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CORK TWISTING EXOTIC STEIN 4-MANIFOLDS

Selman Akbulut & Kouichi Yasui

Abstract

From any 4-dimensional oriented handlebody X without 3- and
4-handles and with b2 ≥ 1, we construct arbitrary many com-
pact Stein 4-manifolds that are mutually homeomorphic but not
diffeomorphic to each other, so that their topological invariants
(their fundamental groups, homology groups, boundary homology
groups, and intersection forms) coincide with those of X . We also
discuss the induced contact structures on their boundaries. Fur-
thermore, for any smooth 4-manifold pair (Z, Y ) such that the
complement Z − intY is a handlebody without 3- and 4-handles
and with b2 ≥ 1, we construct arbitrary many exotic embeddings
of a compact 4-manifold Y ′ into Z, such that Y ′ has the same
topological invariants as Y .

1. Introduction

A basic problem of 4-manifold topology is to find all exotic copies
of smooth 4-manifolds, in particular to find various methods of con-
structing different smooth structures on 4-manifolds (e.g., logarithmic
transform [12], Fintushel and Stern’s rational blowdown [19] and knot
surgery [20]). The purpose of this paper is to approach this problem
by corks and give applications. Since different smooth structures on a
4-manifold can be explained by existence corks that divide the mani-
fold into two Stein pieces [4], cork twisting Stein manifolds is a central
theme of this paper.

The first cork was introduced in [1], and was used in [2] to con-
struct a pair of two simply connected compact 4-manifolds with bound-
ary and second betti number b2 = 1 that are homeomorphic but non-
diffeomorphic. Later it turned out that cork twists easily give many such
pairs (Akbulut and Matveyev [3]; the authors [6]), where each pair con-
sists of a Stein 4-manifold and a non-Stein 4-manifold, and hence they
are not diffeomorphic.

It is thus interesting to find exotic Stein 4-manifold pairs. Unique-
ness of diffeomorphism types of Stein 4-manifolds bounding certain 3-
maniolds are known (e.g., #n S

1 × S2 (n ≥ 0); for more examples,

Received 03/31/2011.

1



2 S. AKBULUT & K. YASUI

see [26] and the references mentioned therein). By contrast, Akhmedov-
Etnyre, Mark, and Smith [10] constructed infinitely many simply con-
nected compact Stein 4-manifolds which are mutually homeomorphic
but non-diffeomorphic, using knot surgery. Moreover, the induced con-
tact structures on their boundary are mutually isomorphic. Though
these 4-manifolds have large second betti number, later in [8] for each
b2 ≥ 1, by using corks, the authors constructed pairs of simply con-
nected compact Stein 4-manifolds which are homeomorphic but non-
diffeomorphic.

In this paper, by using properties of Stein 4-manifolds we extend
the previous simple cork constructions to an explicit algorithm. Here
(4-dimentional oriented) 2-handlebody means a compact, connected, ori-
ented smooth 4-manifold obtained from the 4-ball by attaching 1- and 2-
handles. The algorithm goes roughly as follows: Take any 2-handlebody
with b2 ≥ 1, and change the handle diagram into a certain form and add
appropriate corks to produce compact Stein 4-manifolds; then, by twist-
ing these corks, detect the change of smooth structures by the adjunction
inequalities. This construction generalizes the carving technique of [4].

This process gives arbitrary many mutually homeomorphic but not
diffeomorphic compact Stein 4-manifolds that have the same topological
invariants as the given 2-handlebody (see Theorems 5.16 and 6.3, for
details). We obtain the following theorem:

Theorem 1.1. Let X be any 4-dimentional 2-handlebody with the

second betti number b2(X) ≥ 1. Then, for each n ≥ 1, there exist 2-
handlebodies Xi (0 ≤ i ≤ n) with the following properties:

(1) The fundamental group, the integral homology groups, the integral

homology groups of the boundary, and the intersection form of each Xi

(0 ≤ i ≤ n) are isomorphic to those of X.

(2) Xi (0 ≤ i ≤ n) are mutually homeomorphic but non-diffeomorphic.

(3) Each Xi (1 ≤ i ≤ n) has a Stein structure.

(4) X can be embedded into X0. Hence, X0 does not admit any Stein

structure if X cannot be embedded into any simply connected minimal

symplectic 4-manifold with b+2 > 1. (For more non-existence conditions,

see Theorems 5.16 and 6.3.)

(5) Each Xi (0 ≤ i ≤ n) can be embedded into X.

As far as the authors know, this result is new even when we ignore
Stein structures. Actually, this theorem gives exotic smooth structures
for a large class of compact 4-manifolds with boundary (see also Corol-
lary 10.8). In Section 10, we also construct arbitrary many exotic non-
Stein 4-manifolds.
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For a given embedding of a 4-manifold, applying the algorithm to
its complement, we obtain arbitrary many exotic embeddings of a 4-
manifold which has the same the topological invariants as the given
manifold (see Theorems 5.17 and 6.4).

Theorem 1.2. Let Z and Y be compact connected oriented smooth 4-
manifolds (possibly with boundary). Suppose that Y is embedded into Z

and that its complement X := Z− intY is a 2-handlebody with b2(X) ≥
1. Then, for each n ≥ 1, there exist mutually diffeomorphic compact

connected oriented smooth 4-manifolds Yi (0 ≤ i ≤ n) embedded into Z
with the following properties.

(1) The pairs (Z, Yi) (0 ≤ i ≤ n) are mutually homeomorphic but non-

diffeomorphic.

(2) The fundamental group, the integral homology groups, the integral

homology groups of the boundary, and the intersection form of Yi’s (0 ≤
i ≤ n) are isomorphic to those of Y .

(3) The each complement Xi := Z− intYi (0 ≤ i ≤ n) has the properties

of the Xi in Theorem 1.1 above (corresponding to X).

Note that any compact connected oriented smooth 4-manifold Z (pos-
sibly with boundary) has such a submanifold Y , because the 4-ball con-
tains a 2-handlebody S2 ×D2, for example. Hence this theorem shows
that every compact connected oriented smooth 4-manifold has arbitrary
many exotic embeddings into it, and has arbitrary many compact sub
4-manifolds that are mutually homeomorphic but not diffeomorphic.

We further state the properties of Xi’s in Theorem 1.1. At least in
the case of b2(X) = 1, the induced contact structures on the boundary
∂Xi’s have the property below. This also shows that Xi’s are mutually
non-diffeomorphic.

Corollary 1.3. Let X be any 2-handlebody with b2(X) = 1. Suppose
that the intersection form of X is non-zero. Fix n ≥ 1, and denote by Xi

(1 ≤ i ≤ n) the corresponding compact Stein 4-manifold in Theorem 1.1.
Let ξi (1 ≤ i ≤ n) be the contact structure on the boundary ∂Xi (∼= ∂X1)
induced by the Stein structure on Xi. Then the each smooth 4-manifold

Xi (1 ≤ i ≤ n− 1) admits no Stein structure compatible with ξj for any

j > i.

It is interesting to discuss cork structures of 4-manifolds (see [6, 7, 9]).
In [9], the authors constructed the following example: For each n ≥ 2,
there are n mutually disjoint embeddings of the same cork into a simply
connected compact 4-manifold Zn with boundary, so that twisting Zn

along each copy of the cork produces mutually distinct n smooth struc-
tures on Zn. However, b2(Zn) increases when n increases. The above
Xi’s have the structures below. We also discuss infinitely many disjoint
embeddings in Section 8.



4 S. AKBULUT & K. YASUI

Corollary 1.4. Let X be any 2-handlebody with b2 ≥ 1. For each

n ≥ 1, there exist 2-handlebodies Xi (0 ≤ i ≤ n), a cork (C, τ), and

disjointly embedded copies Ci (1 ≤ i ≤ n) of C into X0 with the following

properties:

(1) Xi (0 ≤ i ≤ n) are mutually homeomorphic but non-diffeomorphic.

(2) Each Xi (1 ≤ i ≤ n) is the cork twist of X0 along (Ci, τ).

(3) Each Xi (1 ≤ i ≤ n) is the manifold of Theorem 1.1, corresponding
to this X.

In a forthcoming paper, we will discuss Theorems 1.1 and 1.2 in the
case of b2(X) = 0, under some conditions.

This paper is organized as follows. In Sections 2 and 3, we briefly
discuss basics of corks, Stein 4-manifolds, and contact 3-manifolds. In
Section 4, we study effects of certain operations related to corks. In
Section 5, we give the algorithm and prove Theorems 1.1 and 1.2 and
Corollary 1.4. In Section 6, we strengthen the algorithm. In Section 7,
we prove Corollary 1.3. In Section 8, we construct infinitely many dis-
joint embeddings of a fixed cork into a noncompact 4-manifold. In
Section 9, we apply Theorems 1.1 and 1.2 to some examples X and
(Y,Z) = (S4,Σg ×D2) (g ≥ 1), where Σg denotes the closed surface of
genus g. In Section 10, we construct arbitrary many compact Stein 4-
manifolds and arbitrary many non-Stein 4-manifolds which are mutually
homeomorphic but non-diffeomorphic.
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also would like to thank Kazunori Kikuchi, Takefumi Nosaka, and Motoo
Tange for useful comments.

The first author is partially supported by NSF grants DMS 0905917,
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2. Corks

In this section, we recall corks. For more details, the reader can con-
sult [6].

