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VOLUME ESTIMATES FOR KÄHLER-EINSTEIN

METRICS AND RIGIDITY OF

COMPLEX STRUCTURES

X-X. Chen & S.K. Donaldson

Abstract

This paper extends our earlier results to higher dimensions us-
ing a different approach, based on the rigidity of complex struc-
tures on certain domains. We prove a “low energy” result in all
dimensions, in the sense that if normalized energy in a large ball
is small enough, then the normalized energy in any interior ball
must also be small.

1. Introduction

This is a continuation of our previous paper [6]. Let M be a compact
Kähler-Einstein manifold with non-negative scalar curvature, and for
r > 0, let Zr be the r-neighbourhood of the points where |Riem| ≥ r−2.
Our purpose is to estimate the volume of Z(r). In the previous paper we
considered manifolds of complex dimension 3, and here we extend the
results to all dimensions (under very slightly different hypotheses). We
use a different approach, exploiting the rigidity of complex structures
on quotient singularities. This also gives another approach to the three-
dimensional case. The basic technique develops results of Tian [10], for
the 3-dimensional case, with the difference that we work with complex
domains rather than CR-structures. Meanwhile, as mentioned in [6],
Cheeger and Naber have posted a preprint [5] which reaches the same
general conclusions using different arguments. In addition, Tian has
informed us that he obtained similar results some time ago.

Throughout the paper, we will make the following standing assump-
tions.

• (M,g) is a compact Kähler-Einstein manifold of complex dimen-
sion n with Ric(g) = λg and λ > 0. As usual, we write ω for the
metric 2-form.

• Diam(M) ≤ D.
• The class [ω/2π] ∈ H2(M) is integral.

Received 4/26/2011.

191



192 X-X. CHEN & S.K. DONALDSON

Note that these hypotheses have the following standard consequences.
First,

(1) Vol(M) ≥ V0 = (4π)n/n!

(This follows from the integrality condition.) Second,

(2) Vol(B(x, r)) ≥ κ(n,D)r2n;

for metric balls B(x, r) ⊂ M . (This follows from Bishop-Gromov com-
parison.) Third,

(3) Diam(M) ≥ D0;

where we can take D0 to be the radius of the Euclidean ball with volume
V0, again by Bishop comparison. Fourth,

(4) 0 < λ ≤ λ0

follows from the diameter bound and Myers’ Theorem.
Our main result is a “small energy” estimate. Recall that for a ball

B(x, r) ⊂ M with r ≤ Diam(M), we define the normalized energy

E(x, r) = r4−2n

∫

B(x,r)
|Riem|2.

Then we have:

Theorem 1. There are ǫ0 > 0,K such that if and E(x, r) ≤ ǫ0, then
|Riem| ≤ Kr−2 on B(x, r/2).

Given this, we obtain, using just the same line of argument as in [6]:

Corollary 1.

Vol(Zr) ≤ C(n,D)E(M)r4

where E(M) is the square of the L2 norm of the curvature.

Recall here that E(M) is a topological invariant, determined by the
Chern classes of M and the Kähler class.

For completeness we also mention that we get an “approximate mono-
tonicity” property for the normalized energy.

Corollary 2. For every ǫ > 0, there is a δ > 0 so that if E(x, r) ≤ δ,
then for any r′ ≤ r/2 and y ∈ B(x, r/2) we have E(y, r′) ≤ ǫ.

This follows easily from Theorem 1.
We will deduce Theorem 1 from the following result.

Theorem 2. Let (Mi, gi) satisfy the conditions above; let xi ∈ Mi

for each i and let li be any sequence of numbers which tends to infinity.

Suppose (Mi, l
2
i gi, xi) has based Gromov-Hausdorff limit M∞. Then M∞

is not a product Cn−q ×Cq/Γ where q > 2 and Γ ⊂ U(q) acts freely on

S2q−1.



