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PARALLEL TRACTOR EXTENSION AND AMBIENT

METRICS OF HOLONOMY SPLIT G2

C. Robin Graham & Travis Willse

Abstract

The holonomy of the ambient metrics of Nurowski’s conformal
structures associated to generic real-analytic 2-plane fields on ori-
ented 5-manifolds is investigated. It is shown that the holonomy
is always contained in the split real form G2 of the exceptional Lie
group, and is equal to G2 for an open dense set of 2-plane fields
given by explicit conditions. In particular, this gives an infinite-
dimensional family of metrics of holonomy equal to split G2. These
results generalize work of Leistner-Nurowski. The inclusion of the
holonomy in G2 is established by proving an ambient extension
theorem for parallel tractors in the context of conformal geometry
in general signature and dimension, which is expected to be of
independent interest.

1. Introduction

The work of Nurowski and Leistner-Nurowski in [N1], [N2], and [LN]
has revealed a beautiful connection between the geometry of generic 2-
plane fields D on manifolds M of dimension 5 and pseudo-Riemannian
metrics of signature (3, 4) in dimension 7 whose holonomy is the split
real form G2 of the exceptional Lie group. (Throughout this paper,
unqualified G2 refers to the split real form. A 2-plane field on a 5-
manifold is said to be generic if its second commutator spans TM at each
point.) The starting point is Nurowski’s observation in [N1] that using
Cartan’s solution [C] of the equivalence problem for such D, one can
invariantly associate to D a conformal class of metrics of signature (2, 3)
on M . The ambient metric construction of [FG1] associates to a real-
analytic conformal structure of signature (p, q) on an odd-dimensional
manifoldM a Ricci-flat metric g̃ of signature (p+1, q+1) on an open set

G̃ ⊂ R+ ×M ×R containing R+ ×M ×{0}. Specializing to Nurowski’s
conformal structures produces a metric of signature (3, 4) associated to
each real-analytic D.
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In [N2], Nurowski identifies g̃ explicitly for a particular 8-parameter
family of generic 2-plane fields on R5. The family is parametrized by
R8 via polynomial equations. This is remarkable in itself, as it is rare
that g̃ can be explicitly identified. Using Nurowski’s formula for g̃,
Leistner-Nurowski show in [LN] that all the metrics in the family satisfy
Hol(g̃) ⊂ G2, and that if one of four of the eight parameters is nonzero,
then Hol(g̃) = G2. In particular, this gives a completely explicit 8-
parameter family of metrics of holonomy G2.

One reason this result is of interest is because metrics whose holo-
nomy equals G2 are not easy to come by. Despite their appearance on
Berger’s list in 1955, it was not until 1987 that Robert Bryant [Br1]
first proved the existence of such metrics. The case of compact G2

has received more attention in the intervening years, due partly to the
role of manifolds of holonomy compact G2 as an M -theory analogue of
Calabi-Yau manifolds. The recent paper [CLSS] constructs metrics of
holonomy compact and split G2 via the Hitchin flow.

The holonomy analysis of Leistner-Nurowski depends crucially on
Nurowski’s explicit formula for g̃. It is natural to ask whether anal-
ogous properties hold for more general D. In this paper we show this is
the case.

For simplicity we take M to be oriented (which is equivalent to D be-
ing oriented). Our results extend easily to the non-orientable case. Our
first main result extends the Leistner-Nurowski holonomy containment
to general real-analytic D.

Theorem 1.1. Let D ⊂ TM be a generic 2-plane field on a con-
nected, oriented 5-manifold M , with M and D real-analytic. Then
Hol(g̃) ⊂ G2.

Our second main result provides sufficient conditions for Hol(g̃) = G2.
We impose two pointwise nondegeneracy conditions involving the Weyl
and Cotton tensors of a representative g of Nurowski’s conformal class.
If x ∈M , define the linear transformation Lx : TxM ×R → ⊗3T ∗

xM by

(1.1) Lx(v, λ) =Wijklv
i + Cjklλ,

where Wijkl denotes the Weyl tensor of g at x and Cjkl the Cotton ten-
sor. The map Lx depends on the choice of representative g of the con-
formal class, but the conformal transformation laws of W and C show
that its range, and therefore also its rank, are invariant under conformal
rescaling. Our first condition is that Lx has rank 6, or equivalently, that
it is injective.

Our second condition depends only on the Weyl tensor; in fact it de-
pends only on the 5-dimensional piece of the Weyl tensor giving Cartan’s
basic curvature invariant A of generic 2-plane fields whose vanishing lo-
cally characterizes the homogeneous model. A is a section of S4D∗,
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i.e. it is a symmetric 4-form on D. For y ∈ M , we say that Ay is 3-
nondegenerate if the only vector X ∈ Dy satisfying A(Y,X,X,X) = 0
for all Y ∈ Dy is X = 0. We will say that Ay is 3-degenerate if it is not
3-nondegenerate.

Theorem 1.2. Let D ⊂ TM be a generic 2-plane field on a con-
nected, oriented 5-manifold M , with M and D real-analytic. Suppose
there exist x, y ∈M such that Lx is injective and Ay is 3-nondegenerate.
Then Hol(g̃) = G2.

In Theorems 1.1 and 1.2, the domain of g̃ is taken to be a sufficiently
small neighborhood of R+ ×M × {0} in R+ ×M × R diffeomorphic to
R+ ×M × R, which is invariant under dilations in the R+ variable.

As regards Theorem 1.2, we also show that if one fixes a point of a 5-
manifoldM , most generic rank 2 distributions satisfy that L is injective
and A is 3-nondegenerate at that point. There is a normal form for
such distributions: with respect to a suitable choice of local coordinates
(x, y, z, p, q), an arbitrary generic 2-plane field can be written locally as

(1.2) D = span{∂q, ∂x + p∂y + q∂p + F∂z}
for a scalar function F such that Fqq is nonvanishing (see [BH]). The
coordinates can be taken so that the chosen point is the origin. For D
in the form (1.2), in [N1], [N2], Nurowski gives a formula for a repre-
sentative metric gF of the conformal class such that the components of
gF and g−1

F are polynomials in F , the derivatives of F of orders ≤ 4,
and F−1

qq , with coefficients which are universal functions of the local
coordinates. From this it is evident that the components of the Weyl
and Cotton tensors of gF can be expressed by similar formulae involving
derivatives of F of orders ≤ 6, resp. ≤ 7.

Proposition 1.3. Let D have the form (1.2) with Fqq nonvanishing.
Each of the sets defined by the conditions rank(L) < 6 at the origin,
or A is 3-degenerate at the origin, is contained in a proper algebraic
subvariety in the space of 7-jets of F at the origin.

The union of these two sets is therefore contained in a proper Zariski
closed set in the space of 7-jets at the origin, so its complement is dense.
The Taylor expansion of F beyond order 7 can be chosen arbitrarily
without affecting these conditions. By Theorem 1.2, if at any point
of M the 7-jet of an F representing D lies in this complement, then
Hol(g̃) = G2. In fact, it is sufficient that the conditions be violated at
different points.

The ambient metrics arising from distributions satisfying the hy-
potheses in Theorem 1.2 thus form an infinite-dimensional family of
metrics whose holonomy is equal to G2. Unfortunately, these metrics
are not complete. They are “global” with respect to M , but arise as



466 C. R. GRAHAM & T. WILLSE

power series in the variable ρ in the last R factor whose radius of con-
vergence may be small.

As explained in Chapter 4 of [FG2], the restriction of an ambient
metric to {ρ > 0} or {ρ < 0} is a cone metric over a base which is
called a Poincaré metric g+. (This is another reason they are not com-
plete.) The G2 holonomy condition on g̃ can be reintepreted in terms
of g+. Depending on the sign chosen for ρ, g+ either has signature
(2, 4) and is nearly Kähler of constant type 1, or has signature (3, 3)
and is nearly para-Kähler of constant type 1. In particular, this gives
new infinite-dimensional families of such metrics. This and other conse-
quences of parallel tractor extension in the Poincaré metric setting will
be the subject of a forthcoming paper by the second author.

The conditions in Theorem 1.2 are far from necessary for Hol(g̃) = G2.
Our goal was to find simple conditions which could be verified at a point
and which give a dense set of 2-plane fields for which Hol(g̃) = G2.
Nurowski’s whole family of examples lies in our complementary set even
though almost all of them satisfy Hol(g̃) = G2. In fact, any D in
Nurowski’s full 8-parameter family has the property that the tensor A
is 2-degenerate at every point: at each point there exists 0 6= X ∈ D
such that A(Y1, Y2,X,X) = 0 for all Y1, Y2 ∈ D.

Theorem 1.2 is proved by quoting Theorem 1.1 and then using argu-
ments developed by Leistner-Nurowski to rule out the possibility that
the holonomy is strictly contained in G2. In order to prove Theorem 1.1,
we establish a result in a much more general setting which we think is
of independent interest. We explain this next.

The analog in conformal geometry of the Levi-Civita connection in
Riemannian geometry is the tractor connection. On a conformal mani-
fold (M, c) of signature (p, q), p+ q = n, there is a canonical rank n+2
vector bundle T , the standard tractor bundle. It carries a metric of
signature (p + 1, q + 1) and a canonical connection, the normal tractor
connection, with respect to which the tractor metric is parallel. The ho-
lonomy of the tractor connection is therefore a subgroup of O(p+1, q+1)
and is referred to as the conformal holonomy of (M, c). Just as interest-
ing classes of pseudo-Riemannian metrics can be described by holonomy
reductions, interesting classes of conformal structures can be described
by conformal holonomy reductions. A result of Hammerl-Sagerschnig
[HS] shows that Nurowski’s conformal structures have precisely such
a characterization: an oriented conformal structure of signature (2, 3)
arises from a generic 2-plane field D if and only if its conformal holo-
nomy is contained in G2.

Just as pseudo-Riemannian holonomy reductions are often character-
ized by the existence of a parallel tensor, conformal holonomy reductions
are often characterized by the existence of a parallel tractor (by which
we here mean a parallel section of ⊗rT ∗ for some r > 0). Since G2
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is defined as the subgroup of GL(7,R) preserving a 3-form compatible
with a metric of signature (3, 4), the Hammerl-Sagerschnig holonomy
criterion can be reinterpreted (as they do) as the condition that (M, c)
admit a parallel tractor 3-form (i.e. a section of Λ3T ∗) compatible with
the tractor metric. Likewise, in order to show that Hol(g̃) ⊂ G2, one
needs to show that there is a parallel 3-form on the ambient space com-
patible with g̃. Thus one is led to the problem of constructing a parallel
3-form on the ambient space given a parallel tractor 3-form.

There are several constructions of the standard tractor bundle and its
metric and connection. These were originally defined by T. Y. Thomas
in [T] in language that predates the definition of a vector bundle. The
first modern treatment is [BEG]. The paper [ČG1] explains the re-
lation between tractors and the ambient construction. Recall that the
ambient metric g̃ is defined on an open subset G̃ ⊂ R+ ×M × R con-

taining R+ ×M × {0}. The hypersurface G = R+ ×M × {0} ⊂ G̃ can
be viewed as an R+-bundle over M . A tractor (section of T ) on M can

be regarded as a section of the bundle T G̃|G over G with a particular
homogeneity with respect to the R+-dilations. The tractor metric and
connection can be realized as the restriction to G of the ambient metric
g̃ and its Levi-Civita connection. That is, the restriction to G of a ten-

sor field on G̃ homogeneous of the correct degree with respect to the R+

dilations defines a tractor field on M . The condition that the tractor
field is parallel with respect to the tractor connection is precisely the
condition that the restriction to G of the tensor field have zero covariant
derivative with respect to the ambient connection when the differentia-
tions are taken in directions tangent to G. Thus the problem described
above of constructing a parallel 3-form on the ambient space given a
parallel tractor 3-form amounts to extending such a “tangentially par-
allel” ambient 3-form defined on the hypersurface G to a parallel 3-form

on G̃.
We prove a “parallel tractor extension theorem” of this nature for

general tractors irrespective of their rank, symmetry or algebraic type
on conformal manifolds of any dimension and signature. For smooth odd
dimensional conformal manifolds, the ambient metric is determined by
the conformal structure to infinite order along G. For smooth even-
dimensional conformal manifolds, it is only determined to order n/2 −
1. These indeterminacies in the ambient metric are reflected in the
statement of the parallel tractor extension theorem.

Theorem 1.4. Let (M, c) be a conformal manifold of dimension n ≥
3 and let g̃ be an ambient metric for (M, c). Let r ∈ N and suppose
χ ∈ Γ (⊗rT ∗) satisfies ∇χ = 0, where ∇ denotes the tractor connection.

• If n is odd, then χ has an ambient extension χ̃ satisfying ∇̃χ̃ =
O(ρ∞).
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• If n is even, then χ has an ambient extension satisfying ∇̃χ̃ =
O(ρn/2−1).

The proof shows that for n odd, if (M, c) and g̃ are real analytic, then

χ̃ may be taken to be real-analytic so that ∇̃χ̃ = 0 in a neighborhood
of G.

Theorem 1.4 was proved for n odd in [Go3] for the case r = 1 using
an argument based on “harmonic extension”. The same argument also
proves Theorem 1.4 for n even and r = 1. Results essentially containing
Theorem 1.4 in case c contains an Einstein metric are proved in [Leit1],
[Leis]; see the discussion in §4 below.

Our proof of Theorem 1.4 goes by first extending χ by parallel trans-
lation along the lines ρ 7→ (z, ρ) for each z ∈ G. It must be shown that
this parallel translation preserves the vanishing covariant derivatives in
the tangential directions. This involves commutation arguments which
use consequences to high order of the homogeneity and Ricci-flatness of
the ambient metric.

In [Br2], Bryant showed that for generic 3-plane fields on 6-manifolds
there is a construction analogous to Nurowski’s construction: a generic
3-plane field induces a conformal structure of signature (3, 3) on the
same 6-manifold. It is tempting to speculate about the possibility of
constructing signature (4, 4) metrics of holonomy Spin(3, 4) as ambi-
ent metrics of such conformal manifolds. This would require finding
extensions parallel to infinite order for n even in Theorem 1.4.