Definition 2.1. Let C be a compact contractible Stein 4-manifold
with boundary and τ : ∂C → ∂C an involution on the boundary. We
call (C, τ) a cork if τ extends to a self-homeomorphism of C but cannot
extend to any self-diffeomorphism of C. For a cork (C, τ) and a smooth
4-manifoldX that contains C, a cork twist of X along (C, τ) is defined to
be the smooth 4-manifold obtained fromX by removing the submanifold
C and regluing it via the involution τ . Note that, any cork twist does
not change the homeomorphism type of X (see the remark below). A
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cork (C, τ) is called a cork of X if the cork twist of X along (C, τ) is
not diffeomorphic to X.

Remark 2.2. In this paper, we always assume that corks are con-
tractible. (We did not assume this in the more general definition of [6].)
Freedman’s theorem (cf. [11]) implies that every self-diffeomorphism of
the boundary ∂C extends to a self-homeomorphism of C, when C is a
compact contractible smooth 4-manifold.

Definition 2.3. LetWn be the contractible smooth 4-manifold shown
in Figure 1. Let fn : ∂Wn → ∂Wn be the obvious involution obtained by
first surgering S1 ×D3 to D2 ×S2 in the interior of Wn, then surgering
the other imbedded D2 × S2 back to S1 × D3 (i.e., replacing the dot
and “0” in Figure 1). Note that the diagram of Wn is induced from a
symmetric link.

n n+1

0

Figure 1. Wn

Theorem 2.4 ([6, Theorem 2.5]). For n ≥ 1, the pair (Wn, fn) is a

cork.

3. Stein 4-manifolds and contact 3-manifolds

In this section, we briefly recall the basics of Stein 4-manifolds and
contact 3-manifolds. For the definition of basic terms and more details,
the reader can consult Gompf and Stipsicz [23] and Ozbagci and Stip-
sicz [25]. In this paper, we use Seifert framings and abbreviate them to
framings. (When a knot goes over 4-dimensional 1-handles, then con-
vert the diagram into the dotted circle notation and calculate its Seifert
framing; cf. [23]). We use the following terminologies throughout this
paper.

Definition 3.1. (1) For a Legendrian knotK in #n(S1×S2) (n ≥ 0),
we denote by tb(K) and r(K) the Thurston–Bennequin number and the
rotation number of K, respectively.

(2) We call a compact connected oriented 4-dimensional handlebody a
2-handlebody if it consists of one 0-handle and 1- and 2-handles. We call
a subhandlebody a sub 1-handlebody if it consists of 0- and 1-handles of
the whole handlebody.

(3) We call a 2-handlebody a Legendrian handlebody if its 2-handles are
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attached to an oriented framed Legendrian link in ∂(D4 ∪ 1-handles) =
#n(S1 × S2) (n ≥ 0). It is known that every 2-handlebody can be
changed into a Legendrian handlebody by an isotopy of the attaching
link of 2-handles and orienting its components.

(4) We call a Legendrian handlebody a Stein handlebody if the framing
of its each 2-handle K is tb(K)− 1.

Next, we recall the following useful theorem.

Theorem 3.2 (Eliashberg [14]; cf. [22, 23]). A compact, connected,

oriented, smooth 4-manifold admits a Stein structure if and only if it

can be represented as a Stein handlebody.

We call a compact smooth 4-manifold with a Stein structure a com-

pact Stein 4-manifold. Recall that a Stein structure induces an almost
complex structure. Thus, the first Chern class c1 of a compact Stein 4-
manifold is defined. The following useful theorems are known and play
important roles in this paper.

Theorem 3.3 (Gompf [22]; cf. [23]). Let X be a Stein handlebody.

The first Chern class c1(X) ∈ H2(X;Z) is represented by a cocycle

whose value on each 2-handle h attached along a Legendrian knot K is

r(K). Here each 2-handle is oriented according to the orientation of the

corresponding Legendrian knot.

Note that the theorem below contains the case where the genus and
the self-intersection number are zero, unlike the usual adjunction in-
equality for closed 4-manifolds.

Theorem 3.4 (Akbulut and Matveyev [3]; cf. [25]). Let X be a

compact Stein 4-manifold and Σ a smoothly embedded genus g ≥ 0 closed

surface in X. Denote by [Σ] the second homology class of X represented

by Σ. If [Σ] 6= 0, then the following adjunction inequality holds:

[Σ]2 + |〈c1(X), [Σ]〉| ≤ 2g − 2.

Proof. For the completeness, we give a minor correction to the proof
of [25, Theorem 13.3.8]. In the g = 0 case, apply the same argument as
the g ≥ 1 case. (Since [25, Theorem 13.3.6] also holds in the g = 0 case
([18]), one can apply it.) q.e.d.

We also use the following lemma, which is easily checked by Figure 2.

Lemma 3.5. Let K be a Legendrian knot in #n(S1 × S2) (n ≥ 0).
For any integer pair (t, d) with t ≥ 1 and 0 ≤ d ≤ t, by locally adding zig-

zags to K upward or downward, K can be changed so that the following

are satisfied.

(i) The Thurston–Bennequin number of K decreases by t.

(ii) The rotation number of K increases by 2d− t.
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t−d

d

Figure 2. Adding zig-zags

Compact Stein 4-manifolds are known to admit useful embeddings.

Theorem 3.6 (Lisca and Matić [24]; Akbulut and Ozbagci [5]).
Every compact Stein 4-manifold can be embedded into a minimal closed

complex surface of general type with b+2 > 1, and can be embedded into a

simply connected, minimal, closed, symplectic 4-manifold with b+2 > 1.
Here minimal means that there is no smoothly embedded 2-sphere with

the self-intersection number −1.

Proof. (Simply connectedness) Since “simply connected” is not claimed
in [24] and [5], we explain this part for completeness. We follow the proof
in [5]. We first attach 2-handles to a given Stein 4-manifold to make it a
simply connected Stein 4-manifold, then apply the procedure prescribed
in [5]. Since this results attaching 2-, 3-, and 4-handles to the boundary,
the simply connectedness is preserved. q.e.d.

A compact Stein 4-manifold X induces a contact structure ξ on its
boundary ∂X. If its Chern class c1(ξ) ∈ H2(∂X;Z) is a torsion, then
the contact invariant d3(ξ) ∈ Q (called the 3-dimentional invariant) is
defined by

d3(ξ) =
1

4
(c1(X)2 − 2e(X) − 3σ(X)),

where e(X) and σ(X) denote the Euler characteristic and the signature
ofX, respectively. For a computation of c1(X)2, see [23, 25]. The lemma
below is easily verified.

Lemma 3.7 (cf. [23]). Let X be a compact Stein 4-manifold with

b2(X) = 1. Denote the generator of the second homology group of X by

v. Suppose v2 6= 0; then

c1(X)2 =
〈c1(X), v〉2

v2
.

4. W+(p)- and W−(p)-modifications

In this section, we study the effects of the operations below. We first
define them for smooth 2-handlebodies and later redefine them for Leg-
endrian handlebodies. In this paper, the words the “attaching circle of
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a 2-handle” and a “smoothly embedded surface” are often abbreviated
to a “2-handle” and a “surface,” if they are clear from the context.

Definition 4.1. Assume p ≥ 1. Let K be a 2-handle of a (smooth)
2-handlebody. Take a small segment of the attaching circle of K as in
the first row of Figure 3.

We call the local operations shown in the left and the right side
of Figure 3 a W+

1 (p)-modification to K and a W−

1 (p)-modification to
K, respectively. Here we do not change the framing of K (ignore the
orientations shown in the figure). They are clearly related by a cork
twist along (W1, f1) as shown in the figure.

K

1 2

0
p

K

1 2

0

p

K

W+(p)-modification W−(p)-modification

cork twist
auxiliary
2-handle

auxiliary
2-handle

Figure 3. W±

1 (p)-modifications (p ≥ 1) (the framing of
K is unchanged)

We will call the 0-framed 2-handle γ on the left (or right) side of the
Figure 3 the auxiliary 2-handle of the W±

1 (p)-modification of K. We
will use the same symbol K for the new 2-handle obtained from the
original K of X by the modification.

For convenience, we refer to the W+
1 (0)- and W−

1 (0)-modifications
as undone operations. For brevity, sometimes we will call these opera-
tions W+

1 - and W−

1 -modifications when we do not need to specify the
coefficients, or will call them W1-modifications when we do not need to
specify both the coefficient and ±. Clearly the name of this operation
comes from the W1 cork of [6]. Similarly, we can talk about W±(p)-
modification for any cork (W,f) coming from a symmetric link.

For the rest of this paper, we will discuss the effects ofW -modification
where (W,f) = (W1, f1). In the rest of this section, we assume p ≥ 1.

Proposition 4.2. Let K be a 2-handle of a 2-handlebody X. Any

W -modification to K does not change the isomorphism classes of the

fundamental group, the integral homology groups, the integral homology

groups of the bounadry ∂X, and the intersection form of X.
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Proof. Since the 0-framed auxiliary 2-handle links with the 1-handle
algebraically once, each operation does not change the fundamental
group, the integral homology groups, and the intersection form. We
next check the boundary. Recall that the integral homology groups of
the bounadry of any simply connected 2-handlebody are determined by
its intersection form (cf. [23]). So we first replace the dots of the dotted
circles of X with 0’s, that is, surgery S1 ×D3’s to D2 × S2’s. We now
have a simply connected 2-handlebody. Next, apply the W -modification
to K. This modification keeps the intersection form and the simply con-
nectedness. Moreover, the boundary of this result is diffeomorphic to the
boundary of the result of the W -modification to K of X. Therefore, any
W -modification does not affect the homology groups of the boundary
∂X. q.e.d.

