-known decomposition

Raped = Wabed + Pacgvd — Pocgad — Padgbe + Poagac + K (gacvd — IbcGad)
of the Riemann tensor under SO(2n,R) C SL(2n,R).

Proposition 1. Suppose gpe...q s an irreducible covariant tensor
under SL(2n,R) with symmetries of the form (1). Then its totally trace-
free part wlﬁwmd, defined by (3), vanishes if and only if the pullback of
Yabe..q to every Lagrangian subspace of R®™ vanishes.

Proof. Considering the right-hand side of (3), it is clear that that all
terms except Q/Jjbcmd vanish when restricted to a Lagrangian subspace
simply because .J,;, has this property. Conversely, requiring that 1gpe...q
vanish on all Lagrangian subspaces is a manifestly Sp(2n,R)-invariant
restriction. Bearing in mind that the leading term of (2) is irreducible, it
follows that either our proposition is true or all tensors with symmetries
of the form (1) vanish on all Lagrangian subspaces. If we first consider
fundamental representations of the form (1), then we are done because

the corresponding tensors are precisely the k-forms for £ < n. More
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specifically, we can choose a basis {e1,e2, - ,€n,€ni1,€nt2, " €2}

of R?" such that
0 Id
Jab = [ —1d| 0 ]

and consider the Lagrangian subspace
= Spa‘n{ela €2, - 7en}7

noticing that the highest weight vector w* € AFR?" restricts to a non-
zero form on II. The general case follows because

W @ (W)*? @@ W) e ¢ .. et § ... 8 3
is non-zero when restricted to II. q.e.d.

3. Symplectic geometry on complex projective space

In this article, complex projective space may always be regarded as
a Riemannian manifold with its Fubini-Study metric, which we shall
denote by g.. From this point of view, we have the equality

(5) CP, =SU(n+1)/S(U(1) x U(n)).

However, CPP,, may also be viewed in other well-known guises as follows.
| Structure | Quantity | Name | Formula |
Riemannian Gab Fubini-Study metric | gup = JoJpe
complex J,b complex structure J.b = g,
symplectic Jab Kéhler form Jab = Ja Gpe

The formulse show that any two of these structures determine the third.
As already remarked in the Introduction, there is a useful family of
totally geodesic embeddings RP,, < CP,, obtained from the standard
embedding by the action of the isometry group SU(n + 1). For want of
a better terminology, let us refer to these as model embeddings.

Proposition 2. Suppose that RP, — CP, is a model embedding.
Then T,RP,, — T,CP,, is a Lagrangian subspace for all p € RIP,,. Con-
versely, for each p € CP,, the model embeddings passing through p are
in 1-1 correspondence with the Lagrangian subspaces of T,CP,,.

Proof. The Kéhler form J,; is of type (1,1) and therefore vanishes on
any totally real submanifold of CP,. In particular, it vanishes on any
model embedding. Thus, these embeddings are Lagrangian. Conversely,
we may as well take p to be the basepoint of CP,, as the homogeneous
space (5), in which case it is easily calculated that the isotropy group
acts on T,,CP,, as

S(U(1) x U(n)) 2 (A, A) — A"t A acting on C".
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In particular, every transformation in U(n) is obtained in this way. Also
note that the Kahler form is realized as the standard symplectic form
on C™. Therefore, it remains to be seen that U(n) acts transitively on
the Lagrangian subspaces of C™. This is, indeed, a well-known fact (see,
for example, [26, Exercise 1.A.4(ii)]); otherwise said, the Lagrangian
Grassmannian may be realized as the homogeneous space U(n)/O(n).
q.e.d.

Theorem 2. Let tupe...q be an irreducible tensor on CP,, correspond-
ing to a representation of SL(2n,R) of the form (1). Suppose that Yape...q
vanishes when restricted to all model embeddings RP, — CP,,. Then its
totally trace-free part 1. . defined by (3) vanishes.

abc:--

Proof. Immediate by combining Propositions 1 and 2. q.e.d.

Corollary 1. A smooth two-form on CP, vanishes upon restriction
to every model embedding RP,, — CP,, if and only if it is of the form
0J.p, where 0 is a some smooth function and Jy, is the Kdhler form.

Proof. If n = 1, then the hypothesis and conclusion are always triv-
ially satisfied. For n > 2 the representation of SL(2n,R) corresponding
to two-forms is

. e 3...9 3 (>3nodes)
and Theorem 2 applies. q.e.d.

For the purposes of this article, we shall need Theorem 2 for tensors
having symmetries of the form

(6) . & ... 8 3 (>3nodes)

for £ > 1, and it is worthwhile stating what this means more explicitly in
this case. Writing square brackets to denote skew symmetrization over
the indices they enclose, the tensors themselves may realized in the form

(7) Rpaqb---rc = R[pa} (gb]---[rc]»
with £ pairs of skew indices, symmetric in these pairs, and such that
(8) R[paq]b~~~rc =0,

generalizing the symmetries of a Riemann tensor, which is the case ¢ = 2.
Such tensors enjoy a decomposition

Ryoqh-re = Xpagh-..re + J-trace terms

generalising (4), where X,u4p..rc is totally trace-free and the J-trace

terms follow the branching
0 ¢ 0 00 0 0 £ 0 j 0

0,0 i=0 O 0,0
—e—o o --- -o:%o@@;zz_lo—o—o—n- -o=te.

For later use, we record the result that we shall require.
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Corollary 2. For n > 2, a smooth tensor on CP, of the form (6)
vanishes upon restriction to every model embedding RP, — CP,, if and
only if its trace-free part with respect to the Kdahler form vanishes.

Proof. Immediate from Theorem 2 and our discussion above. q.e.d.

4. Integrability conditions on CP,

In this section, we explore some necessary local conditions in order
that a smooth symmetric tensor wgp.... on CPy, be of the form V(,¢y...)
for some symmetric ¢y...., where V, is the Fubini-Study connection. To
do this, we shall need to know the curvature of the Fubini-Study metric
and also of the round metric on RP,, as induced by a model embedding
RP,, — CP,,. With suitable normalizations, the following formulae

(9) R]P)n Rabcd = Yac9bd — GbcYad
CPn: Raped = Yacbd — Joc9ad + JacIvd — Joedad + 2JapJed

are well-known. While the metric tensors g, have different meanings on
the 2n-dimensional Riemannian manifold CPP,, and the n-dimensional
Riemannian manifold RP,,, they coincide under restriction to a model
embedding RP,, — CP,, and, in this sense, our abuse of notation is a
legitimate convenience, which should cause no confusion.

