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SMOOTH YAMABE INVARIANT AND SURGERY

Bernd Ammann, Mattias Dahl & Emmanuel Humbert

Abstract

We prove a surgery formula for the smooth Yamabe invari-
ant σ(M) of a compact manifold M . Assume that N is obtained
from M by surgery of codimension at least 3. We prove the exis-
tence of a positive constant Λn, depending only on the dimension n
of M , such that

σ(N) ≥ min{σ(M),Λn}.

1. Introduction

1.1. Main result. The smooth Yamabe invariant, also called Schoen’s
σ-constant, of a compact manifold M is defined as

σ(M) := sup inf

∫

M
Scalg dvg,

where the supremum runs over all conformal classes [g0] on M and the
infimum runs over all metrics g of volume 1 in [g0]. The integral E(g) :=∫
M Scalg dvg is the integral of the scalar curvature of g integrated with
respect to the volume element of g and is known as the Einstein–Hilbert
functional.

Let n = dimM . We assume that N is obtained from M by surgery
of codimension n−k ≥ 3. That is for a given embedding Sk →֒ M , with
trivial normal bundle, 0 ≤ k ≤ n−3, we remove a tubular neighborhood
Uǫ(S

k) of this embedding. The resulting manifold has boundary Sk ×
Sn−k−1. This boundary is glued together with the boundary of Bk+1 ×
Sn−k−1, and we thus obtain the closed smooth manifold

N := (M \ Uǫ(S
k)) ∪Sk×Sn−k−1 (Bk+1 × Sn−k−1).

Our main result is the existence of a positive constant Λn depending
only on n such that

σ(N) ≥ min{σ(M),Λn}.
This formula unifies and generalizes previous results obtained by Gro-
mov and Lawson; Schoen and Yau; Kobayashi; and Petean and Yun. It
also allows many conclusions by using bordism theory.
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In Section 1.2 we give a detailed description of the background of
our result; a stronger version of the main result follows in Section 1.3,
followed by a sketch of topological applications (Section 1.4). The con-
struction of a generalization of surgery is recalled in Section 2. Then,
in Section 3 the constant Λn is described and is proven to be positive.
After the proof of some preliminary results on limit spaces in Section 4,
we derive a key estimate in Section 5—namely, an estimate for the L2-
norm of solutions of a perturbed Yamabe equation on a special kind of
sphere bundle, called WS-bundle. The last section contains the proof of
the main theorem, Theorem 1.3.

1.2. Basic notions, the Yamabe problem, and some surgery

formulas. We denote by Bn(r) the open ball of radius r around 0 in
R
n and we set Bn := Bn(1). The unit sphere in R

n is denoted by
Sn−1. By ξn we denote the standard flat metric on R

n and by σn−1 the
standard metric of constant sectional curvature 1 on Sn−1. We denote
the Riemannian manifold (Sn−1, σn−1) by S

n−1. All manifolds in this
article are manifolds without boundary unless stated differently.

Let (M,g) be a Riemannian manifold of dimension n. The Yamabe
operator, or Conformal Laplacian, acting on smooth functions on M is
defined by

Lgu = a∆gu+ Scalgu,

where a := 4(n−1)
n−2 and where ∆g = divggradg is the non-negative Lapla-

cian associated to the metric g. Let p := 2n
n−2 . Define the functional Jg

acting on non-zero compactly supported smooth functions on M by

(1) Jg(u) :=

∫
M uLgu dvg

(∫
M up dvg

) 2
p

.

If g and g̃ = f
4

n−2 g = fp−2g are conformal metrics on M , then the
corresponding Yamabe operators are related by

(2) Lg̃u = f−n+2
n−2Lg(fu) = f1−pLg(fu).

It follows that

(3) J g̃(u) = Jg(fu).

For a compact Riemannian manifold (M,g), the conformal Yamabe con-
stant is defined by

µ(M,g) := inf Jg(u) ∈ R,

where the infimum is taken over all non-zero smooth functions u on M .
The same value of µ(M,g) is obtained if one takes the infimum over pos-
itive smooth functions. From (3) it follows that the invariant µ depends
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only on the conformal class [g] of g, and the notation µ(M, [g]) = µ(M,g)
is also used. For the standard sphere we have

(4) µ(Sn) = n(n− 1)ωn
2/n,

where ωn denotes the volume of S
n. This value is a universal upper

bound for µ.

Theorem 1.1 ([10, Lemma 3]). The inequality

µ(M,g) ≤ µ(Sn)

holds for any compact Riemannian manifold (M,g).

For u > 0 the Jg-functional is related to the Einstein–Hilbert func-
tional via

Jg(u) =
E(u4/(n−2)g)

Vol(M,u4/(n−2)g)
n−2
n

, ∀u ∈ C∞(M,R+),

and it follows that µ(M,g) has the alternative characterization

µ(M,g) = inf
g̃∈[g]

E(g̃)
Vol(M, g̃)

n−2
n

.

Critical points of the functional Jg are given by solutions of the Yamabe
equation

Lgu = µ|u|p−2u

for some µ ∈ R. If the inequality in Theorem 1.1 is satisfied strictly—
that is, if µ(M,g) < µ(Sn)—then the infimum in the definition of
µ(M,g) is attained.

Theorem 1.2 ([56, 10]). Let M be connected. If µ(M,g) < µ(Sn),
then there exists a smooth positive function u with Jg(u) = µ and
‖u‖Lp = 1. This implies that u solves (5) with µ = µ(M,g). The mini-
mizer u is unique if µ ≤ 0.

The inequality µ(M,g) < µ(Sn) was shown by Aubin [10] for non-
conformally flat, compact manifolds of dimension at least 6. Later,
Schoen [48] could apply the positive mass theorem to obtain this strict
inequality for all compact manifolds not conformal to the standard
sphere. We thus have a solution of

(5) Lgu = µup−1, u > 0.

To explain the geometric meaning of these results we recall a few facts
about the Yamabe problem; see, for example, [38] and [53, Chapter 5]
for more details on this material. The name of Yamabe is associated to
the problem, as Yamabe wrote the first article about this subject [57].

For a given compact Riemannian manifold (M,g), the Yamabe prob-
lem consists of finding a metric of constant scalar curvature in the con-
formal class of g. The above results yield a minimizer u for Jg. Equa-
tion (5) is equivalent to the fact that the scalar curvature of the metric
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u4/(n−2)g is everywhere equal to µ. Thus, the above theorem, together
with µ(M,g) < µ(Sn), resolves the Yamabe problem.

A conformal class [g] on M contains a metric of positive scalar cur-
vature if and only if µ(M, [g]) > 0. If M = M1 ∐M2 is a disjoint union
of M1 and M2 and if gi is the restriction of g to Mi, then an elemen-
tary argument where one rescales the components with different factors
yields that

µ(M, [g]) = min {µ(M1, [g1]), µ(M2, [g2])}

if µ(M1, [g1]) ≥ 0 or µ(M2, [g2]) ≥ 0, and otherwise

µ(M, [g]) = −
(
|µ(M1, [g1])|n/2 + |µ(M2, [g2])|n/2

)2/n
.

One now defines the smooth Yamabe invariant of an arbitrary com-
pact manifold M of dimension at least 3 as

σ(M) := supµ(M, [g]) ≤ n(n− 1)ω2/n
n ,

where the supremum is taken over all conformal classes [g] on M .
The introduction of this invariant was originally motivated by Yam-

abe’s attempt to find Einstein metrics on a given compact manifold; see
[49, 35]. Yamabe’s idea in the early 1960s was to search for a conformal
class [gsup] that attains the supremum. The minimizer g0 of E among
all unit volume metrics in [gsup] exists according to Theorem 1.2, and
Yamabe hoped that the g0 obtained with this minimax procedure would
be a stationary point of E among all unit volume metrics (without fixed
conformal class), which is equivalent to g0 being an Einstein metric.

Yamabe’s approach was very ambitious. If M is a simply connected
compact 3-manifold, then an Einstein metric onM is necessarily a round
metric on S3, and hence the 3-dimensional Poincaré conjecture would
follow. It turned out that his approach actually yields an Einstein metric
in some special cases. For example, LeBrun [36] showed that if a com-
pact 4-dimensional manifold M carries a Kähler–Einstein metric with
non-positive scalar curvature, then the supremum is attained by the
conformal class of this metric. Moreover, in any maximizing conformal
class the minimizer is a Kähler–Einstein metric.

Compact quotients M = Γ\H3 of 3-dimensional hyperbolic space H
3

yield other examples on which Yamabe’s approach yields an Einstein
metric. On such quotients the supremum is attained by the hyperbolic
metric on M . The proof of this statement uses Perelman’s proof of the
Geometrization conjecture, see [9] and [30, Section II.8]. In particular,

σ(Γ\H3) = −6(vΓ)
2/3 where vΓ is the volume of Γ\H3 with respect to

the hyperbolic metric.
On a general manifold, Yamabe’s approach failed for various reasons.

In dimension 3 and 4 obstructions against the existence of Einstein
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metrics are known today; see, for example, [34, 37]. In many cases the
supremum is not attained.

R. Schoen and O. Kobayashi started to study the smooth Yamabe
invariant systematically in the late 1980s [49, 50, 31, 32]. In particular,

they determined σ(Sn−1×S1) to be σ(Sn) = n(n−1)ω
2/n
n . On Sn−1×S1

the supremum in the definition of σ is not attained. Because of Schoen’s
important results in these articles, the smooth Yamabe invariant is also
often called Schoen’s σ-constant.

The smooth Yamabe invariant determines the existence of positive
scalar curvature metrics. Namely, it follows from above that the smooth
Yamabe invariant σ(M) is positive if and only if the manifold M admits
a metric of positive scalar curvature. Thus the value of σ(M) can be
interpreted as a quantitative refinement of the property of admitting a
positive scalar curvature metric.

In general calculating the σ-invariant is very difficult. LeBrun [34,
Section 5], [36] showed that the σ-invariant of a complex algebraic sur-
faces is negative (resp. zero) if and only if it is of general type (resp.
of Kodaira dimension 0 or 1), and the value of σ(M) can be calculated
explicitly in these cases. As already explained above, the σ-invariant
can also be calculated for hyperbolic 3-manifolds; they are realized by
the hyperbolic metrics.

There are many manifolds admitting a Ricci-flat metric, but no metric
of positive scalar curvature—for example, tori, K3-surfaces and com-
pact connected 8-dimensional manifolds admitting metrics with holo-
nomy Spin(7). These conditions imply σ(M) = 0, and the supremum is
attained.

Conversely, Bourguignon showed that if σ(M) = 0 and if the supre-
mum is attained by a conformal class [gsup], then E : [gsup] → R attains
its minimum in a Ricci-flat metric g0 ∈ [gsup]. Thus Cheeger’s splitting
principle implies topological restrictions on M in this case. In partic-
ular, a compact quotient Γ\N of a non-abelian nilpotent Lie group N
does not admit metrics of non-negative scalar curvature, but it admits
a sequence of metrics gi with µ(Γ\N, gi) → 0. Thus Γ\N is an example
of a manifold for which σ(Γ\N) = 0, for which the supremum is not
attained.

All the examples mentioned up to here have σ(M) ≤ 0. Positive
smooth Yamabe invariants are even harder to determine. The calcula-
tion of non-positive σ(M) often relies on the formula

|min{σ(M), 0}|n/2 = inf
g

∫

M
|Scalg|n/2 dvg

where the infimum runs over all Riemannian metrics g on M ; see [35,
Proof of Proposition 2.1]. This formula does not distinguish between
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different positive values of σ(M), and thus it cannot be used in the
positive case.

It has been conjectured by Schoen [50, page 10, lines 6–11] that all

finite quotients of round spheres satisfy σ(Sn/Γ) = (#Γ)−2/nY (Sn),
but this conjecture is only verified for RP 3 [13]—namely, σ(RP 3) =
6(ω3/2)

2/3. The smooth Yamabe invariant is also known for connected
sums of copies of real projective space RP 3 with copies of S2 × S1 [3],
for CP 2 [23] and for connected sums of CP 2 with several copies of
S3 × S1. With similar methods, it can also be determined for some
related manifolds, but, for example, the value of σ(S2×S2) is not known.
To the knowledge of the authors there are no manifolds M of dimension
n ≥ 5 for which it has been shown that 0 < σ(M) < σ(Sn), but due
to Schoen’s conjecture finite quotients of spheres would be examples of
such manifolds.

As explicit calculation of the Yamabe invariant is difficult, it is natural
to use surgery theory to get estimates for more complicated examples.
Several articles study the behavior of the smooth Yamabe invariant un-
der surgery. In [21] and [51] it is proven that the existence of a positive
scalar curvature metric is preserved under surgeries of codimension at
least 3. In terms of the σ-invariant, this means that if N is obtained
from a compact manifold M by surgery of codimension at least 3 and
σ(M) > 0, then σ(N) > 0.

Later, Kobayashi proved in [32] that if N is obtained from M by 0-
dimensional surgery, then σ(N) ≥ σ(M). A first consequence is an alter-
native deduction of σ(Sn−1×S1) = σ(Sn) using the fact that Sn−1 × S1

is obtained from Sn by 0-dimensional surgery. More generally, one sees
that σ(Sn−1 × S1# · · ·#Sn−1 × S1) = σ(Sn) as this connected sum is
obtained from Sn by 0-dimensional surgeries as well.

Note that it follows from what we said above that the smooth Yamabe
invariant of disjoint unions M = M1 ∐M2 satisfies

σ(M) = min {σ(M1), σ(M2)}
if σ(M1) ≥ 0 or σ(M2) ≥ 0, and otherwise

σ(M) = −
(
|σ(M1)|n/2 + |σ(M2)|n/2

)2/n
.

Kobayashi’s result then implies σ(M1#M2) ≥ σ(M1 ∐ M2), and thus
yields a lower bound for σ(M1#M2) in terms of σ(M1) and σ(M2).

A similar monotonicity formula for the σ-invariant was proved by
Petean and Yun in [45]. They prove that σ(N) ≥ min{σ(M), 0} if N
is obtained from M by surgery of codimension at least 3. See also [35,
Proposition 4.1] and [1] for other approaches to this result. Clearly, this
surgery result is particularly interesting in the case σ(M) ≤ 0, and it
has several fruitful applications. In particular, any simply connected
compact manifold of dimension at least 5 has σ(M) ≥ 0; see [44]. This
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result has been generalized to manifolds with certain types of funda-
mental group in [12]. Further results in the same spirit for n = 4 can
be found in [55].

1.3. Stronger version of the main result. In the present article we
derive a surgery formula, which is stronger than the Gromov–Lawson
resp. Schoen–Yau surgery formula, the Kobayashi surgery formula and
the Petean-Yun surgery formula described above. Suppose that M1 and
M2 are compact manifolds of dimension n and that W is a compact
manifold of dimension k. Let embeddings W →֒ M1 and W →֒ M2

be given. We assume further that the normal bundles of these embed-
dings are trivial. Removing tubular neighborhoods of the images of W
in M1 and M2, and gluing together these manifolds along their common
boundary, we get a new compact manifold N , the connected sum of M1

and M2 along W . Strictly speaking, N also depends on the choice of
trivialization of the normal bundle. See section 2 for more details.

Surgery is a special case of this construction: if M2 = Sn, W = Sk,
and if Sk →֒ Sn is the standard embedding, then N is obtained from M1

via k-dimensional surgery along Sk →֒ M1.

Theorem 1.3. Let M1 and M2 be compact manifolds of dimension n.
If N is obtained as a connected sum of M1 and M2 along a k-dimensional
submanifold where k ≤ n− 3, then

σ(N) ≥ min {σ(M1 ∐M2),Λn,k}

where Λn,k is positive and only depends on n and k. Furthermore, Λn,0 =
σ(Sn).

From Theorem 1.1 we know that σ(M) ≤ σ(Sn) and thus see that
σ(M ∐Sn) = σ(M) for all compact M . Hence, we obtain for the special
case of surgery the following corollary.

Corollary 1.4. Let M be a compact manifold of dimension n. As-
sume that N is obtained from M via surgery along a k-dimensional
sphere W , k ≤ n− 3. We then have

σ(N) ≥ min {σ(M),Λn,k} .