VOLUME ESTIMATES FOR KÄHLER-EINSTEIN METRICS 193

In turn, Theorem 2 will be proved entirely by complex geometry. The
main ingredient is a result on rigidity of complex structures which may
have independent interest and, as far as we are aware, is new (in the
case when n > q). This uses some recent work of Chakrabarti and Shaw
[2]. Given q ≤ n and a real number a > 1, let V (a) ⊂ Cn be the domain

{(z, w) ∈ Cn−q ×Cq : |z| < a, a−1 < |w| < a}.

Let Γ ⊂ U(q) be as above (acting freely on S2q−1) and write VΓ(a) for the
quotient of V (a) by Γ. Fix any a1, b1 with b1 < a1 so VΓ(b1) ⊂ VΓ(a1).

Theorem 3. Let q ≥ 3 and J ′ be a deformation of the standard

complex structure J on VΓ(a0). If the deformation is sufficiently small

in C1,α, then there is a diffeomorphism from VΓ(b1) to a domain in

VΓ(a1) which pulls back J ′ to the standard complex structure on VΓ(b1)
and which is close in C2,α to the inclusion map.

Here of course we mean that the diffeomorphism can be forced as
close to the inclusion map as we like by requiring that J ′ is sufficiently
close to J .

In the case when q = n, the result is essentially covered by Hamilton’s
work in [7]. Alternatively, still in the case when q = n, the result is
essentially the same as that proved by Tian in [10], using an approach
through the rigidity of the CR structure on S2q−1/Γ. However, the case
n > q seems to have essential new features, since the domain V (a) does
not then have a smooth boundary.

The “rigidity” expressed by Theorem 3 is related, in a more algebraic
context, to the rigidity of quotient singularities proved by Schlessinger
[9]. There is a notable distinction between the case q ≥ 3 covered by the
theorem and the case q = 2. In the latter case rigidity certainly does
not hold. For example, when Γ = ±1, the singularity C2/Γ is an affine
quadric cone Q(z) = 0 which can be deformed into a nonsingular quadric
Q(z) = ǫ. Correspondingly, the complex structure on the quotient of the
annulus in C2 is not rigid. The distinction between the cases q = 2 and
q ≥ 3 appears through the vanishing of 1-dimensional sheaf cohomology
in the latter case but not in the former. In fact, it is very well known
that products Cn−2 ×C2/Γ can appear as Gromov-Hausdorff limits of
blow-up sequences, under our hypotheses: the simplest example being
when n = 2. See also the further discussion in Section 5.

Acknowledgments. The second author was partially supported by Eu-
ropean Research Council award No. 247331.

2. Theorem 2 implies Theorem 1

Suppose (Mi, gi) is a sequence of manifolds satisfying our standing
conditions (with fixed n,D) and that B(xi, ri) are balls inMi, so ri ≤ D.
Suppose that the normalized energies E(xi, ri) tend to zero as i → ∞.
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Then the pointed manifolds (Mi, xi) with the rescaled metrics r−2
i gi

have a Gromov-Hausdorff convergent subsequence, which we may as
well suppose is the full sequence. Let x∞,M∞ be the based limit. We
claim that there are no singular points in the interior ball B(x∞, 1/2).
This statement implies Theorem 1. For suppose Theorem 1 is false, so
there is a sequence of balls B(xi, ri) as above but point yi ∈ B(xi, ri/2)
with |Riem|(yi) = Kir

−2
i with Ki → ∞. We get a contradiction to the

fact that the rescaled metrics converge in C∞ on the regular part of the
limit M∞.

To prove the claim above, we again argue by contradiction. Notice
that the metric on the regular part of the unit ball B(x∞, 1) in M∞ is
flat. Suppose that, contrary to the claim, y ∈ B(x∞, 1/2) is a singular
point. A tangent cone to M∞ at y has the form Cn−q0 × C(Y0) for
a length space Y0. If Y0 is itself singular, we take a tangent cone to
Cn−q0 ×C(Y0) at a singular point and by the general Cheeger-Colding-
Tian theory this must have the form Cn−q1 × C(Y1) for some q1 < q0.
After at most n steps we arrive at an iterated tangent cone of the form
Cn−q × C(Y ) with Y smooth. Since the metric on the regular part is
flat, we have C(Y ) = Cq/Γ, where Γ acts freely on the sphere. Passing
to subsequences we can find a sequence of points x′i in Mi and rescalings
li → ∞ such that (Mi, x

′

i, l
2
i gi) have based limit Cn−q × Cq/Γ. Thus

we can deduce from Theorem 2 that q ≤ 2 and in fact, by the result of
Cheeger [3], the only possibility is q = 2.