The corresponding exploration on RP,, has already been done. To
state its conclusions the following notation is useful. Suppose Tp,...rqp...c
is a tensor that is symmetric in two groups of £ indices:

qu- ~rab--c = T(pq~ ~r)(ab---c)*

We may define a new tensor by re-ordering its indices

Spaqurc = qumrab- e

and then manufacturing yet another tensor by

Rpagp-re = Sipalgt][re]-

Let us write 7 for this homomorphism of tensors
™
qu---rab---c — Rpaqb---rc-

Again, the notation applies equally well to tensors on RIP, as it does
on CP,,. Furthermore, it is evident that m commutes with pull-back to
a model embedding RP,, < CP,. On the level of SL(m,R)-modules,
where m = 2n for tensors on CPP,, and m = n for tensors on RP,,, the
homomorphism 7 is induced by projection onto the last factor of

¢ 0 0 0 ¢ 0 0 0 0 ¢ 0 0
9o o - - 90 Xe—0 o - - 0—..De—0o— - - - -9 (m—lnodes),

the last module being trivial when m = 2. On any manifold M (but, in
particular, on RP,, and CP,), let us introduce the notation Y* for the
bundle of 2¢-tensors Rpqqp...rc satisfying the symmetries (7), symmetric
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in the pairs pa, gb, ..., rc, and such that (8) holds. It is the target for
the homomorphism

m: QA @ QA — Y,

which reduces to the exterior product A : A' ® A’ — A? when ¢ = 1.

As will be explained in the proof, the following theorem may be de-
rived from a special case of the Bernstein—Gelfand—Gelfand resolution.
The cases ¢ = 2 and ¢ = 3 were established by Calabi [5] (cf. [17]) and
Estezet [15], respectively.

Theorem 3. Fiz n > 2. Suppose wype...q 1S a smooth symmetric £-
tensor on RP,,. Then we can find a smooth symmetric tensor ¢pe...q such
that V (Ppc...q) = Wabe--d i and only if

V(pqur to VS)Wabc---d

(10) T + %g(mvr -V Waped | =0

+ lower-order terms

More explicitly, the operator in (10) with its lower-order terms may be
determined as follows. If £ is even, then (10) is

A1) w((V2+ (= 1)%g)(V2 + (€ = 3)%) -+~ (V2 + 99)(V* + 9))
where
O 1Al @ O Vir?g, OPHIAL @ A
s given by
Wy.wabe-d = V(¢ VuWycw)abed T D G(tuu--w)abe--d-
If ¢ is odd, then (10) is
T((V? + (= 1)%g)(V? + (£ = 3)%g) - - (V> + 169) (V> + 49) V).

Proof. Let us write V to stand for the operator ¢pc..q = V(q@pe...q)
and V' for the differential operator in (10). We claim that the sequence
(12) Ol Y ofar Y2y

on the level of sheaves is part of a fine resolution of a certain locally
constant sheaf on RP,. When ¢ = 1, we have in mind the de Rham
resolution

0Ro A LAt L A2 S A3 Y Y A2 Yy pn-1 Yy pn

and Theorem 3 follows because Hl(RIP’n, R) =0 forn > 2. For £ > 2, the
BGG (Bernstein—Gelfand—Gelfand) resolution [6, 10] replaces de Rham.
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The key point is that the round metric on RP,, is projectively flat. As
detailed in [13, 14], the BGG resolution is

‘0 -1 0 0 0 0
0—>|e—e—e—0--- o9
f—1 0 0 0 0y ¢ 0 O 0 0 v® 0 ¢ 0 0 0
v 0 ¢—-1 1 0 0 v v 0 £—1 0 1 0
v 0 £—1 0 0 1 v 0 £—1 0 0 0

Here, [__] denotes the locally constant sheaf on RP,, = SL(n + 1,R)/P
induced by the given representation of SL(n + 1, R) restricted to P and
then induced back up to a homogeneous bundle on RP,. After [,
we are writing irreducible representations of SL(n,R) instead of the
corresponding induced bundles. The second row coincides with (12).
Formulee for the operators V) are given inductively in [7, 9], but the
products given in the statement of Theorem 3 are most easily deduced
from Gover’s method [25] (and these factorizations hold for any Einstein
metric). In the expanded form,

(Vi 4 DD -2, 4 D DIENGET) 2gety, .. ),

the coefficients are quite complicated (although the array generated by
(11) appears as triangle A008956 in the On-Line Encyclopedia of Integer
Sequences at www.research.att.com/ njas/sequences). Fortunately,
we shall not need the details of the operators V(¥ but only their general
form and how they may be manufactured, which is as follows. Let T
denote the bundle A° @ A! on RP,, equipped with the connection

AO
(13) T= & 9[0 ]&[ Va0 = Ha ]€A1®T.
Al Hb vaﬂb“‘gaba

We compute that

vv | 7|2 VaVieo — Vapip — Vtia — Gabo
a¥h vavb,uc + 96cVa0 + GacVpo — GacHb

and observe from (9) that
(VaVy = Vi Vo) e = Rabcd,ud = YGackHb — GbcHa »

and hence that the connection on T is flat. It follows that the coupled
de Rham complex

AT L A'OT S A20T S A3OT oo 5 A"®T — 0

is a fine resolution of the locally covariant constant sections of T with a
similar conclusion for any associated vector bundle such as A2T. Let us
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examine the induced connection on A2T in more detail:
Al

(14) A’T= @ > [ b } Yay [ Va0 = Ha € A'®AT.
A2 Hbe Vmubc + 9ab0c — GacOb

We shall show that exactness of the coupled de Rham complex
I'(RP,, A’T) 2 T(RP,, A! @ A’T) - T(RP,, A @ AT)

is sufficient to deduce the case £ = 2 of Theorem 3. First, we need a
formula for V, : A' ® AT — A2 ® A%T. It is immediate from (14) that

Ebe :| Va |: v[afb]c + Viablc
15 — .
(15) [ Vbed ViaVed + 9ejabld — 9djalplc

Now suppose wgp is a symmetric tensor on RP,. We claim that the
following are equivalent:

. Whe 1 2 1q 3 -
i) [ Voo — Ve ] € I'(RP,, A" ® A“T) is in the range of the cou

pled connection Vy, : ['(RP,, A’T) — T'(RP,, A' ® A2T).
ii) wap = V(o) for some ¢, € I'(RP,, Ab).
iii) [ Z)b(:l ] € I'(RP,, A! ® A%T) for some vyq € T'(RP,, A ® A?) is in
the range of V; : T'(RP,, A’T) — I'(RP,, A' @ A%T).
It is clear from (14) that (i)=-(ii)=-(iii). It remains to show (iii)=(i). To
see this, recall that the curvature of the connection on AT is flat and
so if (iii) holds, then we must have

[ ;‘;bd } a0 € D(RP,, A2 © A2T).
In particular, we read off from the first row of (15) that
ViaWle + V[ab)e = 0.
From this, bearing in mind that vepe = V[, it follows that
Vabe = 3V[abe] — 2Vpcla = 2V pWela = ViWea — VWha,

as required. Finally, to deduce Theorem 3 we suppose that (i) holds and
consider the second row of (15):
E 0

Veway — Vawep ViaViewsa = ViaVigwye + 9elaWhld — JdjaWhc
where, following [32, pp. 132-136], the vertical bars in V|, and V|4

exclude the indices they enclose from skew symmetrization. Again, since
the connection is flat, we conclude that the vanishing of

(16) ViaViewslda = ViaVidWile + GefaWbld — JdaWslc
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is a necessary and sufficient condition in order that wa, = V(¢ for
some smooth 1-form ¢, on RP,. However, it is easy to check that this
coincides with

(17) 2x 71-(V(avc)("}bd + gacwbd);

thus Theorem 3 is proved for the case ¢ = 2. The general case follows
similarly by considering the induced flat connection on the associated
bundle (in terms of Young diagrams)

(18) == T
[ ——
£ — 1 columns

or, equivalently, (since A" and hence A"T!'T = A ® A" are trivialized
by the round volume form), the bundle induced from the special frame-
bundle of T by the representation

(19) L S S

of SL(n + 1,R). A salient feature of this bundle is its structure when
written as ordinary tensor bundles on RP,,:
TH—HT = ‘3L 9 ¢ 0 0 pt=2 1 0 0 0
= eo—o o --- oo .-

HEEEEEEEE —eo—o - -—o
£ — -1
pfe 2 3. 8300 355 3...83

in terms of which the induced connection takes the form

o Vo —0u
I Vu—0p+g=o
(20) AR ,

p

for some appropriate tensor combination g <1 o where, following [4], the
homomorphism

0:FFFEFRT — Ao AT
is best regarded as induced by the Lie algebra differential
(21) 9.0 £=10 0 00 g3 et 9y 0 0

Here, sl(n 4+ 1,R) is regarded as a |1|-graded Lie algebra

slin+1L,R)=g1®g@m
.0

and the sl(n + 1,R)-module (19) is restricted to g_; for the purposes
of (21). The operator ¢pe...q — Wape...d = V (aPpe...qy appears within (20)
as the equation Vo — du = w for some p, and the analogs of (i), (ii),
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(iii) from the case ¢ = 2 readily arise. As detailed in [4], the Lie algebra
cohomologies

0 0 £—-1 0 O 0 0 _¢-1 0 O 0 0
H(g_l,. PY o o - - @ .) = e oo - - oo
1 0 £-1 0 O 0 0 _ £ 0 0 0 0

H(g_l,. _._._.__._.) — o—eo—o --- oo

provide the representations of SL(n,R) inducing the vector bundles on
RP,, between which the differential operator ¢pc...q = V(4@pe...q) acts.
Reasoning as for the case £ = 2 above, it is the second cohomology

HY(g1,0 %31 39 ... 89 =9 £49...9%9
(computed according to Kostant’s Theorem [28]) that induces the vector
bundle providing the obstruction to being in the range of this operator.

For the purposes of this article, it is not necessary to know the exact
formula for this obstruction but only how it arises from (18) with its
flat connection and that it has the form

T (V(quVT -+ Vg)Wape.-.d + lower-order g-trace terms) =0,
and this much is clear by construction. q.e.d.

We are now in a position to consider the corresponding problem on
CP,, as posed at the beginning of this section. Recall that Y denotes
a certain tensor bundle on any manifold, and, in particular,on CP,.
Therefore, parallel to (12) on RP,, we may consider the sequence of
bundles and linear differential operators

O T o T, v

on CP,,, where V) is given by exactly the same formula (10) as on RP,
except that V, now refers to the Fubini-Study connection and g4, to
the Fubini—Study metric. This sequence is no longer exact. Instead, if we
expand the composition V) oV using (9) on CP,,, bearing in mind that
both g4 and J,, are covariant constant, and compare the result with
the total cancellation that we know occurs on RP,,, then we conclude
that the result is forced to be of the form

¢ Jo© Do,
where D : @Z_lAl — Y%~ is some linear differential operator and
@: ARy 5yt
is induced by projection onto the first factor in the decomposition
0 1 0 0 0 0 £-1 0 0 0_0 £ 0 0 0
o o o - o 0P e o o .- 9 —06 0o o -- -0 D

of SL(2n,R)-modules. In particular, we conclude that the composition

(£)
O L O Y vt S v
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vanishes on CP,,, where 1 is the homomorphism of vector bundles on
CP,, induced by (3) and Y| is induced by the irreducible Sp(2n,R)-

¢ (€

module 3¢ 9 ... *0:%2‘ Writing V7 for the composition

(©)
(22) ON Y5yt v
we have proved the following.

Theorem 4. On CP,, for n > 2, there is a complez of linear differ-

ential operators
Z—lAl v ZAl VY) Y4
© — QA —— Y.

The operator Vf) has the form

T (V(quVr e Vs)wabc...d + lower-order g-trace terms) ,
where 7, is the composition @ZA1 ® @ZAI LN N Yf.

In particular, Theorem 4 provides necessary conditions for a globally
defined smooth symmetric tensor wgy,.... on CP, to be expressible in the
form V (,...c) for some globally defined smooth symmetric tensor ¢p....
The following section will show that these conditions are also sufficient.