The constants Λn,k will be defined in Section 3. In Subsections 3.3 and
3.4 we prove that these constants are positive, and in Subsection 3.5 we
prove that Λn,0 = µ(Sn). Explicit lower bounds for Λn,k can be found for
all k 6∈ {1, n − 3}; however, these are not optimal (see Subsection 3.6).
An explicit calculation of Λn,k for k > 0 seems very difficult. The main
problem consists in calculating the conformal Yamabe constant of cer-
tain Riemannian products, which in general is a hard problem. See [2, 5]
for recent progress on this problem.
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1.4. Topological applications. The above surgery result can be com-
bined with standard techniques of bordism theory. As these topological
applications are not the main subject of this article, we will only sketch
some typical conclusions as examples here.

The first corollary uses the fact that spin bordism groups and ori-
ented bordism groups are finitely generated together with techniques
developed for the proof of the h-cobordism theorem.

Corollary 1.5. For any n ≥ 5 there is a constant Cn > 0, depending
only on n, such that

σ(M) ∈ {0} ∪ [Cn, σ(S
n)]

for any simply connected compact manifold M of dimension n.

We now sketch how interesting bordism invariants can be constructed
using our main result. This construction will be explained here only for
spin manifolds, but similar constructions can also be done for oriented,
non-spin manifolds or for non-oriented manifolds.

Fix a finitely presented group Γ, and let BΓ be the classifying space
of Γ. We consider pairs (M,f) where M is a compact spin manifold and
where f : M → BΓ is continuous. Two such pairs (M1, f1) and (M2, f2)
are called spin bordant over BΓ if there exists an (n+1)-dimensional spin
manifold W with boundary −M1 ∐M2 with a map F : W → BΓ such
that the restriction of F to the boundary yields f1 and f2. It is implicitly
required that the boundary carries the induced orientation and spin
structure and −M1 denotes M1 with reversed orientation. Being spin
bordant over BΓ is an equivalence relation. The equivalence class of
(M,f) under this equivalence relation is denoted by [M,f ], and the set

of equivalence classes is called ΩSpin
n (BΓ). Disjoint union of manifolds

defines a sum on ΩSpin
n (BΓ), which turns it into an abelian group.

We say that a pair (M,f) with f : M → BΓ is a π1-bijective represen-
tative of [M,f ] ifM is connected and if the induced map f∗ : π1(M) → Γ

is a bijection. Any equivalence class in ΩSpin
n (BΓ) has a π1-bijective rep-

resentative.
Now we define

Λn := min{Λn,1, . . .Λn,n−3} > 0,

σ̄(M) := min{σ(M),Λn}.

Proposition 1.6. Let n ≥ 5. Let (M1, f1) and (M2, f2) be compact
spin manifolds with maps fi : Mi → BΓ. If (M1, f1) and (M2, f2) are
spin bordant over BΓ and if (M2, f2) is a π1-bijective representative of
its class, then

σ̄(M1) ≤ σ̄(M2).
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We define sΓ : ΩSpin
n (BΓ) → R by

sΓ([M,f ]) := sup
(M1,f1)∈[M,f ]

σ̄(M1).

The proposition states sΓ([M,f ]) = σ̄(M) if (M,f) is a π1-bijective
representative of its class. The surgery formula further implies

sΓ

(
[M1, f1] + [M2, f2]

)
≥ min

{
sΓ([M1, f1]), sΓ([M2, f2])

}

if sΓ([M1, f1]) ≥ 0 or sΓ([M2, f2]) ≥ 0, and otherwise

sΓ

(
[M1, f1] + [M2, f2]

)
≥ −

(
|sΓ([M1, f1])|n/2 + |sΓ([M2, f2])|n/2

)2/n
.

We conclude, and obtain the following theorem.

Theorem 1.7. Let t ∈ R, t ≥ 0, n ∈ N, n ≥ 5. Then the sets

ΩSpin
n (BΓ)>t := {[M,f ] ∈ ΩSpin

n (BΓ) | sΓ([M,f ]) > t}
and

ΩSpin
n (BΓ)≥t := {[M,f ] ∈ ΩSpin

n (BΓ) | sΓ([M,f ]) ≥ t}
are subgroups of ΩSpin

n (BΓ).

The theorem admits—among other interesting conclusions—the fol-
lowing application. For a positive integer p we write p#M for the con-
nected sum M# · · ·#M where M appears p times. We already know
that σ(p#M) ≥ σ(M) if σ(M) ≥ 0.

Corollary 1.8. Suppose that M is a compact spin manifold of di-
mension at least 5 with σ(M) ∈ (0,Λn). Let p and q be two relatively
prime positive integers. If σ(p#M) > σ(M), then σ(q#M) = σ(M).

If Schoen’s conjecture about the σ-invariant of quotients of spheres
holds true, then quotients of spheres by large fundamental groups yield
examples of manifolds M with σ(M) ∈ (0,Λn).

The determination of manifolds admitting positive scalar curvature
metrics—that is, manifolds with σ(M) > 0—has led to interesting re-
sults and challenging problems in topology; see, for example, [47]. It
would be interesting to develop similar topological tools for manifolds
with σ(M) > ǫ for ǫ > 0. As explained above, such manifolds form a
subgroup on the bordism level.

The subgroups ΩSpin
n (BΓ)>t also provide interesting algebraic struc-

tures. Any homomorphism Γ1 → Γ2 provides a homomorphism

ΩSpin
n (BΓ1)

>t → ΩSpin
n (BΓ2)

>t.

After introducing some factors and powers depending on the dimension,
these subgroups carry an ideal-like structure. More precisely, it follows
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from [5] that for any numbers t3 > 0 there is a sequence tn > 0, n ≥ 3,
such that taking products of manifolds defines a Z-bilinear map

ΩSpin
∗≥3 (BΓ1)× ΩSpin

∗≥3 (BΓ2)
>t∗ → ΩSpin

∗≥3 (B(Γ1 × Γ2))
>t∗

where the index ∗ ≥ 3 indicates that we consider the spin bordism ring

of manifolds whose dimension is at least 3. In particular, ΩSpin
∗≥3 (BΓ)>t∗

is a module over the ring ΩSpin
∗≥3 := ΩSpin

∗≥3 (B{1}) and ΩSpin >t∗
∗≥3 is an ideal

in ΩSpin
∗≥3 . Analogous structures exist for Ω

Spin
n (BΓ)≥t.

1.5. Comparison to other results. At the end of the section we
want to mention some similar constructions in the literature. An anal-
ogous surgery formula holds if we replace the Conformal Laplacian by
the Dirac operator; see [4] for details and applications. D. Joyce [28],
followed by L. Mazzieri [42, 43], considered a problem tightly related
to our result: their goal is to construct a metric on a manifold ob-
tained via a connected sum along a k-dimensional submanifold. For
these metrics they construct a solution of the Yamabe equation on the
new manifold that is close to solutions of the Yamabe equations on
the original pieces. Such a construction was achieved by D. Joyce for
k = 0 and by L. Mazzieri for k ∈ {1, . . . , n − 3}, provided that the
embeddings defining the connected sum are isometric. In contrast to
our article, their solutions on the new manifold are not necessarily min-
imizers of the volume-normalized Einstein–Hilbert functional. Similar
constructions have also been developed by R. Mazzeo, D. Pollack, and
K. Uhlenbeck [41] in order to glue together metrics of constant scalar
curvature. Recently, J. Corvino, M. Eichmair, and P. Miao showed how
to glue together metrics while preserving constant scalar curvature and
volume; see [16]. Further, P. T. Chrusciel, J. Isenberg, and D. Pollack
[15] found methods to glue together solutions of the vacuum Einstein
constraint equations.

Other authors studied the equivariant analogues. In this setting one
assumes that a compact Lie group G acts on the manifolds before and
after surgery and that the surgery is compatible with this actions. Fur-
thermore, all metrics are assumed to be G-invariant, and the Yamabe
constant and Yamabe invariant are replaced by their equivariant ana-
logues. The equivariant Yamabe problem is solved in many cases—in
particular, on spin manifolds or in the case that all orbits have positive
dimension; see [27, 39, 40]. An equivariant analogue of the Petean–
Yun surgery formula was provided in [54]. B. Hanke [24] proved that
the existence of G-invariant positive scalar curvature metrics is pre-
served under equivariant surgeries of the appropriate dimensions, which
is the equivariant generalization of the result by Gromov and Lawson,
respectively Schoen and Yau, cited above.

Acknowledgments. The authors want to thank the Max Planck Insti-
tute for Gravitational Physics in Potsdam for its hospitality, its support,
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and its friendly working conditions, which had an important impact on
this article. We thank Andreas Hermann for the numerical computa-
tion of the equivariant version of Λ4,1 mentioned in Section 3.7. We also
thank Kazuo Akutagawa for interesting discussions and insightful com-
ments. Finally, we want to express our deep thanks to the anonymous
referee whose many valuable remarks have helped us greatly to improve
the paper.

2. The connected sum along a submanifold

In this section we are going to describe how two manifolds are joined
along a common submanifold with trivialized normal bundle. Strictly
speaking, this is a differential topological construction, but since we
work with Riemannian manifolds we will make the construction adapted
to the Riemannian metrics and use distance neighborhoods defined by
the metrics etc.

Let (M1, g1) and (M2, g2) be complete Riemannian manifolds of di-
mension n. Let W be a compact manifold of dimension k, where 0 ≤
k ≤ n. Let w̄i : W ×R

n−k → TMi, i = 1, 2, be smooth embeddings. We
assume that w̄i restricted to W × {0} maps to the zero section of TMi

(which we identify with Mi) and thus gives an embedding W → Mi.
The image of this embedding is denoted by W ′

i . Further, we assume
that w̄i restrict to linear isomorphisms {p}×R

n−k → Nw̄i(p,0)W
′
i for all

p ∈ Wi, where NW ′
i denotes the normal bundle of W ′

i defined using gi.
By setting wi := expgi ◦w̄i we obtain the embeddings wi : W ×

Bn−k(Rmax) → Mi for some Rmax > 0 and i = 1, 2. We have W ′
i =

wi(W × {0}) and we define the disjoint union

(M,g) := (M1 ∐M2, g1 ∐ g2),

and

W ′ := W ′
1 ∐W ′

2.

Let ri be the function on Mi giving the distance to W ′
i . Then r1 ◦

w1(p, x) = r2 ◦ w2(p, x) = |x| for p ∈ W , x ∈ Bn−k(Rmax). Let r be the
function on M defined by r(x) := ri(x) for x ∈ Mi, i = 1, 2. For 0 < ǫ
we set Ui(ǫ) := {x ∈ Mi : ri(x) < ǫ} and U(ǫ) := U1(ǫ) ∪ U2(ǫ). For
0 < ǫ < θ we define

Nǫ := (M1 \ U1(ǫ)) ∪ (M2 \ U2(ǫ))/∼
and

UN
ǫ (θ) := (U(θ) \ U(ǫ))/∼

where ∼ indicates that we identify the point x ∈ ∂U1(ǫ) in M1 with the
corresponding point w2 ◦ w−1

1 (x) ∈ ∂U2(ǫ) in M2. Hence,

Nǫ = (M \ U(θ)) ∪ UN
ǫ (θ).
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We say that Nǫ is obtained from M1, M2 (and w̄1, w̄2) by a connected
sum along W with parameter ǫ.

The diffeomorphism type of Nǫ is independent of ǫ, and hence we
will usually write N = Nǫ. However, in situations when dropping the
index causes ambiguities, we will keep the notation Nǫ. For example, the
function r : M → [0,∞) gives a continuous function rǫ : Nǫ → [ǫ,∞)
whose domain depends on ǫ. It is also going to be important to keep
track of the subscript ǫ on UN

ǫ (θ) since crucial estimates on solutions of
the Yamabe equation will be carried out on this set.

The surgery operation on a manifold is a special case of taking con-
nected sum along a submanifold. Indeed, letM be a compact manifold of
dimension n, and letM1 = M ,M2 = Sn,W = Sk. Let w1 : S

k×Bn−k →
M be an embedding defining a surgery, and let w2 : Sk × Bn−k → Sn

be the standard embedding. Since Sn \w2(S
k ×Bn−k) is diffeomorphic

to Bk+1×Sn−k−1, we have in this situation that N is obtained from M
by performing surgery on w1; see [33, Section VI, 9].

3. The constants Λn,k

In Section 1.2 we defined the conformal Yamabe constant only for
compact manifolds. There are several ways to generalize the conformal
Yamabe constant to non-compact manifolds. In this section we define
two such generalizations µ(0) and µ(1), and also introduce a related quan-
tity called µ(2). These invariants will be needed to define the constants
Λn,k and to prove their positivity on our model spaces Hk+1

c × S
n−k−1.

The definition of µ(2) comes from a technical difficulty in the proof
of Theorem 6.1 and is only relevant in the case k = n − 3 ≥ 3; see
Remark 3.4.

3.1. The manifolds H
k+1
c × S

n−k−1. For 0 ≤ k < n and c ∈ R, we
define the metric ηk+1

c := e2ctξk + dt2 on R
k × R and write

H
k+1
c := (Rk × R, ηk+1

c ).

This is a model of the simply connected complete manifold of constant
curvature −c2. We denote by

Gc := ηk+1
c + σn−k−1

the product metric on H
k+1
c × S

n−k−1. The scalar curvature of Hk+1
c ×

S
n−k−1 is ScalGc = −k(k + 1)c2 + (n− k − 1)(n − k − 2).

Proposition 3.1. H
k+1
1 × S

n−k−1 is conformal to S
n \ Sk.

Proof. Let S
k be embedded in S

n ⊂ R
n+1 by setting the last n − k

coordinates to zero, and let s := d(·,Sk) be the intrinsic distance to Sk in
S
n. Then the function sin s is smooth and positive on Sn\Sk. The points
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of maximal distance π/2 to S
k lie on an (n− k − 1)-sphere, denoted by

(Sk)⊥. On S
n \ (Sk ∪ (Sk)⊥) the round metric is

σn = (cos s)2σk + ds2 + (sin s)2σn−k−1.

Substitute s ∈ (0, π/2) by t ∈ (0,∞) such that sinh t = cot s. Then
cosh t = (sin s)−1 and cosh t dt = −(sin s)−2 ds, so σn is conformal to

(sin s)−2σn = (sinh t)2σk + dt2 + σn−k−1.

Here we see that the first two terms give a metric

(sinh t)2σk + dt2

on Sk × (0,∞). This is just the standard metric on H
k+1
1 \ {p0} where

t = d(·, p0), written in polar normal coordinates. In the case k ≥ 1,
it is evident that the conformal diffeomorphism S

n \ (Sk ∪ (Sk)⊥) →
(Hk+1

1 \{p0})×S
n−k−1 extends to a conformal diffeomorphism S

n\Sk →
H

k+1
1 × S

n−k−1.
In the case k = 0, we equip s and t with a sign; that is, we let s > 0

and t > 0 on one of the components of Sn \ (S0 ∪ (S0)⊥), and s < 0 and
t < 0 on the other component. The functions s and t are then smooth on
S
n \ S0 and take values s ∈ (−π/2, π/2) and t ∈ R. Then the argument

is the same as above. q.e.d.

3.2. Definition of Λn,k. Let (N,h) be a Riemannian manifold of di-

mension n. For i = 1, 2 we let Ω(i)(N,h) be the set of non-negative C2

functions u that solve the Yamabe equation

(6) Lhu = µup−1

for some µ = µ(u) ∈ R and satisfy

• u 6≡ 0,
• ‖u‖Lp(N) ≤ 1,
• u ∈ L∞(N),

together with

• u ∈ L2(N), for i = 1,

or

• µ(u)‖u‖p−2
L∞(N) ≥

(n−k−2)2(n−1)
8(n−2) , for i = 2.

For i = 1, 2 we set

µ(i)(N,h) := inf
u∈Ω(i)(N,h)

µ(u).

In particular, if Ω(i)(N,h) is empty then µ(i)(N,h) = ∞.

Definition 3.2. For integers n ≥ 3 and 0 ≤ k ≤ n− 2, let

Λ
(i)
n,k := inf

c∈[−1,1]
µ(i)(Hk+1

c × S
n−k−1)
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and

Λn,k := min
{
Λ
(1)
n,k,Λ

(2)
n,k

}
.

Note that the infimum could just as well be taken over c ∈ [0, 1] since

H
k+1
c ×S

n−k−1 and H
k+1
−c ×S

n−k−1 are isometric. We are going to prove
that these constants are positive.

Theorem 3.3. For all n ≥ 3 and 0 ≤ k ≤ n− 3, we have Λn,k > 0.

The condition k ≤ n−3 is important, as this implies that Sn−k−1 has
positive curvature.