To finish the proof, dealing with the singularities of complex codi-
mension 2, we invoke the result of Cheeger, Colding, and Tian from [4]
which was also crucial in our previous paper [6]. Given any α > 0, we
can find a ball B(z, s) ⊂ M∞ such that the Gromov-Hausdorff distance
from B(z, s) to the ball of radius s in the model Cq × Cq/Γ is less
than αs/2. Now fix s and choose i so large that for a suitable choice
of x′′i ∈ Mi the Gromov-Hausdorff distance from B(x′′i , s) to B(z, s) is
also less than αs/2. Then Theorem 8.1 in [4] tells us that, for a suitable
choice of α, we have a fixed η > 0 such that

∫

B(x′′,s)
|Riem|2 ≥ ηsn−2.

This contradicts our hypothesis that E(xi, ri) → 0.

3. Theorem 3 implies Theorem 2

Consider a compact differentiable submanifold Σ, of dimension 2q−1
with q > 2, in a Kähler manifold M,ω. Suppose that H1(Σ,R) =
H2(Σ,R) = 0. Thus we can write ω|Σ = dθ for a 1-form θ on Σ and the
integral

(5) I(Σ, ω) =

∫

Σ
ωq−1 ∧ θ
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does not depend on the choice of θ.
Let S ⊂ VΓ(a) be the quotient of the unit sphere in {0} × Cq ⊂

Cn−q ×Cq.

Proposition 1. Let M,ω be a compact Kähler manifold of complex

dimension n such that [ω/2πR] is an integral class. Suppose there is a

holomorphic embedding ι : VΓ(a) → M , for some a > 1 and let Σ = ι(S).
Then I(Σ, ω) ≥ (2π)qRq.

This is essentially standard complex geometry. By scaling, there is
no loss in taking R = 1. Let L → M be a holomorphic line bundle
with curvature form −iω, and choose a power k > 0 so that the sections
of Lk give an embedding of M in CPN . For a > 1, let W (a) be the
annulus {w : a−1 < |w| < a} in Cq and WΓ(a) be the quotient by the
free action of Γ ⊂ U(q). Let π : W (a) → WΓ(a) be the quotient map.
The pull-back π∗ι∗(Lk) is a holomorphic line bundle over W (a). Since
H1(W (a);O) vanishes, this line bundle is trivial. The line bundle ι∗(Lk)
is determined by a character of Γ so, increasing k if necessary, we may
suppose this is also trivial. Fix a trivialising section σ of ι∗(Lk). Thus
the composite WΓ(a) → M → CPN is given by sections si = fiσ for
i = 0, . . . , N , where fi are holomorphic functions on WΓ(a).

Let ∆ be the ball {w : |w| < a−1} and ∆Γ be the quotient by Γ.
Lifting the fi to W (a) and applying Hartogs’ theorem, we see that they
extend to holomorphic functions on ∆Γ (i.e. Γ-invariant functions on
∆). Thus ι extends to a holomorphic map ι+ : ∆Γ \ T → M ⊂ CPN ,
where T is a discrete subset defined by the common zeros of the extended
functions fi. Let Z be the graph of ι+ and Z be the closure of Z in
∆Γ × CPN . Thus Z is an analytic variety and we have holomorphic
maps p : Z → ∆Γ and j : Z → M . Writing σ = f−1

i si, we see that σ

defines a meromorphic section of j∗(Lk) with no zeros but with possible
poles along a divisor supported in Z \ Z, corresponding to the points
of T .