Proposition 4.3. Apply a W+(p)-modification to a 2-handle K of a

2-handlebody X. Let X+ and γ denote the result of X and the auxiliary

2-handle, respectively. Suppose that the attaching circle of the original K
of X spans a smoothly embedded genus g surface in a sub 1-handlebody

♮n(S
1 × D3) (n ≥ 0) of X. Then the new K of X+ spans a smoothly

embedded genus g+ p surface in a sub 1-handlebody of X+ after sliding

over the 2-handle γ p-times (homologically, this changes K to K − pγ).

Proof. The new K is obtained by a band summing the original K and
the knot U in the first picture of Figure 4. Hence, it suffices to check that
U spans a smoothly embedded surface of genus p after sliding over the
2-handle γ p-times. Introduce a canceling 1- and 2-handle pair and slide
γ (geometrically) twice; then we get the second picture. Isotopy gives
the third picture. We then slide the knot U over the 0-framed unknot
p-times so that U does not link with the lower dotted circle. We get
the fourth picture, by ignoring two 2-handles, and isotopy. We can now
easily see that U bounds a surface of genus p by the standard argument
(cf. [23, Exercise.4.5.12.(b)]). One can check that U is the boundary of
D2 with 2p bands attached. Note that in the beginning, we slid γ over
the −1 framed 2-handle, which does not affect the result because the
sliding was over the canceling 2-handle algebraically zero times. q.e.d.

Lemma 4.4. (1) The 4-manifolds S1 and S2 in Figure 5 are diffeo-

morphic to S2 ×D2.

(2) Let f̂ : ∂S1 → ∂S2 be the diffeomorphism induced by the obvious

cork twist of S1 (i.e., exchanging the dot and 0). Note that the cork

twist does not change the boundary of S1. Then f̂ extends to a diffeo-

morphism between S1 and S2.

Proof. (1). The left side of the figure is checked by canceling the
1- and 2-handle pair. The right side is as follows. Slide the middle 2-
handle over its meridian as in the second picture of Figure 6. Note that
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0

−1

iso
topy

p

U

−1

0

p

U
slides

creation
and

slides

U

12

0

p

U

p 2 1

2 2-handles

Figure 4

0
0

21

0

0

21
cork twist

S2S1

Figure 5. Two diagrams of S2 ×D2

the middle 2-handle now links with the dotted circle geometrically once.
Canceling this 1- and 2-handle pair gives the last picture of the figure.

−2
0

2
slide canceling 0

0
0

21 1

Figure 6

(2). Since f extends to a self-homeomorphism of W , f̂ extends to a
homeomorphism between S1 and S2. Thus by (1) and Gluck’s theorem

(Sections 5 and 15 of [21]; cf. [13]), f̂ extends to a diffeomorphism
between S1 and S2. q.e.d.

Proposition 4.5. Let K be a 2-handle of a 2-handlebody X. Let Z

be any compact connected oriented smooth 4-manifold that contains X

as a smooth submanifold.
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(1) Let X+ be the result of X by a W+(p)-modification to K. Then the

following properties hold.

(i) X+ becomes diffeomorphic to X after attaching a 2- and a 3-
handle to ∂X+, as in Figure 7. Hence, X+ can be embedded into

X and also Z.

(ii) The fundamental group, the integral homology groups, the integral

homology groups of the boundary, and the intersection form of

Z − intX+ are isomorphic to those of Z − intX. Here we see X+

as a submanifold of Z, through the embedding in (i).

(2) Let X− be the result of X+ by replacing the above W+(p)-modification

with the W−(p)-modification, as in the second row of Figure 8. Then the

following properties hold.

(i) The cork twist of Z along (W,f) is diffeomorphic to Z (see Fig-

ure 8). Here this W is the cork in X+(⊂ Z) created from the

W+(p)-modification, and we view X+ as a submanifold of Z com-

ing from the embedding in (1).(i) above. Hence, X− can be embed-

ded into X, and also into Z.

(ii) Z − intX− is diffeomorphic to Z − intX+. Here we see X+ and

X− as submanifolds of Z, via the embeddings in (1).(i) and (2).(i),
respectively.

(iii) X can be embedded into X− so that the induced homomorphism

H∗(X;Z) → H∗(X
−;Z) is an isomorphism.

(3) There exist homeomorphisms between the pairs (Z,X+) and (Z,X−),
and also between the pairs (Z,Z − intX+) and (Z,Z − intX−).

0

0

21

K

p

0

0

21

slides

slides and
canceling0

K

Kattaching
a 3-handle

K

0

21

K
p

attaching
a 2-handleX+

X

Figure 7. Attaching a 2- and a 3-handle to X+
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0

0

21

K

(X+ X) (X− X)

(X X−)

X ( Z)

p

0
0

21

K

3-handle3-handle

p

K

cork twist

cork twist

0

21

K

0

21

cork twist

p
K

p

attaching
a 2- and a 3-handle

attaching
a 2- and a 3-handle

X X

Z Z

X+ X−

W+(p)-modification W−(p)-modification

Figure 8. Relations

Proof. (1).(i). The first picture of Figure 7 is a local diagram of X+.
Following the procedure in the figure, we recover a diagram of X. Hence
the claim follows.

(1).(ii). Reverse the procedure in Figure 7 until the second picture,
keeping track of the 3-handle introduced in the fifth picture. Then we
see, in the second picture of this figure, that the attaching sphere of the
3-handle intersects with the belt circle of the lower 0-framed 2-handle
geometrically once. In the second picture, the 3-handle algebraically also
cancels the upper 0-framed 2-handle. This is because the meridian of the
upper 0-framed 2-handle in the second picture becomes homotopic to a
curve linking the 0-framed unknot in the fourth picture geometrically
once, although it also tangles around K. Thus Z − intX+ is obtained
from Z − intX by attaching a dual of this algebraically canceling 2-
and 3-handle pair (which is an algebraically canceling 1- and 2-handle
pairs).
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This fact immediately gives the claim about the fundamental group,
the homology groups, and the intersection form. For the claim about the
homology groups of the boundary, we first cap off the boundary of Z
to form a closed 4-manifold. Now the claim follows from the fact above
and the argument in the proof of Proposition 4.2.

(2). Lemma 4.4 gives (i). Note that the Z = X case shows that X−

(i.e., the cork twist of X+) is embedded into X. Thus, the complements
of X+ and X− in Z are the same, and hence (ii) follows. Since X− is
obtained fromX by attaching an algebraically canceling 1- and 2-handle
pair, (iii) follows.

(3). By (2), the cork twist along (W,f) changes (Z,X+) and (Z,Z −
intX+) into (Z,X−) and (Z,Z − intX−), respectively. Since f extends
to a self-homeomorphism of W , the claim follows. q.e.d.

Next, we define Legendrian versions of W+- and W−-modifications
for Legendrian handlebodies (recall Definition 3.1).

Let K be a 2-handle of a Legendrian handlebody. Take a small seg-
ment of the attaching circle ofK as in the first row of Figure 10. Without
loss of generality, we can assume that the orientation of the segment of
K is from the left to the right (Otherwise, locally apply the Legen-
drian isotopy in Figure 9. Note that this isotopy does not change the
Thurston-Bennequin number and the rotation number).

Figure 9. Legendrian isotopy

Definition 4.6. Let p ≥ 1. We call the local operations shown in
the left and the right side of Figure 10 a W+(p)-modification to K and
a W−(p)-modification to K, respectively. Here we orient the 2-handles
as in the figure. Hence, each operation produces a new Legendrian han-
dlebody from a given Legendrian handlebody. When we see Legendrian
handlebodies as smooth handlebodies, these definitions and the orien-
tations are consistent with those in Definition 4.6 and Figure 3. (We
can check this just by converting the 1-handle notation.) Note that the
auxiliary 2-handle γ to any W+(p)- (resp. W−(p)-) modification satis-
fies the following: its framing is 0 (resp. 0); tb(γ) = 2 (resp. tb(γ) = 1);
r(γ) = 0 (resp. r(γ) = 1).

The above definition clearly shows the following.

Proposition 4.7. Let K be a 2-handle of a Legendrian handlebody.

(1) Every W+(p)-modification to K has the following effect.
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0

p

K

0

K
p

K

cork twist

W+(p)-modification W−(p)-modification

Figure 10. W+(p)- and W−(p)-modification (p ≥ 1).
Every framing is Seifert framing. The framing of K is
unchanged.

• tb(K) is increased by p, and r(K) is unchanged.

(2) Every W−(p)-modification to K has the following effect.

• tb(K) and r(K) are unchanged.

Remark 4.8. For simplicity we used only (W1, f1) for W -modifica-
tions. Many other corks, including (Wn, fn), also work similarly. For
example, the operation of “creating a positron” (together with its cork
twist) introduced by Akbulut and Matveyev [4] has similar effects. An
important effect of W -modifications is to increase the “minimal genera”
of second homology classes (under some conditions). This is implied in
the next section, through the proof of Theorem 1.1. Essentially differ-
ent operations (e.g., band sum with a knot with a sufficiently large
Thurston-Bennequin number) also have this effect, though they do not
share some other effects.

5. Exotic Stein 4-manifolds and exotic embeddings

5.1. Construction. Here we give an algorithm that provides Theo-
rems 1.1 and 1.2. Later, in subsection 9.1, we demonstrate this algorithm
on a simple example.

Definition 5.1. LetX be a compact oriented 4-dimentional 2-handle-
body with b2(X) ≥ 1. Throughout this section, we fix this X. Let
k := b2(X)− 1.

Now we begin with the construction. Recall the definitions of Leg-
endrian and Stein handlebodies in Definition 3.1. Apply the following
Step 1 to X.
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Step 1. Slide and isotope the handles of X so that X is a Legendrian
handlebody and that its 2-handles satisfy the following condition.