To prove Theorem 3.3 we have to prove that Λ
(1)
n,k > 0 and that

Λ
(2)
n,k > 0. This is the object of the following two subsections. In the final

subsection we prove that Λn,0 = µ(Sn) = n(n− 1)ω
2/n
n .

Remark 3.4. Suppose that either k ≤ n − 4 or k = n − 3 ≤ 2.
One can then use methods similar to those used in Section 5 to show
that any Lp-solution of (6) on the model spaces is also an L2-solution;
see [6]. An analogous argument also works in the case (n, k) = (6, 3),
for model spaces with c < 1, and this allows similar conclusions; see [7].

This implies that Λ
(2)
n,k ≥ Λ

(1)
n,k if k ≤ n− 4 or k = n− 3 ≤ 3, and hence

Λn,k = Λ
(1)
n,k.

In the case k = n−3 ≥ 4, there are Lp-solutions of (6) on H
k+1
1 ×S

n−k−1

that are not L2-solutions.

3.3. Proof of Λ
(1)
n,k > 0. The proof proceeds in several steps. We first

introduce a conformal Yamabe constant for non-compact manifolds and
show that it gives a lower bound for µ(1). We then conclude by studying
this conformal invariant.

Let (N,h) be a Riemannian manifold that is not necessarily compact

or complete. We define the conformal Yamabe constant µ(0) of (N,h)
following Schoen–Yau [52, Section 2]—see also [29]—as

µ(0)(N,h) := inf Jh(u)

where Jh is defined in (1) and the infimum runs over the set of all

non-zero compactly supported smooth functions u on N . If h and h̃ are
conformal metrics on N , it follows from (3) that µ(0)(N,h) = µ(0)(N, h̃).

Lemma 3.5. Let 0 ≤ k ≤ n− 2. Then

µ(1)(Hk+1
c × S

n−k−1) ≥ µ(0)(Hk+1
c × S

n−k−1)

for all c ∈ R.



SMOOTH YAMABE INVARIANT AND SURGERY 15

Proof. Suppose that u ∈ Ω(1)(Hk+1
c × S

n−k−1) is a solution of (6)

on H
k+1
c × S

n−k−1 with µ = µ(u) ∈ [µ(1)(Hk+1
c × S

n−k−1), µ(1)(Hk+1
c ×

S
n−k−1) + ǫ]. Let χα be a cut-off function on H

k+1
c × S

n−k−1 depending
only on the distance r to a fixed point, such that χα(r) = 1 for r ≤ α,
χα(r) = 0 for r ≥ α+ 2, and |dχα| ≤ 1. We are going to see that

µ(0)(Hk+1
c × S

n−k−1) ≤ lim
α→∞

JGc(χαu)

= µ‖u‖p−2

Lp(Hk+1
c ×Sn−k−1)

≤ µ

≤ µ(1)(Hk+1
c × S

n−k−1) + ǫ.

(7)

Integrating by parts and using equations (6) and (65), we get
∫

H
k+1
c ×Sn−k−1

(χαu)L
Gc(χαu) dv

Gc =

∫

H
k+1
c ×Sn−k−1

χ2
αuL

Gcu dvGc

+ a

∫

H
k+1
c ×Sn−k−1

|dχα|2u2 dvGc

= µ

∫

H
k+1
c ×Sn−k−1

χ2
αu

p dvGc

+ a

∫

Supp(dχα)
|dχα|2u2 dvGc .

Since u ∈ L2(Hk+1
c × S

n−k−1) and |dχα| ≤ 1, the last integral goes to
zero as α → ∞ and we conclude that

lim
α→∞

∫

H
k+1
c ×Sn−k−1

(χαu)L
Gc(χαu) dv

Gc = µ‖u‖p
Lp(Hk+1

c ×Sn−k−1)
.

Going back to the definition of JGc , we easily get (7), and Lemma 3.5
follows. q.e.d.

Remark 3.6. It follows from [22, Theorem 13] and a straight-forward
cut-off argument that

µ(1)(Hk+1
c × S

n−k−1) = µ(0)(Hk+1
c × S

n−k−1)

if the space H
k+1
c × S

n−k−1 has positive scalar curvature—that is, if we
have (n− k − 1)(n − k − 2) > c2k(k + 1).

We define
Λ
(0)
n,k := inf

c∈[−1,1]
µ(0)(Hk+1

c × S
n−k−1).

Then Lemma 3.5 tells us that Λ
(1)
n,k ≥ Λ

(0)
n,k, so we are done if we prove

that Λ
(0)
n,k > 0. To do this we need two lemmas.

Lemma 3.7. Let 0 ≤ k ≤ n− 2. Then

µ(0)(Hk+1
1 × S

n−k−1) = µ(Sn).
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Proof. The inequality µ(0)(Hk+1
1 × S

n−k−1) ≤ µ(Sn) is completely
analogous to [10, Lemma 3]. As we do not need this inequality later, we

skip the proof. To prove the opposite inequality µ(0)(Hk+1
1 × S

n−k−1) ≥
µ(Sn), we use Proposition 3.1 and the conformal invariance of µ(0), and
we obtain

µ(0)(Hk+1
1 × S

n−k−1) = µ(0)(Sn \ Sk).
Clearly µ(0)(Sn \ S

k) ≥ µ(Sn) as the infimum defining the left-hand
side runs over a smaller set of functions; see [52, Lemma 2.1]. q.e.d.

Lemma 3.8. Let 0 ≤ k ≤ n− 2 and 0 < c0 ≤ c1. Then

µ(0)(Hk+1
c0 × S

n−k−1) ≥
(
c0
c1

) 2(n−k−1)
n

µ(0)(Hk+1
c1 × S

n−k−1).

Proof. Let c > 0. Setting s = ct+ ln c, we see that

Gc = e2ctξk + dt2 + σn−k−1 =
1

c2

(
e2sξk + ds2

)
+ σn−k−1.

Hence Gc is conformal to the metric

G̃c := e2sξk + ds2 + c2σn−k−1,

and by the conformal invariance of µ(0) we get that

µ(0)(Hk+1
ci × S

n−k−1) = µ(0)(Rk × R× Sn−k−1, G̃ci)

for i = 0, 1. In these coordinates we easily compute that ScalG̃c0 ≥
ScalG̃c1 , |du|2

G̃c0

≥ |du|2
G̃c1

, and dvG̃c0 =
(
c0
c1

)n−k−1
dvG̃c1 . We conclude

that

J G̃c0 (u) ≥
(
c0
c1

) 2(n−k−1)
n

J G̃c1 (u)

for all functions u on R
k × R× Sn−k−1, and Lemma 3.8 follows. q.e.d.

If we set c1 = 1 and use Lemma 3.7 together with (4), we get the
following result.

Corollary 3.9. For 0 ≤ k ≤ n− 2 and c0 > 0, we have

inf
c∈[c0,1]

µ(0)(Hk+1
c × S

n−k−1) ≥ n(n− 1)ωn
2/nc0

4/n.

Finally, we are ready to prove that Λ
(0)
n,k is positive.

Theorem 3.10. Let 0 ≤ k ≤ n− 3. Then Λ
(0)
n,k > 0.

For this theorem the restriction k ≤ n − 3 is necessary. The proof
needs the positive scalar curvature of Sn−k−1, and it can be shown that
the theorem no longer holds for k = n− 2.
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Proof. Choose c0 > 0 small enough so that ScalGc0 > 0. We then
have ScalGc ≥ ScalGc0 for all c ∈ [0, c0]. Hence,

µ(0)(Hk+1
c × S

n−k−1) ≥ inf

∫
H

k+1
c ×Sn−k−1

(
a|du|2Gc

+ ScalGc0u2
)
dvGc

‖u‖2
Lp(Hk+1

c ×Sn−k−1)

where the infimum is taken over all non-zero smooth functions u with
compact support. By Hebey [25, Theorem 4.6, page 64], there exists
a constant A > 0 such that for all c ∈ [0, c0] and all smooth non-zero
functions u compactly supported in H

k+1
c × S

n−k−1 we have

‖u‖2
Lp(Hk+1

c ×Sn−k−1)
≤ A

∫

H
k+1
c ×Sn−k−1

(
|du|2Gc

+ u2
)
dvGc .

This implies that

µ(0)(Hk+1
c × S

n−k−1) ≥ 1

A
min

{
a,ScalGc0

}
> 0

for all c ∈ [0, c0], and together with Lemma 3.8 we obtain that

inf
c∈[0,1]

µ(0)(Hk+1
c × S

n−k−1) > 0.

Since H
k+1
c × S

n−k−1 and H
k+1
−c × S

n−k−1 are isometric, we have

Λ
(0)
n,k = inf

c∈[−1,1]
µ(0)(Hk+1

c × S
n−k−1) > 0.

This ends the proof of Theorem 3.10. q.e.d.

As an immediate consequence, we obtain that Λ
(1)
n,k is positive.

Corollary 3.11. Let 0 ≤ k ≤ n− 3. Then Λ
(1)
n,k > 0.

3.4. Proof of Λ
(2)
n,k > 0.

Theorem 3.12. Let 0 ≤ k ≤ n− 3. Then Λ
(2)
n,k > 0.

Proof. We prove this by contradiction. Assume that there exists a
sequence (ci) of ci ∈ [−1, 1] for which µi := µ(2)(Hk+1

ci × S
n−k−1) tends

to a limit l ≤ 0 as i → ∞. After removing the indices i for which µi is
infinite we get for every i a positive solution ui ∈ Ω2(Hk+1

ci × S
n−k−1) of

the equation

LGciui = µiu
p−1
i .

By definition of Ω(2)(Hk+1
ci × S

n−k−1), we have

(8)
(n− k − 2)2(n− 1)

8(n − 2)
≤ µi‖ui‖p−2

L∞ ,

which implies that µi > 0. We conclude that l := limi µi = 0. We
cannot assume that ‖ui‖L∞ is attained, but we can choose points xi ∈
H

k+1
ci × S

n−k−1 such that ui(xi) ≥ 1
2‖ui‖L∞ . Moreover, we can compose
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the functions ui with isometries so that all the xi are the same point x.
From (8) we get

1

2

(
(n− k − 2)2(n− 1)

8(n − 2)µi

) 1
p−2

≤ ui(x).

We define mi := ui(x). Since limi→∞ µi = 0, we have limi→∞mi =
∞. Restricting to a subsequence we can assume that c := limi ci ∈
[−1, 1] exists. Define g̃i := m

4
n−2

i Gci . We apply Lemma 4.1 with α = 1/i,

(V, γα) = H
k+1
ci × S

n−k−1, (V, γ0) = H
k+1
c × S

n−k−1, qα = xi = x, and

bα = m
2

n−2

i . For r > 0 we obtain diffeomorphisms

Θi : B
n(r) → BGci (x,m

− 2
n−2

i r)

such that the sequence Θ∗
i (g̃i) tends to the flat metric ξn on Bn(r). We

let ũi := m−1
i ui. By (2) we then have

Lg̃i ũi = µiũ
p−1
i

on BGci (xi,m
− 2

n−2

i r) and
∫

BGci (xi,m
−

2
n−2

i r)
ũpi dv

g̃i =

∫

BGci (xi,m
−

2
n−2

i r)
upi dv

Gci

≤
∫

N
upi dv

Gci

≤ 1.

Here we used dvg̃i = mp
i dv

Gci . The last inequality comes from the fact

that any function in Ω(2)(Hk+1
ci × S

n−k−1) has Lp-norm smaller than 1.
Since

Θi : (B
n(r),Θ∗

i (g̃i)) → (BGci (x,m
− 2

n−2

i r), g̃i)

is an isometry, we redefine ũi as ũi ◦Θi, which gives us solutions of

LΘ∗

i (g̃i)ũi = µiũ
p−1
i

on Bn(r) with
∫
Bn(r) ũ

p
i dv

Θ∗

i (g̃i) ≤ 1. Since ‖ũi‖L∞(Bn(r)) = ũi(0) = 1,

we can apply Lemma 4.2 with V = R
n, α = 1/i, gα = Θ∗

i (g̃i), and uα =
ũi (we can apply this lemma since each compact set of Rn is contained
in some ball Bn(r)). This shows that there exists a non-negative C2

function u on R
n that does not vanish identically (since u(0) = 1) and

that satisfies

Lξnu = a∆ξnu = µ̄up−1

where µ̄ = 0. By (12) we further have
∫

Bn(r)
up dvξ

n

= lim
i→∞

∫

BGci (x,m
−

2
n−2

i r)
upi dv

Gci ≤ 1
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for any r > 0. In particular,
∫

Rn

up dvξ
n ≤ 1.

Lemma 4.3 below then implies the contradiction 0 = µ̄ ≥ µ(Sn). This

proves that Λ
(2)
n,k is positive. q.e.d.

3.5. The constants Λn,0. Now we show that

Λn,0 = µ(Sn) = n(n− 1)ω2/n
n .

The corresponding model spaces H1
c × S

n−1 carry the standard product

metric dt2+σn−1 of R×S
n−1, independently of c ∈ [−1, 1]. Thus Λ

(i)
n,0 =

µ(i)(R× S
n−1). Proposition 3.1 yields a conformal diffeomorphism from

the cylinder R × S
n−1 to S

n \ S
0, the n-sphere with north and south

poles removed.

Lemma 3.13.

Λ
(i)
n,0 ≤ µ(Sn) = n(n− 1)ω2/n

n

for i = 1, 2.

Proof. We use the notation of Proposition 3.1 with k = 0. Then the
standard metric on Sn is

σn = (sin s)2(dt2 + σn−1) = (cosh t)−2(dt2 + σn−1).

It follows that (ωn)
−2/n(cosh t)−2(dt2+σn−1) is a (non-complete) metric

of volume 1 and scalar curvature n(n− 1)ω2/n = µ(Sn) on H
1
c × S

n−1 =
R× S

n−1. This is equivalent to saying that

u(t) := ω
−n−2

2n
n (cosh t)−

n−2
2

is a solution of (6) with µ = µ(Sn) and ‖u‖Lp = 1 on H
1
c×S

n−1 equipped

with the product metric. Clearly we have u ∈ L2, and ‖u‖L∞ = ω
−n−2

2n
n <

∞. Thus u ∈ Ω(1)(H1
c × S

n−1). As a consequence, we obtain Λ
(1)
n,0 ≤

n(n− 1)ω
2/n
n .

Further, we have

µ(Sn)‖u‖p−2
L∞ = n(n− 1) >

(n− 0− 2)2(n− 1)

8(n − 2)
,

and thus u ∈ Ω(2)(H1
c ×S

n−1), which implies Λ
(2)
n,0 ≤ n(n−1)ω

2/n
n . q.e.d.

Lemma 3.14. Let u ∈ C2(R×S
n−1) be a solution of (6) on R×S

n−1

with ‖u‖Lp ≤ 1, u 6≡ 0. Then µ ≥ µ(Sn).
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Proof. As above σn = (sin s)2(dt2 + σn−1). If u solves (6) with h =

dt2 + σn−1, then ũ := (sin s)−
n−2
2 u solves

Lσn

ũ = µũp−1.

Further, ũp dvσ
n
= up dvh; hence, ν := ‖ũ‖Lp(Sn\S0,σn) ≤ 1. For α > 0

small, we choose a smooth cut-off function χα : Sn → [0, 1] which is 1
on Sn \Uα(S

0), with support disjoint from S0, and with |dχα|σn ≤ 2/α.
Then using (65) in Appendix A.3, we see that
∫

Sn

(χαũ)L
σn

(χαũ) dv
σn

= µ

∫

Sn

upχ2
α dv

σn

+ a

∫

Sn

|dχα|2σn ũ2 dvσ
n

.

The first summand tends to µνp as α ց 0. By Hölder’s inequality the
second summand is bounded by

4a

α2
‖ũ‖2Lp(Uα(S0)\S0,σn)Vol(Uα(S

0)\S0, σn)2/n ≤ C‖ũ‖2Lp(Uα(S0)\S0,σn) → 0

as α ց 0. Together with limαց0 ‖χαũ‖Lp(Sn\S0,σn) = ν, we obtain

µ(Sn) ≤ Jσn

(χαũ) → µνp−2 ≤ µ

as α ց 0. q.e.d.

This lemma obviously implies Λ
(i)
n,0 ≥ µ(Sn) for i = 1, 2, and thus we

have
Λn,0 = Λ

(1)
n,0 = Λ

(2)
n,0 = µ(Sn).