We have to see that T is nonempty, so that σ does indeed have some
poles. If T is empty, then p : Z → ∆Γ is a holomorphic equivalence, so
j can be viewed as a holomorphic map from ∆Γ to M . We extend the
argument in the obvious way to construct a holomorphic map J from
B×∆Γ to M , where B is a ball in Cn−q, with J equal to the embedding
ι on B × VΓ(a). But it is clear that this is impossible if M is smooth,
as we suppose.

Now we regard c1(j
∗Lk) as a compactly supported cohomology class

on Z, using the trivialisation σ over the boundary. Since σ has poles,
we have

(6) ωq−1 ∧ c1(j
∗Lk) < 0.
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The integrality of the Chern class then implies that

(7) ωq−1 ∧ c1(j
∗Lk) ≤ −(2π)q−1k.

Let θ be the 1-form k−1 i
2 (∂ − ∂) log |σ|2 on Z. Then, regarding θ as a

current on Z, we have an equation of currents

dθ = ω + 2πk−1E,

where E is the current of the divisor representing c1(j
∗Lk), as a com-

pactly supported cohomology class. If Z0 ⊂ Z is the region interior to
Σ, in the obvious sense, then by Stokes’ Theorem,

I(Σ, ω) =

∫

Σ
θ ∧ ωq−2 = −k−1ωq−1 ∧ c1(j

∗Lk) +

∫

Z0

ωq ≥ (2π)q.

It is now easy to deduce Theorem 2 from Theorem 3 and the Propo-
sition above. Suppose that xi,Mi, l

2
i gi is a sequence as considered

in Theorem 2, with based Gromov-Hausdorff limit the length space
Cn−q × Cq/Γ. Recall that we have the non-collapsing condition (2)
and a two-sided bound on the Ricci curvature of the Mi, gi by (4). By
standard theory (using results of Anderson [1]), this means that the
metrics converge in C∞ on the smooth part of Cn−q×Cq/Γ. Regarding
the complex structures as covariant constant tensors, we see that we
can also suppose these converge. This means that if we fix any a > 1,
we can find embeddings χi : VΓ(a) → Mi such that the pull-backs of the
metrics and complex structures by χi converge to the standard struc-
tures on VΓ(a). Applying Theorem 3, we see that we can suppose the
χi are holomorphic embeddings. So we are in the situation considered
in Proposition 1 with submanifolds Σi. Applying Proposition 1, we
see that I(Σi, l

2
i ωi) ≥ (2π)q l2qi → ∞. But this is a contradiction, since

I(Σi, l
2
i ωi) is determined by the restriction of l2i ωi to Σi, which converges

to the standard model as i → ∞.

4. Proof of Theorem 3: Complex rigidity

To simplify notation we will prove the result for some particular pair
a1, b1, but it will be clear that the argument can be adjusted to any pair.
We will work with the domains V (a); equivariance under the action of
Γ will allow us to deduce the result for the quotient spaces. We will
consider various values of the parameter a, but all lying in some fixed
interval, say 2 ≤ a ≤ 4.

According to [2], any (0,1) form σ on V (a) can be expressed as

σ = ∂K(σ) +K∂σ

where K(σ) is orthogonal to the L2 holomorphic functions and K(∂σ)
is orthogonal to the image of ∂. The “Kohn operator” K is bounded
on L2 (see [2], Section 2.3). It is easy to check that this bound can be
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taken independent of a. Notice that it is at this stage that the vanishing
of H1(V (a);O) is fed into the proof.

Fix α ∈ (0, 1) and let ‖ ‖k,α,a denote the Ck,α norm over V (a). Now
consider a different parameter a∗ < a, so V (a∗) ⊂ V (a).

Proposition 2. There are fixed C, p such that

• If g is a function on V (a), we have

‖g‖2,α,a∗ ≤ C(a− a∗)−p
(

‖∂g‖1,α,a + ‖g‖L2(V (a)

)

.