5. Sufficiency on CP,
5.1. The case ¢ = 1. In this case Theorem 4 merely states that
(23) A0 Ly AL ds A2
is a complex on CP,, where Ai denotes the bundle of 2-forms trace-free

with respect to the Kéhler form .J,;,. This much is clear, and it is easy
to identify the local cohomology of (23) as follows.

Proposition 3. As a complex of sheaves, the cohomology of (23) may
be identified with the locally constant sheaf R.

Proof. Suppose w is a locally defined 1-form with d;w = 0. This
means that dw = 0J for some smooth function 6. Applying d gives

O=dONT+0d]=doINJT

because J is closed. But since J is non-degenerate and n > 2, it follows
by linear algebra that df = 0. Hence 6 is locally constant. As J is closed,
locally we may choose a 1-form « so that J = da. Then d(w — fa) = 0,
and we conclude that locally we may always write

(24) w=d¢p+ b for some some function ¢,

where da. = J and 6 is locally constant. Although « is not determined
by J, the only freedom in its choice is a — « + diy for some smooth
function 1, which may be absorbed into the decomposition (24) as

w=dop+0ca=d(¢d—0¢)+0(a+di).
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In particular, the locally constant function 6 is well defined by the local
cohomology of the complex (23). g.e.d.

Globally on CP,,, however, there is no 1-form « with da = J. Hence, as
was already observed by J.-P. Demailly (see [19, Introduction] or [22,
Theorem 3.40]), the same line of argument shows that globally there is
no cohomology. In other words, we have proved our desired global result
as follows.

Theorem 5. The following complex
[(CP,, A%) % T(CP,, A1) 25 [(CP,, A2)
s exact.
For the cases ¢ > 2, it will be useful to extend (23) as follows. Let us
first suppose that n > 3. Then there is a naturally defined complex
(25) A0y AT Gy A2 Gy A3

where A?i denotes the bundle of 3-forms trace-free with respect to Jg,
and d; : A2 — A3 is defined as the composition

A2 5 A2 L A3 = A3 @ A A3,

In the case n = 2, notice that A?i = 0. Otherwise, we have found the
integrability conditions for the range of d| : A — Ai.

Proposition 4. On CP,, for n > 3, the complex
d d
A A% S A3
is exact on the level of sheaves.

Proof. Suppose £ is a locally defined J-trace-free 2-form with
d1 & = 0. This means that d§ = p A J for some 1-form p. Applying
d gives

O=dund —puANd]=dunJ

because J is closed. But since J is non-degenerate and n > 3, it follows
by linear algebra that dy = 0. Locally, therefore, we may find a smooth
function ¢ with d¢ = p. Hence d(§ — ¢J) = 0, and locally we may find
a smooth 1-form w such that £ — ¢J = dw. Since £ is J-trace-free, we
conclude that £ = d, w. q.e.d.

When n = 2 there is a replacement for (25) due to M. Rumin and
N. Seshadri [34] and defined (on any 4-dimensional symplectic manifold)
as follows. [Note added in proof: it was pointed out to us by L.-S. Tseng
that this case is, in fact, due to R.T. Smith [35]. Its generalization

to d(f) : AT — Al in dimension 2n is due to Rumin and Seshadri and,
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independently, Tseng and S.-T. Yau [36].] Suppose £ is a smooth 2-form,
and consider d¢. Since n = 2, there is an isomorphism

Al N A3

so we may write d§ = p A J for a uniquely defined 1-form p. Applying d
implies dp A J = 0; thus du is J-trace-free. Let us write d(f) (A% = Ai
for the resulting differential operator. Specifically, we have

(26) dP¢ = dp, where p A J = de.
Notice that if £ = 6.J, then p = df and so d(f)g = 0. Thus, we obtain a

complex of differential operators on CPy

(2)
d d d
AO Al L Aﬁ_ ol Ai,

which acts as a replacement for (25), especially in view of the following
replacement for Proposition 4.
Proposition 5. On CP,, the complex
J e
Al S A2 A%
1s exact on the level of sheaves.
Proof. If d(f)g = 0 in (26), then locally we may write d§ = d¢ A J for
some smooth function ¢. In this case, d({ — ¢J) = 0, and locally we may

find a smooth 1-form w such that £ = dw + ¢J. If £ is also J-trace-free,
then it is immediate that £ = d | w. q.e.d.

5.2. The case ¢ = 2. Let U denote the bundle A° & A! & A° on CP,
equipped with the connection

AO
[a5) o v Vo — Ha
(27) U= A' > | wp | =% | Vapp + 9o+ Jupp | € AMeU.
EBO P vap - Jacﬂc
A

We compute that

o Japp + - ..
Vavb He = Vavbﬂc — Gaclb — Jachdﬂd + ... )
P —Jap0 + ...

where the ellipses ... denote tensors symmetric in the ab indices. From
(9) we see that

(Vavb - vbva)ﬂc = Gaclb — Gbclta + Jachd,Ud - chJad,Ud + 2Jab=]cd,ud
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and hence that the curvature of the connection on U is given by

o P
(28) (VaVe = VVo) | pe | =2Ja chﬂd

0 —0
In other words, the curvature of this connection on U has the form
(29) (VaVy — Vi Vo)X = 2J,4,P%,

where ® is some endomorphism of U.
It is easily verified that the skew form on U defined by

(30) (0, 1as p)s (G fins P)) = 0 + T pafiy — p&

is compatible with V, in the sense that V, (2, %) = (V,X%, 8)+(3, V,X).
Hence, the structure group for U can be reduced to Sp(2(n+1),R) and,
just as we did for the connection on T in §4, we may now consider
the connections on vector bundles induced from U by the irreducible
representations of this structure group. Parallel to AT in §4, we should
consider A% U where L denotes the trace-free part with respect to (30).
Its connection is easily computed; we hvae

Al
@ oy
AiU: A% > Ibe Va
&)
(31) N 1

Va0 — fab
Vattbe + 9abOc = Gacob + Jappe — Jacpb — JoePa + chJadUd
Vapy + Ja b

and we immediately notice the similarity with (14). The curvature of
this connection automatically has the form (29) with ® replaced by
the induced endomorphism of AiU Alternatively, it may be verified by
composition with the induced operator V : Al ®A2L[U — A? ®A2lU given
by