Partly with such considerations in mind, we investigate here some be-
ginning cases of what can happen in even dimensions concerning parallel
extension beyond order n/2 − 1. There are several issues. One compli-
cation is that in order to construct ambient metrics which are Ricci-flat
to higher order, it is in general necessary to include log terms in the
expansion of g̃. To avoid this complication we mostly restrict attention
here to the case of vanishing obstruction tensor, for which log terms do
not enter. In this case, the proof of Theorem 1.4 shows that n/2 is the
critical order: if a parallel tractor has an ambient extension satisfying

∇̃χ̃ = O(ρn/2), it has an extension satisfying ∇̃χ̃ = O(ρ∞). Another
complication in even dimensions is that higher-order ambient metrics are
no longer determined by the conformal structure alone: there is an am-
biguity at order n/2 in the ambient metric. So whether or not a parallel
tractor has a parallel ambient extension may depend on which ambient
metric one chooses. In §4 we investigate this for three classes of confor-
mal structures admitting parallel tractors: conformal classes containing
an Einstein metric, Poincaré-Einstein conformal classes, and Fefferman
conformal structures associated to nondegenerate hypersurfaces in Cn.
We find that for conformal classes containing an Einstein metric, there is
always a unique choice of ambiguity for which there is a parallel ambient
extension (Proposition 4.4). For Poincaré-Einstein conformal classes we
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give necessary and sufficient conditions on the Poincaré-Einstein metric
for there to exist an ambient metric for which the parallel tractor has a
parallel ambient extension (Proposition 4.5), and using a recent result
of Juhl ([J]) we give a formula for the distinguished ambient metric and
the parallel extension when they exist (Proposition 4.6). In particular,
Proposition 4.5 gives examples of parallel tractors which have no am-
bient extension parallel to order n/2 for any choice of ambiguity. For
Fefferman conformal structures we show that the parallel tractor 2-form
has a parallel extension for infinitely many choices of ambiguity in the
ambient metric (Proposition 4.9).

The organization of the paper is as follows. In §2 we review back-
ground material concerning ambient metrics and tractors. In §3 we
prove Theorem 1.4. As a consequence of Theorem 1.4 we derive a se-
quence of integrability conditions to higher and higher order which must
be satisfied by any parallel tractor. §4 studies parallel extension beyond
order n/2 − 1 in even dimensions as described above. We formulate a
general condition on a tractor which we call “determining” which guar-
antees in the case of vanishing obstruction tensor that there is at most
one choice of ambient metric with respect to which the parallel tractor
has an ambient extension parallel to order n/2. In §5 we discuss back-
ground concerning generic 2-plane fields, Nurowski’s conformal struc-
tures, and the work of Leistner-Nurowski and Hammerl-Sagerschnig.
We show how Cartan’s tensor A can be realized as a piece of the Weyl
curvature of Nurowski’s conformal structure and we prove Theorems 1.1
and 1.2 and Proposition 1.3. §6 is an appendix in which we give our
conventions concerning G2, collect facts about Cartan’s connection and
curvature in the form given by Nurowski [N1], and prove two facts
about the curvature which are used in §5.

Some of the results in this paper are contained in the Ph.D. thesis of
the second author ([W]). This thesis includes more details and further
results in certain directions.

2. Ambient Metrics and Tractors

In this section we review background material concerning ambient
metrics and tractors. The main reference for the material on ambient
metrics is [FG2], and references for the approach taken here for tractors
are [ČG1] and [BG].

Let (M, c) be a conformal manifold of dimension n ≥ 3 and signature
(p, q), p + q = n. This means that c is an equivalence class of metrics
under the relation g ∼ Ω2g for 0 < Ω ∈ C∞(M). The metric bundle
of (M, c) is by definition G := {(x, gx) : x ∈ M,g ∈ c} ⊂ S2T ∗M . Let
π : G →M denote the projection. There is an action of R+ on G defined
by δs(x, gx) = (x, s2gx) for s ∈ R+. Let T = d

dsδs|s=1 be the infinitesimal
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generator of the R+ action. There is a tautological symmetric 2-tensor
g0 on G defined for X, Y ∈ T(x,gx)G by g0(X,Y ) = gx(π∗X,π∗Y ).

Consider the space G × R. The variable in the R factor is usually
denoted ρ. The dilations δs extend to G × R acting in the G factor,
and we denote also by T the infinitesimal generator on G × R. The
map ι : G → G × R defined for z ∈ G by ι(z) = (z, 0) imbeds G as a
hypersurface in G × R.

A smooth metric g̃ of signature (p + 1, q + 1) on a dilation-invariant

open neighborhood G̃ of G × {0} in G × R is said to be a pre-ambient
metric for (M, c) if it satisfies the following two conditions:

(1) δ∗s g̃ = s2g̃ for s ∈ R+;
(2) ι∗g̃ = g0.

A pre-ambient metric g̃ is said to be straight if for each p ∈ G̃ the
parametrized curve s 7→ δsp is a geodesic for g̃. This is equivalent to the

condition that ∇̃T = Id where Id denotes the identity endomorphism

and ∇̃ the Levi-Civita connection of g̃; see Propositions 2.4 and 3.4 of
[FG2].

If n is odd, an ambient metric for (M, c) is a straight pre-ambient
metric for (M, c) such that Ric(g̃) vanishes to infinite order on G ×
{0}. (The straightness condition is automatic to infinite order, but it
is convenient to include it in the definition.) There exists an ambient
metric for (M, c) and it is unique to infinite order up to pullback by a
diffeomorphism defined on a dilation-invariant neighborhood of G × R

which commutes with dilations and which restricts to the identity on
G × {0}. If M is a real-analytic manifold and there is a real-analytic
metric in the conformal class, then there exists a real-analytic ambient

metric for (M, c) satisfying Ric(g̃) = 0 on some dilation-invariant G̃ as
above.

In order to formulate the definition of ambient metrics for n even, if
SIJ is a symmetric 2-tensor field on an open neighborhood of G × {0}
in G × R and m ≥ 0, we write SIJ = O+

IJ(ρ
m) if SIJ = O(ρm) and

for each point z ∈ G, the symmetric 2-tensor (ι∗(ρ−mS))(z) is of the
form π∗s for some symmetric 2-tensor s at x = π(z) ∈ M satisfying
trgx s = 0. The symmetric 2-tensor s is allowed to depend on z, not just
on x. If n is even, an ambient metric for (M, c) is a straight pre-ambient

metric such that Ric(g̃) = O+
IJ(ρ

n/2−1). There exists an ambient metric

for (M, c) and it is unique up to addition of a term which is O+
IJ(ρ

n/2)
and up to pullback by a diffeomorphism defined on a dilation-invariant
neighborhood of G × {0} which commutes with dilations and which
restricts to the identity on G × {0}.

The diffeomorphism invariance of ambient metrics can be broken by
putting them into a normal form with respect to a choice of metric g in
the conformal class. Observe first that the choice of g ∈ c determines a
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trivialization of the bundle G →M by identifying (t, x) ∈ R+×M with
(x, t2gx) ∈ G. Under this identification the tautological tensor g0 takes
the form g0 = t2g, where we omit writing π∗ for the pullback of a tensor
on M to G, and we have T = t∂t. There is an induced identification
G × R ∼= R+ ×M × R. A pre-ambient metric g̃ is said to be in normal
form with respect to g ∈ c if it satisfies the following three conditions:

(1) Its domain of definition G̃ has the property that for each z ∈ G, the
set of ρ ∈ R such that (z, ρ) ∈ G̃ is an open interval Iz containing
0;

(2) For each z ∈ G, the parametrized curve Iz ∋ ρ 7→ (z, ρ) is a
geodesic for g̃;

(3) Under the identification G × R ∼= R+ ×M × R induced by g, at
each point (t, x, 0) ∈ G × {0}, g̃ takes the form g̃ = t2g + 2tdtdρ .

A straight pre-ambient metric is in normal form with respect to g if
and only if it has the form

(2.1) g̃ = 2tdtdρ+ 2ρ dt2 + t2gρ

relative to the identification G×R ∼= R+×M×R induced by g, where gρ
is a smooth family of metrics on M parametrized by ρ satisfying g0 = g.
Any pre-ambient metric can be put into normal form with respect to a
choice of g ∈ c by a unique diffeomorphism which commutes with the
dilations and restricts to the identity on G×{0}. For n odd, the existence
and uniqueness assertion for ambient metrics in normal form states that
given a metric g on M , there exists an ambient metric g̃ for (M, [g]) in
normal form with respect to g, and gρ in (2.1) is uniquely determined
to infinite order at ρ = 0. For n even, the corresponding assertion is

that gρ is uniquely determined mod O(ρn/2) and also trg

(
∂
n/2
ρ gρ|ρ=0

)

is determined. In all dimensions n ≥ 3 one has

(2.2) gρ = g + 2Pρ+O(ρ2)

where P denotes the Schouten tensor of g, defined by

(n − 2)Pij = Rij −
R

2(n − 1)
gij .

For n even, a conformally invariant tensor, the ambient obstruction
tensor, obstructs the existence of smooth solutions to Ric(g̃) = O(ρn/2).
However if the obstruction tensor vanishes then there are smooth solu-
tions to higher order. (In general there are higher-order solutions with
expansions involving log terms; see Theorem 3.10 of [FG2].) If (M, c)
is a conformal manifold of even dimension n ≥ 4, by an infinite-order
ambient metric we will mean a smooth straight pre-ambient metric for
which Ric(g̃) vanishes to infinite order at ρ = 0. If (M, c) admits an
infinite-order ambient metric, then it has vanishing obstruction tensor.
The Taylor expansion of an infinite-order ambient metric in normal form
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is no longer determined solely by the initial metric g. It follows from
Theorem 3.10 of [FG2] that there is a natural pseudo-Riemannian in-
variant 1-form Di(g) depending on a metric g, so that if g has vanishing
obstruction tensor and κ is a smooth symmetric 2-tensor on M which is
trace-free with respect to g and satisfies κij ,

j = Di(g) where the diver-
gence is with respect to the Levi-Civita connection of g, then there is an
infinite-order ambient metric in normal form with respect to g such that

tf
(
∂
n/2
ρ gρ|ρ=0

)
= κ. Here tf denotes the trace-free part with respect to

g. Moreover, these conditions uniquely determine gρ to infinite order at
ρ = 0 and all infinite-order ambient metrics in normal form relative to
g arise from such a κ. We will call κ the ambiguity in the infinite-order
ambient metric.

We will use capital Latin indices to label objects on G × R. Upon
choosing a metric g ∈ c we have the splitting G ×R ∼= R+×M ×R. We
will use a 0 index for the R+ factor, lower case Latin indices for the M
factor, and an ∞ index for the R factor.

For the purposes of this paper it will be convenient to define the
tractor bundle and connection in ambient terms. Such a formulation
was given in [ČG1], [BG] where further discussion and details may be
found.

Let (M, c) be a conformal manifold with metric bundle G π→ M .
For x ∈ M , write Gx = π−1({x}) for the fiber of G over x. Recall
that the bundle D(w) of conformal densities of weight w ∈ C has fiber
Dx(w) = {f : Gx → C : (δs)

∗f = swf, s > 0}, so that sections of
D(w) on M are functions on G homogeneous of degree w. A metric g in
the conformal class is a section of G, so if f is a section of D(w), then
f ◦ g is a function on M . Under conformal change ĝ = Ω2g, we have
f ◦ ĝ = Ωwf ◦ g.

The standard tractor bundle of (M, c) and its metric and connection
can be similarly defined in terms of homogeneous vector fields on Gx.
Identify G with the subset G × {0} ⊂ G × R via the map ι. Let g̃
be an ambient metric for (M, c) defined on a dilation-invariant open

neighborhood G̃ of G in G × R. Consider the rank n + 2 vector bundle
T →M with fiber

(2.3) Tx =
{
U ∈ Γ(T G̃

∣∣
Gx
) : (δs)∗U = sU, s > 0

}
.

So a section of T on M is the same as a section U of T G̃
∣∣
G on G

satisfying (δs)∗U = sU , or equivalently (δs)
∗U = s−1U . If U , W ∈ Tx,

then g̃(U,W ) is homogeneous of degree 0 on Gx, i.e. g̃(U,W ) ∈ R. This
therefore defines a metric h of signature (p + 1, q + 1) on T . Since T
is homogeneous of degree 0 with respect to the δs, it defines a section
of T (1) := T ⊗ D(1). But the set of U which at each point of Gx is a
multiple of T constitutes a subbundle of T which we denote span{T}.
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Its orthogonal complement span{T}⊥ is the set of U which at each point
of Gx is tangent to G. This gives the filtration

(2.4) 0 ⊂ span{T} ⊂ span{T}⊥ ⊂ T .
In order to realize the tractor connection, observe that π∗ : TG → TM

induces a realization of the tangent bundle TM as

TxM =
{
V ∈ Γ(TG

∣∣
Gx
) : (δs)∗V = V, s > 0

}/
span{T},

where now span{T} really means the constant multiples of T . If v ∈
TxM , choose V ∈ Γ(TG

∣∣
Gx
) representing v. If U is a section of T near

x, define the tractor connection ∇ by ∇vU = ∇̃V U . Observe first that

the right-hand side makes sense since U ∈ Γ(T G̃
∣∣
G) and V is tangent

to G. To see that the right-hand side is independent of the choice of V

representing v it suffices to show that ∇̃TU = 0. Now

∇̃TU = ∇̃UT + [T,U ] = ∇̃UT + LTU

where L denotes the Lie derivative. But LTU = −U by the homogene-

ity of U and ∇̃UT = U since g̃ is straight. Thus ∇̃TU = 0 as desired.

Finally, ∇̃V U has the same homogeneity as U since V and ∇̃ are invari-

ant under the δs: V is invariant by hypothesis and ∇̃ is invariant since

δs is a homothety of g̃. Thus ∇̃V U is a well-defined section of T and
it is easily checked that this defines a connection. The tractor metric is

parallel with respect to ∇ since ∇̃g̃ = 0. But the filtration (2.4) is not
∇-parallel.

Note that this realization of the tractor bundle and connection de-
pends on the choice of ambient metric g̃. If g̃ is changed by a diffeomor-
phism, one obtains different but equivalent realizations.