• If τ is a (0, 1)-form on V (a) with ∂
∗

τ = 0, then

‖τ‖1,α,a∗ ≤ C(a− a∗)−p
(

‖∂τ‖0,α,a + ‖τ‖L2(V (a)

)

.

To see this, we can cover V (a∗) by balls of radius (a−a∗)/10 say, such
that for each ball the twice-sized ball with the same center is contained
in V (a). On a unit-sized ball we have a standard elliptic estimate for
functions

‖g‖C1,α(B/2) ≤ const.
(

‖∂g‖C0,α(B) + ‖g‖L2(B)

)

and similarly for (0, 1) forms. Now the result follows by scaling.
For the rest of the proof we will use the standard convention that

C, p are constants which may change from line to line.
We are now ready to begin our main construction. Consider a de-

formed complex structure on V (a), defined by a tensor µ =
∑

µijdzj ⊗
∂
∂zi

, smooth up to the boundary. Thus we have a deformed ∂-operator

∂µ = ∂ + µ∂. Let f be a holomorphic function on V (a), for the stan-

dard complex structure. Thus ∂µf = β where β = µ∂f . (In our
application f will be one of the co-ordinate functions on Cn.) Then
β = ∂K(β) + K(∂β). Write g = K(β) and β′ = K(∂β). Thus
∂g = β − β′ while

∂β′ = ∂β ∂
∗

β′ = 0.

The integrability of the deformed complex structure gives

∂β = ∂µ(β)− µ∂β = ∂
2
µf − µ∂β = −µ∂β.

Applying the second item in the proposition above, and the L2-boundedness
of the Kohn operator, we get

(8) ‖β′‖1,α,a∗ ≤ C(a− a∗)−p‖µ∂β‖0,α,a.

Applying the second item to an intermediate region and then the first
item, we obtain

(9) ‖g‖2,α,a∗ ≤ C(a− a∗)−p (‖β‖1,α,a + ‖µ∂β‖0,α,a) .

Now write f ′ = f − g. We have ∂µf
′ = β′ − µ∂g, so

(10) ‖∂µf
′‖1,α,a∗ ≤ C(a− a∗)−p

(

‖µ‖1,α,a‖β‖1,α,a + ‖µ‖21,α,a‖β‖1,α,a
)

.
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We make this construction starting with the n co-ordinate functions
fi = zi, and getting new functions f ′

i . Then βi = µ∂fi are just the
components of µ:

(11) βi =
∑

j

µijdzj .

Let f ′ : V (a) → Cn be the map with components f ′

i . Suppose that the

restriction of f ′ is a diffeomorphism from V (a∗) to its image in Cn and

that the image contains a domain V (a′) where a′ is slightly less than a∗.
Let F : V (a′) → V (a∗) be the inverse diffeomorphism. We transport
the complex structure defined by µ to V (a′), using the map F . Write

∂µf
′

i =
∑

τijdzj ∂µf ′

i =
∑

Dijdzj ,

and suppose that the matrix (Dij) is invertible at each point. A straight-
forward calculation shows that the “new” complex structure on V (a′)
is defined by a tensor µ′ which is given in matrix notation by

(12) µ′(z) = (D−1τ)(F (z)).

The upshot is that, provided the various conditions above are met,
we get a complex structure defined by µ′ on V (a′), given by the formula
(12), and a diffeomorphism F : V (a′) → V (a) which intertwines µ′

and µ.
We want to iterate this procedure, provided always that the initial de-

formation is sufficiently small. We start by fixing a decreasing sequence
of domains. Let a1 = 4 and for integers r ≥ 2 set

ar = 4−

r
∑

i=2

1

i2
,

which means that ar ≥ 3 for all r, so we take b1 = 3. Let a∗r =
1
2(ar+a1),

so ar − a∗r = 1/2(r + 1)2. Suppose we start with a µ1 on V (a1) and
that at stage r we have constructed µr on V (ar) with a diffeomorphism
Fr : V (ar) → V (a1) which intertwines µr and µ1. Then, provided the
various conditions above are met, we perform the construction above to
get µr+1 on V (ar+1) and a diffeomorphism Fr+1 : V (ar+1) → V (ar), so
we can continue the inductive construction with Fr+1 = Fr ◦ Fr+1.