Obc

(32) Hbed
Pbe
v[u,o'b]c + Hiablc

Viatoled + 9elaObld — Jd[aTblc — JefaPbld T JajaPble T JedPlab] + Jed (o Tp)e
v[apb]c + J[aeﬂb]ce

that
Oc¢ pe+ JEoe
(33) (vavb - vaa) Hed =2Jup Jce,ued + Jde,uce
Pc —0c+ J:pe
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Theorem 6. Suppose wgyy, is a symmetric tensor on CP,. The fol-
lowing are (locally or globally) equivalent.
Whe
i) | Vewgy — Vawer | € T(CP,, A ® Ai[U) is in the range of the
£bc(w)
induced connection Vy, : T(CP,, A2 U) — I'(CP,, A'®A% U), where
@2A1 € Wpe -+ Lye(w) € AL @ Al is some explicit linear differential
operator (to be determined in the proof).
ii) wap = Vo) for some ¢, € I'(CP,,A").
Whe
iii) | poea | € T(CPp, A' ® A2U), for some pipea € T'(CPy, A @ A?)
Pbe
and pp. € T'(CP,, A' ® A'), is in the range of the connection Vy :
I'(CP,,A2U) — I'(CP,, A ® A2T).

Proof. 1t is clear from (31) that (i)=-(ii)=-(iii). It remains to show
(iii)=-(i). To see this, recall that the curvature of the connection on
A% U has the form (29) and so if (iii) holds, then we read off from the
first row of (32) that

V[awb}c + Hlable = JabPe
for some p.. From this, bearing in mind that fipeq = [peq), it follows that
Pbcd = 3H[ped) — 20cdp = VewWdb — VdWeb + Jbepd — Jedpo — Jpape
and from (31) we see that

Whe Whe 0
tbed | = | Vewas — Vawey, | +Vi | 0
Pove * Pc

for some p.. As the second term on the right-hand side is already of
the required form, it follows that we may take ppcq = Vewap — Vawep
without loss of generality, and it remains to consider py.. In fact, we
claim that pp. now is uniquely determined by equating the second row
of (32) to JupTeq for some 7.4 = T|cg, as must be the case by (29). To
see this, we need the following purely algebraic result.

Lemma 1. Suppose Typeq is a tensor with the following symmetries:

® Tabed = Tab)[cd)s
® Tiape)d = J[av¥qa for some tensor eq.
Then there are unique tensors
® Pab;
® Tab = Tab);
o Xaped = Xat]jed) With X(gpga = 0 and J® Xpea = 0,
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such that
(34) Tabed = Xabed + Jc[apb}d - Jd[a/ob]c — JedPlab] + JabTed-

Proof. Let us consider a complex consisting of (quotients of) spaces
of tensors for Sp(2n,R) and homomorphisms between them

(35) 0>A—-B—->C—=0

defined by setting
e A = {pp. with no particular symmetries}
e B = {Tabcd st Thpea = T[ab] [cd}}/{Tabcd = JapTeq for 7.4 = T[cd}}
o C = {Sabcd 8-t Sabed = S{aveja}/{Sabed = J[aptea for some heq}
and taking
A3 ppe Jc[apb]d - Jd[apb]c — JedPlab] € B 3 Taped — T[abc}d eC.
It is easily verified that
this is, indeed, a complex,
A — B is injective,
B — (' is surjective,
if we set H = {[Xaped] € B s.t. X[gpga = 0 and J?® Xypeq = 0}, then

H is transverse to the image of A < B and is mapped to zero
under B — C.

Lemma 1 is precisely the statement that H represents the cohomology of
the complex (35). This is most easily verified by computing dimensions
dim A = 4n?,

dimB = (n—1)n(2n —1)2n + 1),

dim C = 4(n — 2)n?(2n + 1)/3,

dim H = (n— 1)n(2n — 1)(2n + 3)/3,

(for n > 2) and the result follows. q.e.d.

To continue the proof of Theorem 6, we claim that Lemma 1 applies to
(36) Tabed = Vialtled T IejaWbld — JdjaWble + JedTja Whes
where ppeq = Vewpg — Vawpe. This is because

T[abc}d = 2J[abwc}ejdey

as can be verified by direct computation from (9) or, more simply, by
noticing that

Whe v 0 v _ﬂabc]d
A1®A3_[U S| Veway — Vawer | = | Taped | — * S A3®A3_[U
0 * *

and that the curvature of V on A2 U is given by (33) (but, in fact, we
only need to know that the curvature has the form (29) in order to
see that Tjgpga = J[apPga for some 9cq and be in a position to apply
Lemma 1). We conclude from Lemma 1 that Typeq in (36) uniquely
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determines tensor fields pup, Tap, and Xgpeq satisfying the symmetries
specified in Lemma 1 and such that (34) holds. Of course, we could
determine pgp explicitly from its characterizing properties and especially
(34) by tracing over various pairs of indices using the inverse symplectic
form J. The result is extraordinarily complicated but has the form

1 1
Pab = _m <Sab BT JCdSCdJab> + lower-order terms,
where Sy, = JCd(VaVCwbd — VpVeweq). The mapping wp. — ppe de-
fines the differential operator L. in the statement of Theorem 6, and
from (32) we have arranged that

(37) Whe 0
A'® Ai[U 5 | Vewgy — Vawep Il) Xaved + JapTed | € A2 ® AiU,
Lpe(w) *

where Xpcq and 7.4 are determined by (34). Recall that this conclusion
was derived under assumption (iii) in Theorem 6 with the additional
constraint, without losing generality, that up.q = Vewgy — Vawep. The
conclusion that pp. = Lpe(w), for the differential operator Ly, derived
above, was forced by these assumptions. This is enough to complete the
proof of Theorem 6. q.e.d.

There are, however, some further conclusions that can be derived from
this proof and are worth recording here. First, if (iii) holds, then it is
immediate from (29) and (37) that Xgp.q = 0. We can compute Xgpeq
from (34) and (36), but, in fact, we have essentially done this compu-
tation already in §4 when we derived (16) leading to (17). The point is
that if one simply ignores all terms involving J in the formula (31) for
the connection on Azl[U, then one obtains

oyp Va0b — Hab
Hbe — Vaﬂbc + 9abTc — GacOb >
Pb Vapp

which, as far as the first two rows are concerned, coincides with (14).
But we are planning to remove all J-traces in defining Xp.q via (34).
Bearing in mind that the Riemann curvature tensors on complex and
real projective space differ only by terms involving J, it follows from
the derivation of (17) that

(38) Xabed =2 X T1L(V(aVe)Wad + Jacwnd),

where recall that the subscript L means to remove the J-traces. Of
course, this confirms Theorem 4 in case £ = 2. Another key observation
from (37) is as follows.