It is shown in [ČG1] that this formulation of the standard tractor
bundle and connection agrees with other definitions by using a functorial
characterization of tractor bundles. For our purposes it will be useful
to see this in terms of the splitting induced by a choice of g. As we
did with conformal densities, we associate to U ∈ Γ(T ) the map U ◦ g
defined on M , for which (U ◦ g)(x) ∈ T(x,gx)G̃. We decompose T(x,gx)G̃
via the splitting in which g̃ is in normal form with respect to g. That is,
after composing with a diffeomorphism if necessary, we assume that g̃
is in normal form with respect to g. The splitting G ×R ∼= R+×M ×R

induces a splitting T (G×R) ∼= TR+⊕TM⊕TR. Via the trivializations
of TR+ and TR induced by ∂t and ∂ρ, resp., U ◦ g is expressed in the
form (U0, U i, U∞), where U0 and U∞ are functions on M and U i is a
vector field onM . In terms of coordinates (t, x, ρ) with respect to which
g̃ is in normal form, we are simply writing U ◦g = U0∂t+U

i∂xi +U∞∂ρ.
In this way, relative to the choice of g we represent a section U ∈ Γ(T )
by the triple (U0, U i, U∞). Recalling that t = 1 on points of G of the
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form (x, gx), it is evident from condition (3) in the definition of normal
form that the tractor metric is given by h(U,U) = 2U0U∞ + gijU

iU j .
Suppose now we make a conformal change to ĝ = e2Υg. The ambient

metric g̃ can be put into normal form relative to ĝ by pulling back by
a homogeneous diffeomorphism. Arguing as in the proof of Proposition
6.5 of [FG2], one can identify the Jacobian on G of the diffeomorphism

and thus calculate the relation between the representation (Û0, Û i, Û∞)
of U with respect to ĝ and that with respect to g. The result is:



Û0

Û i

Û∞


 =



e−Υ 0 0
0 e−Υ 0
0 0 eΥ






1 −Υj −1

2ΥkΥ
k

0 δij Υi

0 0 1






U0

U j

U∞


 .

This is the identification used in the construction of the standard tractor
bundle in [BEG], so shows the agreement of these constructions.

The tractor connection can also be expressed in terms of the splitting.
It is straightforward to calculate the Christoffel symbols of a metric of
the form (2.1). One obtains:

Γ̃0
IJ =



0 0 0
0 −1

2tg
′
ij 0

0 0 0




Γ̃k
IJ =




0 t−1δj
k 0

t−1δi
k Γk

ij
1
2g

klg′il
0 1

2g
klg′jl 0




Γ̃∞
IJ =




0 0 t−1

0 −gij + ρg′ij 0

t−1 0 0


 .

(2.5)

(See (3.16) of [FG2].) Here all gij and gij refer to gρ,
′ denotes ∂ρ, Γk

ij

denotes the Christoffel symbol of the metric gρ with ρ fixed, and the
blocks correspond to the splittings I ↔ (0, i,∞), J ↔ (0, j,∞). In order

to represent ∇vU = ∇̃V U in terms of the splitting with respect to g, we
evaluate (2.5) at ρ = 0, t = 1 and consider only the I = i components.
Recalling (2.2), this gives for the tractor Christoffel symbols:

Γ̃0
iJ =

(
0 −Pij 0

)

Γ̃k
iJ =

(
δi

k Γk
ij Pi

k
)

Γ̃∞
iJ =

(
0 −gij 0

)
.

(2.6)

The tractor covariant derivative is given by ∇iU
K = ∂iU

K + Γ̃K
iJU

J , or
equivalently

(2.7) ∇i



U0

Uk

U∞


 =




∇iU
0 − PijU

j

∇iU
k + δi

kU0 + Pi
kU∞

∇iU
∞ − Ui


 .
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On the right-hand side, ∇iU
0 and ∇iU

∞ denote the exterior derivative
on functions and∇iU

k the Levi-Civita connection of g on vector fields on
M . Equation (2.7) is taken as the definition of the tractor connection
in [BEG], so the ambient construction produces the usual (normal)
tractor connection.

3. Parallel Extension

In this section we prove Theorem 1.4. We will be dealing primar-
ily with cotractors. Recall from (2.3) that we realized a tractor at a

point x ∈ M as a homogeneous section of T G̃ on the fiber Gx. The
corresponding dual realization of T ∗

x is

T ∗
x =

{
η ∈ Γ(T ∗G̃

∣∣
Gx
) : (δs)

∗η = sη, s > 0
}
.

The choice of opposite homogeneity degree guarantees that η(U) is ho-
mogeneous of degree 0 on Gx, so is a well-defined scalar. If r ∈ N, the

induced realization of sections of ⊗rT ∗ is as χ ∈ Γ(⊗rT ∗G̃
∣∣
G) satis-

fying (δs)
∗χ = srχ. Any such χ satisfies ∇̃Tχ = 0 and the cotractor

connection is realized by ∇vχ = ∇̃V χ by analogy with the discussion
for tractors in §2. We use the splitting for T ∗ dual to the one above:
χ ∈ T ∗ is represented with respect to g ∈ c by χ = (χ0, χi, χ∞) if
χ ◦ g = χ0dt+ χidx

i + χ∞dρ.
If χ ∈ Γ(⊗rT ∗), we say that χ̃ ∈ Γ(⊗rT ∗G̃) is an ambient extension of

χ if δ∗s χ̃ = srχ̃ and χ̃|G = χ. Clearly if ∇̃χ̃ = 0 then restricting to ρ = 0
and to differentiations tangent to G, it follows that∇χ = 0. Theorem 1.4
asserts that any parallel tractor admits an ambient extension which is
as parallel as one can expect given the indeterminacy in the ambient
metric.

Before beginning the proof of Theorem 1.4, observe that uniqueness
of the asserted extension is easy: if n is odd then χ̃ is unique to infinite
order and if n is even then χ̃ mod O(ρn/2) is uniquely determined.

This follows just from the fact that ∇̃∞χ̃ vanishes to the stated order
by successively differentiating with respect to ρ at ρ = 0 the vanishing
condition applied to the difference. (See the proof of Proposition 3.2

below.) Note also that since ∇̃χ̃ depends on first derivatives of g̃, if n is

even then the indeterminacy of g̃ at order n/2 enters into ∇̃χ̃ at order
n/2− 1. This is the subject of §4.

The proof of Theorem 1.4 uses properties of the covariant derivatives
of the curvature tensor of an ambient metric. We denote the curvature
tensor of a pre-ambient metric by R̃ and covariant derivatives with re-
spect to its connection by indices preceded by a comma. Proposition 6.1
of [FG2] asserts that the curvature tensor of any straight pre-ambient
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metric satisfies for r ≥ 0

TLR̃IJKL,M1···Mr = −
r∑

s=1

R̃
IJKMs,M1···M̂s···Mr

TP R̃IJKL,PM1···Mr = −2R̃IJKL,M1···Mr −
r∑

s=1

R̃
IJKL,MsM1···M̂s···Mr

.

(3.1)

The empty sum on the right-hand sides is interpreted as 0 in case r = 0.
Suppose next that g̃ is an ambient metric in normal form. The indices
can be specialized according to the normal form splitting I ↔ (0, i,∞).

Lemma 3.1. If g̃ is an ambient metric in normal form, then at ρ = 0,
t = 1 we have

(2k + 1)R̃IJA∞,∞···∞︸ ︷︷ ︸
k−1

= R̃IJA
p
,p∞···∞︸ ︷︷ ︸

k−1

.

This holds for all k ≥ 1 if n is odd and for IJA and k satisfying ‖IJA‖+
2k ≤ n+1 if n is even, where ‖0‖ = 0, ‖i‖ = 1 for 1 ≤ i ≤ n, ‖∞‖ = 2,
and ‖IJA‖ = ‖I‖+ ‖J‖+ ‖A‖.

Proof. First assume that n is odd. The second Bianchi identity and
the fact that g̃ is Ricci flat to infinite order imply at ρ = 0

g̃PQR̃IJAP,Q∞···∞︸ ︷︷ ︸
k−1

= 0

for all k. Write out the trace using the normalization of g̃ at ρ = 0,
t = 1 to obtain

R̃IJA0,∞∞···∞︸ ︷︷ ︸
k−1

+ R̃IJA∞,0∞···∞︸ ︷︷ ︸
k−1

+ gpqR̃IJAp,q∞···∞︸ ︷︷ ︸
k−1

= 0.

Now (3.1) shows that

R̃IJA0,∞···∞︸ ︷︷ ︸
k

= −kR̃IJA∞,∞···∞︸ ︷︷ ︸
k−1

, R̃IJA∞,0∞···∞︸ ︷︷ ︸
k−1

= −(k+1)R̃IJA∞,∞···∞︸ ︷︷ ︸
k−1

so the result follows.
If n is even, the hypothesis ‖IJA‖ + 2k ≤ n+ 1 guarantees that the

relevant Ricci curvature derivative component vanishes so that the same
argument applies. See Proposition 6.4 of [FG2]. q.e.d.

Proof of Theorem 1.4. Choose a metric g in the conformal class. Put
g̃ into normal form relative to g. The hypothesis∇χ = 0 is equivalent to

the statement that ∇̃Aχ̃|ρ=0 = 0 for A = 0, a for any extension. Define
χ̃ by parallel translation of χ along the lines ρ 7→ (t, x, ρ). Parallel
translation commutes with the dilations so χ̃ has the right homogeneity.

It suffices to show that ∇̃χ̃ vanishes to the stated order. The point
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is that the system ∇̃χ̃ = 0 is overdetermined, so it must be shown
that parallel translation in the ρ-direction preserves vanishing of the
tangential covariant derivatives. This requires study of the commutation
of ambient covariant derivatives to high order. Note that if (M,g) is
real-analytic, then any parallel tractor χ is real-analytic, so if g̃ is real-
analytic, then χ̃ is real-analytic as well.

We show first that χ̃I,∞···∞︸ ︷︷ ︸
k

= 0 on G̃ for k ≥ 1, where I = I1 · · · Ir

is any list of r indices. This follows by induction on k. The case k = 1
is clear since χ̃ was defined to be parallel in the ρ-direction. For k > 1
write

χ̃I,∞···∞︸ ︷︷ ︸
k

= ∂∞χ̃I,∞···∞︸ ︷︷ ︸
k−1

−
r∑

s=1

Γ̃J
Is∞χ̃I1···Is−1JIs+1···Ir,∞···∞︸ ︷︷ ︸

k−1

−
k−1∑

l=1

Γ̃A
∞∞χ̃I,∞···∞︸ ︷︷ ︸

l−1

A∞···∞︸ ︷︷ ︸
k−l−1

.

The first two terms vanish by the induction hypothesis and the last

because Γ̃A
∞∞ = 0 from (2.5).

We argue next that if ∇̃lχ̃|ρ=0 = 0 for 1 ≤ l ≤ k− 1, then ∇̃k+1χ̃|ρ=0

is symmetric in the last k of the k+1 differentiation indices. (We think
of the differentiation indices as listed after the indices of χ̃, separated by
a comma.) This follows by commuting two adjacent indices among the

last k in ∇̃k+1χ̃|ρ=0. This commutation of derivatives can be written by
the differentiated Ricci identity as a sum of terms of the form derivatives
of curvature contracted into derivatives of χ̃, in which the total number
of derivatives of χ̃ is at least 1 and drops by at least 2. Thus the result
follows.

Now we proceed with the main induction: we prove by induction on k

the statement ∇̃kχ̃|ρ=0 = 0. For k = 1, ∇̃Aχ̃|ρ=0 = 0 for A = 0, a since

χ was parallel, and ∇̃∞χ̃|ρ=0 = 0 since it was extended to be parallel
along the ρ lines.

Assume ∇̃lχ̃|ρ=0 = 0 for 1 ≤ l ≤ k. We must show that ∇̃k+1χ̃|ρ=0 =
0 and can assume that k ≤ n/2 − 2 if n is even. We show that
χ̃I,A0···Ak

|ρ=0 = 0 by considering various cases for the indices. First,
if Ak 6= ∞, then the result follows by expanding out the last covariant
derivative in terms of Christoffel symbols and using the induction hy-
pothesis and the fact that ∂Ak

is tangent to {ρ = 0}. Next, if Al 6= ∞
for some l > 0, then we can commute Al all the way to the right us-
ing the above observation about symmetry in the last indices, and thus
reduce to the case Ak 6= ∞. So we can assume all Al = ∞ for l > 0.

If A0 = ∞, then our first observation above does the job. In the
following, all quantities are understood to be evaluated at ρ = 0, t = 1.
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If A0 6= ∞, write

χ̃I,A0 ∞···∞︸ ︷︷ ︸
k

= χ̃I,∞A0∞···∞︸ ︷︷ ︸
k−1

+
( r∑

s=1

R̃J
IsA0∞χ̃I1···Is−1JIs+1···Ir

)
,∞···∞︸ ︷︷ ︸

k−1

=
r∑

s=1

R̃J
IsA0∞,∞···∞︸ ︷︷ ︸

k−1

χ̃I1···Is−1JIs+1···Ir ,

(3.2)

where for the second equality we have used the induction hypothesis and
the fact that χ̃I,∞A0 ∞···∞︸ ︷︷ ︸

k−1

= 0 since a differentiation index after the first

is not ∞. Now the first equation in (3.1) and the skew-symmetry of the

curvature tensor in the second pair of indices imply R̃J
I0∞,∞···∞︸ ︷︷ ︸

k−1

= 0

for all J , I and k ≥ 1, so we obtain χ̃I,0∞···∞︸ ︷︷ ︸
k

= 0.

We have left only to consider χ̃I,a∞···∞︸ ︷︷ ︸
k

with 1 ≤ a ≤ n. We intend

to apply Lemma 3.1 to R̃J
Isa∞,∞···∞︸ ︷︷ ︸

k−1

on the right-hand side of (3.2)

for A0 = a after lowering the index J . We verify the hypothesis in
Lemma 3.1 in case n is even. Denoting by L the index replacing J when
it is lowered and recalling that k ≤ n/2 − 2, we have ‖LIsa‖ + 2k ≤
5 + (n− 4) = n+ 1. Thus the application of Lemma 3.1 is justified.