3.6. The constants Λn,k for 1 ≤ k ≤ n − 3. For 2 ≤ k ≤ n − 4,

we have found an explicit positive lower bound on Λ
(0)
n,k, which will be

published in [5]. Together with Remark 3.4 we obtain a lower bound for
Λn,k; see also [6]. For m := k + 1 ∈ {3, . . . , n− 3} we conclude

Λn,m−1 ≥ n an

(
Ym

mam

)m
n
(

Yn−m

(n −m)an−m

)n−m
n

.

A lower bound in the case k = 1 and in the cases (n, k) = (5, 2) was
established in [7]. These lower bounds are not optimal, but they are
optimal up to a factor of at most 2.

We collected all known and conjectured values for Λn,k for n ≤ 9 in
Figure 1. In the table, > 0 means that no explicit positive lower estimate
has been worked out until now.

3.7. Speculation about Λn,k for k ≥ 1. We want to speculate about
two relations that seem likely to us although we have no proof. Confor-
mally, the model spaces Hk+1

c × S
n−k−1 can be viewed as an interpola-

tion between R
k+1 × S

n−k−1 (for c = 0) and the sphere S
n (for c = 1).

Since the sphere has the largest possible value of the conformal Yamabe
constant, we could hope that the function c 7→ µ(0)(Hk+1

c × S
n−k−1) is

increasing for c ∈ [0, 1], or, in particular,

µ(0)(Rk+1 × S
n−k−1) ≤ µ(0)(Hk+1

c × S
n−k−1)
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n k Known Λn,k Conjectured Λn,k µ(Sn)
3 0 43.82323 43.82323 43.82323

4 0 61.56239 61.56239 61.56239
4 1 38.9 59.40481 61.56239

5 0 78.99686 78.99686 78.99686
5 1 56.6 78.18644 78.99686
5 2 45.1 75.39687 78.99686

6 0 96.29728 96.29728 96.29728
6 1 > 0 95.87367 96.29728
6 2 54.77904 94.71444 96.29728
6 3 49.98764 91.68339 96.29728

7 0 113.5272 113.5272 113.5272
7 1 > 0 113.2670 113.5272
7 2 74.50435 112.6214 113.5272
7 3 74.50435 111.2934 113.5272
7 4 > 0 108.1625 113.5272

8 0 130.7157 130.7157 130.7157
8 1 > 0 130.5398 130.7157
8 2 92.24278 130.1272 130.7157
8 3 95.76372 129.3551 130.7157
8 4 92.24278 127.9414 130.7157
8 5 > 0 124.7747 130.7157

9 0 147.8778 147.8778 147.8778
9 1 109.2993 147.7507 147.8778
9 2 109.4260 147.4615 147.8778
9 3 114.3250 146.9519 147.8778
9 4 114.3250 146.1089 147.8778
9 5 109.4260 144.6521 147.8778
9 6 > 0 141.4740 147.8778

Figure 1. Known and conjectured lower estimates for Λn,k.

for all c ∈ [−1, 1]. This would imply

Λn,k = µ(0)(Rk+1 × S
n−k−1).

To formulate the second potential relation, we define the following
variant of µ(0)(Hk+1

c × S
n−k−1):

µ
(0)

H
k+1
c

(Hk+1
c × S

n−k) := inf{JGc(u) |u ∈ C∞
0 (Hk+1

c )}.

Here JGc is the functional of Hk+1
c ×S

n−k−1, but we only evaluate it for
functions that are constant along the sphere S

n−k−1. We ask, similarly
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to the Question formulated in the Introduction in [2], whether

µ
(0)

H
k+1
c

(Hk+1
c × S

n−k) = µ(0)(Hk+1
c × S

n−k).

It seems likely to us that the answer is yes, if and only if |c| ≤ 1.
An affirmative answer for |c| ≤ 1 would imply, using a reflection

argument, that we can restrict not only to functions that are constant
along the sphere, but even to radial functions. Here a radial function is

defined as a function of the form u(x, y) = u(dH
k+1
c (x)) where dH

k+1
c (x)

is the distance from x to a fixed point in H
k+1
c . The constants Λn,k could

then be calculated numerically. For example, we would obtain

Λ4,1 = µ(0)(R2 × S
2) = 59.40481 . . .

and thus σ(S2 × S2) ≥ 59.40481 . . . , which should be compared to
µ(S4) = 61.56239 . . . and µ(S2 × S

2) = 16π = 50.26548 . . . .
Using the handle reduction techniques of the proof of the h-cobordism

theorem, together with information about the spin bordism groups in
low dimensions, we would be able to conclude the following lower bounds
on σ(M) for simply connected spin manifolds of dimension n (and with
vanishing index in the case n = 8):

n σ(M) >
5 75.3968
6 91.683
7 108.162
8 124.774

If n = 5, 6, 7, we use that M is spin bordant to a sphere; for n = 8,
we have that M is spin bordant to a number of copies of HP 2. For the
standard metric we have µ(HP 2) = 144.959 . . . . In all four cases we
would have σ(M)/σ(Sn) > 0.95. Similar conclusions can be drawn for
non-spin manifolds.

These inequalities would imply for example that σ(CP 3) is not at-
tained by the Fubini–Study metric, as µ(CP 3) = 82.9864 . . . for this
conformal class.

4. Limit spaces and limit solutions

In the proofs of the main theorems, we will construct limit solutions
of the Yamabe equation on certain limit spaces. For this we need the
following two lemmas.

Lemma 4.1. Let V be an n-dimensional manifold. Let (qα) be a
sequence of points in V that converges to a point q as α ց 0. Let (γα)
be a sequence of metrics defined on a neighborhood O of q that converges
to a metric γ0 in the C2(O)-topology. Finally, let (bα) be a sequence of
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positive real numbers such that limαց0 bα = ∞. Then for r > 0 there
exists for α small enough a diffeomorphism

Θα : Bn(r) → Bγα(qα, b
−1
α r)

with Θα(0) = qα such that the metric Θ∗
α(b

2
αγα) tends to the flat metric

ξn in C2(Bn(r)).

Proof. Denote by expγαqα : Uα → Oα the exponential map at the
point qα defined with respect to the metric γα. Here Oα is a neigh-
borhood of qα in V and Uα is a neighborhood of the origin in R

n. We
set

Θα : Bn(r) ∋ x 7→ expγαqα (b
−1
α x) ∈ Bγα(qα, b

−1
α r).

It is easily checked that Θα is the desired diffeomorphism. q.e.d.

Lemma 4.2. Let V be an n-dimensional manifold. Let (gα) be a se-
quence of metrics that converges to a metric g in C2 on all compact sets
K ⊂ V as α ց 0. Assume that (Uα) is an increasing sequence of sub-
domains of V such that

⋃
α Uα = V . Let uα ∈ C2(Uα) be a sequence of

positive functions such that ‖uα‖L∞(Uα) is bounded independently of α.
We assume

(9) Lgαuα = µαu
p−1
α

where the µα are numbers tending to µ̄. Then there exists a non-negative
function u ∈ C2(V ) satisfying

(10) Lgu = µ̄up−1

on V and a subsequence of uα that tends to u in C1 on each open set
Ω ⊂ V with compact closure. In particular,

(11) ‖u‖L∞(K) = lim
αց0

‖uα‖L∞(K)

and

(12)

∫

K
ur dvg = lim

αց0

∫

K
urα dv

gα

for any compact set K and any r ≥ 1.

Proof. LetK be a compact subset of V , and let Ω be an open set with
smooth boundary and compact closure in V such that K ⊂ Ω. From
equation (9) and the boundedness of ‖uα‖∞ we see with standard results
on elliptic regularity (see, for example, [18]) that (uα) is bounded in the
Sobolev space H2,2n(Ω, g); that is, all derivatives of uα|Ω up to second
order are bounded in L2n(Ω)). As this Sobolev space embeds compactly
into C1(Ω), a subsequence of (uα) converges in C1(Ω) to a function
uΩ ∈ C1(Ω), uΩ ≥ 0, depending on Ω. Let ϕ ∈ C∞(Ω) be compactly
supported in Ω. Multiplying equation (9) by ϕ and integrating over Ω,
we obtain that uΩ satisfies equation (10) weakly on Ω. By standard
regularity results uΩ ∈ C2(Ω) and satisfies equation (10).
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As a next step, we choose an increasing sequence of compact sets Km

satisfying
⋃

mKm = V . Using the above arguments and taking suc-
cessive subsequences, it follows that (uα) converges to functions um ∈
C2(Km) that solve equation (10) and satisfy um ≥ 0 and um|Km−1 =
um−1. We define u on V by u = um on Km. By taking a diagonal sub-
sequence of (uα), we get that (uα) tends to u in C1 on any compact set
K ⊂ V . This ends the proof of Lemma 4.2. q.e.d.

The next Lemma is useful when the sequence of metrics in Lemma 4.2
converges to the flat metric ξn on R

n.

Lemma 4.3. Let ξn be the standard flat metric on R
n, and assume

that u ∈ C2(Rn), u ≥ 0, u 6≡ 0 satisfies

(13) Lξnu = µup−1

for some µ ∈ R. Assume in addition that u ∈ Lp(Rn) and that

‖u‖Lp(Rn) ≤ 1.

Then µ ≥ µ(Sn).

Proof. The map ϕ : R×S
n−1 → R

n\{0}, ϕ(t, x) = etx, is a conformal
diffeomorphism with

dt2 + σn−1 = e−2tϕ∗ξn.

Thus if u is a solution of (13), then û := e(n−2)t/2u ◦ ϕ is a solution

of Ldt2+σn−1
û = µûp−1 and ‖û‖Lp(R×Sn−1) = ‖u‖Lp(Rn) ≤ 1. The result

now follows from Lemma 3.14. q.e.d.

5. L2-estimates on WS-bundles

Manifolds with a certain structure of a double bundle will appear in
the proofs of our main results. In this section we derive L2-estimates for
solutions to a perturbed Yamabe equation on a WS-bundle.

5.1. Definition and statement of the result. Let n ≥ 1 and 0 ≤
k ≤ n − 3 be integers. Let W be a closed manifold of dimension k,
and let I be an interval. By a WS-bundle we will mean the product
P := I ×W × Sn−k−1 equipped with a metric of the form

(14) gWS = dt2 + e2ϕ(t)ht + σn−k−1

where ht is a smooth family of metrics onW depending on t ∈ I and ϕ is
a function on I. The condition k ≤ n−3 implies that the sphere Sn−k−1

carries positive scalar curvature, which is an essential ingredient in the
proof of Theorem 5.2. Let π : P → I be the projection onto the first
factor, and let Ft := π−1(t) = {t} ×W × Sn−k−1. The metric induced

on Ft is gt := e2ϕ(t)ht + σn−k−1. Let Ht be the mean curvature of Ft

in P ; that is, Ht∂t is the mean curvature vector of Ft. We always use
the sign convention for the mean curvature vector for which it points in
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the direction of decreasing volume of Ft. The mean curvature is given
by the formula

(15) Ht = − k

n− 1
ϕ′(t)− e(ht)

with e(ht) :=
1

2(n−1)trht
(∂tht). Clearly, e(ht) = 0 if t 7→ ht is constant.

The derivative of the volume element dvgt of Ft is

∂tdv
gt = −(n− 1)Htdv

gt .

It is straightforward to check that the scalar curvatures of gWS and ht
are related by (see Appendix A.2 for details)

ScalgWS = e−2ϕ(t)Scalht + (n− k − 1)(n − k − 2)

− k(k + 1)ϕ′(t)2 − 2kϕ′′(t)− (k + 1)ϕ′(t)tr(h−1
t ∂tht)

+
3

4
tr((h−1

t ∂tht)
2)− 1

4
(tr(h−1

t ∂tht))
2 − tr(ht

−1∂2
t ht).

(16)

Definition 5.1. We say that condition (At) holds if the following
assumptions are true:

1. t 7→ ht is constant,

2. e−2ϕ(t) infx∈W Scalht(x) ≥ −n−k−2
32 a,

3. |ϕ′(t)| ≤ 1,
4. 0 ≤ −2kϕ′′(t) ≤ 1

2(n− 1)(n − k − 2)2.

(At)

Similarly, we say that condition (Bt) holds if the following assump-
tions are true:

1. t 7→ ϕ(t) is constant,

2. infx∈Ft Scal
gWS(x) ≥ 1

2Scal
σn−k−1

= 1
2(n− k − 1)(n − k − 2),

3. (n−1)2

2 e(ht)
2 + n−1

2 ∂te(ht) ≥ − 3
64 (n− k − 2).

(Bt)

Let P be WS-bundle equipped with a metric G that is close to gWS

in a sense to be made precise later. Let α, β ∈ R be such that [α, β] ⊂ I.
Our goal is to derive an estimate for the distribution of L2-norm of a
positive solution to the Yamabe equation

LGu = µup−1.

If we write this equation in terms of the metric gWS, we get a perturbed
version of the Yamabe equation for gWS. We assume that we have a
smooth positive solution u of the equation

(17) LgWSu = a∆gWSu+ScalgWSu = µup−1+d∗A(du)+Xu+ǫ∂tu−su

where s, ǫ ∈ C∞(P ), A ∈ End(T ∗P ), and X ∈ Γ(TP ) are perturbation
terms coming from the difference between G and gWS. We assume that
the endomorphism A is symmetric and that X and A are vertical; that
is, dt(X) = 0 and A(dt) = 0.
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Theorem 5.2. Assume that P carries a metric gWS of the form (14).
Let α, β ∈ R be such that [α, β] ⊂ I. Assume further that for each t ∈ I
either condition (At) or condition (Bt) is true. We also assume that u
is a positive solution of (17) satisfying

(18) µ‖u‖p−2
L∞(P ) ≤

(n− k − 2)2(n− 1)

8(n − 2)
.

Then there exists c0 > 0 independent of α, β, and ϕ, such that if

‖A‖L∞(P ), ‖X‖L∞(P ), ‖s‖L∞(P ), ‖ǫ‖L∞(P ), ‖e(ht)‖L∞(P ) ≤ c0

then
∫

π−1((α+γ,β−γ))
u2 dvgWS ≤ 4‖u‖2L∞

n− k − 2
(Volgα(Fα) + Volgβ(Fβ)) ,

where γ :=
√
32

n−k−2 .

Note that this theorem only gives information when β − α > 2γ.

5.2. Proof of Theorem 5.2. For the proof of Theorem 5.2, we need
the following lemma.

Lemma 5.3. Let T and γ be positive numbers, and assume that
w : [−T − γ, T + γ] → R is a smooth positive function satisfying

(19) w′′(t) ≥ w(t)

γ2
.

Then

(20)

∫ T

−T
w(t)m dt ≤ γ

m

(
(w(T + γ))m + (w(−T − γ))m

)

for all m ≥ 1.

Proof. Assume that w|[−T−γ,T+γ] attains its minimum at t0. Since

w′′ ≥ w/γ2 > 0, we have w′(t) > 0 for t ∈ (t0, T + γ), and w′(t) < 0 for
t ∈ (−T − γ, t0). We first study the case when t0 ∈ (−T, T ). We define
W (t) := w(t)+γw′(t). As w and w′ are increasing on (t0, T +γ), we get

W (T ) = w(T ) +

∫ T+γ

T
w′(T ) dt

≤ w(T ) +

∫ T+γ

T
w′(t) dt

= w(T + γ).

(21)

From (19) we see that W ′(t) ≥ W (t)/γ, or ∂t lnW (t) ≥ 1/γ. Integrating
this relation between t ∈ (t0, T ) and T , we get

W (t) ≤ e
−T−t

γ W (T ).
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Using that w ≤ W on (t0, T ) together with (21), we obtain

w(t) ≤ W (t) ≤ e−
T−t
γ w(T + γ),

and hence

w(t)m ≤ e
−mT−t

γ (w(T + γ))m

for all t ∈ [t0, T ] and m ≥ 1. Integrating this relation over t ∈ [t0, T ], we
get

(22)

∫ T

t0

w(t)m dt ≤ γ(1− e
−m

T−t0
γ )

m
(w(T + γ))m ≤ γ

m
(w(T + γ))m.

Similarly, we conclude that

(23)

∫ t0

−T
w(t)m dt ≤ γ

m
(w(−T − γ))m.

This proves relation (20) in this case. In the case that t0 ≤ −T , rela-
tion (22) remains valid. Using

∫ T

−T
w(t)m dt ≤

∫ T

t0

w(t)m dt

and

(w(T + γ))m ≤ (w(T + γ))m + (w(−T − γ))m,

we obtain relation (20). We proceed in a similar way using (23) in case
t0 ≥ T . This ends the proof of Lemma 5.3. q.e.d.