• 2-handles Kj (0 ≤ j ≤ k) of X do not algebraically go over any 1-
handle. So the second homology classes ofX given by the 2-handles
Kj (0 ≤ j ≤ k) span a basis of H2(X;Z). Here Kj (0 ≤ j ≤ l)
denote all the 2-handles of X (l ≥ k).

We use the following terminiogy.

Definition 5.2. We call a Stein handlebody a good Stein handlebody

if it satisfies the condition described in Step 1.

Remark 5.3 (The outline of the algorithm). Here we briefly sum-
marize the algorithm. (However, beware that the actual construction is
rather different.)

(1) The b2(X) = 1 case: Apply W−(p1)-, W
−(p2)-, . . . , W

−(pn)-modifi-

cations to K0 of X and call the result X
(n)
0 (Figure 11). Then re-

place the above W−(pi)-modification with the corresponding W+(pi)-

modification, and denote the resulting manifold by X
(n)
i . If we choose

p1 ≪ p2 ≪ · · · ≪ pn as sufficiently large integers, then the minimal gen-
era of the second homology classes given by K0 (after sliding over the

auxiliary 2-handle pi times) in X
(n)
i (0 ≤ i ≤ n) become mutually differ-

ent. We check this using the adjunction inequalities in the Stein man-

ifolds X
(n)
i (1 ≤ i ≤ n). We also apply W+(qj)-modifications to other

2-handles Kj (1 ≤ j ≤ l) of X at the beginning (Figure 12). In short,

the minimal genera detect the smooth structures of X
(n)
i (0 ≤ i ≤ n).

(2) The b2(X) ≥ 2 case: This case is a generalization of the b2(X) = 1
case and it is more technical. In this case, we further adjust the rota-
tion number of each Kj (1 ≤ j ≤ k) by the above W+(qj)-modification
to prevent these handles affecting adjunction inequality arguments. To
detect smooth structures, we discuss the minimal genera of bases of

H2(X
(n)
i ;Z), using adjunction inequalities.

To proceed with the construction, we need the following basic data
for X.

Definition 5.4. Denote by mj, rj , tj (0 ≤ j ≤ l), the framing, the
rotation number, and the Thurston–Bennequin number of Kj of X, re-
spectively. Let gj (0 ≤ j ≤ k) be the genus of a smoothly embedded
surface in the sub 1-handlebody of X spanned by Kj . Note that the
attaching circle of every Kj (0 ≤ j ≤ k) spans a surface because alge-
braically it does not go over any of the 1-handles (cf. [23]).

Using this data, we here define integers for the construction. Roughly
speaking, the following conditions require that each integer is sufficiently
large.
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Definition 5.5. Put q0 = 0. In the l ≥ 1 case, define non-negative
integers qj (1 ≤ j ≤ l) so that they satisify the following conditions.

(i) qj + (tj − 1)−mj ≥ 0, for each 1 ≤ j ≤ l.

(ii) qj + (tj − 1)−mj ≥ |rj |, for each 1 ≤ j ≤ k (in the k ≥ 1 case).

Definition 5.6. Put p−1 = p0 = 0. Define an increasing integer
sequence pi (i ≥ 1) so that it satisfies the following conditions.

(i) pi > pi−1, for each i ≥ 1.

(ii) p1 + (t0 − 1)−m0 ≥ 0.

(iii) 2p1 + (t0 − 1)−m0+|r0|+mj > 2(gj + qj)− 2, for each 0 ≤ j ≤ k.

(iv) 2pi + (t0 − 1)+|r0|> 2(g0 + pi−1)− 2, for each i ≥ 1.

Remark 5.7. (1) In the case where t0 − 1+|r0|= 2g0 − 2, condition
(iv) in Definition 5.6 reduces to (i).

(2) In Definitions 5.4, 5.5 and 5.6; we do not require either the maxi-
malities or the minimalities of those numbers; therefore we can easily
define those numbers.

(3) We don’t need to calculate gj and rj for k + 1 ≤ j ≤ l, we do not
use them.

We next adjust the Thurston–Bennequin numbers (and the rotation
numbers) of 2-handles except K0. Figures 11–13 describe the local oper-
ations applied to 2-handles Kj (0 ≤ j ≤ l) of X, through the following
Steps 2–5 (without specifying Legendrian diagrams).

Definition 5.8. Let X̂ be the Legendrian handlebody obtained from
X by applying the above Step 1 and the Step 2 below. (Skip Step 2 when
l = 0.)

Step 2. Apply a W+(qj)-modification and add zig-zags to each 2-
handle Kj (1 ≤ j ≤ l) of X so that the following conditions are satisfied
(recall Proposition 4.7, Lemma 3.5 and the conditions of qj). Let δj
(1 ≤ j ≤ l, qj 6= 0) be the auxiliary 2-handle to the above W+(qj)-
modification. In the l > k case, also add a zig-zag to each δj (k + 1 ≤
j ≤ l) as follows (ignore (iii) when k = l).

(i) tb(Kj) = mj + 1 (1 ≤ j ≤ l).

(ii) |r(Kj)| ≤ 1 (1 ≤ j ≤ k).

(iii) tb(δj) = 1 (k + 1 ≤ j ≤ l, qj 6= 0)

Remark 5.9. Note that the Thurston–Bennequin number of every

2-handle of X̂ except K0 and all of δj (1 ≤ j ≤ k, qj 6= 0) is one more
than its framing.

In the rest of this section, fix a positive integer n.

Definition 5.10. Apply Steps 3, 4, and 5, and define X
(n)
0 then X

(n)
i

and γi as follows.
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Step 3. Define X
(n)
0 as the Legendrian handlebody obtained from

X̂ by applying W−(p1)-, W
−(p2)-, . . . , W

−(pn)-modifications to the
2-handle K0.

Step 4. In the l ≥ 1 case, define X
(n)
−1 as the Legendrian han-

dlebody obtained from X
(n)
0 by replacing every W+(qj)-modification

(1 ≤ j ≤ l, qj 6= 0) applied in Step 2 with the corresponding W−(qj)-
modification. In this case, we also skip the zig-zag operations in Step 2.

In the l = 0 case, put X
(n)
−1 := X

(n)
0 .

Step 5. Define X
(n)
i (1 ≤ i ≤ n) as the Legendrian handlebody

obtained from X
(n)
0 by replacing the W−(pi)-modification applied in

Step 3 with the corresponding W+(pi)-modification. Let γi (1 ≤ i ≤ n)

denote the auxiliary 2-handle ofX
(n)
i to the above W+(pi)-modification.

By adding zig-zags to K0 and γi, we can assume that K0 and γi of each

Legendrian handlebodyX
(n)
i (1 ≤ i ≤ n) satisfy the following conditions

(i)–(v) (recall Proposition 4.7 and Lemma 3.5). (Namely, we add zig-zags

so that the value |〈c1(X
(n)
i ), [K0 − piγi]〉| becomes as large as possible,

see Lemma 5.14.)

(i) tb(K0) = m0 + 1.

(ii) |r(K0)| = pi + (t0 − 1)−m0 + |r0|.

(iii) tb(γi) = 1.

(iv) |r(γi)| = 1.

(v) In the r(K0) 6= 0 case, the sign of r(γi) is opposite to the sign of
r(K0).

We have now finished the construction and here discuss Stein struc-
tures on X

(n)
i .

Remark 5.11. (1) If b2(X) = 1 or (q1, q2, . . . , qk) = 0, then X
(n)
i

(1 ≤ i ≤ n) is now a Stein handlebody.

(2) In the case where b2(X) ≥ 2 and (q1, q2, . . . , qk) 6= 0, X
(n)
i (1 ≤

i ≤ n) is not a Stein handlebody yet, because the Thurston–Bennequin
number of each δj (1 ≤ j ≤ k, qj 6= 0) is still two more than its framing.
We can make each tb(δj) one more than its framing by adding a zig-zag
either upward or downward. Correspondingly, r(δj) becomes −1 or 1.

This process gives various Stein structures on each X
(n)
i (1 ≤ i ≤ n).

We later use this flexibility of Stein structures to simplify adjunction
inequality arguments.

(3) By adding a zig-zag to each δj , X
(n)
0 becomes a Stein handlebody

when the original X is a good Stein handlebody.

(4) X
(n)
−1 is a good Stein handlebody when the original X is a good Stein
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handlebody.

(5) As a smooth handlebody, X
(n)
−1 is obtained from X only by W−-

modifications. Proposition 4.5 thus shows that X can be embedded into

X
(n)
−1 so that the induced homomorphism H∗(X;Z) → H∗(X

(n)
−1 ;Z) is

an isomorphism.

1 2 1 2 1 2

00 0
p1 pi pn

X̂

1 2 1 2 1 2

00 0

Step 3

1 2 1 2 1 2

00

0

K0

K0

K0

K0

X

Step 2 (unchanged)

K0

Step 5
(twisting i-th W)

Step 4 (unchanged)

Xi
(n)  

(1 ≤ i ≤ n)

X−
(n

1
)

X0
(n)

i

p1 pi pn

p1 pi pn

Figure 11. Operations to K0 (ignoring Legendrian diagrams)

5.2. Detecting smooth structures. We next detect the smooth struc-

tures of X
(n)
i ’s, examining the genera of bases of their second homology

groups.

Definition 5.12. Ignore (2) when b2(X) = 1.