Theorem 7. Suppose wqp is a symmetric tensor on CP,, and that

(39) T1L(V(aVeywnd + gacwsd) = 0.
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Then
Whe v O
(40) Vewdy — Vawey | — | JapTea | € T(CP,, A% @ A2T),
ﬁbc(w) Jabec

for some T.q € T(CP,,A?) and 0. € T(CP,,A').

Proof. The first and second rows of the left-hand side of (40) are
enough to give the vanishing of the first row of the right-hand side, and
Lpe(w) is designed so that (37) holds in this case. Now that we know (39),
it follows from (38) that the second row of the right-hand side of (40)
is of the stated form. It remains to demonstrate that the third row is
as stated. Evidently, given the difficulties in writing down an explicit
formula for Ly.(w), a direct verification is out of the question. Instead,
let us observe that

0 - _J[ach}d
JbeTde | — J[abVC]Tde - Jd[apbc}e + Je[apbc}d - Jdep[abc}
Pbed v[alobc}d + J[ach}def

under A? ® A3 U VA% ® A% U and from (29) conclude that
(41) _Jd[apbc}e + Je[apbc}d - Jdep[abc] = J[abwc}de

for some ¥ege = Yqe). Certainly (41) holds if pege = Jeqbe. Conversely,
it may be verified without too much difficulty that the converse is true
on CP, for n > 3. On CPy, the relation (41) is content-free and a
separate argument is needed: it turns out that there is a second-order
differential operator on A2®A? U that may be applied to give sufficiently
strong algebraic constraints on pp.q. This is part of the general theory
developed in §5.3 below and will be omitted here (and the general theory
will also provide a workaround for the algebraic verification claimed
above). q.e.d.

We are at last in a position to prove the sufficiency of the condition
given in Theorem 4 in case ¢ = 2.

Theorem 8. Suppose wg is a globally defined smooth symmetric
tensor on CP,, and that

71 (V@Veywsd + gacwpa) = 0.
Then there is a smooth 1-form ¢q on CPy, such that wep = V (qPp)-
Proof. According to Theorems 6 and 7 it suffices to show that if

Whe 0
T(CPy, A'@A2T) S | pied | % | JuwTeq | € T(CP,, A2 ® A2U)
Pbe Jabec
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for some 7.4 € I'(CP,,, A?) and 6, € T'(CP,,, A'), then
Whe
toea | is in the range of V; : T'(CP,, A2 U) — T'(CP,, A' ® A3 U).
Pbe

In other words, it suffices to show exactness of the complex

[(CPy, A2U) 5 T(CPy, A' ® A2U) 5 I(CP,, A2 @ A2 ).

We already used (33) in observing that this is, indeed, a complex, but
now let us analyze (33) more precisely. Certainly, it is of the form (29)
for some P : AiU — Ai[U, but this ® is quite special. From (33) we
compute that

Oc o2 —0c+ Jcepe
Ped | —> 2| —Hed + JcedeNef )
Pc —pe — Jfoe
which suggests the decomposition
(42) AMU=A Ue AT _,U
according to
Oc oc+ Jcepe Oc — cepe
Hed | =75 | Hedt Jfdal pey | + 5 | Hea— Jldad pey |
Pc pe — JEoe pe+ Joe

for then ®2 vanishes on Ai’OU and coincides with —4 x Id on Ai’_ 4U.
Furthermore, it is readily verified that the connection V respects this
decomposition. We are reduced to showing exactness of the following
two complexes:

(43) T(CPn, A2 (U) 5 T(CP,, A @ A2 JU) 5 T(CP,, A2 ® A2 (1)
and
(44) T(CP,, A3 _U)ST(CP,,A' @ A2 _,U) ST (CR,, A2 @ A% _,U).
The exactness of (44) is straightforward as follows. Suppose

Qq € D(CP,, A’ ® Ai,_4U) satisfies V Q = 0.

Then V() = Jup for some ¥ € T'(CP,, Ai’_zﬂU). From (29) it follows
that V[,V Qe = Jop®€Q; thus we have

J[abq)Qc] = v[avch] = v[a(‘]bc}z) = J[abvc}za
and, since Al JA—’> A3 is injective, we may conclude that V.2 = ®Q...

By the Bianchi identity, or by direct calculation, one readily verifies that
Vo® = 0. It follows that

Va(—=®%/4) = —02Q, /4 = Q,,

as required.
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It remains to prove the exactness of (43). Notice from (33) that ®
already vanishes on AiOU, which means that our connection (31) is

actually flat on AiOU As CP, is simply connected, the vector bundle
AiOU is trivialized by this connection, and the exactness of (43) follows
immediately from the corresponding uncoupled Theorem 5. q.e.d.

The complete proof in case £ = 2 may seem rather complicated, and,
indeed, the detailed analysis is necessarily severe. However, as we shall
see in the following section, the general argument can be given rather
cleanly. In particular, the awkward Lemma 1 can be formulated and
finessed by means of suitable Lie algebra cohomology.