Proof of Theorem 5.2. The Laplacian ∆gWS on P is related to the Lapla-
cian ∆gt on Ft through the formula

∆gWS = ∆gt − ∂2
t + (n− 1)Ht∂t,

so∫

Ft

u∆gWSu dvgt =

∫

Ft

(
u∆gtu− u(∂2

t u) + (n− 1)Htu(∂tu)
)
dvgt

=

∫

Ft

(
|dvertu|2 − u(∂2

t u) + (n − 1)Htu(∂tu)
)
dvgt .

Together with (17) we get

a

∫

Ft

u∂2
t u dv

gt =

∫

Ft

(
a|dvertu|2 + a(n− 1)Htu∂tu

− 〈dvertu,A(dvertu)〉 − uXu− ǫu∂tu

+ (ScalgWS + s)u2 − µup
)
dvgt .

In the following we denote by δ(c0) a positive constant that goes to 0 if
c0 tends to 0 and whose convergence depends only on n, µ, and h. We
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set St := infFt Scal
gWS . If we use the inequality 2

∫
|ab| ≤

∫
(a2 + b2) to

simplify the terms involving X and ǫ, we obtain

a

∫

Ft

u∂2
t u dv

gt ≥
∫

Ft

(
(a− δ(c0))|dvertu|2 + a(n− 1)Htu∂tu

− δ(c0)(∂tu)
2 + (St − δ(c0))u

2 − µup
)
dvgt .

If c0 is small enough so that a− δ(c0) > 0, we conclude that

a

∫

Ft

(
u∂2

t u− (n− 1)Htu(∂tu)
)
dvgt

≥ (St − δ(c0))w(t)
2 −

∫

Ft

(
δ(c0)(∂tu)

2 + µup
)
dvgt ,

(24)

where we define

w(t) := ‖u‖L2(Ft) =

(∫

Ft

u2 dvgt
)1/2

.

Differentiating this, we get

2w′(t)w(t) = ∂t

∫

Ft

u2 dvgt

=

∫

Ft

(
2u(∂tu)− (n− 1)Htu

2
)
dvgt .

(25)

We now assume that (At) holds. Then (15) tells us that

Ht = − k

n− 1
ϕ′(t),

so (25) becomes

(26) w′(t)w(t) =
∫

Ft

u(∂tu) dv
gt +

k

2
ϕ′(t)w(t)2.

We differentiate this and obtain

w′(t)2 + w′′(t)w(t) =
∫

Ft

(∂tu)
2 dvgt

+

∫

Ft

(
u∂2

t u− (n− 1)Htu∂tu
)
dvgt

+
k

2
ϕ′′(t)w(t)2 + kϕ′(t)w′(t)w(t).



SMOOTH YAMABE INVARIANT AND SURGERY 29

From (24) we get

w′(t)2 + w′′(t)w(t) ≥
(
1− δ(c0)

a

)∫

Ft

(∂tu)
2 dvgt

+

(
1

a
(St − δ(c0)) +

k

2
ϕ′′(t)

)
w(t)2

− 1

a

∫

Ft

µup dvgt + kϕ′(t)w′(t)w(t).

(27)

We now use Cauchy–Schwarz and (26) to get

w(t)2
∫

Ft

(∂tu)
2 dvgt ≥

(∫

Ft

u(∂tu) dv
gt

)2

=

(
w′(t)w(t) − k

2
ϕ′(t)w(t)2

)2

,

and thus

(28)

∫

Ft

(∂tu)
2 dvgt ≥

(
w′(t)− k

2
ϕ′(t)w(t)

)2

.

From assumption (18) it follows that

(29)
µ

a

∫

Ft

up dvgt ≤ (n− k − 2)2

32
w(t)2.

Inserting (28) and (29) into (27), we obtain

w′(t)2 + w′′(t)w(t) ≥
(
1− δ(c0)

a

)(
w′(t)− k

2
ϕ′(t)w(t)

)2

+

(
1

a
(St − δ(c0)) +

k

2
ϕ′′(t)

)
w(t)2

− (n− k − 2)2

32
w(t)2 + kϕ′(t)w′(t)w(t),

or, after some rearranging,

w′′(t)w(t) ≥ −δ(c0)

a

(
w′(t)− k

2
ϕ′(t)w(t)

)2

+

(
1

a
(St − δ(c0)) +

k

2
ϕ′′(t) +

k2

4
ϕ′(t)2 − (n− k − 2)2

32

)
w(t)2.

(30)

Next, we estimate the coefficient of w(t)2 in the last line of (30). We
denote this coefficient by D. Using (16) and assumption 1 of (At), which
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tells us that e(ht) = 0, we get

D =
1

a

(
e−2ϕ(t) inf

x∈W
Scalht(x)− k(k + 1)ϕ′(t)2 − 2kϕ′′(t) + (n− k − 1)(n− k − 2)

)

− δ(c0)

a
+

k

2
ϕ′′(t) +

k2

4
ϕ′(t)2 − (n− k − 2)2

32

=
1

a
e−2ϕ(t) inf

x∈W
Scalht(x) +

1

a
((n− k − 1)(n− k − 2)− δ(c0)) +

k

2(n− 1)
ϕ′′(t)

− k

4(n− 1)
(n− k − 2)ϕ′(t)2 − (n− k − 2)2

32
.

From assumptions 2 and 3 of (At), we obtain

D ≥ −n− k − 2

32
+

1

a
((n− k − 1)(n − k − 2)− δ(c0)) +

k

2(n − 1)
ϕ′′(t)

− k

4(n − 1)
(n− k − 2)− (n − k − 2)2

32

=
1

4(n − 1)

(
(n− 1)(n − k − 2)2 + 2kϕ′′(t)

)

− n− k − 2

32
− (n − k − 2)2

32
− δ(c0)

a
.

Using assumption 4 of (At) and n− k − 2 ≥ 1, we further obtain

D ≥ 1

4(n− 1)

(
1

2
(n− 1)(n− k − 2)2

)

− (n− k − 2)2

32
− (n− k − 2)2

32
− δ(c0)

a

=
(n− k − 2)2

16
− δ(c0)

a
.

Inserting this in (30), we get

w′′(t)w(t) ≥ −δ(c0)

a

(
w′(t)− k

2
ϕ′(t)w(t)

)2

+

(
(n − k − 2)2

16
− δ(c0)

a

)
w(t)2

≥ −2δ(c0)

a
w′(t)2

+

(
−2δ(c0)

a

k2

4
ϕ′(t)2 +

(n− k − 2)2

16
− δ(c0)

a

)
w(t)2,
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where we also used the elementary inequality (a−b)2 ≤ 2a2+2b2. Again
using assumption 3 of (At), we conclude

w′′(t)w(t) ≥ −2δ(c0)

a
w′(t)2

+

(
(n− k − 2)2

16
− δ(c0)

a

(
1 +

k2

2

))
w(t)2.

(31)

Fix a small positive number δ̂. Choose c0 small so that δ(c0) is also
small. Then (31) tells us that

(32) w′′(t)w(t) ≥ (n− k − 2)2

32
w(t)2 − δ̂w′(t)2.

Define v(t) := w(t)1+δ̂ . This function satisfies

v′′(t) = (1 + δ̂)w′′(t)w(t)δ̂ + δ̂(1 + δ̂)w′(t)2w(t)δ̂−1

≥ (1 + δ̂)
(n− k − 2)2

32
w(t)1+δ̂

≥ (n− k − 2)2

32
v(t).

Next, we assume that (Bt) holds. Then (15) becomes

Ht = −e(ht),

and from (25) we get

(33) w′(t)w(t) =
∫

Ft

(
u(∂tu) +

n− 1

2
e(ht)u

2

)
dvgt .

Differentiating this, we get

w′(t)2 + w′′(t)w(t) =
∫

Ft

(
(∂tu)

2 + (n− 1)e(ht)u∂tu

+

(
(n− 1)2

2
e(ht)

2 +
n− 1

2
∂te(ht)

)
u2

)
dvgt

+

∫

Ft

(
u∂2

t u− (n− 1)Htu∂tu
)
dvgt .



32 B. AMMANN, M. DAHL & E. HUMBERT

Next, we use (24) followed by assumptions 2 and 3 of (Bt) to obtain

w′(t)2 + w′′(t)w(t) ≥
∫

Ft

(
(∂tu)

2 + (n− 1)e(ht)u∂tu

+

(
(n− 1)2

2
e(ht)

2 +
n− 1

2
∂te(ht)

)
u2

− δ(c0)

a
(∂tu)

2 − µ

a
up

)
dvgt

+
1

a
(St − δ(c0))w(t)

2

≥
∫

Ft

((
1− δ(c0)

a

)
(∂tu)

2 + (n − 1)e(ht)u∂tu− µ

a
up
)

dvgt

+

(
1

2a
(n− k − 1)(n − k − 2)− 3

64
(n− k − 2)− δ(c0)

a

)
w(t)2.

From (29) we further get, using k ≤ n− 3 in the last step,

w′(t)2 + w′′(t)w(t) ≥
∫

Ft

((
1− δ(c0)

a

)
(∂tu)

2 + (n− 1)e(ht)u∂tu

)
dvgt

+

(
1

2a
(n− k − 1)(n− k − 2)− 3

64
(n − k − 2)

− 1

32
(n− k − 2)2 − δ(c0)

a

)
w(t)2

≥
∫

Ft

((
1− δ(c0)

a

)
(∂tu)

2 + (n− 1)e(ht)u∂tu

)
dvgt

+

(
1

32
(n− k − 2)(n − k − 3/2) − δ(c0)

a

)
w(t)2

≥
∫

Ft

((
1− δ(c0)

a

)
(∂tu)

2 + (n− 1)e(ht)u∂tu

)
dvgt

+

(
1

32
(n− k − 2)2 +

1

64
− δ(c0)

a

)
w(t)2.

(34)
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We set Et := supFt
|e(ht)| and use (33) to compute

w(t)2
∫

Ft

(∂tu)
2 dvgt ≥

(∫

Ft

u(∂tu) dv
gt

)2

=

(
w′(t)w(t) − n− 1

2

∫

Ft

e(ht)u
2 dvgt

)2

=
(
w′(t)w(t)

)2
+

(
n− 1

2

∫

Ft

e(ht)u
2 dvgt

)2

− (n− 1)w′(t)w(t)
∫

Ft

e(ht)u
2 dvgt

≥ w′(t)2w(t)2 −
(
n− 1

2

)2

E2
t w(t)

4

− (n− 1)|w′(t)|w(t)
∫

Ft

|e(ht)|u2 dvgt

≥ w′(t)2w(t)2 −
(
n− 1

2

)2

E2
t w(t)

4

− (n− 1)Et|w′(t)|w(t)3.

Next, we divide by w(t)2 and obtain

∫

Ft

(∂tu)
2 dvgt ≥ w′(t)2 −

(
n− 1

2

)2

E2
tw(t)

2 − (n− 1)Et|w′(t)|w(t)

≥ w′(t)2 −
(
n− 1

2

)2

E2
tw(t)

2 − n− 1

2
Et

(
w′(t)2 + w(t)2

)

=

(
1− n− 1

2
Et

)
w′(t)2 −

(
n− 1

2
Et +

(
n− 1

2

)2

E2
t

)
w(t)2.

(35)

Also,
∣∣∣∣
∫

Ft

e(ht)u∂tu dv
gt

∣∣∣∣ ≤
∫

Ft

|e(ht)u∂tu| dvgt

≤ Et

∫

Ft

|u∂tu| dvgt

≤ 1

2
Et

∫

Ft

(
u2 + (∂tu)

2
)
dvgt ,

so

(36)

∫

Ft

(n− 1)e(ht)u∂tu dv
gt ≥ −n− 1

2
Et

∫

Ft

(
u2 + (∂tu)

2
)
dvgt .

Fix a small number δ̂ > 0. We insert (35) and (36) in (34) and choose c0
small enough so that δ(c0) and Et are small. Then we get that w(t)
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satisfies the same inequality (32) as we obtained under the assump-
tion (At). We have showed that in both cases (At) and (Bt) the function

v(t) = w(t)1+δ̂ satisfies

v′′(t) ≥ v(t)/γ2

since 32
(n−k−2)2

= γ2.

Now we apply Lemma 5.3 to the function ṽ(t) := v(t + β+α
2 ) with

T = β−α
2 − γ and m = 2

1+δ̂
. From this we obtain

(37)
γ

m
((ṽ(T + γ))m + (ṽ(−T − γ))m) ≥

∫ T

−T
ṽm dt.

With s = t+ β+α
2 we further have

∫ T

−T
ṽm dt =

∫ β−γ

α+γ
(w(s))(1+δ̂)m dt =

∫ β−γ

α+γ
w2 ds.

From the definition of w we obtain
∫ T

−T
ṽm dt =

∫

π−1((α+γ,β−γ))
u2 dvgWS .

In addition, we have

((ṽ(T + γ))m + (ṽ(−T − γ))m) =

∫

Fα

u2 dvgα +

∫

Fβ

u2 dvgβ

≤ ‖u‖2L∞(P ) (Vol
gα(Fα) + Volgβ(Fβ)) .

Choosing δ̂ small, we may assume m ≥
√
2. This together with (37) and

γ =
√
32

n−k−2 gives us

∫

π−1((α+γ,β−γ))
u2 dvgWS ≤ 4‖u‖2L∞

n− k − 2
(Volgα(Fα) + Volgβ(Fβ)) .

This proves Theorem 5.2. q.e.d.

6. Proof of Theorem 1.3

6.1. Stronger version of Theorem 1.3. In this section we prove
the following Theorem 6.1. By taking the supremum over all conformal
classes, Theorem 6.1 implies Theorem 1.3.

Theorem 6.1. Suppose that (M1, g1) and (M2, g2) are compact Rie-
mannian manifolds of dimension n. Let N be obtained from M1, M2,
by a connected sum along W as described in Section 2. Then there is a
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family of metrics gθ, θ ∈ (0, θ0) on N satisfying

min {µ(M1 ∐M2, g1 ∐ g2),Λn,k} ≤ lim inf
θց0

µ(N, gθ)

≤ lim sup
θց0

µ(N, gθ)

≤ µ(M1 ∐M2, g1 ∐ g2).

In the following we define suitable metrics gθ, and then we show that
they satisfy these inequalities.

6.2. Definition of the metrics gθ. We continue to use the notation of
Section 2. In the following, C denotes a constant that might change its
value between lines. Recall that (M,g) = (M1∐M2, g1∐g2). For i = 1, 2
we define the metric hi as the restriction of gi to W ′

i = wi(W × {0}),
and we set h := h1 ∐ h2 on W ′ = W ′

1 ∐W ′
2. As already explained, the

normal exponential map of W ′ ⊂ M defines a diffeomorphism

wi : W ×Bn−k(Rmax) → Ui(Rmax), i = 1, 2,

which decomposes U(Rmax) = U1(Rmax)∐U2(Rmax) as a product W ′×
Bn−k(Rmax).

In general, the Riemannian metric g does not have a corresponding
product structure, and we introduce an error term T measuring the
difference from the product metric. If r denotes the distance function
to W ′, then the metric g can be written as

(38) g = h+ ξn−k + T = h+ dr2 + r2σn−k−1 + T

on U(Rmax)\W ′ ∼= W ′×(0, Rmax)×Sn−k−1. Here T is a symmetric (2, 0)-
tensor vanishing on W ′ (in the sense of sections of (T ∗M ⊗ T ∗M)|W ′).
We also define the product metric

(39) g′ := h+ ξn−k = h+ dr2 + r2σn−k−1,

on U(Rmax) \W ′. Thus g = g′ + T . Since T vanishes on W ′, we have
for sufficiently small r

(40) |T (X,Y )| ≤ Cr|X|g′ |Y |g′
for any X,Y ∈ TxM where x ∈ U(Rmax). Since T is smooth, we have
for sufficiently small r

|(∇UT )(X,Y )| ≤ C|X|g′ |Y |g′ |U |g′ ,
and

|(∇2
U,V )T (X,Y )| ≤ C|X|g′ |Y |g′ |U |g′ |V |g′ ,

for X,Y,U, V ∈ TxM . We define Ti := T |Mi
for i = 1, 2.

For a fixed R0 ∈ (0, Rmax), R0 < 1, and sufficiently small in the
sense of equation (40) and the following equations, we choose a smooth
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Hierarchy of parameters

Rmax > R0 > θ > δ0 > ǫ > 0

We choose parameters in the order Rmax, R0, θ, δ0, Aθ. We then set
ǫ := e−Aθδ0.