Equation (3.2), Lemma 3.1 and the induction hypothesis thus give

(2k + 1)χ̃I,a∞···∞︸ ︷︷ ︸
k

= (2k + 1)

r∑

s=1

R̃J
Isa∞,∞···∞︸ ︷︷ ︸

k−1

χ̃I1···Is−1JIs+1···Ir

=
r∑

s=1

R̃J
Isa

p
,p∞···∞︸ ︷︷ ︸

k−1

χ̃I1···Is−1JIs+1···Ir

=
( r∑

s=1

R̃J
Isa

pχ̃I1···Is−1JIs+1···Ir
)
, p∞···∞︸ ︷︷ ︸

k−1

=
(
χ̃I,a

p − χ̃I,
p
a

)
, p∞···∞︸ ︷︷ ︸

k−1

= χ̃I,a
p
p∞···∞︸ ︷︷ ︸

k−1

− χ̃I,
p
ap∞···∞︸ ︷︷ ︸

k−1

= χ̃I,a
p
∞···∞︸ ︷︷ ︸
k−1

p − χ̃I,
p
a∞···∞︸ ︷︷ ︸

k−1

p,

where the last equality uses the observation about symmetry in last
differentiated indices. Now write out each of the final covariant differ-
entiations in the last line in terms of Christoffel symbols. Since we have
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shown that χ̃I,A0···Ak
= 0 unless A1 = · · · = Ak = ∞ and 1 ≤ A0 ≤ n,

consulting with (2.5) to evaluate the Christoffel symbols gives

χ̃I,a
p
∞···∞︸ ︷︷ ︸
k−1

p = ∂pχ̃I,a
p
∞···∞︸ ︷︷ ︸
k−1

+ Γ̃p
p0χ̃I,a

0
∞···∞︸ ︷︷ ︸
k−1

= nχ̃I,a∞···∞︸ ︷︷ ︸
k

and

χ̃I,
p
a∞···∞︸ ︷︷ ︸

k−1

p = ∂pχ̃I,
p
a∞···∞︸ ︷︷ ︸

k−1

− Γ̃∞
paχ̃I,

p
∞···∞︸ ︷︷ ︸

k

= χ̃I,a∞···∞︸ ︷︷ ︸
k

.

Thus we obtain (2k + 1)χ̃I,a∞···∞︸ ︷︷ ︸
k

= (n− 1)χ̃I,a∞···∞︸ ︷︷ ︸
k

, or

(2k + 2− n)χ̃I,a∞···∞︸ ︷︷ ︸
k

= 0.

Hence the induction proceeds to all orders if n is odd, but we must
impose k 6= n/2− 1 if n is even. q.e.d.

A consequence of the proof is the following proposition.

Proposition 3.2. Let n be even and suppose that g̃ is an infinite-
order ambient metric for (M, c). (In particular (M, c) has vanishing
obstruction tensor.) Let χ ∈ Γ (⊗rT ∗) satisfy ∇χ = 0. If χ has an

ambient extension satisfying ∇̃χ̃ = O(ρn/2), then χ has an ambient

extension satisfying ∇̃χ̃ = O(ρ∞).

Proof. Let χ̃ be the extension obtained by parallel translation along
the lines ρ 7→ (t, x, ρ) as in the proof of Theorem 1.4 and let χ̃′ be an

extension satisfying ∇̃χ̃′ = O(ρn/2). Then χ̃− χ̃′ = O(ρ) and ∇̃∞(χ̃−
χ̃′) = O(ρn/2). Writing the latter equation in terms of ∂ρ and Christoffel
symbols and then successively differentiating with respect to ρ at ρ = 0

shows that χ̃ − χ̃′ = O(ρn/2+1). Hence ∇̃χ̃ = O(ρn/2). Since the
induction in the proof of Theorem 1.4 requires only k 6= n/2 − 1, it

shows that ∇̃χ̃ = O(ρ∞). Lemma 3.1 which is used in the proof holds
for g̃ for all k because it just depends on homogeneity, straightness, and
vanishing of the Ricci curvature. q.e.d.

We remark that Theorem 1.4 implies a large collection of integrability
conditions on a parallel χ ∈ Γ (⊗rT ∗). First suppose n is odd. Let χ̃
be an ambient extension of χ as in Theorem 1.4. Commuting covariant

derivatives shows that R̃.χ̃ = O(ρ∞), where R̃. denotes the action of R̃

viewed as an element of Γ(Λ2T ∗G̃ ⊗EndT G̃), so that R̃.χ̃ ∈ Γ(Λ2T ∗G̃ ⊗
⊗rT ∗G̃). Further differentiating this equation and restricting to ρ = 0

shows that
(
(∇̃kR̃)|G

)
.χ = 0, where now

(∇̃kR̃)|G ∈ Γ
(
(⊗kT ∗G̃ ⊗ Λ2T ∗G̃ ⊗ EndT G̃)

∣∣
G
)

acts on χ via the EndT G̃ factor. We can regard (∇̃kR̃)|G as a section of a
weighted tensor power of a tractor bundle (see Proposition 6.5 of [FG2]),
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so can regard
(
(∇̃kR̃)|G

)
.χ = 0 as a purely tractor equation which holds

as a consequence of the fact that χ is parallel. The special case when

k = 0 and the free Λ2T ∗G̃ indices on R̃ are tangent to G recovers the
fact that the tractor curvature annihilates χ. When k = 0 and these
free indices are j∞, one obtains relations involving contractions of the
Cotton and Bach tensors into χ. Relations of these types for special
cases may be found in the literature, for example for r = 1 in [Go1]
and for χ skew-symmetric in [Leit1], [Leit2]. In general, Theorem 1.4

is equivalent to proving the integrability conditions
(
(∇̃kR̃)|G

)
.χ = 0

for all k. A similar discussion holds for n even, keeping in consideration
that the number of differentiations transverse to G is restricted.

4. Critical Order for n Even

In this section we consider some examples illustrating what can hap-
pen concerning ambient extension of parallel tractors at the critical
order in even dimensions. The main issue is that in general an ambient
metric is no longer determined to higher order solely by the conformal
structure; there is an ambiguity at order n/2. So whether or not a given
parallel tractor has a parallel ambient extension can depend on which
ambient metric is chosen. The natural general framework for such in-
vestigations would be to consider ambient metrics with log terms as
in Theorem 3.10 of [FG2]. In this case parallel extensions of tractors
must be expected to have expansions with log terms as well. For sim-
plicity we generally restrict consideration here to the case of conformal
structures with vanishing obstruction tensor, for which log terms do not
enter. The one exception is that our discussion of Fefferman metrics of
nondegenerate hypersurfaces in Cn applies also to some ambient metrics
with log terms.

The dependence of the covariant derivatives of the curvature tensor of
an ambient metric on the ambiguity plays an important role in these con-
siderations. Let n ≥ 4 be even, let (M, c) be a conformal structure with
vanishing obstruction tensor, and let g̃ be an infinite-order ambient met-
ric for (M, c) in normal form relative to a representative g ∈ c. Recall

from §2 that g̃ takes the form (2.1) and tf
(
∂
n/2
ρ gρ|ρ=0

)
is the ambiguity.

Define the strength of lists of indices ‖IJ · · ·K‖ as in Lemma 3.1. Propo-
sition 6.2 of [FG2] shows that if ‖IJKLM1 · · ·Mr‖ ≤ n+1, then the re-

striction to ρ = 0, t = 1 of R̃IJKL,M1···Mr is independent of the ambiguity
and defines a natural tensor invariant of g as the indices between 1 and n
vary; in fact it can be expressed as a linear combination of contractions
contr(∇m1R⊗· · ·⊗∇mNR) of the covariant derivatives of the curvature

tensor of g such that 2N + 2 +
∑N

i=1mi = ‖IJKLM1 · · ·Mr‖. On the

other hand, if ‖IJKLM1 · · ·Mr‖ ≥ n + 2, then R̃IJKL,M1···Mr |ρ=0, t=1

may depend on the ambiguity. Proposition 6.6 of [FG2] shows that the
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component R̃∞ij∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

parametrizes the ambiguity: any two infinite-

order ambient metrics in normal form for which this component agree
must agree to infinite order, and this component can be prescribed to
be an arbitrary trace-free symmetric 2-tensor on M subject to the con-
dition that its divergence is a particular natural 1-form invariant of the
initial metric g. Another treatment of similar considerations concerning
the ambiguity is contained in [ČG1].

Let (M, c) be as above and suppose that χ ∈ Γ(⊗rT ∗) is a parallel
tractor. We are interested in the questions of existence and uniqueness
of infinite-order ambient metrics g̃ for which χ has an ambient extension

satisfying ∇̃χ̃ = O(ρ∞). Proposition 3.2 shows that for a given g̃,
χ has such an extension if and only if it has an extension satisfying

∇̃χ̃ = O(ρn/2). We analyze possibilities at the critical order. We will
see that for some χ there is no such extension for any choice of g̃, for
some χ there is such an extension for precisely one g̃, and for some χ
such extensions exist for infinitely many choices of g̃.

A trivial example of a parallel tractor in even dimensions which has
a parallel ambient extension for more than one infinite-order ambient
metric is the tractor metric. Clearly for any ambient metric, the am-
bient metric itself provides a parallel extension. If one index is raised,
the identity endomorphism of the tractor bundle has as a parallel exten-
sion the identity endomorphism of the ambient tangent bundle, and in
this realization the parallel extension is actually independent of which
ambient metric is chosen.

We begin by formulating a condition on χ under which there is at
most one choice of infinite-order ambient metric with respect to which

χ has an ambient extension satisfying ∇̃χ̃ = O(ρn/2). Recall that a
1-form on M can be inserted as the injecting part of an adjoint tractor.
(An adjoint tractor is a section of EndT which is skew with respect to
h.) Namely, if η ∈ T ∗

xM then π∗η defines a section of T ∗G|Gx which

annihilates T . Since TI spans the annihilator of TG ⊂ T G̃, we may

regard π∗η as an equivalence class of sections of T ∗G̃|Gx defined modulo
TI and homogeneous of degree 0 with respect to the δs, and therefore as
an equivalence class of elements of T ∗

x (−1) defined modulo TI . So we can
define a bundle map I : T ∗M → Endskew T by I(η)J I = 2hJKT[K(π∗η)I],
where hJK denotes the inverse tractor metric. With respect to the
splitting induced by any representative g one has I(η)0i = ηi, I(η)

j∞ =
−ηj , other I(η)J I = 0. Now let χ ∈ Γ (⊗rT ∗). Define a bundle map
Fχ : T ∗M → ⊗rT ∗ by Fχ(η) = I(η).χ, where the . refers to the action
of EndT on ⊗rT ∗.

Definition 4.1. Let χ ∈ Γ (⊗rT ∗). We say that χ is determining if
the induced map Fχ : Γ(T ∗M) → Γ(⊗rT ∗) is injective.
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Note that we are requiring that the induced map on smooth sections
be injective, not that Fχ is injective as a bundle map. Observe that
the tractor metric h is not determining since K.h = 0 for any adjoint
tractor K.

Proposition 4.2. Let (M, c) be a conformal manifold of even di-
mension n ≥ 4 with vanishing obstruction tensor. Let χ ∈ Γ (⊗rT ∗) be
parallel and determining. Then up to infinite order and up to diffeomor-
phism, there is at most one infinite-order ambient metric with respect

to which χ has an ambient extension satisfying ∇̃χ̃ = O(ρn/2).

Proof. Pick g ∈ c and assume that g̃ is in normal form with respect

to g. If χ̃ is an extension satisfying ∇̃χ̃ = O(ρn/2), then at ρ = 0, t = 1
we have (notation as in the proof of Theorem 1.4):

0 = χ̃I,a ∞···∞︸ ︷︷ ︸
(n−2)/2

− χ̃I,∞a ∞···∞︸ ︷︷ ︸
(n−4)/2

=
( r∑

s=1

R̃J
Isa∞χ̃I1···Is−1JIs+1···Ir

)
, ∞···∞︸ ︷︷ ︸
(n−4)/2

=

r∑

s=1

R̃J
Isa∞, ∞···∞︸ ︷︷ ︸

(n−4)/2

χ̃I1···Is−1JIs+1···Ir .

(4.1)

Of the components R̃J
Ia∞, ∞···∞︸ ︷︷ ︸

(n−4)/2

which enter into this equation, only

R̃0
ia∞, ∞···∞︸ ︷︷ ︸

(n−4)/2

and R̃j∞a∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

depend on the ambiguity of the ambient

metric. All other components are determined by g. Choose a vector

field v on M . Define a 1-form η on M by ηi = vaR̃∞ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

. Then

I(η)J I = vaR̃J
Ia∞, ∞···∞︸ ︷︷ ︸

(n−4)/2

if J I =
0
i or

J
I =

j∞ and I(η)J I = 0 otherwise.

If we set DJ
I = vaR̃J

Ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

−I(η)J I , then D
J
I is independent of the

ambiguity in the ambient metric. Now the contraction of va with (4.1)
can be written Fχ(η) = −D.χ. By the injectivity of Fχ on Γ(T ∗M), it
follows that for each v there is at most one possibility for η. Therefore

there is at most one possibility for the tensor R̃∞ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

. But this

tensor determines the ambiguity in the ambient metric. q.e.d.

Let us consider the case r = 1 so that χ is a parallel section of T ∗,
which we assume is nonzero. We sometimes call such χ a parallel tractor
1-form. In the terminology of Gover [Go3], χ defines an almost Einstein
structure. There is a large literature concerning parallel tractor 1-forms,
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especially because of their relation to conformally Einstein metrics and
their basic role in conformal holonomy.

Upon writing the equation ∇χ = 0 in the splitting corresponding to
a metric g using (2.6), one finds that χ is determined by χ0, and that
χ0 must satisfy the equation tf

(
(∇2

ij+Pij)χ0

)
= 0. Specifically, writing

σ = χ0, χ is given by

χ =



χ0

χi

χ∞


 =




σ
σi

− 1
n(∆σ + Jσ)




where ∆ = ∇k∇k and J = R/2(n − 1). In this way parallel sections of
T ∗ are in one-to-one-correspondence with solutions to the conformally
invariant equation

(4.2) tf
(
(∇2

ij + Pij)σ
)
= 0.

Since χ is parallel and nonzero it is nonvanishing, so the 2-jet of σ is
nonvanishing. In particular, {σ 6= 0} is open and dense. The confor-
mal transformation law for the trace-free Schouten tensor shows that
on this set the rescaled metric σ−2g is Einstein. If Σ := {σ = 0} is
nonempty, the conformal structure extends smoothly across Σ but the
Einstein representative σ−2g becomes singular. Since the obstruction
tensor vanishes for conformal classes containing an Einstein metric, by
continuity it vanishes for even-dimensional conformal classes admitting
a nonzero parallel tractor 1-form.