(1) Define v
(0)
0 as the element of H2(X

(n)
0 ;Z) given by the 2-handle K0.
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1 2

0

Kj   (1 ≤ j ≤ l,  qj ≠ 0)

Step 3 (unchanged)

j

j

1 2

0

Kj

Kj

Kj

Step 4 (cork twist)

1 2

0

qj

qj

Step 5 (unchanged)

Xi
(n)  

(1 ≤ i ≤ n)X−
(n

1
)

X0
(n)

qj

X̂

X

Step 2

1 2

0j

Kj
qj

Figure 12. Operations to Kj (1 ≤ j ≤ l, qj 6= 0) (ig-
noring Legendrian diagrams)

Kj   (1 ≤ j ≤ l,  qj = 0)

Kj

Kj

Kj

Step 4 (unchanged) Step 5 (unchanged)

Xi
(n)  

(1 ≤ i ≤ n)X−
(n

1
)

X0
(n)

X̂

Step 3 (unchanged)

X

Step 2 (unchanged)

Kj

Figure 13. Operations to Kj (1 ≤ j ≤ l, qj = 0) (ig-
noring Legendrian diagrams)
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Define v
(i)
0 (1 ≤ i ≤ n) as the element of H2(X

(n)
i ;Z) given by the

2-handle K0 − piγi, which denotes the result of K0 by sliding over γi
pi-times so that it does not algebraically go over any 1-handle.

(2) For each 0 ≤ i ≤ n, define v
(i)
j (1 ≤ j ≤ k) as the elements of

H2(X
(n)
i ;Z) given by the 2-handles Kj−qjδj . HereKj−qjδj denotes the

result of Kj by sliding over δj qj-times so that it does not algebraically
go over any 1-handle.

(3) Let v
(−1)
j (0 ≤ j ≤ k) as the element of H2(X

(n)
−1 ;Z) given by the

2-handle Kj.

The Lemma below clearly follows from Proposition 4.3.

Lemma 5.13. (1) For each 0 ≤ i ≤ n, the elements v
(i)
j (0 ≤ j ≤ k)

span a basis of H2(X
(n)
i ;Z) and satisfy the following conditions (ignore

(ii) when k = 0).

(i) v
(i)
0 is represented by a smoothly embedded genus g0 + pi surface,

satisfying v
(i)
0 · v

(i)
0 = m0.

(ii) Each v
(i)
j (1 ≤ j ≤ k) is represented by a smoothly embedded genus

gj + qj surface, satisfying v
(i)
j · v

(i)
j = mj .

(2) v
(−1)
j (0 ≤ j ≤ k) span a basis of H2(X

(n)
−1 ;Z), and each v

(−1)
j

(0 ≤ j ≤ k) is represented by a smoothly embedded genus gj surface

satisfying v
(−1)
j · v

(−1)
j = mj .

We here use the flexibility of Stein structures on X
(n)
i (1 ≤ i ≤ n).

Lemma 5.14. For each integer a0, a1, . . . , ak, there exists a Stein

structure J on the each smooth 4-manifold X
(n)
i (1 ≤ i ≤ n) such that

|〈c1(X
(n)
i , J), a0v

(i)
0 + a1v

(i)
1 + · · ·+ akv

(i)
k 〉|

≥ |a0|(2pi + (t0 − 1)−m0 + |r0|) + |a1q̂1|+ |a2q̂2|+ · · · + |ak q̂k|,

where q̂j = qj − 1 (if qj 6= 0) and q̂j = 0 (if qj = 0). Furthermore, the

equality holds in the k = 0 case (ignoring the last k terms).

Proof. Recall Steps 2 and 5 and Remark 5.11.(2). By appropriately

adding a zig-zag to each δj (1 ≤ j ≤ k) of X
(n)
i , Theorem 3.3 easily

gives the required claim. q.e.d.

Proposition 5.15. For any 1 ≤ i ≤ n, there exists no basis u0, u1,

. . . , uk of H2(X
(n)
i ;Z) that satisfies the following conditions (ignore (ii)

when b2(X) = 1).

(i) u0 is represented by a smoothly embedded surface with its genus

equal to or less than g0 + pi−1 and satisfies u20 = m0.
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(ii) Each uj (1 ≤ j ≤ k) is represented by a smoothly embedded surface

of genus gj + qj and satisfies u2j = mj .

Proof. Fix i with 1 ≤ i ≤ n. Suppose that a basis u0, u1, . . . , uk of

H2(X
(n)
i ;Z) satisfies the above conditions (i) and (ii). We can assume

that the genus of u0 is g0+pi−1, by taking a connected sum with a null-

homologous surface in X
(n)
i . For each 0 ≤ j ≤ k, put uj := a

(j)
0 v

(i)
0 +

a
(j)
1 v

(i)
1 + · · ·+a

(j)
k v

(i)
k . Lemma 5.14 and the adjunction inequality for u0

give the inequality

2(g0 + pi−1)− 2 ≥ |a
(0)
0 |(2pi + (t0 − 1)−m0 + |r0|)

+ |a
(0)
1 q̂1|+ |a

(0)
2 q̂2|+ · · ·+ |a

(0)
k q̂k|+m0.

This inequality and condition (iv) of pi’s in Definition 5.6 easily show

0 > (|a
(0)
0 | − 1)(2pi + (t0 − 1)−m0 + |r0|).

Conditions (i) and (ii) of pi’s in Definition 5.6 thus give a
(0)
0 = 0. When

k = 0, this fact contradicts the assumption, hence the required claim
follows. We thus assume k ≥ 1.

Lemma 5.14 and the adjunction inequality for uj (1 ≤ j ≤ k) give

2(gj + qj)− 2 ≥ |a
(j)
0 |(2pi + (t0 − 1)−m0 + |r0|)

+ |a
(j)
1 q̂1|+ |a

(j)
2 q̂2|+ · · ·+ |a

(j)
k q̂k|+mj .

This inequality and conditions (i) and (iii) of pi’s in Definition 5.6 easily
give the following.

0 > (|a
(j)
0 | − 1)(2pi + (t0 − 1)−m0 + |r0|).

Conditions (i) and (ii) of pi’s in Definition 5.6 thus give a
(j)
0 = 0. We thus

have a
(0)
0 = a

(1)
0 = · · · = a

(k)
0 = 0. This fact contradicts the assumption

that u0, u1, . . . , uk is a basis. Hence, the required claim follows. q.e.d.

To summarize, here we list up properties of X
(n)
i . Beware that X0 in

Theorem 1.1 corresponds to X
(n)
−1 in this section and that Xi (1 ≤ i ≤ n)

corresponds to X
(n)
i .

Theorem 5.16. Let X be any 2-handlebody with b2(X) ≥ 1. Fix

n ≥ 1. Let X
(n)
i (−1 ≤ i ≤ n) denote the corresponding Legendrian

handlebodies in Definition 5.10. Then the following properties hold.

(1) The fundamental group, the integral homology groups, the integral

homology groups of the boundary, and the intersection form of each X
(n)
i

(−1 ≤ i ≤ n) are isomorphic to those of X.

(2) X
(n)
i (0 ≤ i ≤ n) are mutually homeomorphic but not diffeomorphic

with respect to the given orientations. When either the following (i) or
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(ii) holds, they are mutually non-diffeomorphic with any orientations.

The same properties also hold for X
(n)
i (−1 ≤ i ≤ n, i 6= 0).

(i) b2(X) = 1.

(ii) The intersection form of X is represented by the zero matrix.

(3) Each X
(n)
i (1 ≤ i ≤ n) admits a Stein structure. X

(n)
−1 and X

(n)
0

admit Stein structures when X is a good Stein handlebody.

(4) X can be embedded into X
(n)
−1 so that the induced homomorphism is

an isomorphism between the integral homology groups of X and X
(n)
−1 .

Therefore X
(n)
−1 does not admit any Stein structure when X cannot be

embedded into any simply connected minimal symplectic 4-manifold with

b+2 > 1 (or any minimal complex surface of general type with b+2 > 1)
so that the induced homomorphism between the second homology groups

is injective.

(5) Each X
(n)
i (−1 ≤ i ≤ n) can be embedded into X.

(6) There exist disjoint copies Ci (1 ≤ i ≤ n) of W1 in X
(n)
0 such that

X
(n)
i is the cork twist of X

(n)
0 along (Ci, f1).

Proof. Proposition 4.2 gives (1). For (3), see Remark 5.11. Proposi-
tion 4.5 gives (5). Construction shows (6).

We next check (2). X
(n)
i (−1 ≤ i ≤ n) are mutually homeomorphic

because they are related to each other by combinations of cork twists.
Since pi (i ≥ 0) is a strictly increasing sequence, Lemma 5.13 and Propo-
sition 5.15 show the first claim. The second claim in the (ii) case also
follows from Lemma 5.13 and Proposition 5.15. In the case b2(X) = 1
and m0 6= 0, there are no orientation-reversing homeomorphisms be-
tween them. Hence they cannot be orientation-reversing diffeomorphic.

Last, we show (4). Remark 5.11.(5) gives the first claim of (4). Sup-

pose that X
(n)
−1 admits a Stein structure. Then X

(n)
−1 admits a Stein

handlebody presentation. For every 2-handle of this Stein handlebody,
attach a 2-handle along its −2-framed meridian so that the result is
also a Stein handlebody. This new Stein handlebody can be embedded
into a simply connected minimal symplectic 4-manifold and a mini-
mal complex surface of general type (see Theorem 3.6). Note that, in
each of these closed 4-manifolds, the image of every non-zero second

homology class of X
(n)
−1 algebraically intersects with a sphere with its

self-intersection number −2. This fact implies the injectivity of the in-

duced homomorphism between the second homology groups of X
(n)
−1 and

the closed manifold. The second claim of (4) thus easily follows. q.e.d.

For a given embedding of a 4-manifold, applying the algorithm to its
complement, we get arbitrary many exotic embeddings. In the following,
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beware that Y0 in Theorem 1.2 corresponds to Y
(n)
−1 and that Yi (1 ≤

i ≤ n) corresponds to Y
(n)
i .