This implies |t| = Aθ ⇔ ri = δ0.

Figure 2. Hierarchy of parameters.

t = ± ln(r/ǫ)

f

− ln(1/ǫ) − ln(θ/ǫ)− ln(δ0/ǫ) ln(δ0/ǫ) ln(θ/ǫ) ln(1/ǫ)

lnAθ

− ln θ

r1 = θ r2 = θr1 = δ0 r1 = ǫ
r2 = ǫ

r2 = δ0r1 = 1 r2 = 1

Figure 3. The function f .

positive function F : M \W ′ → R such that

F (x) =

{
1, if x ∈ Mi \ Ui(Rmax),

ri(x)
−1, if x ∈ Ui(R0) \W ′.

Next we choose small numbers θ, δ0 ∈ (0, R0) with θ > δ0 > 0. Here
“small” means that for a given small number θ we choose a number
δ0 = δ0(θ) ∈ (0, θ) such that all arguments that need δ0 to be small will
hold; see Figure 2. For any θ > 0 and sufficiently small δ0 there is Aθ ∈
(θ−1, (δ0)

−1) and a family of smooth functions f = fθ,δ0 : U(Rmax) → R

depending only on the coordinate r such that

f(x) =

{
− ln r(x), if x ∈ U(Rmax) \ U(θ);

lnAθ, if x ∈ U(δ0),

and such that
(41)∣∣∣∣r

df

dr

∣∣∣∣ =
∣∣∣∣

df

d(ln r)

∣∣∣∣ ≤ 1, and

∥∥∥∥r
d

dr

(
r
df

dr

)∥∥∥∥
L∞

=

∥∥∥∥
d2f

d2(ln r)

∥∥∥∥
L∞

→ 0

as θ ց 0. See Figure 3.
We set ǫ = e−Aθδ0. We can and will assume that ǫ < 1.
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Let N be obtained from M by a connected sum along W with param-
eter ǫ, as described in Section 2. In particular, UN

ǫ (s) = (U(s) \ U(ǫ)) /∼
for all s ∈ [ǫ,Rmax]. On the set UN

ǫ (Rmax) = (U(Rmax) \ U(ǫ)) /∼, we
define the variable t by

t :=

{
− ln r1 + ln ǫ, on U1(Rmax) \ U1(ǫ),

ln r2 − ln ǫ, on U2(Rmax) \ U2(ǫ).

Note that t ≤ 0 on U1(Rmax)\U1(ǫ) and t ≥ 0 on U2(Rmax)\U2(ǫ), with
t = 0 precisely on the common boundary ∂U1(ǫ) identified with ∂U2(ǫ)
in N . It follows that

ri = e|t|+ln ǫ = ǫe|t|.

We can arrange that t : UN
ǫ (Rmax) → R is smooth. Expressed in the

variable t, we have

F (x) = ǫ−1e−|t|

for x ∈ UN
ǫ (R0), or, in other words, if |t| + ln ǫ ≤ lnR0. Then equa-

tion (38) tells us that

F 2g = ǫ−2e−2|t|(h+ T ) + dt2 + σn−k−1

on UN
ǫ (R0). If we view f as a function of t, then

f(t) =

{
−|t| − ln ǫ, if ln θ − ln ǫ ≤ |t| ≤ lnRmax − ln ǫ,

lnAθ, if |t| ≤ ln δ0 − ln ǫ,

and |df/dt| ≤ 1, ‖d2f/dt2‖L∞ → 0 as θ tends to 0. We choose a cut-off
function χ : R → [0, 1] such that χ = 0 on (−∞,−1], |dχ| ≤ 1, and
χ = 1 on [1,∞). With these choices we define

gθ :=





F 2gi, on Mi \ Ui(θ),

e2f(t)(hi + Ti) + dt2 + σn−k−1, on Ui(θ) \ Ui(δ0),

A2
θχ(t/Aθ)(h2 + T2)

+A2
θ(1 − χ(t/Aθ))(h1 + T1)

+ dt2 + σn−k−1,





on UN
ǫ (δ0).

On UN
ǫ (R0) we write gθ as

gθ = e2f(t)h̃t + dt2 + σn−k−1 + T̃t,

where the metric h̃t is defined by

h̃t := χ(t/Aθ)h2 + (1− χ(t/Aθ))h1,

for t ∈ R, and where the error term T̃t is equal to

T̃t := e2f(t) (χ(t/Aθ)T2 + (1− χ(t/Aθ))T1) .

See also Figure 4. On UN
ǫ (R0) we also define the metric without error

term

(42) g′θ := gθ − T̃t = e2f(t)h̃t + dt2 + σn−k−1.



38 B. AMMANN, M. DAHL & E. HUMBERT

gθ = g gθ = F 2g

Sn−k−1 has constant length

Figure 4. The metrics gθ. The horizontal direction in
both drawings corresponds to the t-variable. The verti-
cal direction in the upper drawing corresponds to the
projection to Sn−k−1, and in the lower drawing it cor-
responds to the projection to Sk. In the lower drawing,
the curved parts close to the middle part are not drawn
realistically. Their curvature tends to 0 for θ → 0, and
the middle becomes huge in this limit, and thus it would
be too large for our picture.

An upper bound for the error term T̃t will be needed in the following.
We claim that

(43) |X|g′ ≤ Ce−f(t)|X|g′
θ

for X ∈ TxN , where g′ is the metric defined by (39). To prove the
claim, we decompose X in a radial part, a part parallel to W ′, and a
part parallel to Sn−k−1. This decomposition is orthogonal with respect
to both g′ and g′θ. For X = ∂

∂t = ±ǫe|t| ∂
∂r , we have that 1 = |X|g′

θ
and

|X|g′ = ǫe|t| ≤ e−f(t) since f(t) ≤ −|t| − ln ǫ. The argument is similar

if X is parallel to Sn−k−1. If X is tangent to W ′, then |X|g = |X|h ≤
C|X|h̃t

≤ Ce−f(t)|X|g′
θ
, and the claim follows.
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The relations (40) and (43) imply

|T̃t(X,Y )| ≤ Ce2f(t)|T (X,Y )|
≤ Ce2f(t)r|X|g′ |Y |g′
≤ Cr|X|g′

θ
|Y |g′

θ

for all X,Y . In other words, this means

(44) |T̃t|g′
θ
≤ Cr = Cǫe|t| ≤ Ce−f(t).

Further, one can calculate that

(45) |∇T̃t|g′
θ
≤ Ce−f(t)

and

(46) |∇2T̃t|g′
θ
≤ Ce−f(t).

Here ∇ denotes the Levi-Civita-connection with respect to g′θ. In par-
ticular, we see with Corollary A.2

(47) |Scalgθ − Scalg
′

θ | ≤ Ce−f(t).

6.3. Geometric description of the new metrics. In this subsection
we collect some facts about the geometry of F 2g and g′θ introduced in
the previous subsection. Most of the results are not needed for the proof
of our result, but are useful to understand the underlying geometric
concept of the argument. We will thus skip most of the proofs in this
subsection.

The first proposition explains the special role of Hk+1 × S
n−k−1.

Proposition 6.2. Let xi be a sequence of points in M\W , converging
to W . Then the Riemann tensor of F 2g at xi converges to the Riemann
tensor of H

k+1×S
n−k−1. The covariant derivative of the Riemann ten-

sor of F 2g converges to zero. For any fixed R > 0, these convergences
are uniform on balls (with respect to the metric F 2g) of radius R. In par-

ticular, for any fixed R > 0 the balls (BF 2g(xi, R), xi, F
2g) converge to

a ball of radius R in H
k+1×S

n−k−1 in the C2,α-topology of Riemannian
manifolds with base point.

The C2,α-topology of Riemannian manifolds with base point has its
origins in Cheeger’s finiteness theorem [14] and in the work of Gro-
mov [19, 20]. The article by Petersen [46, Pages 167–202] is a good
introduction to the subject.

In the limit r ց 0 (or equivalently t → ∞), the W -component of
the metric F 2g grows exponentially. The motivation for introducing the
function f into the definition of gθ is to slow down this exponential
growth: the diameter of the W -component with respect to gθ is then
bounded by Aθdiam(W, g), where diam(W, g) is the diameter of W with
respect to g. This slowing down has to be done carefully in order to
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get nice limit spaces. The properties claimed for f imply the following
result.

Proposition 6.3. Let θi be a sequence of positive numbers tending
to zero, and let xi ∈ UN

ǫ (Rmax) be a sequence of points such that the
limit c := lim( ∂

∂tf)(t(xi)) exists. Then the Riemann tensor of gθi at

xi converges to the Riemann tensor of Hk+1
c × S

n−k−1. The covariant
derivative of the Riemann tensor of gθi converges to zero. For any fixed
R > 0, these convergences are uniform on balls (with respect to the
metric gθi) of radius R. In particular, for any fixed R > 0 the balls
(Bgθi (xi, R), xi, gθi) converge to a ball of radius R in H

k+1
c × S

n−k−1 in
the C2,α-topology of Riemannian manifolds with base point.

From this proposition it follows that the balls (BF 2g(xi, R), xi, F
2g)

converge to a ball of radius R in H
k+1
c × S

n−k−1 in the C2,α-topology
of Riemannian manifolds with base point. Thus, we get an explanation
why the spaces Hk+1

c × S
n−k−1 appear as limit spaces.

The sectional curvature of Hk+1
c is−c2. Hence the sectional curvatures

of the product Hk+1
c ×S

n−k−1 are in the interval [−c2, 1]. Using this fact,
we can prove the following proposition.

Proposition 6.4. The scalar curvatures of gθ and g′θ are bounded by
a constant independent of θ.

Proof. The metric g′θ is the metric of a WS-bundle. Hence (16) is

valid. We calculate ∂th̃t = (1/Aθ)χ
′(t/Aθ)(h2−h1) and ∂2

t h̃t = (1/Aθ)
2χ′′

(t/Aθ)(h2 − h1). This implies |trh̃t∂th̃t| ≤ C/Aθ, |tr(h̃−1
t ∂th̃t)

2| ≤ C/A2
θ,

and |trh̃t∂2
t h̃t| ≤ C/A2

θ. From (16) it follows that Scalg
′

θ is bounded.
Equation (47) then implies that Scalgθ is bounded. q.e.d.

The geometry close to the gluing of M1 \ U1(ǫ) with M2 \ U2(ǫ) is
described by the following simple proposition.

Proposition 6.5. Let H be the metric on W × (−1, 1) given by
(χ(t)h2 + (1 − χ(t))h1) + dt2. Then (UN

ǫ (δ0), g
′
θ) is isometric to (W ×

(−1, 1) × Sn−k−1, A2
θH + σn−k−1).

6.4. Proof of Theorem 6.1. The metrics gθ are defined for small
θ > 0 as described above. In order to prove Theorem 6.1, it is sufficient
to prove

min {µ(M,g),Λn,k} ≤ lim
i→∞

µ(N, gθi) ≤ µ(M,g)

for any sequence θi ց 0 as i → ∞ for which limi→∞ µ(N, gθi) exists.
Recall that (M,g) = (M1 ∐M2, g1 ∐ g2).

The upper bound on limi→∞ µ(N, gθi) is easy to prove. The proof
of the lower bound is more complicated, and our arguments for this
part are inspired by the compactness-concentration principle in analysis;
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see, for example, [17]. In the case of a concentration, we will use blow-
up analysis in order to construct a non-trivial solution to the Yamabe
equation on some limit space. Here we follow and generalize a similar
construction of a blow-up limit in lecture notes by Schoen; see [53,
Chapter V.2].

For each metric gθ we have a solution of the Yamabe equation (5).
We take a sequence of θ tending to 0. Following the compactness-
concentration principle, this sequence of solutions can concentrate in
points or converge to a non-trivial solution or do both at the same time.
The concentration in points can be used to construct a non-trivial so-
lution on a sphere by blowing up the metrics.

In our situation we may have concentration in a fixed point (sub-
case I.1) or in a wandering point (subcase I.2), and we may have con-
vergence to a non-trivial solution on the original manifold (subcase
II.1.2) or in the attached part (subcases II.1.1 and II.2). In each of
these cases we obtain a different lower bound for limi→∞ µ(N, gθi): In
the subcases I.1 and I.2, the lower bound is µ(Sn), in subcase II.1.2 it is

µ(M,g), and in the subcases II.1.1 and II.2 we obtain Λ
(1)
n,k and Λ

(2)
n,k as

lower bounds. Together these cases give the lower bound of Theorem 6.1.
The cases here are not exclusive. For example, it is possible that the

solutions may both concentrate in a point and converge to a non-trivial
solution on the original manifold.

In our arguments we will often pass to subsequences. To avoid com-
plicated notation, we write θ ց 0 for a sequence (θi)i∈N converging to
zero, and we will pass successively to subsequences without changing
notation. Similarly, limθց0 h(θ) should be read as limi→∞ h(θi).

We set µ := µ(M,g) and µθ := µ(N, gθ). From Theorem 1.1 we have

(48) µ, µθ ≤ µ(Sn).

After passing to a subsequence, the limit

µ̄ := lim
θց0

µθ ∈ [−∞, µ(Sn)]

exists. Let J := Jg and Jθ := Jgθ be defined as in (1).
We start with the easier part of the argument—namely, with

(49) µ̄ ≤ µ.

For this let α > 0 be a small number. We choose a smooth cut-off
function χα on M such that χα = 1 on M \ U(2α), |dχα| ≤ 2/α,
and χα = 0 on U(α). Let u be a smooth non-zero function such that
J(u) ≤ µ+ δ where δ is a small positive number. On the support of χα

the metrics g and gθ are conformal since gθ = F 2g, and hence by (3) we
have

µθ ≤ Jθ

(
χαF

−n−2
2 u
)
= J(χαu)



42 B. AMMANN, M. DAHL & E. HUMBERT

for θ < α. It is straightforward to compute that limαց0 J(χαu) =
J(u) ≤ µ+ δ. From this Relation (49) follows.

Now we turn to the more difficult part of the proof—namely, the
inequality

(50) µ̄ ≥ min {µ,Λn,k} .
In the case µ̄ = µ(Sn) this inequality follows trivially from (48). Hence
we assume µ̄ < µ(Sn) in the following, which implies µθ < µ(Sn) if θ is
sufficiently small. From Theorem 1.2 we know that there exist positive
functions uθ ∈ C2(M) such that

(51) Lgθuθ = µθu
p−1
θ

and ∫

N
upθ dv

gθ = 1.

We begin by proving a lemma that yields a bound of the L2-norm of uθ
in terms of the L∞-norm. This result is non-trivial since Vol(N, gθ) → ∞
as θ ց 0.

Lemma 6.6. Assume that there exists b > 0 such that

µθ sup
UN
ǫ (b)

up−2
θ ≤ (n− k − 2)2(n− 1)

8(n− 2)

for θ small enough. Then there exist constants c1, c2 > 0 independent of
θ such that ∫

N
u2θ dv

gθ ≤ c1‖uθ‖2L∞(N) + c2

for all sufficiently small θ. In particular, if ‖uθ‖L∞(N) is bounded, so is
‖uθ‖L2(N).

Proof. Let r̃ ∈ (0, b) be fixed, and set P = U(r̃). Then P is a WS-
bundle where, with the notation of Section 5, I = (α, β) with α =
− ln r̃ + ln ǫ and β = ln r̃ − ln ǫ. On P we have two natural metrics:

gθ and gWS = g′θ = gθ − T̃t. The metric gWS has exactly the form

(14) with ϕ = f and ht = h̃t. Let θ be small enough, and let t ∈
(− ln r̃+ln ǫ,− ln δ0+ln ǫ)∪(ln δ0−ln ǫ, ln r̃−ln ǫ). Then assumption (At)
of Theorem 5.2 is true. Now, again if θ is small enough, we have for all t ∈
(− ln δ0 + ln ǫ, ln δ0 − ln ǫ) the relation ScalgWS = Scalσ

n−k−1
+O(1/Aθ).