Proposition 4.3. Let χ ∈ Γ(T ∗) be nonzero and satisfy ∇χ = 0.
Then χ is determining.

Proof. We have
(
Fχ(η)

)
I
= −I(η)J IχJ . In particular,

(
Fχ(η)

)
i
=

−ηiχ0. Since χ0 6= 0 on an open dense set, it follows that Fχ is injective
on Γ(T ∗M). q.e.d.

Theorem 1.4 shows that if n is odd, then any parallel tractor 1-form
has an ambient extension parallel to infinite order (with respect to the
unique ambient metric up to infinite order and diffeomorphism), and the
same is true to order n/2−1 if n is even. Propositions 4.2 and 4.3 imply
that for n even, there is at most one determination of the ambiguity in
an infinite-order ambient metric with respect to which χ has an ambient
extension parallel to infinite order. We analyze the question in this case
of whether there exists a choice of the ambiguity with respect to which
χ has an ambient extension parallel to infinite order.

Consider first the situation near the set {σ 6= 0}; equivalently consider
a conformal class containing a chosen Einstein metric. In this case in
all dimensions one can identify explicitly an ambient metric for which
there is an explicit parallel extension of χ. If g is Einstein and we set
λ = J/n = R/2n(n − 1), then g̃ defined by (2.1) with gρ = (1 + λρ)2g
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satisfies Ric(g̃) = 0. If n is odd then this is to infinite order the unique
ambient metric in normal form relative to g. However, if n is even then
there are other infinite-order ambient metrics corresponding to other
choices of the ambiguity. Proposition 7.5 of [FG2] shows that for n
even this choice is canonical in the sense that up to infinite order and
up to diffeomorphism, it is independent of which Einstein metric in the
conformal class is chosen (usually there is only one up to homothety,
but there may be others). Henceforth, if g is Einstein we will denote by
g̃c the ambient metric given by (2.1) with

(4.3) gρ = (1 + λρ)2g.

If g is Einstein, the corresponding solution of (4.2) is σ = 1. Thus the
parallel tractor is given in the associated Einstein scale by χ = (1, 0,−λ).
It is straightforward to verify using (2.5) with gρ = (1 + λρ)2g that
a parallel extension of χ for the ambient metric g̃c is given by χ̃ =
(1− λρ)dt− tλ dρ = d[t(1 − λρ)]. We conclude

Proposition 4.4. Let n ≥ 4 be even and suppose that (M, c) is a
conformal class containing an Einstein metric g. Up to infinite or-
der and up to diffeomorphism, the canonical ambient metric g̃c is the
unique infinite-order ambient metric for (M, c) with respect to which the
associated parallel tractor 1-form χ has an ambient extension satisfying

∇̃χ̃ = O(ρn/2).

We remark that [Leit1] for λ 6= 0 and [Leis] for λ = 0 have shown
that g̃c can be written in a way that makes it evident that any parallel
tractor has a parallel ambient extension (in fact even that the holonomy
of the tractor connection equals the holonomy of g̃c). Namely, if λ 6= 0,
set u = (1 + λρ)t, v = (1− λρ)t. Then

g̃c = 2d(ρt)dt + t2(1 + λρ)2g =
1

2λ
(du2 − dv2) + u2g

is translation-invariant in v relative to the (u, v, x) coordinates and ∂v
is parallel. Thus a parallel extension of any parallel tractor is obtained
by extending it to be translation-invariant in v. When λ = 0, the
same reasoning applies upon setting v = ρt so that g̃c = 2dvdt + t2g is
translation-invariant in v relative to (t, v, x) coordinates and ∂v is paral-
lel. When combined with Proposition 4.2, this gives another proof that
for n even, the canonical ambient metrics associated to two different
Einstein metrics in the same conformal class are related by a diffeo-
morphism to infinite order (Proposition 7.5 of [FG2]). Namely, by the
Leitner/Leistner result, the parallel tractor associated to the second
Einstein metric has a parallel ambient extension relative to the canon-
ical ambient metric for the first Einstein metric, so by Proposition 4.2,
the two canonical ambient metrics are diffeomorphic to infinite order.



PARALLEL TRACTOR EXTENSION 485

A basic class of almost Einstein structures for which Σ is nonempty
consists of those determined by Poincaré-Einstein metrics. We will give
necessary and sufficient conditions on an even-dimensional Poincaré-
Einstein metric in order that the associated parallel tractor 1-form ad-

mit an ambient extension satisfying ∇̃χ̃ = O(ρn/2) for some choice of
infinite-order ambient metric. In particular, this will give examples of
parallel tractor 1-forms which do not admit such an ambient extension
for any infinite-order ambient metric.

Let Σ ⊂ M be an embedded hypersurface. In this paper we will say
that a metric g+ on M \Σ is Poincaré-Einstein if Ric(g+) = −(n−1)g+
and if g+ = r−2g for some defining function r for Σ and smooth metric
g on M of signature (p, q) such that g|TΣ has signature (p − 1, q). (In
particular, since g is assumed smooth, the obstruction tensor of g|TΣ

vanishes if n ≥ 5 is odd.) We could alternately take g+ to satisfy
Ric(g+) = (n−1)g+ and require g|TΣ to have signature (p, q−1); the two
formulations are equivalent under the change g+ 7→ −g+, (p, q) 7→ (q, p).

The conformal structure (M, c) with c = [g] is determined by g+ and
admits a parallel tractor 1-form given relative to g by

(4.4) χ =



χ0

χi

χ∞


 =




r
ri

− 1
n(∆r + Jr)


 .

Possibly rescaling r and g, one can identify a neighborhood of Σ in M
with a neighborhood of Σ× {0} in Σ× R so that r is the variable in R

and g takes the form g = dr2 + hr for a smooth 1-parameter family hr
of metrics on Σ. If n is odd, then the Taylor expansion of hr in r is even
to infinite order. If n ≥ 4 is even, then hr is even in r to order n − 2,
but a typical Poincaré-Einstein metric has ∂n−1

r hr|Σ 6= 0. (See [FG2].)
For n even, we say that g+ is even if ∂n−1

r hr|Σ = 0. This is independent
of the choices, and the Taylor expansion of hr is then even to infinite
order. If n is odd, all Poincaré-Einstein metrics will be said to be even.

Proposition 4.5. Let n ≥ 4 be even and suppose that g+ is a
Poincaré-Einstein metric with associated parallel tractor χ. There ex-
ists an infinite-order ambient metric for (M, c) with respect to which χ

has an ambient extension satisfying ∇̃χ̃ = O(ρn/2) if and only if g+ is
even.

Proof. Write g = dr2 + hr near Σ as above. Note first that since
|dr|2g = 1, the conformal transformation law Pg+ = Pg + r−1∇2r −
1
2 |dr|2g g+ of the Schouten tensor and the Einstein condition on g+ imply

that ∇2r + Pgr = 0. Taking the trace gives ∆r + Jr = 0, so χ∞ = 0.
Let g̃ be an infinite-order ambient metric for (M, c) in normal form

relative to g and let χ̃ be the extension given in the proof of Theorem 1.4

which satisfies ∇̃χ̃ = O(ρ(n−2)/2). The first steps in the induction in
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Theorem 1.4 hold also at the next order, so we know that χ̃I,∞a ∞···∞︸ ︷︷ ︸
(n−4)/2

=

0 at ρ = 0, t = 1, and that χ has an extension satisfying ∇̃χ̃ = O(ρn/2)
if and only if χ̃I,a ∞···∞︸ ︷︷ ︸

(n−2)/2

= 0 at ρ = 0, t = 1. All succeeding expressions

are understood to be evaluated at ρ = 0, t = 1. Equation (3.2) thus

shows that χ has an extension satisfying ∇̃χ̃ = O(ρn/2) if and only if

R̃J
Ia∞, ∞···∞︸ ︷︷ ︸

(n−4)/2

χ̃J = 0; that is if and only if (recall χ∞ = 0)

(4.5) R̃∞Ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

r = −R̃j
Ia∞, ∞···∞︸ ︷︷ ︸

(n−4)/2

rj.

The right-hand side of (4.5) for I = i is independent of the ambiguity
of the ambient metric; it is determined by g alone. Using the expression
for the leading terms in the ambient metric expansion (see (3.21) of

[FG2]), it is not hard to see that the tensor R̃jia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

which appears

on the right-hand side of (4.5) for I = i has the form

(4.6) R̃jia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

= c∆(n−4)/2Caij + Λaij ,

where Caij = Pai,j − Paj,i denotes the Cotton tensor of g, c 6= 0, and
Λaij is a linear combination of contractions of covariant derivatives of
curvature of g which are at least quadratic and involve at most n − 5
derivatives of curvature.

Label objects on Σ by Greek letters α, β and let a ♦ index correspond
to r in the identification M ∼ Σ×R, so that i↔ (α,♦). Denote ∂r by
′. We first show that the right-hand side of (4.5) for I = β and a = α
vanishes on Σ if and only if g+ is even. By (4.6) we have

R̃j
βα∞, ∞···∞︸ ︷︷ ︸

(n−4)/2

rj = R̃♦βα∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

= c∆(n−4)/2Cαβ♦ + Λαβ♦.

Now Λαβ♦ can be written as a linear combination of contractions

contr(∇m1R⊗ · · · ⊗ ∇mNR)

with three free indices α, β, ♦. The contractions can be expanded
corresponding to the block diagonal form of g. In each term, at least
one of the ∇miR will have an odd number of ♦ indices. Since hr is
even to order n − 2 and Λ involves at most n − 3 derivatives of g, this
component ∇miR vanishes on Σ. Thus Λαβ♦ = 0 on Σ. Similar analysis
considering also the leading nonzero term shows that

∆(n−4)/2Cαβ♦ = c′∂n−1
r hαβ on Σ
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where c′ 6= 0. Thus the right-hand side of (4.5) for I = β, a = α
vanishes on Σ if and only if ∂n−1

r hαβ = 0 on Σ, that is if and only if g+
is even.

It follows immediately that if χ has an ambient extension satisfying

∇̃χ̃ = O(ρn/2) then g+ is even, since the left-hand side of (4.5) clearly
vanishes on Σ.

Next we prove the converse. Away from Σ, χ is the parallel tractor
associated to the Einstein metric g+. We have seen in this case in
Proposition 4.4 that there is a unique determination of the ambiguity
in the ambient metric so that χ has an ambient extension satisfying

∇̃χ̃ = O(ρn/2). Thus away from Σ there is a unique determination of

R̃∞ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

for which (4.5) holds. We will show that if g+ is even,

then the so-determined tensor R̃∞ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

extends smoothly across

Σ. The desired result follows immediately. This tensor is trace-free and
satisfies the divergence constraint on Σ relative to g by continuity, so it
determines an infinite-order ambient metric. All quantities appearing
in (4.5) are then smooth across Σ, so (4.5) holds on Σ by taking limits.

(If g+ is not even, the tensor R̃∞ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

uniquely determined away

from Σ blows up on approach to Σ.)

To see that R̃∞ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

extends smoothly across Σ, first take I = ∞

in (4.5) to obtain R̃∞♦a∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

= 0. So the components R̃∞ia∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

with i or a = ♦ certainly extend smoothly across Σ; they vanish identi-
cally nearby. We have seen that if g+ is even, then the right hand side
of (4.5) for I = β, a = α extends smoothly across Σ and vanishes on Σ.

Thus dividing by r shows that R̃∞βα∞, ∞···∞︸ ︷︷ ︸
(n−4)/2

extends smoothly across

Σ as well. q.e.d.

If n is even and g+ is an even Poincaré-Einstein metric, then the am-
bient metric of Proposition 4.5 with respect to which χ has an ambient
extension parallel to infinite order is uniquely determined to infinite or-
der up to diffeomorphism by Propositions 4.2 and 4.3. It may therefore
be regarded as a distinguished ambient metric for the conformal class
c determined by g+. Proposition 4.4 shows that away from Σ it agrees
to infinite order up to diffeomorphism with the canonical ambient met-
ric determined by the Einstein metric g+ ∈ c|M\Σ in the sense of our
previous discussion.

We conclude our discussion of Poincaré-Einstein metrics by showing
that in all dimensions, one can identify explicitly the parallel ambient
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extension of the parallel tractor 1-form (4.4) corresponding to an even
Poincaré-Einstein metric (as well as the ambient metric with respect to
which it is parallel). This is closely related to Theorem 6.3 of [Go3]
and uses a formula of Juhl [J] for a Poincaré-Einstein metric whose
conformal infinity is g = dr2+hr, where g+ = r−2g is an even Poincaré-
Einstein metric. Recall that we defined a Poincaré-Einstein metric to be
even if g+ = r−2(dr2+hr) where the Taylor expansion of hr is even in r
to infinite order, and this holds for all Poincaré-Einstein metrics if n is
odd. If g+ is even and positive definite, Biquard’s unique continuation
theorem ([B]) shows that hr = h−r for r near 0. But we do not know if
this holds for other signatures. For simplicity of exposition, in the sub-
sequent discussion we will restrict attention to even Poincaré-Einstein
metrics for which hr = h−r. This is no real loss of generality: one can
construct two such metrics from any even Poincaré-Einstein metric by
reflecting across r = 0 the restriction of hr to either r > 0 or r < 0.

Let n ≥ 3 and let g+ = r−2g be an even Poincaré-Einstein metric
with g = dr2 + hr where hr = h−r. Define ku for u ≥ 0 small by
ku = h√u so that ku is smooth up to u = 0 and hr = kr2 for all r near

0. Juhl has discovered (Theorem 7.2 of [J]) that the metric g++ given
by

(4.7) g++ = s−2
(
ds2 + dr2 + kr2+s2

)

is a Poincaré-Einstein metric with conformal infinity [g] in normal form
relative to g. Juhl proves this by a direct calculation that g++ satisfies
Ric(g++) = −ng++ for s 6= 0. An alternate proof (which could be
used to guess the result) is to begin with the Einstein metric g+ in
the conformal class [g] away from Σ. The formula for the “canonical”
Poincaré metric associated to an Einstein metric (see (7.13) of [FG2];
this is the Poincaré metric analogue of (4.3) above) shows that

(4.8) s−2
[
ds2 + (1 + 1

4s
2)2g+

]

is a Poincaré-Einstein metric in normal form relative to g+. This metric
can be put into normal form relative to the metric g = dr2 + hr in
the conformal class. This can be carried out explicitly: substituting
g+ = r−2(dr2 + kr2) in (4.8) and making the change of variables

r =
√
r′2 + s′2 s = 2

√
r′2 + s′2 − r′

s′

with inverse

r′ =
4− s2

4 + s2
r s′ =

sr

1 + 1
4s

2

one obtains without difficulty that the metric (4.8) takes the form
s′−2

(
ds′2 + dr′2 + kr′2+s′2

)
. Relabeling the variables gives (4.7).