5.3. The case ¢ > 2. The following discussion is a strict generalization
of the case ¢ = 2 given in §5.2 above. First, we generalize the bundle
A2 U and its connection constructed from (27). Recall that the natural
structure group for U is Sp(2(n+1), R) and so we may form an induced
bundle with connection for any irreducible representation thereof. In
particular, the bundle Ai[U arises from the representation

2_3_9_0,...40:%9 (n + 1 nodes),

and, more generally, let us consider the bundle Yf_lU induced by

0,0

(15) 3131282,

As tensor bundles, these are quite complicated, e.g.,

Y/U=AU=0oHeo ViU=meHe eoHFem,
O

but we shall not need to know the details. The curvature of the induced
connection on Yf‘lU is given by

(46) (VaVp — Vi V)2 =27, 0%,

where ¥ € End(Yf‘lU) is induced by ® € End(U) defined by equations
(28) and (29). The form of the curvature (46) is all we know in order
to proceed with a rather general construction as follows. We shall be
mimicking the construction of the Bernstein—Gelfand—Gelfand complex
on projective space given in [14]. For simplicity, let us suppose that
n > 3, postponing the case n = 2 for later discussion. It is clear that the
complex (25) can be naturally coupled with Yf_lU to yield a complex

@) YU S A oYU TS A2 o YU S A% o YT,
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and we maintain that this complex is naturally filtered. This is because,
by (27), the same is evidently true of the U-coupled complex

U 5 AlgU X5 AU X5 A3QU
I | | |

A0 Al A2 A3

S¥ SP SP &

v 7 men 7 A2 @ A1 - A% @Al
S¥ SP SP &
S A2 - IXi

and the filtration on (47) is inherited therefrom. Writing
Yf_lU:V:V()@Vl PVopVs®---PVy

for the associated graded vector bundle, the FEy-level of the resulting
spectral sequence has the form

Vo AoV, A2V, A3 ®V)

To to. ToL
(48) Vi AoV, A2eV, A3eV,
q to to. toL

Vo AV, A2V, A3 eV,

p
where all differentials are vector bundle homomorphisms. The key point
is that we can identify much of the F;-level explicitly. Take, for example,
the homomorphism 0 : Vi — A! ® V,. It is induced by the identity
mapping A' = U; — A' ® Uy = A! and thus may be identified as the
canonical inclusion

Vi =H—UHooegr—g=A"&V,
{—1 boxes

with quotient @ZAl. As a more subtle example, when ¢ = 2 we have
V= Aﬁ_U with Vo @V, @ Vy = At @ A2 @ Al and

AMlev, 25 A2gv, 25 Adev,

A1<§|§’>A1 — A2l<|§’§>A2 — Ai<§|§’>A1,
whose cohomology is actually the subject of Lemma 1, being identified
there as
H = {Xaped 5. Xaved = X{apjeq) and X[gpga = 0 and J** Xypeq = 0}
corresponding to the irreducible representation

0 2 0 0,0

EE\L:. o o ... ols (nnodes)
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of Sp(2n,R). Similarly, the proof of Theorem 7 for n > 3 boils down to
01

AT ©V, » AT @V = A3 @ A?

/I\
Aﬁ_ ® Al 5 Pbed Jd[apbc}e - Je[apbc]d + Plabc] Jde € A? ® A?

being injective. In general, the Fy-level of the spectral sequence is con-
trolled by Lie algebra cohomology as follows.

Proposition 6. Suppose V is a representation of the Heisenberg al-
gebra Bopt1 = g—2 @ g—1 of dimension 2n + 1 for n > 3 where g_o
denotes the center and for X,Y € g_1, we have [X,Y] = J(X AY)
for a non-degenerate symplectic form J : A>’g_y — g_s. Then the Lie
algebra cohomologies H" (hap41,V) for r = 0,1,2 may be computed by
the complex

0V -2 Hom(g_1,V) -2 Hom(A2 g1, V) 25 Hom(A3 g_y, V),
induced by the action of g_1 on V.

Proof. Let us introduce abstract indices in the sense of [32] to write
d, for the action of g_1 on V, meaning that Xv = X%0,v for X € g_;.
Then

v ﬁ) 6(1?} Vq ia—l> 5[(1?)1)} - % JCdEﬁcvdJab Vab 'a—L> 6[(1?}1)0] - ﬁ Jdeawe[ajbc]

are the explicit formulae for the differentials of the complex in question.
Let us also write 0 for the action of g_s on V. Then to say that V is an
hon+1-module is precisely that

0,0p — 0p0,v = 2J 00 Vv eV

and the differentials of the usual Koszul complex A®(h2,11)*®@V defining
the Lie algebra cohomology begin with

a }6

Vave— [ v @ = (hans1)" @V
g*_2 ®V
and continue with
APgE @V APHgt @V
G5) — @ forp>1
g*_2®/\p_1g*_1 ®V g*_2®Apg*_1 ®V

Vab---cd NN 6[a’ch---de} + (_1)p‘][abwc~vde]

Wab-.-c 5[awbc...d} + (—1)p6vabc...d )
Easy diagram chasing gives the desired result. q.e.d.

When n = 2, there is a replacement for Proposition 6 as follows.
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Proposition 7. Suppose V is a representation of the Heisenberg al-
gebra hs = g_o®g_1 of dimension 5. Then the Lie algebra cohomologies
H"(b5,V) for r =0,1,2 may be computed by the complex

0 * o 2 _* a(f) * 2 %
0—>V—>g_1 ®V—)AJ_Q_1 ®V—>Q_Q®Alg_1 RV
where, adopting the notation from the proof of Proposition 6, the linear

transformation af’: Aig*_l RV =9",® Aig*_l ®V is given by
Vg M J“léﬁ[avb}d + 30v4p.
Proof. This is what emerges by following the proof of Proposition 6.

The only difference when n = 2 is that A?i g, = 0, and so there is one
extra step in the resulting diagram chase. q.e.d.

Looking back at the Ey-level (48) of our spectral sequence, we see that
for n > 3, Proposition 6 is exactly what we need to identify much of the
FE4-level, provided we are able to identify the Lie algebra cohomology
H"(b2p41,V) for r = 0,1,2. Kostant’s Theorem [28] provides such an
identification

Ho(h2n+1,Yf_1[U) =610 0 ,0:(:2 (n nodes)

H'(hop1, Y[ 'U) = ¢ 8 ... &2
H%(honi1, Y[ 'U) = 3 4 3. &ie

as Sp(2n, R)-modules as well as the exact locations of the corresponding
induced bundles in the E-level

OFIA 5 OFAY 0

[en i

.
Yy *
p

where Yf arises as the cohomology of

o) 1s)
A'® \Y = Ai ®Vy_q == Ai’_ ®Vy_o.

This is the right location to be the target of a differential C)éA1 — Yf
at the Ey-level. We conclude immediately that there is a complex
(£)

v
O L ofA e Y
whose cohomology is the same as that of the original complex
YU S A oYU Y5 A2 e Y.