The error term e(h̃t) from (Bt) in this case satisfies

2(n − 1)|e(h̃t)| ≤
∣∣∣trh̃t∂th̃t

∣∣∣ =
∣∣∣∣tr

h̃t

(
χ′(t/Aθ)

h2 − h1
Aθ

)∣∣∣∣ ≤
C

Aθ

and

2(n − 1)|∂te(h̃t)| =
∣∣∣tr
(
h̃−1
t (∂th̃t)h̃

−1
t (∂th̃t)

)∣∣∣+
∣∣∣trh̃t∂2

t h̃t

∣∣∣ ≤ C

A2
θ

.
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Because of 1/Aθ ≤ θ condition (Bt) is true. Equation (51) is written in
the metric gθ. Using the expression of the Laplacian in local coordinates,

∆gθu = −
∑

i,j

(det gθ)
−1/2∂i

(
gijθ (det gθ)

1/2∂ju
)
,

one can check that if we write equation (51) in the metric gWS, we obtain
an equation of the form (17) with µ = µθ. Together with (44), (45), and
(47), one verifies that the error terms satisfy

|A(x)|gWS
, |X(x)|gWS

, |s(x)|gWS
, |ǫ(x)|gWS

≤ Ce−f(t),

where | · |gWS
denotes the pointwise norm at a point in UN

ǫ (R0), and
where C is a constant independent of θ. In particular, for any c0 > 0,
we obtain

|A(x)|gWS
, |X(x)|gWS

, |s(x)|gWS
, |e(h̃t)(x)|gWS

, |ǫ(x)|gWS
≤ c0

on UN
ǫ (θ) for small θ. These estimates allow us to apply Theorem 5.2.

By the assumptions of Lemma 6.6, if r̃ ∈ (0, b) is small enough, assump-
tion (18) of Theorem 5.2 is true. Thus, all hypotheses of Theorem 5.2
hold for α := − ln r̃ + ln ǫ, β := ln r̃ − ln ǫ, and hence

∫

P ′

u2θ dv
gWS ≤ 4‖uθ‖2L∞

n− k − 2
(Volgα(Fα) + Volgβ(Fβ)) .

where P ′ := UN
ǫ (r̃e−γ). Now observe that

C :=
4

n− k − 2
(Volgα(Fα) + Volgβ(Fβ))

does not depend on θ (since Fα and Fβ correspond to the hypersurface
r = r̃). This implies that

∫

P ′

u2θ dv
gWS ≤ C‖uθ‖2L∞(N)

where C > 0 is independent of θ. Since if r̃ is small enough, we clearly
have

dvgθ ≤ 2dvgWS ,

and we obtain that ∫

P ′

u2θ dv
gθ ≤ c1‖uθ‖2L∞(N)

where c1 := 2C > 0 is independent of θ. Now observe that Volgθ(N \P ′)
is bounded by a constant independent of θ. Using the Hölder inequality,
we obtain∫

N
u2θ dv

gθ =

∫

P ′

u2θ dv
gθ +

∫

N\P ′

u2θ dv
gθ

≤ c1‖uθ‖2L∞(N) +Volgθ(N \ P ′)
2
n

(∫

N\P ′

upθ dv

)n−2
n

.
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Since ‖uθ‖Lp(N) = 1, this proves Lemma 6.6 with c1 as defined above and

with c2 := Volgθ(N \P ′)
2
n . For small θ, the metric gθ|N\P ′ is independent

of θ, and thus c2 does not depend on θ. q.e.d.

Corollary 6.7.

lim inf
θց0

‖uθ‖L∞(N) > 0.

Proof. We set mθ := ‖uθ‖L∞(N). In order to prove the corollary by
contradiction, we assume limθց0mθ = 0. Then since µθ ≤ µ(Sn) the
assumption of Lemma 6.6 is satisfied for all θ > 0 sufficiently small, and
for all b > 0 for which UN

ǫ (b) is defined. We get the contradiction

1 =

∫

N
upθdv

gθ ≤ mp−2
θ

∫

N
u2θdv

g ≤ mp−2
θ (c1m

2
θ + c2) → 0

as θ ց 0. q.e.d.

Corollary 6.8.

µ̄ = lim
θց0

µθ > −∞.

Proof. Choose xθ as above. We then have ∆gθuθ(xθ) ≥ 0, which to-
gether with (51) gives us

Scalgθ(xθ)‖uθ‖L∞(N) ≤ µθ‖uθ‖p−1
L∞(N).

Proposition 6.4 and the previous corollary then imply that µθ is bounded
from below. q.e.d.

In addition, by Theorem 1.1, µθ is bounded from above by µ(Sn). It
follows that µ̄ ∈ R. The rest of the proof is divided into cases.

Case I. lim supθց0 ‖uθ‖L∞(N) = ∞.

As before, we set mθ := ‖uθ‖L∞(N) and choose xθ ∈ N with uθ(xθ) =
mθ. After again taking a subsequence, we can assume that limθց0mθ =
∞. We consider two subcases.

Subcase I.1. There exists b > 0 such that xθ ∈ N \ UN
ǫ (b) for an

infinite number of θ.

We recall that Nǫ \ UN
ǫ (b) = M1 ∐ M2 \ U(b). By taking a subse-

quence, we can assume that there exists x̄ ∈ M1 ∐M2 \ U(b) such that

limθց0 xθ = x̄. We let g̃θ := m
4

n−2

θ gθ. In a neighborhood U of x̄ the met-

ric gθ = F 2g does not depend on θ. We apply Lemma 4.1 with O = U ,

α = θ, qα = xθ, q = x̄, γα = gθ = F 2g, and bα = m
2

n−2

θ . Let r > 0. For
θ small enough Lemma 4.1 gives us a diffeomorphism

Θθ : B
n(r) → Bgθ(xθ,m

− 2
n−2

θ r)
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such that the sequence of metrics (Θ∗
θ(g̃θ)) tends to the flat metric ξn

in C2(Bn(r)). We let ũθ := m−1
θ uθ. By (2) we then have

Lg̃θ ũθ = µθũ
p−1
θ

on Bgθ(xθ,m
− 2

n−2

θ r), and, using the fact that dvg̃θ = mp
θ dv

gθ , we have
∫

Bgθ (xθ ,m
−

2
n−2

θ
r)
ũpθ dv

g̃θ =

∫

Bgθ (xθ ,m
−

2
n−2

θ
r)
upθ dv

gθ

≤
∫

N
upθdv

gθ

= 1.

Since

Θθ : (B
n(r),Θ∗

θ(g̃θ)) → (Bgθ(xθ,m
− 2

n−2

θ r), g̃θ)

is an isometry, we can consider ũθ as a solution of

LΘ∗

θ
(g̃θ)ũθ = µθũ

p−1
θ

on Bn(r) with
∫
Bn(r) ũ

p
θ dv

Θ∗

θ
(g̃θ) ≤ 1. Since ‖ũθ‖L∞(Bn(r)) = |ũθ(0)| = 1,

we can apply Lemma 4.2 with V = R
n, α = θ, gα = Θ∗

θ(g̃θ), and uα = ũθ
(we can apply this lemma since each compact set of Rn is contained in
some ball Bn(r)). This shows that there exists a non-negative function
u 6≡ 0 (since u(0) = 1) of class C2 on (Rn, ξn) that satisfies

Lξnu = a∆ξnu = µ̄up−1.

By (12) we further have
∫

Bn(r)
up dvξ

n

= lim
θց0

∫

Bgθ (xθ,m
−

2
n−2

θ
r)
upθ dv

gθ ≤ 1

for any r > 0. In particular,
∫

Rn

up dvξ
n ≤ 1.

From Lemma 4.3, we get that µ̄ ≥ µ(Sn) ≥ min{µ,Λn,k}. We have
proved inequality (50) in this subcase.

Subcase I.2. For all b > 0 it holds that xθ ∈ UN
ǫ (b) for θ sufficiently

small.

The subset UN
ǫ (b) is diffeomorphic to W × I × Sn−k−1 where I is an

interval. We identify
xθ = (yθ, tθ, zθ)

where yθ ∈ W , tθ ∈ (− lnR0 + ln ǫ,− ln ǫ + lnR0), and zθ ∈ Sn−k−1.
By taking a subsequence we can assume that yθ,

tθ
Aθ

, and zθ converge,

respectively, to y ∈ W , T ∈ [−∞,+∞], and z ∈ Sn−k−1. First, we apply

Lemma 4.1 with V = W , α = θ, qα = yθ, q = y, γα = h̃tθ , γ0 = h̃T
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(we define h̃−∞ = h1 and h̃+∞ = h2), and bα = m
2

n−2

θ ef(tθ). The lemma
provides diffeomorphisms

Θy
θ : Bk(r) → Bh̃tθ (yθ,m

− 2
n−2

θ e−f(tθ)r)

for r > 0 such that (Θy
θ)

∗(m
4

n−2

θ e2f(tθ)h̃tθ ) tends to the flat metric ξk

on Bk(r) as θ ց 0. Second, we apply Lemma 4.1 with V = Sn−k−1,

α = θ, qα = zθ, γα = γ0 = σn−k−1, and bα = m
2

n−2

θ . For r′ > 0 we get
diffeomorphisms

Θz
θ : B

n−k−1(r′) → Bσn−k−1
(zθ,m

− 2
n−2

θ r′)

such that (Θz
θ)

∗(m
4

n−2

θ σn−k−1) converges to ξn−k−1 on Bn−k−1(r′) as
θ ց 0. For r, r′, r′′ > 0 we define

Uθ(r, r
′, r′′) := Bh̃tθ (yθ,m

− 2
n−2

θ e−f(tθ)r)× [tθ −m
− 2

n−2

θ r′′, tθ +m
− 2

n−2

θ r′′]

×Bσn−k−1
(zθ,m

− 2
n−2

θ r′),

and

Θθ : B
k(r)× [−r′′, r′′]×Bn−k−1(r′) → Uθ(r, r

′, r′′)

by

Θθ(y, s, z) := (Θy
θ(y), t(s),Θ

z
θ(z)),

where t(s) := tθ +m
2

n−2

θ s. By construction Θθ is a diffeomorphism, and
we see that

Θ∗
θ(m

4
n−2

θ gθ) = (Θy
θ)

∗(m
4

n−2

θ e2f(t)h̃t) + ds2

+ (Θz
θ)

∗(m
4

n−2

θ σn−k−1) + Θ∗
θ(m

4
n−2

θ T̃t).

(52)

Next, we study the first term on the right-hand side of (52). Note that it
is here evaluated at t, while we have information above when evaluated
at tθ. By construction of f(t), one can verify that

lim
θց0

∥∥∥∥∥
ef(tθ)

ef(t)
− 1

∥∥∥∥∥
C2([tθ−m

−
2

n−2
θ

r′′,tθ+m
−

2
n−2

θ
r′′])

= 0

since df
dt and d2f

dt2
are uniformly bounded. Moreover, it is clear that

lim
θց0

∥∥∥h̃t − h̃tθ

∥∥∥
C2(B

h̃tθ (yθ ,m
−

2
n−2

θ
e−f(tθ)r))

= 0

uniformly in t ∈ [tθ −m
− 2

n−2

θ r′′, tθ +m
− 2

n−2

θ r′′]. As a consequence,

lim
θց0

∥∥∥∥(Θ
y
θ)

∗
(
m

4
n−2

θ

(
e2f(t)h̃t − e2f(tθ)h̃tθ

))∥∥∥∥
C2(Bk(r))

= 0
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uniformly for t ∈ [tθ −m
− 2

n−2

θ r′′, tθ +m
− 2

n−2

θ r′′]. This implies that the

sequence (Θy
θ)

∗(m
4

n−2

θ e2f(t)h̃t) tends to the flat metric ξk in C2(Bk(r))
uniformly in t as θ ց 0. Further, we also know that the sequence

(Θz
θ)

∗(m
4

n−2

θ σn−k−1) tends to ξn−k−1 in C2(Bn−k−1(r′)) as θ ց 0. Re-

calling from (42) that g′θ = gθ − T̃t, we have proved that Θ∗
θ(m

4
n−2

θ g′θ)
tends to the flat metric in C2(Bk(r)× [−r′′, r′′]×Bn−k−1(r′)). Finally,
we are going to show that the last term of (52) tends to zero in C2. It
follows from (44) that

(53) lim
θց0

∥∥∥∥Θ
∗
θ(m

4
n−2

θ T̃t)

∥∥∥∥
C2(Bk(r)×[−r′′,r′′]×Bn−k−1(r′))

= 0.

Indeed, (44) tells us that
∣∣∣∣Θ

∗
θ(m

4
n−2

θ T̃t)(X,Y )

∣∣∣∣ = m
4

n−2

θ

∣∣∣T̃t(Θθ∗(X),Θθ∗(Y ))
∣∣∣

≤ Crm
4

n−2

θ |Θθ∗(X)|g′
θ
|Θθ∗(Y )|g′

θ

≤ Cr|X|
Θ∗

θ
(m

4
n−2
θ

g′
θ
)
|X|

Θ∗

θ
(m

4
n−2
θ

g′
θ
)
,

and since Θ∗
θ(m

4
n−2

θ g′θ) tends to the flat metric, we get (53). Doing the

same with ∇T̃t and ∇2T̃t using (45) and (46), we obtain that

(54) lim
θց0

Θ∗
θ(m

4
n−2

θ T̃t) = 0

in C2(Bk(r) × [−r′′, r′′] × Bn−k−1(r′)). Returning to (52), we see that

the sequence Θ∗
θ(m

4
n−2

θ gθ) tends to ξn = ξk + ds2 + ξn−k−1 on Bk(r)×
[−r′′, r′′]×Bn−k−1(r′). We proceed as in Subcase I.1 to show that µ̄ ≥
µ(Sn) ≥ min{µ,Λn,k}, which proves relation (50) in the present subcase.
This ends the proof of Theorem 6.1 in Case I.

Case II. There exists a constant C1 such that ‖uθ‖L∞(N) ≤ C1 for
all θ.

As in Case I, we consider two subcases.

Subcase II.1. There exists b > 0 such that

lim inf
θց0

(
µθ sup

UN
ǫ (b)

up−2
θ

)
<

(n− k − 2)2(n− 1)

8(n− 2)
.

By restricting to a subsequence, we can assume that

µθ sup
UN
ǫ (b)

up−2
θ <

(n− k − 2)2(n− 1)

8(n− 2)
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for all θ. Lemma 6.6 tells us that there is a constant A0 > 0 such that

(55) ‖uθ‖L2(N,gθ) ≤ A0.

We split the treatment of Subcase II.1. into two subsubcases.

Subsubcase II.1.1. lim supbց0 lim supθց0 supUN
ǫ (b) uθ > 0.

We set D0 :=
1
2 lim supbց0 lim supθց0 supUN

ǫ (b) uθ > 0. Then there are

sequences (bi) and (θi) of positive numbers converging to 0 such that

sup
UN
ǫ (bi)

uθi ≥ D0

for all i. For brevity of notation we write θ for θi and bθ for bi. Let

x′θ ∈ UN
ǫ (bθ) be such that

(56) uθ(x
′
θ) ≥ D0.

As in Subcase I.2 above we write x′θ = (yθ, tθ, zθ) where yθ ∈ W , tθ ∈
(− lnR0 + ln ǫ,− ln ǫ + lnR0), and zθ ∈ Sn−k−1. By restricting to a
subsequence we can assume that yθ,

tθ
Aθ

, and zθ converge, respectively,

to y ∈ W , T ∈ [−∞,+∞], and z ∈ Sn−k−1. We apply Lemma 4.1 with

V = W , α = θ, qα = yθ, q = y, γα = h̃tθ , γ0 = h̃T , and bα = ef(tθ), and
we conclude that there is a diffeomorphism

Θy
θ : Bk(r) → Bh̃tθ (yθ, e

−f(tθ)r)

for r > 0 such that (Θy
θ)

∗(e2f(tθ)h̃tθ ) converges to the flat metric ξk on

Bk(r). For r, r′ > 0 we set

Uθ(r, r
′) := Bh̃tθ (yθ, e

−f(tθ)r)× [tθ − r′, tθ + r′]× Sn−k−1

and we define

Θθ : B
k(r)× [−r′, r′]× Sn−k−1 → Uθ(r, r

′)

by
Θθ(y, s, z) := (Θy

θ(y), t(s), z),

where t(s) := tθ + s. By construction, Θθ is a diffeomorphism, and we
see that

(57) Θ∗
θ(gθ) =

e2f(t)

e2f(tθ)
(Θy

θ)
∗(e2f(tθ)h̃t) + ds2 + σn−k−1 +Θ∗

θ(T̃t).

We will now find the limit of Θ∗
θ(gθ) in the C2 topology. We define c :=

limθց0 f
′(tθ), which can be assumed to exist without loss of generality.