The fact that g+ is even is of course not used in verifying that g++

defined by (4.7) is Einstein. But if g+ is not even, then g++ has as
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conformal infinity [dr2 + h|r|], which is not smooth across {r = 0} and
does not agree with [g] for r < 0.

Recall that in normal form, an ambient metric and the associated
even Poincaré metric are related by the change of variable s2 = −2ρ;
see Chapter 4 of [FG2]. Thus the metric g̃+ defined by (2.1) with
gρ = dr2 + kr2−2ρ satisfies Ric(g̃+) = 0 for ρ < 0. (In fact, this holds

where gρ makes sense, i.e. for 2ρ < r2.) If we choose some smooth
extension of ku to {u < 0} and define gρ by the same formula, then g̃+
is defined in a neighborhood of {ρ = 0} and is an ambient metric (to
infinite order in any dimension) for [g] in normal form relative to g.

Proposition 4.6. Suppose n ≥ 3 and let g+ = r−2g be an even
Poincaré-Einstein metric, where g = dr2 + kr2 . Let χ be the associated
parallel tractor 1-form given by (4.4). Let g̃+ be the ambient metric
defined by (2.1) with gρ = dr2 + kr2−2ρ as above. Then the 1-form
χ̃ = rdt + tdr = d(rt) is a parallel ambient extension of χ. (χ̃ is
independent of ρ and has zero dρ component.)

Proof. We have observed at the beginning of the proof of Proposi-
tion 4.5 that χ∞ = 0, so χ̃ is certainly an ambient extension of χ.

The condition ∇̃χ̃ = 0 becomes ∇̃2(rt) = 0 and is a straightforward
verification from (2.5); the function rt is a quadratic polynomial in the
coordinates. The verification uses only that gρ has the form dr2+kr2−2ρ

for some 1-parameter family of metrics k on Σ; the Einstein condition
does not enter. q.e.d.

Proposition 4.6 of course gives an alternate proof of the existence
of an ambient extension of χ parallel to infinite order (Theorem 1.4
and Proposition 4.5) for even Poincaré-Einstein metrics. It also iden-
tifies explicitly the distinguished ambient metric associated to g+ de-
fined immediately after the proof of Proposition 4.5. Finally, it gives
an explicit realization of Theorem 6.3 of [Go3]: by the relation again
between ambient metrics and Poincaré metrics in normal form, the am-
bient metric in normal form relative to the metric h0 = g|TΣ on Σ is
g̃ = 2ρdt2 + 2tdtdρ+ t2k−2ρ = g̃+|r=0,dr=0.

Consider next the case of tractor 2-forms. Again there is much lit-
erature; see e.g. [Leit1], [Leit2], [Go2], [H]. A section χ ∈ Γ(Λ2T ∗)
has components χ0j ∈ Γ(T ∗M), χij ∈ Γ(Λ2T ∗M), χ0∞ ∈ C∞(M),
χj∞ ∈ Γ(T ∗M) with respect to the splitting determined by a choice
of representative g. Just as for tractor 1-forms, writing the equation
∇χ = 0 in terms of components using the tractor Christoffel symbols
(2.6) shows that a parallel χ is determined by its projecting part χ0j ,
and the projecting part satisfies the conformal Killing equation. Set
αj = χj0 = −χ0j. If ∇χ = 0, then α satisfies α(i,j) =

1
nαk,

kgij and one
has

(4.9) χij = α[i,j], χ0∞ = 1
nαk,

k, χj∞ = 1
nαk,

k
j + Pj

kαk.
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If χ is not identically 0 then it is nonvanishing, so the 2-jet of α is
nonvanishing and {α 6= 0} is dense.

Proposition 4.7. Let χ ∈ Γ(Λ2T ∗). If αkα
k 6= 0 on a dense set,

then χ is determining.

Proof. We have Fχ(η)IJ = −I(η)KIχKJ − I(η)KJχIK , so Fχ(η)ij =
2η[iαj]. Thus if Fχ(η) = 0, then on the set where α 6= 0 we have η = cα

for a smooth function c. Now Fχ(η)0∞ = 0 gives ηkαk = 0, so it follows

that c = 0 where αkαk 6= 0. Hence η = 0 on a dense set, so η = 0
everywhere since it is smooth. q.e.d.

In particular, if the signature is definite, every nonzero parallel tractor
2-form is determining.

On the other hand, for the null case we have

Proposition 4.8. Let χ ∈ Γ(Λ2T ∗) satisfy ∇χ = 0. If αkα
k vanishes

identically, then χ is not determining.

Proof. We can assume that α is not identically zero. It suffices to
show that Fχ(α) = 0. We have Fχ(η)j0 = 0 for any η. The argument in
the proof of Proposition 4.7 shows that Fχ(α)ij = 0 and Fχ(α)0∞ = 0.
It remains to show that Fχ(α)j∞ = 0. Using (4.9) we have

−Fχ(α)j∞ = αjχ0∞ − αkχjk = 1
nαjαk,

k − αkα[j,k]

= 1
nαjαk,

k − 1
2α

kαj,k +
1
2α

kαk,j.

Now αkαk,j = 0 since α is null. Contracting the conformal Killing equa-

tion with α then gives αkαj,k = 2
nαjαk,

k, so Fχ(α)j∞ = 0 as desired.
q.e.d.

Proposition 4.8 suggests that parallel tractor 2-forms with null pro-
jecting part are candidates for existence of parallel ambient extensions
for more than one infinite-order ambient metric. We show next that this
happens for Fefferman conformal structures associated to nondegenerate
hypersurfaces in Cn.

In [Leit3] and [ČG2], it was shown that Fefferman conformal struc-
tures of nondegenerate integrable CR manifolds of hypersurface type
are locally characterized by the existence of a parallel almost complex
structure JIJ on T such that χIJ := JIJ is a tractor 2-form, where the
index is lowered with the tractor metric. Equivalently they are charac-
terized by the existence of a parallel tractor 2-form χ such that raising
an index gives an almost complex structure. The underlying manifold
M of the Fefferman conformal structure is a circle bundle over the CR
manifold and J is determined by the property that the vector field on
M given by JT mod T is the infinitesimal S1 action. This makes sense

because JT is a section of T G̃|G homogeneous of degree 0 and orthog-
onal to T with respect to the tractor metric, so it projects to a vector
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field on M . The fact that J is determined by this projection is just the
statement that χ is determined by its projecting part α, which we have
seen in (4.9).

In Fefferman’s original construction the CR manifold is a nondegen-
erate real hypersurface M in Cn, n ≥ 2, in which case the circle bundle
M = S1 ×M is trivial. Fefferman showed in [F] that there is a smooth
defining function u for M uniquely determined mod O(un+2) such that
J(u) = 1 +O(un+1), where

J(u) = (−1)r+1 det

(
u uj̄
ui uij̄

)

1≤i,j≤n

.

That M is nondegenerate means that the Levi form −uij̄|T 1,0M is non-
degenerate, and we have taken its signature to be (r, s), r + s = n− 1.
Set C∗ = C \ {0}. A representative g for the conformal structure is by
definition the pullback to

S1 ×M = {(z0, z) : |z0| = 1, z ∈ M} ⊂ C
∗ × C

n

of the Kähler metric g̃ defined on a neighborhood G̃ of C∗×M in C∗×Cn

by

(4.10) g̃ = ∂2
αβ

(−|z0|2u)dzαdzβ.
The metric bundle G can be identified with C∗×M and the dilations

on G̃ are just the usual dilations on the C∗ factor. Now g̃ is clearly
homogeneous of degree 2 and it satisfies the initial condition ι∗g̃ = g0
by the definition of g. It is easily checked that g̃ is straight. Its Ricci
curvature

(4.11) ∂2
αβ

(log |det gρσ|)zαdzβ = ∂2
ij
(log J(u))dzidzj

is clearly O(un−1) and is easily seen to be O+
IJ(ρ

n−1). So g̃ is an ambient
metric for (S1 ×M, [g]).

Fix a defining function u satisfying J(u) = 1 + O(un+1). Theorem
2.11 of [Gr2] shows that for each a ∈ C∞(M), there is a v uniquely
determined to infinite order having an asymptotic expansion of the form

(4.12) v ∼ u

∞∑

k=0

ηk(u
n+1 log |u|)k

with each ηk smooth, such that η0 = 1+aun+1+O(un+2) and J(v) = 1
to infinite order. For such v, g̃ defined by (4.10) with u replaced by
v has Ric(g̃) = 0 to infinite order by (4.11). We will call such a g̃ an
infinite-order ambient metric with log terms for (S1 × M, [g]). These
are parametrized by the scalar ambiguity a.

Proposition 4.9. Let M ⊂ Cn be a nondegenerate hypersurface
with associated Fefferman conformal structure (S1×M, [g]) and parallel
tractor 2-form χ ∈ Γ(Λ2T ∗). For each infinite-order ambient metric g̃
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with log terms parametrized by a ∈ C∞(M) as above, χ has a parallel
ambient extension.

Proof. Let J̃ denote the almost complex structure on C∗ × Cn. If g̃
is any one of the infinite-order ambient metrics with log terms, then

g̃IK J̃KJ is skew and ∇̃J̃ = 0 since g̃ is Kähler. Now J̃ is invariant under

the dilations, so J̃|G defines an almost complex structure on T (recall
that G is identified with C∗×M) which we denote by J. We claim that J
is the parallel almost complex structure of [Leit3], [ČG2]. Restricting

the properties for J̃ shows that hIKJKJ is skew and J is parallel. If we
write z0 = reiθ in polar coordinates, then J(r∂r) = ∂θ. But r∂r = T is
the infinitesimal dilation and ∂θ the conformal Killing field giving the
infinitesimal S1 action, so this is the required condition on J. It follows
that J is the almost complex structure of [Leit3], [ČG2]. Lowering

an index, we conclude that χ̃IJ = g̃IK J̃KJ is a parallel extension of
χIJ = hIKJKJ . q.e.d.

Note that the Einstein condition is not used in the proof of Proposi-
tion 4.9; what matters is that g̃ is Kähler. In particular, Proposition 4.9
holds for all metrics of the form (4.10) so long as J(u) = 1+O(u2). But if
M, u and a are real-analytic, then the series (4.12) converges ([Ki]) and
thus defines a real-analytic function off M. The corresponding metric g̃
is then Ricci-flat and Kähler. The (n+1, 0)-form (z0)ndz0∧dz1∧· · ·∧dzn
is parallel, so Hol(g̃) ⊂ SU(r+1, s+1). For any choice of real-analytic
a, the almost complex structure and the complex volume form have
thus been simultaneously extended to be parallel. In this regard it is
interesting to recall that a simply connected conformal structure with
conformal holonomy contained in U(p, q) must have holonomy contained
in SU(p, q) ([Leit3]), but this is not the case for metric holonomy. Thus
for conformal structures the existence of a (local) parallel complex vol-
ume form follows from the existence of a parallel J, but the existence
of a parallel extension of J does not imply the existence of a parallel
extension of the complex volume form.

Observe the similarity between the situation in Proposition 4.9 and
that for the trivial example of extending the tractor metric. The exten-
sion χ̃IJ is the Kähler form of g̃ so depends on the ambient metric which

has been chosen. But the extension χ̃I
J = J̃I J with an index raised is

independent of this choice. Likewise the extended parallel complex vol-
ume form (z0)ndz0 ∧ dz1 ∧ · · · ∧ dzn is independent of choice of g̃.

There is a scalar CR invariant L defined to be a constant mul-
tiple of (J(u) − 1)/un+1|M which is independent of the choice of u
satisfying J(u) = 1 + O(un+1). The main properties of L are de-
rived in [Lee], [Gr1], [Gr2]. Proposition 3.10 of [GH] shows that
the obstruction tensor of (S1 × M, [g]) is a constant multiple of Lθ2,
where θ = i

2(∂u − ∂̄u)|TM is the associated pseudohermitian 1-form
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and the tensor Lθ2 on M is implicitly pulled back to S1 ×M. So [g]
is obstruction-flat if and only if L = 0. In this case Proposition 2.16 of
[Gr2] shows that for all choices of a ∈ C∞(M) the coefficients ηk for
k ≥ 1 vanish to infinite order in the expansion of v above. The corre-
sponding g̃ are therefore smooth and are infinite-order ambient metrics
in our usual sense. Hence Proposition 4.9 asserts in particular that the
parallel tractor 2-form χ for an obstruction-flat Fefferman conformal
structure of a nondegenerate hypersurface in Cn has a parallel ambi-
ent extension for a family of infinite-order ambient metrics (without log
terms) parametrized by a ∈ C∞(M). Likewise, the discussion in the
paragraph following Proposition 4.9 shows that if M is obstruction-flat
and real-analytic and a is chosen to be real-analytic, then the resulting
metrics g̃ are real-analytic everywhere and have holonomy contained in
SU(r + 1, s + 1).

5. G2 Holonomy

In this section we apply Theorem 1.4 to Nurowski’s conformal struc-
tures associated to a generic 2-plane field on a 5-manifold. Let D be
a distribution of rank 2 on a manifold M of dimension 5. We assume
that M is connected and, for convenience, oriented (which is equiva-
lent to the condition that D is oriented). (Our arguments and results
all carry over to the nonorientable case upon replacing below G2 by
{±I}G2 ⊂ O(3, 4) and P by {A ∈ {±I}G2 : Ae0 = λe0, λ > 0}.) Let
X, Y be a local basis for the sections of D. D is said to be generic
if X, Y , [X,Y ], [X, [X,Y ]], [Y, [X,Y ]] are linearly independent at each
point. In this case we denote by D1 = span{X,Y, [X,Y ]} the derived
rank 3 distribution. In [C], Cartan solved the equivalence problem for
such distributions by canonically associating to D a principal bundle
B →M and Cartan connection ω taking values in the Lie algebra g2 of
G2, the split real form of the exceptional group. The structure group of
B is the parabolic subgroup P ⊂ G2 fixing a null ray. In the appendix
we fix our conventions, review the Cartan connection and derive two
properties which will be needed in the sequel.