Theorem 5.17. Let Z and Y be compact connected oriented smooth

4-manifolds (possibly with boundary). Suppose that Y is embedded into Z

and that its complement X := Z− intY is a 2-handlebody with b2(X) ≥
1. Fix n ≥ 1. Then there exist mutually diffeomorphic compact connected

oriented smooth 4-manifolds Y
(n)
i (−1 ≤ i ≤ n) embedded into Z with

the following properties.

(1) The pairs (Z, Y
(n)
i ) (0 ≤ i ≤ n) are mutually homeomorphic but

non-diffeomorphic with respect to the given orientations. When either

the following (i) or (ii) holds, they are mutually non-diffeomorphic for

any orientations. The same properties also hold for the pairs (Z, Y
(n)
i )

(−1 ≤ i ≤ n, i 6= 0).

(i) b2(X) = 1.

(ii) The intersection form of X is represented by the zero matrix.

(2) The fundamental group, the integral homology groups, the integral

homology groups of the boundary, and the intersection form of each Y
(n)
i

(−1 ≤ i ≤ n) are isomorphic to those of Y .

(3) Each complement X
(n)
i := Z − intY

(n)
i (−1 ≤ i ≤ n) is the one in

Theorem 5.16, corresponding to the above X.

Proof. Let X
(n)
i (−1 ≤ i ≤ n) denote the manifold in Theorem 5.16,

corresponding to the above X. Replace every W−-modification of X
(n)
0

applied in Step 3 with the correspondingW+-modification. As a smooth

handlebody, the result of X
(n)
0 is thus obtained from X only by W+-

modifications. Applying Proposition 4.5, embed this manifold into X.

Proposition 4.5 thus gives an embedding of each X
(n)
i (−1 ≤ i ≤ n) into

X (and hence Z) by twisting W ’s of the above manifold. Put Y
(n)
i :=

Z − intX
(n)
i (−1 ≤ i ≤ n). Now the required claims easily follow from

Proposition 4.5 and Theorem 5.16. q.e.d.

We now have Theorems 1.1 and 1.2 and Corollary 1.4.

Proofs of Theorems 1.1 and 1.2 and Corollary 1.4. These clearly follow
from Theorems 5.16 and 5.17. q.e.d.

Remark 5.18. (1) Suppose that ∂X is diffeomorphic to #mS1 × S2

(m ≥ 0). Since #mS1 × S2 has a unique Stein filling, each ∂X
(n)
i is not

diffeomorphic to ∂X, so in particular, each X
(n)
i is not homeomorphic

to the original X, in this case.

(2) By more restricting the conditions of pi (i ≥ 1) in Definition 5.6,
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we can easily show the following: X
(n)
0 produces 2n − 1 mutually home-

omorphic but non-diffeomorphic compact Stein 4-manifolds by natural
combinations of cork twists.

Remark 5.19 (Variants of the construction). There are many vari-
ants of the construction; here we remark just a few of them.

(1) We can cut condition (ii) of qj in Definition 5.5, by choosing each
pi (i ≥ 1) larger. In this case, we use flexibility of zig-zag operations

of K0 and γi, instead of δj . Namely, we equip each X
(n)
i (1 ≤ i ≤ n)

with two Stein structures so that 〈c1(X
(n)
i ), v

(i)
0 〉 takes two different val-

ues, namely, a large positive number and a large negative number. This
makes us possible to apply similar adjunction inequality arguments.

(2) Though we used only W1 for the construction, many other corks
(e.g., Wn of [6]) also work. Taking band sums with knots with suffi-
ciently large Thurston–Bennequin numbers are also helpful. We can use
band sum operations in Step 2, instead of W+-modifications, though
Theorem 5.16.(4) and Theorem 5.17 are not guaranteed in this case.

Remark 5.20. Once we apply Step 1 to any given X and calculate
the data of X in Definition 5.4, we immediately get a (usually large)

smooth handle diagram of each X
(n)
i , as shown in Figures 11–13. See

Subsection 9.1 for the simplest case. Though we can also immediately

get a Legendrian (Stein) handlebody diagram of each X
(n)
i , it usually a

very large diagram.

6. Strengthening the construction

In Section 5, we did not completely exclude the possibility that some

of X
(n)
i ’s are orientation-reversing diffeomorphic, because the argument

was simplified and the conditions of pi’s in Definition 5.6 were relaxed.
In this section, we exclude this possibility by restricting the conditions
of pi’s. We use the same symbols as in Section 5.

Definition 6.1. Let X be any 2-handlebody with b2 ≥ 1. Fix n ≥ 1.

(1) In the b2(X) = 1 case, put X̂
(n)
i := X

(n)
i (−1 ≤ i ≤ n), where X

(n)
i

are the manifolds as in Theorem 5.16.

(2) In the b2(X) ≥ 2 case, assume that pi’s (i ≥ −1) in Definition 5.6

further satisfy the following conditions (v) and (vi). Then put X̂
(n)
i :=

X
(n)
i (−1 ≤ i ≤ n).

(v) 2p1 + (t0 − 1)−m0+|r0|−mj > 2(gj + qj)− 2, for each 0 ≤ j ≤ k.

(vi) 2pi + (t0 − 1)− 2m0+|r0|> 2(g0 + pi−1)− 2, for each i ≥ 1.
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Let v
(i)
j (1 ≤ j ≤ k) denote the basis ofH2(X̂

(n)
i ;Z) in Definition 5.12.

Since we defined X̂
(n)
i as a special case of X

(n)
i , the same properties as in

Lemma 5.13 hold. For Proposition 5.15, we can easily get the following
stronger claim.

Proposition 6.2. Fix n ≥ 1. For any 1 ≤ i ≤ n, there exists no

basis u0, u1, . . . , uk of H2(X̂
(n)
i ;Z) that satisfies the following conditions

(ignore (ii) when b2(X) = 1).

(i) u0 is represented by a smoothly embedded surface with its genus

equal to or less than g0 + pi−1 and satisfies |u20| = |m0|.

(ii) Each uj (1 ≤ j ≤ k) is represented by a smoothly embedded surface

of genus gj + qj and satisfies |u2j | = |mj |.

Using this proposition, we easily get the following strengthened the-
orems.

Theorem 6.3. Let X be any 2-handlebody with b2(X) ≥ 1. Fix n ≥ 1.

Let X̂
(n)
i (−1 ≤ i ≤ n) denote the corresponding Legendrian handlebody

in Definition 6.1. Then the following properties hold.

(1) X̂
(n)
i (0 ≤ i ≤ n) are mutually homeomorphic, but mutually non-

diffeomorphic for any orientations. The same property also holds for

X̂
(n)
i (−1 ≤ i ≤ n, i 6= 0).

(2) X̂
(n)
i (−1 ≤ i ≤ n) has the same properties as those of X

(n)
i (−1 ≤

i ≤ n) in Theorem 5.16.

Theorem 6.4. Let Z and Y be compact connected oriented smooth 4-
manifolds (possibly with boundary). Suppose that Y is embedded into Z

and that its complement X := Z− intY is a 2-handlebody with b2(X) ≥
1. Fix n ≥ 1. Then there exist mutually diffeomorphic compact connected

oriented smooth 4-manifolds Ŷ
(n)
i (−1 ≤ i ≤ n) embedded into Z with

the following properties.

(1) The pairs (Z, Ŷ
(n)
i ) (0 ≤ i ≤ n) are mutually homeomorphic, but

mutually non-diffeomorphic with any orientations. The same property

also holds for the pairs (Z, Ŷ
(n)
i ) (−1 ≤ i ≤ n, i 6= 0).

(2) The fundamental group, the integral homology groups, the integral

homology groups of the boundary, and the intersection form of every

Ŷ
(n)
i (−1 ≤ i ≤ n) are isomorphic to those of Y .

(3) Each complement X̂
(n)
i := Z − int Ŷ

(n)
i (−1 ≤ i ≤ n) is as in the

Theorem 6.3, corresponding to the above X.
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7. The contact structures on the boundary

In this section, we discuss the induced contact structures on the

boundary ∂X
(n)
i in the b2(X) = 1 case. We use the same symbols as in

Section 5.

Definition 7.1. LetX be any 2-handlebody with b2(X) = 1. Assume
that the intersection form of X is non-zero (i.e., m0 6= 0). Fix n ≥ 1. Let

X
(n)
i and v

(i)
0 (1 ≤ i ≤ n) denote the corresponding Stein handlebody

in Theorem 5.16 and the generator of H2(X
(n)
i ;Z) in Definition 5.12,

respectively. Let ξ
(n)
i (1 ≤ i ≤ n) be the contact structure on ∂X

(n)
i

induced by the Stein structure on X
(n)
i .

Lemma 7.2. d3(ξ
(n)
i ) (1 ≤ i ≤ n) are mutually different.

Proof. Lemma 5.14 shows |〈c1(X
(n)
i ), v

(i)
0 〉| = 2pi + t0 − 1 − m0 +

|r0|. The value |〈c1(X
(n)
i ), v

(i)
0 〉| hence strictly increases when i increases.

Lemma 3.7 thus shows the claim. q.e.d.

The following proposition gives Corollary 1.3.

Proposition 7.3. Fix n ≥ 1. Each smooth 4-manifold X
(n)
i (1 ≤

i ≤ n) admits no Stein structure compatible with ξ
(n)
j for any j with

i < j ≤ n.