Lemma 6.9. For fixed r, r′ > 0 the sequence of metrics Θ∗
θ(gθ) tends

to Gc = ηk+1
c + σn−k−1 = e2csξk + ds2 + σn−k−1 in the topological space

C2(Bk(r)× [−r′, r′]× Sn−k−1).

As this lemma coincides with [4, Lemma 4.1], we only sketch the
proof.
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Proof. The intermediate value theorem tells us that

∣∣f(t)− f(tθ)− f ′(tθ)(t− tθ)
∣∣ ≤ r′2

2
max

s∈[tθ−r′,tθ+r′]

∣∣f ′′(s)
∣∣

for all t ∈ [tθ − r′, tθ + r′]. Because of (41) we also have ‖f ′′‖L∞ → 0 for
θ ց 0, and hence

lim
θց0

∥∥f(t)− f(tθ)− f ′(tθ)(t− tθ)
∥∥
C0([tθ−r′,tθ+r′])

= 0

for r′ fixed. Further, we have
∣∣∣∣
d

dt

(
f(t)− f(tθ)− f ′(tθ)(t− tθ)

)∣∣∣∣ =
∣∣f ′(t)− f ′(tθ)

∣∣

=

∣∣∣∣
∫ t

tθ

f ′′(s) ds

∣∣∣∣

≤ r′ max
s∈[tθ−r′,tθ+r′]

∣∣f ′′(s)
∣∣

→ 0

as θ ց 0, and finally
∣∣∣∣
d2

dt2
(
f(t)− f(tθ)− f ′(tθ)(t− tθ)

)∣∣∣∣ =
∣∣f ′′(t)

∣∣→ 0

as θ ց 0. Together with c = limθց0 f
′(tθ), we have shown that

lim
θց0

‖f(t)− f(tθ)− c(t− tθ)‖C2([tθ−r′,tθ+r′]) = 0.

Hence

lim
θց0

∥∥∥ef(t)−f(tθ ) − ec(t−tθ)
∥∥∥
C2([tθ−r′,tθ+r′])

= 0.

We now write e2f(t)h̃t = e2f(t)(h̃t− h̃tθ )+
e2f(t)

e2f(tθ)
e2f(tθ)h̃tθ . Using the fact

that

lim
θց0

∥∥∥h̃t − h̃tθ

∥∥∥
C2(B

h̃tθ (yθ ,e
−f(tθ)r))

= 0

holds uniformly for t ∈ [tθ − r′, tθ + r′], we obtain that the sequence
e2f(t)

e2f(tθ)
(Θy

θ)
∗(e2f(tθ)h̃t) tends to e2csξk in the C2(Bk(r))-topology where,

as before, s = t− tθ ∈ [−r′, r′]. Finally, proceeding exactly as we did to
get relation (54), we have that

lim
θց0

Θ∗
θ(T̃t) = 0

in C2(Bk(r) × [−r′, r′] × Sn−k−1). Now Lemma 6.9 follows from (57).
q.e.d.

We continue with the proof of Subsubcase II.1.1. As in Subcases I.1
and I.2 we apply Lemma 4.2 with (V, g) = (Rk+1 × Sn−k−1, Gc), α = θ,
and gα = Θ∗

θ(gθ) (we can apply this lemma since any compact subset
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of Rk+1 × Sn−k−1 is contained in some Bk(r)× [−r′, r′]× Sn−k−1). We
obtain a C2 function u ≥ 0 that is a solution of

LGcu = µ̄up−1

on R
k+1 × Sn−k−1. From (12) it follows that

∫

Rk+1×Sn−k−1

up dvGc ≤ 1.

From (11) it follows that u ∈ L∞(Rk+1 × Sn−k−1). With (56), we see
that u(0) ≥ D0 and thus, u 6≡ 0. By (55) we also get that u ∈ L2(Rk+1×
Sn−k−1). By the definition of Λ

(1)
n,k we have that µ̄ ≥ Λ

(1)
n,k ≥ Λn,k. This

ends the proof of Theorem 6.1 in this subsubcase.

Subsubcase II.1.2. limbց0 lim supθց0 supUN
ǫ (b) uθ = 0.

The proof in this subsubcase proceeds in several steps.

Step 1. We prove limbց0 lim supθց0

∫
UN
ǫ (b) u

p
θ dv

gθ = 0.

Let b > 0. Using (55), we have
∫

UN
ǫ (b)

upθ dv
gθ ≤ A0 sup

UN
ǫ (b)

up−2
θ

where the constant A0 is independent of b and θ. Step 1 follows.

Step 2. We show lim infbց0 lim infθց0

∫
UN
ǫ (2b)\UN

ǫ (b) u
2
θ dv

gθ = 0.

Let

d0 := lim inf
bց0

lim inf
θց0

∫

UN
ǫ (2b)\UN

ǫ (b)
u2θ dv

gθ .

We prove this step by contradiction and assume that d0 > 0. Then there
exists δ > 0 such that for all b ∈ (0, δ],

lim inf
θց0

∫

UN
ǫ (2b)\UN

ǫ (b)
u2θ dv

gθ ≥ d0
2
.

For m ∈ N we set Vm := U(2−mδ) \U(2−(m+1)δ). In particular, we have

lim inf
θց0

∫

Vm

u2θ dv
gθ ≥ d0

2

for all m. Let N0 ∈ N. For m 6= m′ the sets Vm and Vm′ are disjoint.
Hence we can write

∫

N
u2θ dv

gθ ≥
∫
⋃N0

m=0 Vm

u2θ dv
gθ ≥

N0∑

m=0

∫

Vm

u2θ dv
gθ
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for θ small enough. This leads to

lim inf
θց0

∫

N
u2θ dv

gθ ≥ lim inf
θց0

N0∑

m=0

∫

Vm

u2θ dv
gθ

≥
N0∑

m=0

lim inf
θց0

∫

Vm

u2θ dv
gθ

≥ (N0 + 1)
d0
2
.

Since N0 is arbitrary, this contradicts that (uθ) is bounded in L2(N)
and proves Step 2.

Step 3. Conclusion.

Let d0 > 0. By Steps 1 and 2 we can find b > 0 such that after passing
to a subsequence, we have for all θ close to 0

(58)

∫

N\UN
ǫ (2b)

upθ dv
gθ ≥ 1− d0

and

(59)

∫

UN
ǫ (2b)\UN

ǫ (b)
u2θ dv

gθ ≤ d0.

Let χ ∈ C∞(M), 0 ≤ χ ≤ 1, be a cut-off function equal to 0 on UN
ǫ (b)

and equal to 1 on N \UN
ǫ (2b). Since the set UN

ǫ (2b)\UN
ǫ (b) corresponds

to t ∈ [t0−ln 2, t0]∪[t1, t1+ln 2] with t0 = − ln b+ln ǫ and t1 = ln b−ln ǫ,
we can assume that

(60) |dχ|gθ ≤ 2 ln 2.

We will use the function χuθ to estimate µ. This function is supported
in N \ UN

ǫ (b). If θ is smaller than b, then (N \ UN
ǫ (b), gθ) is isometric

to (M \ UM (b), F 2g). In other words, (N \ UN
ǫ (b), gθ) is conformally

equivalent to (M \ UM (b), g). Relation (3) implies that

(61) µ ≤ Jθ(χuθ) =

∫
N (a|d(χuθ)|2gθ + Scalgθ(χuθ)

2) dvgθ

(∫
N (χuθ)p dvgθ

)n−2
n

.

We multiply equation (51) by χ2uθ and integrate over N . We can rewrite
the result using the following form of (65),

∫

N
|d(χuθ)|2gθ dv

gθ =

∫

N
χ2uθ∆

gθuθ dv
gθ +

∫

N
|dχ|2gθu

2
θ dv

gθ ,
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to obtain∫

N

(
a|d(χuθ)|2gθ + Scalgθ(χuθ)

2
)
dvgθ

= µθ

∫

N
upθχ

2 dvgθ + a

∫

N
|dχ|2gθu

2
θ dv

gθ

≤ µθ

∫

N
upθ dv

gθ + |µθ|
∫

UN
ǫ (2b)

upθ dv
gθ

+ a

∫

N
|dχ|2gθu

2
θ dv

gθ .

Using (59) and (60), we have
∫

N
|dχ|2gθu

2
θ dv

gθ =

∫

UN
ǫ (2b)\UN

ǫ (b)
|dχ|2gθu

2
θ dv

gθ ≤ 4(ln 2)2d0.

Relation (58) implies
∫
UN
ǫ (2b) u

p
θ dv

gθ ≤ d0. Together with
∫
N upθ dv

gθ = 1,

we have

(62)

∫

N
(a|d(χuθ)|2gθ + Scalgθ(χuθ)

2) dvgθ ≤ µθ + |µθ|d0 + 4(ln 2)2ad0.

In addition, by Relation (58),

(63)

∫

N
(χuθ)

p dvgθ ≥ 1− d0.

Plugging (62) and (63) in (61), we get

µ ≤ µθ + |µθ|d0 + 4(ln 2)2ad0

(1− d0)
n−2
n

for small θ. By taking the limit θ ց 0, we can replace µθ by µ̄ in this
inequality. Since d0 can be chosen arbitrarily small, we finally obtain
µ ≤ µ̄. This proves Theorem 6.1 in Subcase II.1.

Subcase II.2. For all b > 0, we have

lim inf
θց0

(
µθ sup

UN
ǫ (b)

up−2
θ

)
≥ (n− k − 2)2(n− 1)

8(n− 2)
.

Hence, we can construct a subsequence of θ and a sequence (bθ) of
positive numbers converging to 0 with

lim inf
θց0

(
µθ sup

UN
ǫ (bθ)

up−2
θ

)
≥ (n− k − 2)2(n− 1)

8(n − 2)
.

Choose a point x′′θ ∈ UN
ǫ (bθ) such that uθ(x

′′
θ) = supUN

ǫ (bθ)
uθ. Since

µθ ≤ µ(Sn), we have

uθ(x
′′
θ) ≥ D1 :=

(
(n− k − 2)2(n− 1)

8µ(Sn)(n − 2)

) 1
p−2

.
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With similar arguments as in Subcase II.1.1 (just replace x′θ by x′′θ and
D0 by D1), we get the existence of a C2 function u ≥ 0 that is a
solution of

LGcu = µ̄up−1

on H
k+1
c × Sn−k−1. As in Subsubcase II.1.1, u 6≡ 0, u ∈ L∞(Hk+1

c ×
Sn−k−1), and ∫

Rk+1×Sn−k−1

up dvGc ≤ 1.

Moreover, the assumption of Subcase II.2 implies that

µ̄up−2(0) = lim
θց0

µθu
p−2
θ (x′′θ) ≥

(n− k − 2)2(n− 1)

8(n− 2)
.

By the definition of Λ
(2)
n,k, we have that µ̄ ≥ Λ

(2)
n,k ≥ Λn,k.

Appendix A. Some details

A.1. Scalar curvature. In this section U denotes an open subset of a
manifold and q ∈ U a fixed point.

Proposition A.1. Let g be a Riemannian metric on U and T a sym-
metric 2-tensor such that g̃ := g+T is also a Riemannian metric. Then
the scalar curvature Scalg̃(q) of g̃ in q ∈ U is a smooth function of the
Riemann tensor Rg(q) of g at q, T (q), ∇gT (q), and (∇g)2T (q). More-

over, the operator T 7→ Scalg+T (q) is a quasilinear partial differential
operator of second order.

Proof. The proof is straightforward; we will just give a sketch using
notation from [8], which coincides with that of [26]. We denote the
components of the curvature tensors of g and g̃ by

Rijkl = g(Rg(∂k, ∂l)∂j , ∂i), R̃ijkl = g̃(Rg̃(∂k, ∂l)∂j , ∂i).

We work in normal coordinates for the metric g centered in q. Indices of
partial derivatives in coordinates are added and separated with a comma
“,” and covariant ones with respect to g separated with a semi-colon “;”.
In particular T = Tijdx

i dxj,

Tkl;i = (∇iT )(∂k, ∂l) = ∂iTkl − TmlΓ
m
ik − TkmΓm

il .

At the point q, we have g̃kl,i = Tkl;i. As explained in [8, Formula (13)],
we have

∇αΓ
k
ij = ∂αΓ

k
ij = −1

3
(Rikαj +Riαkj)

at the point q. Hence in that point,

Tkl;rs = (∇2
rsT )(∂k, ∂l)

= ∂r∂sTkl +
1

3
Tml(Rsmrk +Rsrmk) +

1

3
Tmk(Rsmrl +Rsrml).
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In order to calculate the scalar curvature Scalg̃(q) of g̃ in q, we use the
curvature formula as in [26] and contract twice. We obtain

(64) Scalg̃(q) = g̃ikg̃jm(g̃km,ij − g̃ki,mj) + P (g̃rm, g̃ij,k)

where P is a polynomial expression in g̃−1 and ∂g̃ that is cubic in
g̃−1 = g̃rm and quadratic in g̃ij,k. Note that formula (64) holds for an
arbitrary metric in arbitrary coordinates. The polynomial P vanishes
for T = 0 in normal coordinates for g. q.e.d.

Corollary A.2. Let R ⊂ T ∗
q M ⊗ T ∗

q M ⊗ T ∗
q M ⊗ TqM be a bounded

set of curvature tensors. Then there is an ǫ > 0 and C ∈ R such that
for all metrics g on U with Rg|q ∈ R we have the following: if

max
i∈{0,1,2}

∣∣(∇g)iT (q)
∣∣ < ǫ,

then

|Scalg+T (q)− Scalg(q)| ≤ C
(∣∣(∇g)2T (q)

∣∣+ |∇gT (q)|2 + |T (q)|
)
.

A.2. Details for equation (16). We compute the scalar curvature of

the metric dt2+ e2ϕ(t)ht on I ×W . This is a generalized cylinder metric
as studied in [11]. In the following computations we use the notation

from [11], so gt = e2ϕ(t)ht and we have

ġt = 2ϕ′(t)e2ϕ(t)ht + e2ϕ(t)∂tht

and

g̈t = (2ϕ′′(t) + 4ϕ′(t)2)e2ϕ(t)ht + 4ϕ′(t)e2ϕ(t)∂tht + e2ϕ(t)∂2
t ht.

This implies that the shape operator S of the hypersurfaces defined by
having constant value t is given by

S = −ϕ′Id− 1

2
h−1
t ∂tht,

so

tr(S2) = kϕ′(t)2 + ϕ′(t)tr(h−1
t ∂tht) +

1

4
tr((h−1

t ∂tht)
2)

and

(trS)2 = k2ϕ′(t)2 + kϕ′(t)tr(h−1
t ∂tht) +

1

4
(tr(h−1

t ∂tht))
2.

Further,

trgt g̈t = (2ϕ′′(t) + 4ϕ′(t)2)k + 4ϕ′(t)trht(∂tht) + trht(∂2
t ht)

= (2ϕ′′(t) + 4ϕ′(t)2)k + 4ϕ′(t)tr(h−1
t ∂tht) + tr(h−1

t ∂2
t ht).
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From [11, Proposition 4.1, (21)] we have

Scale
2ϕ(t)ht+dt2 = Scale

2ϕ(t)ht + 3tr(S2)− (trS)2 − trgt g̈t

= e−2ϕ(t)Scalht − k(k + 1)ϕ′(t)2

− (k + 1)ϕ′(t)tr(h−1
t ∂tht)− 2kϕ′′(t) +

3

4
tr((h−1

t ∂tht)
2)

− 1

4
(tr(h−1

t ∂tht))
2 − tr(h−1

t ∂2
t ht).

When we add the scalar curvature of σn−k−1 we get Formula (16) for

the scalar curvature of gWS = dt2 + e2ϕ(t)ht + σn−k−1.

A.3. A cut-off formula. Here we state a formula used several times in
the article. Assume that u and χ are smooth functions on a Riemannian
manifold (N,h), and that χ has compact support. Then

∫

N
|d(χu)|2 dvh =

∫

N

(
u2|dχ|2 + 〈udχ, χdu〉 + 〈χdu, d(χu)〉

)
dvh

=

∫

N

(
u2|dχ|2 + χu〈dχ, du〉 + 〈du, χd(χu)〉

)
dvh

=

∫

N

(
u2|dχ|2 + χu〈dχ, du〉 + 〈du, d(χ2u)− χudχ〉

)
dvh

=

∫

N

(
u2|dχ|2 + 〈du, d(χ2u)〉

)
dvh

=

∫

N

(
u2|dχ|2 + χ2u∆hu

)
dvh.

(65)
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