In [N1], Nurowski showed that there is a conformal structure on M
of signature (2, 3) naturally determined by D. This follows from the
existence of Cartan’s canonical bundle and connection and the relation
between the relevant groups. One way to see this is as follows. It is a
general fact that the tangent bundle TM of a manifoldM with a Cartan
geometry of type (g, P ) is associated to the adjoint representation of
P on g/p. We claim that the adjoint action of our P on g2/p ∼= R5

preserves up to scale a quadratic form of signature (2, 3). This implies
the existence of a canonical conformal structure by the associated bundle
construction. Now G2 is a subgroup of SO(3, 4). Let Pc be the subgroup
of SO(3, 4) fixing the same null ray, with Lie algebra pc. Then P ⊂ Pc
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and so(3, 4)/pc ∼= g2/p. The adjoint action of Pc on so(3, 4)/pc preserves
up to scale a quadratic form of signature (2, 3); this is the reason a
Cartan geometry of type (so(3, 4), Pc) induces a conformal structure.
Since the adjoint action of P on g2/p can be regarded as the restriction
of the adjoint action of Pc, it preserves the same quadratic form up to
scale.

As discussed in the introduction, any generic D can be written locally
in the form (1.2) for some smooth function F such that Fqq is nonva-
nishing, and D defined by (1.2) is generic for any such F . The choice
F = q2 gives the homogeneous model distribution. For D in this form,
Nurowski gave a formula in [N1], [N2] for a representative metric gF of
the conformal class such that the components of gF and g−1

F are polyno-
mials in F , the derivatives of F of orders ≤ 4, and F−1

qq , with coefficients
which are universal functions of the local coordinates. The metric gF is
flat for F = q2. In [N2], he considered the case F = q2+

∑6
k=0 akp

k+bz
with ak, b ∈ R, and gave an explicit formula for the ambient metric g̃F
in normal form relative to gF . For these gF , gρ in (2.1) is a polynomial
in ρ of degree ≤ 2. In [LN], Leistner-Nurowski showed that the holo-
nomy of g̃F is contained in G2 for all values of the ak’s and b, and is
equal to G2 if one of a3, a4, a5 or a6 is nonzero. That the holonomy
is contained in G2 is proved by exhibiting explicitly a suitable parallel
3-form (or equivalently a nonisotropic parallel spinor) for g̃F .

In [HS], Hammerl-Sagerschnig gave a characterization of Nurowski’s
conformal structures. They showed that a conformal structure of signa-
ture (2, 3) arises from a generic distribution D if and only if it admits
a parallel tractor 3-form χ compatible with the tractor metric h in the
sense that

(U χ) ∧ (V χ) ∧ χ = λh(U, V ) dv, U, V ∈ Tx,

where dv denotes the tractor volume form and λ is some positive con-
stant. As explained in [HS], the existence of such a χ, which is all that
we need here, follows easily from the realization of Λ3T ∗ and its connec-
tion as associated to the (g2, P ) Cartan connection. Namely, since the
3-form ϕ ∈ Λ3R7∗ defining G2 is fixed by P , the constant function ϕ on
B is P -equivariant, so determines a section χ of the associated bundle
Λ3T ∗. Since ϕ is fixed by all of G2 and the associated covariant deriv-
ative is given in terms of the action of g2 and differentiation by vector
fields on B, it follows that χ is parallel. The compatibility condition
follows from the fact that h has a similar realization as associated to
the quadratic form determined by ϕ.

Let D be a generic 2-plane field onM , with D andM real-analytic. In
the following, g̃ will denote a real-analytic ambient metric for Nurowski’s
conformal structure associated to D, with domain a sufficiently small

dilation-invariant neighborhood G̃ of G diffeomorphic to R+ ×M × R.
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Proof of Theorem 1.1. By the result of Hammerl-Sagerschnig, there
is a nonzero parallel section χ ∈ Γ(Λ3T ∗) compatible with the tractor
metric. By Theorem 1.4, χ has an extension as a real-analytic 3-form χ̃

on some dilation-invariant neighborhood G̃ of G which is parallel with
respect to g̃. χ̃ is compatible with g̃ by analytic continuation, so it

follows that Hol(G̃, g̃) ⊂ G2. q.e.d.

Next we discuss Cartan’s basic curvature invariant of generic 2-plane
fields. In Cartan’s derivation this invariant arises directly from the
structure equations. We describe how it can be realized as a piece of
the Weyl tensor of the conformal structure.

Let D be a generic 2-plane field on a (connected, oriented) 5-manifold
M and let D1 = span(D, [D,D]) be the derived 3-plane distribution.
We first define an isomorphism τ : D → TM/D1 invariantly up to scale.
Choose a metric g in the conformal class. In the appendix it is observed
that D1 = D⊥, where ⊥ denotes orthogonal complement with respect to
g. Thus the map ψ : TM/D1 → D∗ obtained by lowering an index with
respect to g and restricting to D is well-defined and an isomorphism.
Now g defines a negative definite metric on the line bundle D1/D, and
this line bundle is trivial since D is orientable. Let α be a section of
(D1/D)∗ with g-length-squared equal to −3

4 ; α is uniquely determined
up to multiplication by −1. The Lie bracket induces a pointwise map
D ×D → D1/D which we can regard as a scalar-valued nondegenerate
skew form D × D → R by (X,Y ) → α([X,Y ]). This form induces an
identification µ : D → D∗ defined by 〈µ(X), Y 〉 = α([X,Y ]), where 〈·, ·〉
denotes the duality pairing. Then τ = ψ−1 ◦ µ : D → TM/D1 is our
desired isomorphism. Clearly 〈µ(X),X〉 = 0 for X ∈ D. Since ψ turns
the g pairing into the duality pairing, it follows that τ(X) ∈ X⊥/D1.
Since X⊥/D1 is 1-dimensional, τ(X) actually spans X⊥/D1 if X 6= 0.

Under rescaling ĝ = Ω2g, we have ψ̂ = Ω2ψ and µ̂ = Ωµ so that
τ̂ = Ω−1τ . Changing the sign of α multiplies µ and τ by −1.

Let W denote the Weyl tensor of our chosen metric g, viewed as a
covariant 4-tensor. Proposition 6.1 shows that W (·, ·, Y, Z) = 0 if Y ,
Z ∈ D1. Therefore we can define a section A of ⊗4D∗ by

(5.1) A(X1,X2,X3,X4) =W (τ(X1),X2, τ(X3),X4), Xi ∈ Dy

since the right-hand side is independent of the D1 ambiguity in τ . Since

Ŵ = Ω2W and τ̂ = Ω−1τ and the right hand side is invariant under τ →
−τ , it follows that A is an absolute invariant of the 2-plane distribution
D. Proposition 6.2 shows that A ∈ Γ(S4D∗) is symmetric.

The proof of Theorem 1.2 uses the following result which follows from
the arguments of Leistner-Nurowski.

Proposition 5.1. Let D be a real-analytic generic 2-plane field on
a connected, simply connected, real-analytic 5-manifold M . Suppose
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Hol(g̃) is strictly contained in G2. Then at least one of the following
three conditions holds:

(1) g̃ is locally symmetric.
(2) There is an open dense set U ⊂ M such that every point of U

has a neighborhood on which there is an Einstein metric in the
conformal class [g].

(3) Every point of M has a neighborhood on which there is a metric g
in the conformal class and a null line bundle L ⊂ TM such that
L is parallel for g and Z Ricg = 0 for all Z ∈ L⊥. In this case,

W (U,K,K,Z) = 0 for all K ∈ L, U ∈ TM , Z ∈ L⊥.

We give a brief outline of the proof. See [LN] for details. Berger’s
list contains all irreducibly acting holonomy groups of simply connected
non-locally-symmetric pseudo-Riemannian manifolds. The only groups
on the list in signature (3, 4) are G2 and SO(3, 4). So if the holonomy
is strictly contained in G2 and g̃ is not locally symmetric, its holonomy
must act reducibly. If V ⊂ R7 is a nontrivial invariant subspace for the
holonomy group, its orthogonal V ⊥ is also invariant. If V ∩ V ⊥ = {0},
the deRham decomposition theorem gives a local splitting of g̃ as a prod-
uct metric. This leads to condition (2). If V and V ⊥ intersect nontriv-
ially, their intersection determines a parallel totally null distribution of
rank at most 3 on the ambient space. The cases where dim (V ∩ V ⊥) =
1 or 3 lead to condition (2). The case where dim (V ∩ V ⊥) = 2 leads to
condition (3). (These deductions to conditions (2) and (3) are substan-
tial theorems in themselves.)

As regards condition (3) of Proposition 5.1, we have the following
lemma.

Lemma 5.2. Let D be a generic 2-plane field on a 5-manifold M and
let W be the Weyl tensor at y ∈ M of a representative of Nurowski’s
associated conformal structure. There exists a nonzero null vector K ∈
TyM such that W (U,K,K,Z) = 0 for all U ∈ TyM , Z ∈ K⊥ if and
only if Ay is 3-degenerate.

Proof. Suppose first that Ay is 3-degenerate. So there exists 0 6=
X ∈ D such that A(Y,X,X,X) = 0 for all Y ∈ D. (From now on we
suppress writing y.) Just take K = X. Certainly X is nonzero and
null. In order to check W (U,X,X,Z) = 0, by Proposition 6.1 only
the equivalence classes of U , Z mod D1 are relevant. We can write
U +D1 = τ(Y ) for some Y ∈ D, and modulo a multiplicative constant
can write Z +D1 = τ(X). Then

W (U,X,X,Z) =W (τ(Y ),X,X, τ(X)) = −A(Y,X,X,X) = 0.

For the converse, suppose that K is a nonzero null vector such that
W (U,K,K,Z) = 0 for all U ∈ TM , Z ∈ K⊥. First suppose K ∈ D. In
this case we take X = K, Z + D1 = τ(X), U + D1 = τ(Y ) as above to
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deduce that A(Y,X,X,X) = 0 for all Y ∈ D. There are no null vectors
in D1 \D, so the only other possibility is K ∈ TM \D1. In this case we
can write K + D1 = τ(X) for some nonzero X ∈ D. Take Z = X and
U to be an arbitrary vector Y ∈ D to deduce that A(Y,X,X,X) = 0
for all Y ∈ D. q.e.d.

Proof of Theorem 1.2. Theorem 1.1 shows that Hol(g̃) ⊂ G2. So it
suffices to show that the restriction of g̃ to some connected open subset
of its domain has holonomy equal to G2. We can choose a connected,
simply connected subset of M containing x and y. By replacing M by
this subset, we may as well assume that M is simply connected. Thus
we can apply Proposition 5.1. We show that injectivity of Lx and 3-
nondegeneracy of Ay is incompatible with each of conditions (1)-(3) of
Proposition 5.1. Note that L is injective on an open set about x since
injectivity is invariant under perturbation.

At a point where A is 3-nondegenerate, it is in particular nonzero,
so the Weyl tensor W of a representative metric g is nonzero. This is

enough to conclude that ∇̃R̃ 6= 0 so that g̃ is not locally symmetric. In

fact, the second equation of (3.1) with r = 1 implies ∇̃T R̃ = −2R̃, and

one has R̃ijkl = t2Wijkl. So if W 6= 0, then R̃ 6= 0, so ∇̃R̃ 6= 0.
An Einstein metric has vanishing Cotton tensor. By the transforma-

tion law of the Cotton tensor, it follows that if ĝ = e2ωg is Einstein,
thenWijklω

i+Cjkl = 0. Hence if (2) holds, then L is not injective on U .
Since U is dense, this is incompatible with injectivity of L on an open
set.

If (3) holds, then Lemma 5.2 shows that A is 3-degenerate at all
points of M . This violates the assumption that Ay is 3-nondegenerate.

q.e.d.

Proof of Proposition 1.3. Represent L at the origin as a matrix in
some basis. Its rank is less than 6 if and only if the determinant of each
of its 6×6 submatrices vanishes. This clearly defines an algebraic subva-
riety in the space of jets; we have only to show that it is proper. In the
appendix of [LN], Leistner-Nurowski give explicit formulae for the Weyl

and Cotton tensors for the 8-parameter family F = q2+
∑6

k=0 akp
k+bz.

It is straightforward to check from their formulae that if a3 6= 0 and
a4 6= 0, then L at the origin is injective. (For instance, suppose that the
right hand side of our (1.1) vanishes for some (v, λ). Taking successively
jkl = 415, 115, 413, 113, 414, 114 shows the vanishing of, resp., v1, v4, λ,
v3, v2, v5.) So the subvariety where rank(L) < 6 is proper.

Now A at the origin is a symmetric 4-form on D0 = span{∂q, ∂x}.
If we represent X ∈ D0 in terms of the coordinates (u, v) dual to this
basis, then the homogeneous polynomial defined by A takes the form

(5.2) A(X,X,X,X) = A0u
4 + 4A1u

3v + 6A2u
2v2 + 4A3uv

3 +A4v
4
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for A0, . . . , A4 ∈ R (cf. (6.6)). The conditions A(∂q,X,X,X) = 0,
A(∂x,X,X,X) = 0 are

A0u
3 + 3A1u

2v + 3A2uv
2 +A3v

3 = 0

A1u
3 + 3A2u

2v + 3A3uv
2 +A4v

3 = 0.
(5.3)

So A is 3-degenerate if and only if this pair of equations has a common
solution (u, v) ∈ R2 \ (0, 0). The set of A0, . . . , A4 such that this holds
is contained in the set where the two equations have a common solution
in C2 \ (0, 0), which is characterized by the vanishing of the resultant:

(5.4)

∣∣∣∣∣∣∣∣∣∣∣∣

A0 3A1 3A2 A3 0 0
0 A0 3A1 3A2 A3 0
0 0 A0 3A1 3A2 A3

A1 3A2 3A3 A4 0 0
0 A1 3A2 3A3 A4 0
0 0 A1 3A2 3A3 A4

∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

This equation defines an algebraic subvariety in the space of 7-jets of
F at the origin, and we must show it is proper. We cannot do this
by considering Leistner-Nurowski’s family of examples, because inspec-
tion of the formulae in the appendix of [LN] shows that the A which
arise from their family are everywhere 2-degenerate, i.e. for any F in
their 8-parameter family, at each point there is 0 6= X ∈ D such that
A(Y1, Y2,X,X) = 0 for all Y1, Y2 ∈ D. Instead we argue as follows.