Proof. Suppose that someX
(n)
i admits a Stein structure J compatible

with ξ
(n)
j for some j with i < j ≤ n. Then the corresponding first Chern

class c1(X
(n)
i , J) satisfies |〈c1(X

(n)
i , J), v

(i)
0 〉| = |〈c1(X

(n)
j ), v

(j)
0 〉|, because

d3(ξ
(n)
j ) is determined by this value (see Lemma 3.7). The adjunction

inequality for the Stein 4-manifold (X
(n)
i , J) thus easily shows that v

(i)
0

cannot be represented by any smoothly embedded surface with genus
less than or equal to g0+ pj−1 (see the proof of Proposition 5.15). Since

pj−1 ≥ pi, this fact contradicts the fact that v
(i)
0 is represented by a

surface of genus g0 + pi (see Lemma 5.13). q.e.d.

8. Infinitely many disjoint corks in noncompact 4-manifolds

In [9], we constructed infinitely many disjoint embeddings of the cork
W1 into a simply connected noncompact smooth 4-manifold so that this
noncompact 4-manifold produces infinitely many different exotic smooth
structures by twisting each copy of W1. The second betti number of the
noncompact 4-manifold is infinite. In this section, we construct such
noncompact 4-manifolds for any finite second betti number larger than
zero. Namely, we prove the following.
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Theorem 8.1. Let X be any compact 2-handlebody with b2(X) ≥ 1.
Then there exist infinitely many noncompact 4-manifolds Xi (i ≥ 0)
and infinitely many disjointly embedded copies Ci (i ≥ 1) of W1 into X0

with the following properties.

(1) Each Xi (i ≥ 1) is the cork twist of X0 along (Ci, f1).

(2) Xi (i ≥ 0) are mutually homeomorphic but not diffeomorphic.

(3) The fundamental group, the integral homology groups, and the in-

tersection form of every Xi (i ≥ 0) are isomorphic to those of X.

(4) Each Xi (i ≥ 0) can be embedded into X.

In this section, we use the same symbols as in Section 6 (and 5). Let

X be any compact 2-handlebody with b2(X) ≥ 1. Let X̂ and X̂
(n)
i (0 ≤

i ≤ n) denote the compact 2-handlebodies in Definitions 5.8 and 6.1,
respectively, corresponding to this X. Recall that, for each n ≥ 1, the

smooth 4-manifold X̂
(n)
0 is obtained from X̂ by attaching n pairs of 1-

and 2-handles to the boundary (i.e., byW−(p1)-,W
−(p2)-, . . . ,W

−(pn)-

modifications to K0). We thus have an infinite sequence X̂
(1)
0 ⊂ X̂

(2)
0 ⊂

· · · ⊂ X̂
(n)
0 ⊂ X̂

(n+1)
0 ⊂ · · · . We are now ready to define noncompact

4-manifolds. See also Figure 14.

1 2 1 2 1 2

00 0
p2

1 2

0
p1 pi pn

X̂

K0

K0

X̂0
( )

X̂i
( )

1 2 1 2 1 2

00

0

p2

1 2

0
p1 pi pn

K0

twisting i-th W1

Figure 14. X̂
(∞)
i

Definition 8.2. Let X̂
(∞)
0 be the noncompact smooth 4-manifold

obtained by the inductive limit of the above sequence. Let X̂
(∞)
i (i ≥ 1)

be the noncompact smooth 4-manifold obtained from X̂
(∞)
0 by the cork

twist along (W,f) where this W is the one given by the above W−(pi)-
modification to K0.
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We can now easily prove the above theorem.

Proof of Theorem 8.1. Put Xi := X̂
(∞)
i . (1) is obvious from the defini-

tion of X̂
(∞)
i .

(2). Since each X̂
(∞)
i is obtained from X̂

(i+1)
i by applying infinitely

many W−-modifications, Proposition 4.5 implies that each X̂
(∞)
i (i ≥

0) can be embedded into X̂
(i+1)
i so that the induced homomorphism

between the second homology groups is an isomorphism. (Thus this fact
shows (4).) It is thus easy to check that the claims similar to Lemma 5.13

and Proposition 6.2 hold for X̂
(∞)
i (i ≥ 0). This shows that X̂

(∞)
i (i ≥ 0)

are mutually non-diffeomorphic for any orientations. On the other hand,

X̂
(∞)
i (i ≥ 0) are mutually homeomorphic because they are related by

cork twists.

(3). The well-known properties of the inductive limit operation and

Theorem 6.3.(1) show the i = 0 case. Since X̂
(∞)
i (i ≥ 1) is a cork twist

of X̂
(∞)
0 , the i ≥ 1 case also follows. q.e.d.

Remark 8.3. The corresponding result holds when we use X
(n)
i in-

stead of X̂
(n)
i , though the orientation problem as in Theorem 5.16 re-

mains, in this case.

9. Examples

9.1. The simplest example. In this subsection, we apply the algo-
rithm in Section 5 for the simplest example. Actually, our algorithm is
a generalization of this example. We also demonstrate how to show the

(non-) existence of Stein structures on X
(n)
−1 for the example. We use the

same symbols as in Section 5.

m

Figure 15. U(m)

Let U(m) be the 2-handlebody in Figure 15. We here apply Step 1
in Section 5 to this U(m). There are infinitely many Legendrian han-
dlebody presentations of U(m), and we can use any one. We here adopt
the one in Figure 16, where d := −m − 1 (m ≤ −2) and d := 1
(m ≥ −1). In this case, the symbols in Section 5 correspond to the
following: X = U(m), and K0 is the m-framed unknot in the figure,
k = 0, m0 = m, t0 = −d, r0 = d − 1, and g0 = 0. Put p−1 = p0 = 0,
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m

d

Figure 16. A Legendrian handlebody presentation of U(m)

p1 = 1 (m ≤ −2), p1 = m + 2 (m ≥ −1), and pi = p1 + i − 1 (i ≥ 2).
This sequence pi (i ≥ −1) satisfies the conditions in Definition 5.6.

We next apply Steps 3–5 in Section 5 (Step 2 is skipped in this

case). Denote by U(m)
(n)
i the Legendrian handlebody corresponding

to X
(n)
i for U(m). A smooth handlebody diagram of U(m)

(n)
i is given

in Figures 17 and 18. Namely, U(m)
(n)
i (1 ≤ i ≤ n) is obtained from

U(m)
(n)
0 (= U(m)

(n)
−1 ) by exchanging the dot and 0 of the ith W1 com-

ponent. Theorem 5.16 clearly holds for these U(m)
(n)
i (−1 ≤ i ≤ n). In

particular, U(m)
(n)
i (0 ≤ i ≤ n) are mutually homeomorphic but not

diffeomorphic, where we fix n ≥ 1.

m

1 2 1 2 1 2

000
p1 p2 pn

Figure 17. A smooth handle diagram of U(m)
(n)
0 (= U(m)

(n)
−1 )

m

1 2 1 2 1 2

0

0

0
p1 pi pn

Figure 18. A smooth handle diagram of U(m)
(n)
i (1 ≤

i ≤ n)

Finally, we discuss the (non-) existence of Stein structures on U(m)
(n)
−1 (=

U(m)
(n)
0 ).
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(1) The m ≤ −2 case. In this case, U(m) is a good Stein handlebody;

hence, Theorem 5.16 shows that U(m)
(n)
−1 admits a Stein structure.

(2) The m ≥ −1 case. In this case, U(m) (and thus U(m)
(n)
−1 ) contains

a homologically non-vanishing smoothly embedded sphere with its self-

intersection number m. Adjunction inequality shows that U(m)
(n)
−1 does

not admit any Stein structure.

9.2. Exotic complements in the 4-sphere. In this subsection, we
demonstrate Theorem 5.17 in the (Z, Y ) = (S4,Σg ×D2) (g ≥ 1) case,
where Σg denotes the closed surface of genus g. Figure 19 is a handle-
body diagram of Σg ×D2.

0

g

Figure 19. Σg ×D2 (g ≥ 1)

We can embed Σg×D2 into S4 as follows: Converting the picture into
the dotted circle notation, we get the diagram of Σg ×D2 in Figure 20.
Taking a double, we get the diagram of Σg×S2 in Figure 21. By surgering
Σg×D2 ⊂ Σg×S2, we get the closed 4-manifold in Figure 22, where the
0-framed meridian of the dotted circle, 2g 3-handles, and the 4-handle
constitute Σg × D2. It is easy to see that this closed 4-manifold is S4

(cancel 1/2-handle pair, then cancel 2g 2/3-handle pairs).

0

g

Figure 20. Σg ×D2 (g ≥ 1)

We thus have an embedding of Σg×D2 into S4 such that its comple-
ment is the 2-handlebody (call Xg) with b2 ≥ 1 in Figure 23.

Applying Theorem 5.17 to the above embedding, we get the following
proposition. Note that the intersection form of Xg is represented by the
zero matrix.
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0 0

g

2g 3-handles

4-handle

Figure 21. Σg × S2 (g ≥ 1)

0 0

0

g

0 0 0 0 2g 3-handles

4-handle

Figure 22. (surgered Σg × S2) ∼= S4 (g ≥ 1)

0 0

g

0 0 0 0

Figure 23. Xg := S4 − int (Σg ×D2) (g ≥ 1)

Proposition 9.1. Fix g ≥ 1. For each n ≥ 1, there exist mutually

diffeomorphic compact connected oriented smooth 4-manifolds Yi (0 ≤
i ≤ n) embedded into S4 with the following properties.

(1) The pairs (S4, Yi) (0 ≤ i ≤ n) are mutually homeomorphic but non-

diffeomorphic.

(2) The fundamental group, the integral homology groups, the integral

homology groups of the boundary, and the intersection form of every Yi

(0 ≤ i ≤ n) are isomorphic to those of Σg ×D2.