We need to show that, if ‖µ1‖1,α,a1 is sufficiently small, then

• The construction can proceed at each stage.
• The restriction of the µr to the fixed interior domain V (b1) tends
to zero in ‖ ‖1,α,b1 .

• The restrictions of the diffeomorphisms Fr to V (b1) converge in
C2,α to a diffeomorphism F : V (b1) → V (a1), which can be made
as close as we please to the inclusion map by assuming µ1 suffi-
ciently small.
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If we establish these facts, then we prove Theorem 3 as follows. Given
a deformed complex structure on VΓ(a1), we lift it to a Γ-invariant
structure on V (a1). It is clear that the µr we construct at each stage
are Γ-invariant and the diffeomorphisms are Γ-equivariant. Then F
induces the desired diffeomorphism from VΓ(b1) to VΓ(a1).

Suppose we have constructed µr,Fr. Let f
r
: V (ar) → Cn be the

map defined as above. Then the conditions for proceeding to the next
stage will all be met if f

r
is sufficiently close to the identity in C2,α. By

(9) this will be the case if µr is sufficiently small in C1,α. More precisely,
if we write ηr = ‖µr‖1,α,ar , then we can proceed to the next stage if

(13) ηr ≤ ǫr−p0,

for some suitable fixed ǫ, p0. Now we can estimate µr+1 using (10), (12),
and the behaviour of Hölder norms under compositions and products.
We get

(14) ηr+1 ≤ rpη2r .

It is neater to express this as

(15) ηr+1 ≤ C1
r2p1

(r + 1)p1
η2r

for some fixed C1, p1. For then if we write wr = C1r
p1ηr, we simply

have wr+1 ≤ w2
r . Choose k > 0 so that

exp(−k2s−1) < C1s
p1ǫs−p0,

for all s ≥ 1. Then if w1 ≤ e−k, that is to say if η1 is sufficiently small,
it follows by induction that the condition (13) is met at each stage and
wr ≤ exp(−k2r−1). Thus the iteration can proceed for all r and it is
clear that the other conditions itemised above are met, because of the
very rapid decay of the ηr.

5. Discussion

1) In this paper we have concentrated on proving what we need for
our main result. However it seems likely that the arguments in the
proof of Theorem 2 can be extended to obtain a precise description
of the complex structure for a Kähler-Einstein manifold close to a
singular limit Cn−q ×Cq/Γ, when we drop the integrality condi-
tion on the Kähler class. As Tian has suggested, one expects the
complex structure in such a case to be a crepant resolution of the
quotient singularity (at least when Γ ⊂ SU(q)), and one expects
the metric to be modelled on Joyce’s ALE metric. This seems
significant because, in the general Cheeger-Colding-Tian theory,
rather little is known about the structure of Einstein metrics close
to a singular limit.
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2) Our rigidity result, Theorem 3, can clearly be generalized to other
settings. (For example, we could consider any domain V in Cn

which has a suitable exhaustion by subsets Va such thatH1(Va;O) =
0 and on which ∂ has closed image.) It fits into a long line of simi-
lar statements, beginning with the Newlander-Nirenberg Theorem
on the integrability of almost-complex structures. Our proof has
some relation to the proof by Kohn [8] of this theorem, and also to
the results of Hamilton [7] for more general domains. The solution
of the “∂-problem” is an essential ingredient in all these results.
However, there is a notable difference in our case. In [8], [7] it is
first established that the ∂-problem has a solution, obeying suit-
able uniform estimates, for all small deformations of the complex
structure. In our situation we do not have such a statement: we
only know that the problem can be solved for the unperturbed so-
lution using (essentially) the Künneth formula. This is the reason
why we have to introduce the “shrinking domains” in the problem.

Note also that since we allow ourselves to shrink the domain we
do not really need the full force of the result of Chakrabarti and
Shaw, so the method may extend still further
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