It is easily seen that (5.4) defines a proper subvariety in S4(D∗
0) rep-

resented as the space of A’s. To see that it defines a proper subvariety in
the space of 7-jets of F , it certainly suffices to show that the map from
jets of F at the origin to S4(D∗

0) is surjective. Take F = q2 + f , where
f = f(x, y, z, p, q) = O(|(x, y, z, p, q)|6). For such f , we claim that A can
be identified with a nonzero constant multiple of

(
∇4∂2q f

)
(0)|D0 . Here

∂2q f vanishes to order 4 at the origin,
(
∇4∂2qf

)
(0) denotes the symmet-

ric 4-tensor on T0M defined by the order 4 Taylor polynomial of ∂2qf at
the origin, and |D0 its restriction to D0. (Recall that if a smooth func-
tion ϕ on a manifold M vanishes to order k at a point y, then ∇kϕ(y)
is an invariantly defined symmetric k-form on TyM depending only on
the smooth structure.) Up to an overall nonzero constant multiple, the
Ai above are given by

A0 = ∂6q f(0), A1 = ∂5q∂xf(0), A2 = ∂4q∂
2
xf(0),

A3 = ∂3q∂
3
xf(0), A4 = ∂2q∂

4
xf(0).

(5.5)

This follows by direct calculation. Equation (1.3) in [N2] gives a formula
for a representative of the conformal structure in terms of F . All terms
in the formula involve at most 4 derivatives of F . For F = q2 + f as
above, the only terms which can contribute to the value of the curvature
tensor at the origin must involve 4 derivatives of F . Inspecting term
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by term shows that the curvature at the origin of gF is the same as the
curvature at the origin of the metric gq2 + h, where

h = −24∂2x∂
2
qf dy

2 + 24∂x∂
3
q f dydz − 6∂4q f dz

2.

Since gq2 is flat, the curvature tensor at the origin of gq2 +h is given by

Rijkl =
1
2 (hil,jk − hjl,ik − hik,jl + hjk,il) ,

where the indices correspond to components and derivatives with re-
spect to the frame {∂y, ∂z , ∂p, ∂q, ∂x}. Using the fact that gq2(0) =

480dydq + 240dzdx − 320dp2, it is straightforward but tedious to iden-
tify the isomorphism τ appearing in (5.1), to calculate the relevant
components of the Weyl tensor at the origin, and then to verify (5.5).

q.e.d.

We remark that it is not hard to see using the characterization of 3-
degeneracy in terms of common solutions of (5.3), that A is 3-degenerate
if and only if the corresponding quartic polynomial (5.2) has a real root
of multiplicity at least 2.

6. Appendix

In this appendix we collect facts about Cartan’s connection [C] as-
sociated to generic 2-plane fields in the form given by Nurowski [N1]
(modulo some relabeling). Other discussions may be found in the liter-
ature.

Define ϕ ∈ Λ3R7∗ by

ϕ = 6dx012 +
√
3
(
dx234 − dx135 + dx036

)
+ dx456

where the coordinates are labeled (x0, x1, · · · , x6) and dxijk = dxi ∧
dxj ∧ dxk. Define G2 = {A ∈ GL(7,R) : A∗ϕ = ϕ}. Then G2 ⊂ SO(h̃),
where

h̃IJ =



0 0 1
0 hij 0
1 0 0




and

hij =




0 0 0 0 −1
0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0



.
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The Lie algebra g2 ⊂ so(h̃) is the set of matrices of the form




−(a1 + a4) a8 a9 − 1√
3
a7

1
2
√
3
a5

1
2
√
3
a6 0

b1 a1 a2
1√
3
b4 − 1

2
√
3
b3 0 1

2
√
3
a6

b2 a3 a4
1√
3
b5 0 − 1

2
√
3
b3 − 1

2
√
3
a5

b3 a5 a6 0 1√
3
b5 − 1√

3
b4 − 1√

3
a7

b4 a7 0 a6 −a4 a2 −a9
b5 0 a7 −a5 a3 −a1 a8

0 b5 −b4 b3 −b2 b1 a1 + a4




.

Define P = {A ∈ G2 : Ae0 = λe0, λ > 0}. Its Lie algebra p ⊂ g2 is
the subset given by b1 = · · · = b5 = 0. The quadratic form hijb

ibj =
−2b1b5 + 2b2b4 − (b3)2 on g2/p is preserved up to scale by the adjoint
action of P .

Let D ⊂ TM be a generic 2-plane field on a connected, oriented 5-
manifold M . There is a principal bundle B → M with structure group
P and Cartan connection ω : TB → g2 canonically associated to D up
to equivalence. The Cartan connection can be written

ω =




−(ϕ1 + ϕ4) ϕ8 ϕ9 − 1√
3
ϕ7

1
2
√
3
ϕ5

1
2
√
3
ϕ6 0

θ1 ϕ1 ϕ2
1√
3
θ4 − 1

2
√
3
θ3 0 1

2
√
3
ϕ6

θ2 ϕ3 ϕ4
1√
3
θ5 0 − 1

2
√
3
θ3 − 1

2
√
3
ϕ5

θ3 ϕ5 ϕ6 0 1√
3
θ5 − 1√

3
θ4 − 1√

3
ϕ7

θ4 ϕ7 0 ϕ6 −ϕ4 ϕ2 −ϕ9

θ5 0 ϕ7 −ϕ5 ϕ3 −ϕ1 ϕ8

0 θ5 −θ4 θ3 −θ2 θ1 ϕ1 + ϕ4




where the θi and ϕj are scalar 1-forms on B. If σ is a local section of B →
M , set θ̄i = σ∗θi. Then {θ̄1, θ̄2, θ̄3, θ̄4, θ̄5} is a frame for T ∗M for which
D = ker{θ̄1, θ̄2, θ̄3} and the derived distribution D1 = span(D, [D,D]) is
given by D1 = ker{θ̄1, θ̄2}. The metric g = hij θ̄

iθ̄j = −2θ̄1θ̄5 + 2θ̄2θ̄4 −
(θ̄3)2 is a representative for Nurowski’s conformal structure. It is clear
that D⊥ = D1 with respect to such a metric.

The curvature Ω = dω + ω ∧ ω has the form

(6.1) Ω =




0 Φ8 Φ9
1√
3
Φ7

1
2
√
3
Φ5

1
2
√
3
Φ6 0

0 Φ1 Φ2 0 0 0 1
2
√
3
Φ6

0 −Φ3 −Φ1 0 0 0 − 1
2
√
3
Φ5

0 Φ5 Φ6 0 0 0 1√
3
Φ7

0 −Φ7 0 Φ6 Φ1 Φ2 −Φ9

0 0 −Φ7 −Φ5 −Φ3 −Φ1 Φ8

0 0 0 0 0 0 0



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where

Φ1 = C1θ
1 ∧ θ2 +B1θ

1 ∧ θ3 +B2θ
2 ∧ θ3 +A1θ

1 ∧ θ4

+A2θ
1 ∧ θ5 +A2θ

2 ∧ θ4 +A3θ
2 ∧ θ5

Φ2 = C2θ
1 ∧ θ2 +B2θ

1 ∧ θ3 +B3θ
2 ∧ θ3 +A2θ

1 ∧ θ4

+A3θ
1 ∧ θ5 +A3θ

2 ∧ θ4 +A4θ
2 ∧ θ5

Φ3 = C0θ
1 ∧ θ2 +B0θ

1 ∧ θ3 +B1θ
2 ∧ θ3 +A0θ

1 ∧ θ4

+A1θ
1 ∧ θ5 +A1θ

2 ∧ θ4 +A2θ
2 ∧ θ5

Φ5 = D0θ
1 ∧ θ2 + 2C0θ

1 ∧ θ3 + 2C1θ
2 ∧ θ3 +B0θ

1 ∧ θ4

+B1θ
1 ∧ θ5 +B1θ

2 ∧ θ4 +B2θ
2 ∧ θ5

Φ6 = D1θ
1 ∧ θ2 + 2C1θ

1 ∧ θ3 + 2C2θ
2 ∧ θ3 +B1θ

1 ∧ θ4

+B2θ
1 ∧ θ5 +B2θ

2 ∧ θ4 +B3θ
2 ∧ θ5

Φ7 = Eθ1 ∧ θ2 +D0θ
1 ∧ θ3 +D1θ

2 ∧ θ3 + C0θ
1 ∧ θ4

+ C1θ
1 ∧ θ5 + C1θ

2 ∧ θ4 + C2θ
2 ∧ θ5.

(6.2)

The coefficients A0, A1, A2, A3, A4, B0, B1, B2, B3, C0, C1, C2, D0,
D1, E are Cartan’s curvature quantities. There are further formulae for
Φ8, Φ9 which we will not need here; see Nurowski.

The Cartan geometry (B, ω) may be regarded as the reduction of a

Cartan geometry (Bc, ωc) of type (so(h̃), Pc), where Pc = {A ∈ SO(h̃) :
Ae0 = λe0, λ > 0}. Observe that (6.1) may be written

(6.3) Ω =



0 Ωj 0
0 Ωi

j −Ωi

0 0 0




where

Ωi
j =




Φ1 Φ2 0 0 0
−Φ3 −Φ1 0 0 0
Φ5 Φ6 0 0 0
−Φ7 0 Φ6 Φ1 Φ2

0 −Φ7 −Φ5 −Φ3 −Φ1



,

Ωj =
(
Φ8 Φ9

1√
3
Φ7

1
2
√
3
Φ5

1
2
√
3
Φ6

)
,

and Ωi = hijΩj. One checks directly from (6.2) that the coefficients
Ωi

jkl defined by

Ωi
j =

1
2Ω

i
jklθ

k ∧ θl Ωi
jkl = −Ωi

jlk

satisfy Ωi
jil = 0. It follows (see, e.g., [Ko]) that ωc is the normal Cartan

connection for Nurowski’s conformal structure. Lowering an index gives
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Ωij =
1
2Ωijklθ

k ∧ θl:

(6.4) Ωij =




0 Φ7 Φ5 Φ3 Φ1

−Φ7 0 Φ6 Φ1 Φ2

−Φ5 −Φ6 0 0 0
−Φ3 −Φ1 0 0 0
−Φ1 −Φ2 0 0 0



.

(This corrects the corresponding formula given in the appendix of [N1].)
From (6.2) and (6.4) one reads off the following:

A0 = Ω1414

A1 = Ω1415 = Ω1424 = Ω1514 = Ω2414

A2 = Ω1425 = Ω1515 = Ω1524 = Ω2415 = Ω2424 = Ω2514

A3 = Ω1525 = Ω2425 = Ω2515 = Ω2524

A4 = Ω2525.

(6.5)

If σ is a section of B → M as above, then comparing (6.3) with the
form of the curvature of the normal conformal Cartan connection shows
that Wijkl = Ωijkl ◦ σ are the components of the Weyl tensor of the
metric g = hij θ̄

iθ̄j in the frame {θ̄1, θ̄2, θ̄3, θ̄4, θ̄5}. Similarly, setting

Ωj = 1
2Ωjklθ

k ∧ θl with Ωjkl = −Ωjlk, the components of the Cotton
tensor are given by Cjkl = Ωjkl ◦ σ. Thus this expresses the Weyl and
Cotton curvature in terms of Cartan’s scalar invariants.

Proposition 6.1. W (·, ·, Y, Z) = 0 if Y , Z ∈ D1.

Proof. This is clear since Ωijkl = 0 if i, j ≥ 3 from (6.4). (Or observe
from (6.2) that Ωij = 0 mod θ1, θ2 for all i, j.) q.e.d.

Proposition 6.2. The tensor A defined in (5.1) is symmetric, i.e.
A ∈ Γ(S4D∗).

Proof. Consider the maps ψ, µ, τ defined in the paragraph before
(5.1). As above, let {θ̄1, θ̄2, θ̄3, θ̄4, θ̄5} be a coframe on M obtained by
pulling back {θ1, θ2, θ3, θ4, θ5} by a local section of the principal bundle,
and let {U1, U2, U3, U4, U5} be the dual frame. Then D = span{U4, U5}
and D1 = span{U3, U4, U5}. Lowering an index shows that

ψ(U1 +D1) = −θ̄5|D, ψ(U2 +D1) = θ̄4|D.

Taking α =
√
3
2 θ̄3, consideration of the 0

3 component of Ω = dω+ω∧ω
shows that

µ(U4) = −θ̄5|D, µ(U5) = θ̄4|D.
Thus

τ(U4) = U1 +D1, τ(U5) = U2 +D1.

Hence (6.5) shows that A defined by (5.1) is symmetric. q.e.d.
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Note that (6.5) in fact shows that

(6.6) A = A0u
4 + 4A1u

3v + 6A2u
2v2 + 4A3uv

3 +A4v
4,

where u = θ̄4|D, v = θ̄5|D, and we abuse notation by denoting also by
A0, A1, A2, A3, A4 their pullbacks under the local section σ of B.

The reductive part of P is R+ · SL(2,R), where SL(2,R) is viewed
as a subgroup of SO(h) via

SL(2,R) ∋ S 7→



S 0 0
0 1 0
0 0 S


 ∈ SO(h).

The space of Weyl tensors is a 35-dimensional irreducible representation
for SO(h). Upon restriction to SL(2,R) it decomposes as S4 ⊕ 2S3 ⊕
3S2 ⊕ 4S1 ⊕ 5R, where Sk denotes the kth symmetric power of the
standard representation and R = S0 the trivial representation. The
space of Weyl tensors which arise from a conformal structure associated
to a generic 2-plane distribution is the 15-dimensional subspace given
by (6.2), (6.4). This decomposes under SL(2,R) as S4⊕S3⊕S2⊕S1⊕R

corresponding to the division of Cartan’s scalar invariants into A’s, B’s,
C’s, D’s, and E.
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