This is true both locally (which confirms abstractly [31] that Vf) is a
differential operator) and globally, which is what we shall use to prove
the sufficiency of the condition given in Theorem 4 as follows.
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Theorem 9. Suppose wgupe...q 1S a globally defined smooth symmetric
L-tensor on CP, for n > 2. Suppose that Vf) (Wap-.q) = 0, where Vf) 18
the differential operator of Theorem 4 defined as the composition (22).
Then there is a smooth symmetric ({—1)-tensor ¢pe...q on CPy, such that

Wabc---d = v(a(zsbc---d)'

Proof. For n > 3, there remain just two facts to verify. The first is
that, as our notation already indicates, the differential operator Vf)
arising at the FEj-level of the spectral sequence of the filtered complex
(47) coincides with the composition (22). The second is that

(50) T(CP,, Y " 'U) LT(CP,, A' ® Y 'U) Y5 T(CP,, A2 @ YIT'U)

is exact. The first of these two facts follows by comparing the spectral
sequence constructions of Vf) on CP,, and V® on RP, for the model
embeddings ¢ : RP, — CP,. Recall, as in Proposition 2, that each
¢ is totally geodesic and Lagrangian. If ¥ = (o,p,p) is a section of
U =A@ A @ A on CP,, then we can define its “pull-back” *¥ to
RP, to be the section (:*o,:*u) of the bundle T = A° @ A! on RP,.
From the formulae (27) and (13) for the connections on U and T, we
see that pull-back intertwines these connections, i.e., t*(VX) = V(.*X).
The same is therefore true of pull-back from

_ M1 M1
Yf U = =111 L[U to =Tt HT.

| — | —

£ — 1 columns £ — 1 columns

Hence, the resulting operators

v ®
OA' == Y! on CP, and QA Y v* on RP,

are also related by pull-back. As this is true for every model embedding

t : RP, — CP,, Corollary 2 now shows that VY) is characterized by
this property. By construction, (22) also has this property and so the
two operators agree, as required.

Now we must show that (50) is exact. The following reasoning applies
to any bundle V induced from U by an irreducible representation of
Sp(2(n + 1),R) including Yf_lU (recall that it is induced by (45)). In
particular, when applied to V = AiU it puts the reasoning in the proof
of Theorem 8 in proper context. The endomorphism

o o p
pe | — | Jlpa
p —0

of U defined by (29) is preserved by the connection on U. Evidently, it
also satisfies ®? = —Id. Finally, we compute

(©(0, par p), (G, v, P)) = 06 + g™ prafis, + pp
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where ( , ) is the skew form on U defined by (30) and notice that this
is symmetric and positive definite. Hence, the structure group for U
naturally reduces from Sp(2(n+1),R) to SU(2(n+1)) with ® providing
the complex structure. Accordingly, the decomposition (42) may be seen
as follows. The complexified bundles split in familiar fashion as

CU = AU A%U

and
A2CU = A*'U @ (A}'U @ A°U) @ A%%U

as complex eigenspaces under the action of ®. Then (42) is simply the
real counterpart of the complex decomposition

AlCU =AU (A2°U g A%%0).
For our purposes, a sufficient counterpart to (42) in general is to write
V=Vo& V;,go

where Vo = ker U : V — V (and, following (46), we are writing ¥ for
endomorphism of V induced by ® € End(U)) and V. is such that
CV_q collects all the non-zero eigenspaces of W. In particular, notice
that Uly 2o @ Vo = Vo Is invertible. Now we are in a position to show
that

(51)  L(CP,,V) - T(CPy, A! ® V) 55 T(CP,, A2 @ V)
in general, and hence (50) in particular, is exact. As in the proof of
Theorem 8, this breaks into two cases

A\

I(CP,, Vo) ~ T(CP,,A'®Vy) —% T(CP,, A2 ® V)

I(CP,,V4) — T(CP,,A'®Vi) — I(CPp, A2 ® V),

the counterparts of (43) and (44). The first of these complexes is exact
as a consequence of Theorem 5 coupled with the flat connection Vly,.
The curvature of V|y_, has the form (46) with ¥ € End(V_g) crucially
being invertible. Exactness of the corresponding complex is established
as follows. Suppose Q € T'(CP,,, A ® V_4) satisfies V | 2 = 0. Precisely,
this means that

Vi = Jup2  for some ¥ € T'(CP,,, Vz).
Differentiating again, we find that
Jab Va2 = Via(JogE) = Vi Vil = 0y ¥y,
the last equality being a consequence of (46) as applied to the vector
bundle V. Since J, is non-degenerate, we conclude that V.2 = ¥Q,.

But the Bianchi identity V(,(Jyq¥) = 0 implies that V,¥ = 0. Finally,
recall that W is invertible; therefore we have the equalities

Vo (T7IY) =071y, 2 = 1w, =Q,,
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which is exactly as needed to complete the proof of exactness of (51).

The proof of Theorem 9 is complete save for the case n = 2, for
which a modification to the argument is needed as follows. We replace
the complex (47) by

)
(52) YOS A @YU Y5 A2 o YU s A2 @ YOI,

where V(f) is defined by
(VP €)ab = Viarty = U€ay  where oy = Viabag

as a coupled version of the operator d(f) : A2 — A% defined by (26).
It is easy to check that this operator is well defined and that (52) is a
complex. It is naturally filtered, and there is spectral sequence whose
Ejy-level has the form

Vo AoV, AV,

to to.
Vi A1®V1 Ai@Vl Ai@VO
q To to. To?
Vo  AleVy, A3 @V, A2 @V
. . 0@ .
p

replacing (48), where E?f) is as in Proposition 7, which is now used

together with Kostant’s Theorem [28] to identify the Fj-level as (49),
just as before. The rest of the proof is unchanged. q.e.d.

6. Proof of the main theorem

The proof of Theorem 1 is now a straightforward application of the
machinery we have developed. Suppose wgp.... is a smooth symmetric
l-tensor, globally defined on CP,, and having zero energy. Then the
same is true of t*wgp.... for any model embedding ¢ : RP, — CP,.
The X-ray transform on RP,, is well understood, and it is proved in [1]
that (*wep...c is of the form V(,¢....). By Theorem 3 we conclude that

V(Z)(L*wab...c) = 0. As this is true for all model embeddings, we conclude
by Corollary 2 that Vf) (Wap-.c) = 0. Theorem 9 finishes our proof.
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