Remark 9.2. Similarly to the above, we can embed D2-bundle Rk

(k ≥ 1) over #kRP2 with Euler number −2k into S4 and apply our
algorithm to the pair (S4, Rk). While this procedure seems not to give
exotic embeddings of #kRP2, Finashin and Kreck, and Viro [16, 17]
constructed infinitely many exotic embeddings of #10RP2 into S4, by
different methods. See also Finashin [15]. However, it is unclear whether
the complements of (the neighborhoods of) their examples are mutually
homeomorphic but not diffeomorphic.
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10. Exotic non-Stein 4-manifolds and exotic Stein

4-manifolds

In this section, we construct arbitrary many non-Stein 4-manifolds
and arbitrary many Stein 4-manifolds that are mutually homeomorphic
but not diffeomorphic. Namely, we prove the following theorem.

Theorem 10.1. Let X be a 2-handlebody with b2(X) ≥ 1, For each

n ≥ 1, there exist 2-handlebodies XS
i and XN

i (1 ≤ i ≤ n) with the

following properties.

(1) XS
1 ,X

S
2 , . . . ,X

S
n and XN

1 ,XN
2 , . . . ,XN

n are mutually homeomorphic

but non-diffeomorphic.

(2) Every XS
i (1 ≤ i ≤ n) admits a Stein structure, and any XN

i (1 ≤
i ≤ n) admits no Stein structure.

(3) The fundamental groups, the integral homology groups, the integral

homology groups of the boundary, and the intersection forms of every

XS
i and every XN

i (0 ≤ i ≤ n) are isomorphic to those of the boundary

sum X♮U(0). Here U(0) denotes the one in Subsection 9.1.

We prove this theorem, using the examples U(0)
(1)
0 and U(0)

(1)
1 in

subsection 9.1. Figure 24 shows smooth handlebody diagrams of U(0)
(1)
0

and U(0)
(1)
1 .

0

1 2

0
2

0

1 2

0

2

U(0)0
(1)

U(0)1
(1)

Figure 24. U(0)
(1)
0 and U(0)

(1)
1

Definition 10.2. Let X be a 2-handlebody with b2(X) ≥ 1. Fix

n ≥ 1. Let X̂
(n)
i (1 ≤ i ≤ n) be the one in Definition 6.1, corresponding

to this X. We assume that pi’s in Definition 6.1 further satisfy the
following condition.

(iii)′ 2p1 + (t0 − 1)−m0+|r0| > 2.

For each 1 ≤ i ≤ n, put XS
i := X̂

(n)
i ♮U(0)

(1)
1 and XN

i := X̂
(n)
i ♮U(0)

(1)
0

where ♮ denotes the boundary sum.
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Lemma 10.3. (1) Every XS
i (1 ≤ i ≤ n) admits a Stein structure.

(2) Any XN
i (1 ≤ i ≤ n) admits no Stein structure for any orientations.

(3) XS
1 ,X

S
2 , . . . ,X

S
n and XN

1 ,XN
2 , . . . ,XN

n are mutually homeomorphic.

(4) The fundamental groups, the integral homology groups, the integral

homology groups of the boundary, and the intersection forms of every

XS
i and every XN

i (0 ≤ i ≤ n) are isomorphic to those of X♮U(0).

Proof. Every XS
i (1 ≤ i ≤ n) is clearly a Stein handlebody, hence ad-

mits a Stein structure. Since U(0)
(1)
0 (hence XN

i ) contains a homologi-
cally non-vanishing smoothly embedded sphere with its self-intersection
number 0, the adjunction inequality shows that XN

j (1 ≤ j ≤ n) does

not admit any Stein structure for any orientations. SinceXS
1 ,X

S
2 , . . . ,X

S
n

and XN
1 ,XN

2 , . . . ,XN
n are mutually related by cork twists, the claim (3)

follows. The definitions of U(0)
(1)
j , XS

i and XN
i and Theorem 6.3 show

claim (4). q.e.d.

Lemma 10.4. XS
i (1 ≤ i ≤ n) are mutually non-diffeomorphic for

any orientations.

Proof. The constructions in Sections 5 and 6 and the above condi-

tion (iii)′ show that each XS
i can be diffeomorphic to X̂♮U(0)

(n)

i , which
denotes the Legendrian handlebody in Theorem 6.3 corresponding to
X♮U(0). Theorem 6.3 thus shows that XS

i (1 ≤ i ≤ n) are mutually
non-diffeomorphic for any orientations. q.e.d.

Let v
(i)
j (0 ≤ j ≤ k) denote the elements of H2(X̂

(n)
i ;Z) in Defini-

tion 5.12, corresponding to X̂
(n)
i in Definition 10.2 (recall that X̂

(n)
i is de-

fined as a special case of X
(n)
i ). Let w be the generator ofH2(U(0)

(1)
0 ;Z).

Let gj (0 ≤ j ≤ k) and mj, qj (0 ≤ j ≤ l) denote the integers in Sec-

tion 5, corresponding to the above X̂
(n)
i . Then the following lemma holds

similarly to Lemma 5.13.

Lemma 10.5. For each 0 ≤ i ≤ n, the elements v
(i)
0 , v

(i)
1 , . . . , v

(i)
k , w

span a basis of H2(X
N
i ;Z) and satisfy the following conditions (ignore

(ii) when k = 0).

(i) v
(i)
0 is represented by a smoothly embedded surface of genus g0+pi

and satisfies v
(i)
0 · v

(i)
0 = m0.

(ii) v
(i)
j (1 ≤ j ≤ k) is represented by a smoothly embedded surface of

genus gj + qj and satisfies v
(i)
j · v

(i)
j = mj.

(iii) w is represented by a smoothly embedded sphere and satisfies

w2 = 0.
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We can easily check the following lemma similarly to Propositions 5.15
and 6.2.

Lemma 10.6. For any 1 ≤ i ≤ n, there exists no basis u0, u1, . . . , uk+1

of H2(X
N
i ;Z) that satisfies the following conditions (ignore (ii) when

b2(X) = 1).

(i) u0 is represented by a smoothly embedded surface with its genus

equal to or less than g0 + pi−1 and satisfies u20 = |m0|.

(ii) Each uj (1 ≤ j ≤ k) is represented by a smoothly embedded surface

of genus gj + qj and satisfies u2j = |mj |.

(iii) uk+1 is represented by a smoothly embedded sphere and satisfies

u2k+1 = 0.

Proof. Suppose that such a basis u0, u1, . . . , uk+1 exists. Then each

uj (0 ≤ j ≤ k + 1) is a linear combination of v
(i)
0 , v

(i)
1 , . . . , v

(i)
k , w by

Lemma 10.5. Since U(0) can be embedded into the 4-ball, Proposi-

tion 4.5 shows that U(0)
(1)
0 can be embedded into the 4-ball. Thus,

each XN
i can be embedded into X̂

(n)
i so that w is sent to 0 and that

v
(i)
0 , v

(i)
1 , . . . , v

(i)
k are sent identically. Therefore we can apply the same

argument as Propositions 5.15 and 6.2, and easily get the required claim.
q.e.d.

We can now easily prove Theorem 10.1.

Proof of Theorem 10.1. Lemma 10.3 gives the claims (2) and (3).
Lemma 10.3 also shows that, for any i, j, two 4-manifolds XS

i and XN
j

are not diffeomorphic for any orientations. Since the sequence pi (i ≥ 0)
is strictly increasing, Lemmas 10.5 and 10.6 show that XN

i (1 ≤ i ≤ n)
are mutually non-diffeomorphic for any orientations. Lemmas 10.4 and
10.3.(3) thus give claim (1). q.e.d.

Remark 10.7. Though we used U(0)
(1)
j to defineXS

i andXN
i , we can

similarly define XS
i and XN

i , using U(−1)
(1)
j . Put XS

i := X̂
(n)
i ♮U(−1)

(1)
1

and XN
i := X̂

(n)
i ♮U(−1)

(1)
0 , where we assume that pi’s satisfy

(iii)′′ 2p1 + (t0 − 1)−m0+|r0|−1 > 0,

instead of (iii)′ in Definition 10.2. In this case, Theorem 10.1 also holds,
where we replace X♮U(0) with X♮U(−1) in claim (3). Moreover, each
XN

i does admit a Stein structure after blowing down.

We here give an outline of this proof. The claim corresponding to
Lemmas 10.3, 10.4, and 10.5 clearly holds. However, the claim corre-
sponding to Lemma 10.6 is not clear, because U(−1) cannot be embed-

ded into the 4-ball. Here notice that U(−1)
(1)
0 contains a 2-sphere with

the self-intersection number −1, and that the blowdown of U(−1)
(1)
0 still
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has a Stein handlebody presentation. Using this fact, we can prove the
claim corresponding to Lemma 10.6 as follows. Since the blowdown of
XN

i is a Stein handlebody, we can embed it into a minimal complex sur-
face of general type (for this, the property similar to Theorem 3.3 holds;
cf. [23]). Then use the blowup formula and the adjunction inequality
and apply the argument in the proof of Lemma 10.6.

2-handlebodies give a large class of 4-manifolds with boundary. Ac-
tually, we easily get the following.

Corollary 10.8. (1) For any finitely presented group G, there exist

arbitrary many compact Stein 4-manifolds and arbitrary many non-Stein

4-manifolds such that they are mutually homeomorphic but not diffeo-

morphic and that their fundamental groups are isomorphic to G.

(2) For any integral symmetric bilinear form Q over any integral free

module, there exist arbitrary many simply connected compact Stein 4-
manifolds such that they are mutually homeomorphic but not diffeomor-

phic and that their intersection forms are isomorphic to Q.
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