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THE WEIL-PETERSSON HESSIAN OF LENGTH

ON TEICHMÜLLER SPACE

Michael Wolf

Abstract

We present a brief but nearly self-contained proof of a formula
for the Weil-Petersson Hessian of the geodesic length of a closed
curve (either simple or not simple) on a hyperbolic surface. The
formula is the sum of the integrals of two naturally defined pos-
itive functions over the geodesic, proving convexity of this func-
tional over Teichmuller space (due to Wolpert (1987)). We then
estimate this Hessian from below in terms of local quantities and
distance along the geodesic. The formula extends to proper arcs
on punctured hyperbolic surfaces, and the estimate to lamina-
tions. Wolpert’s result that the Thurston metric is a multiple of
the Weil-Petersson metric directly follows on taking a limit of the
formula over an appropriate sequence of curves. We give further
applications to upper bounds of the Hessian, especially near pinch-
ing loci, recover through a geometric argument Wolpert’s result on
the convexity of length to the half-power, and give a lower bound
for growth of length in terms of twist.

1. Introduction

One of the foundations of modern Teichmüller theory is Wolpert’s
[Wol87] theorem that the function on Teichmüller space that records
the geodesic length of a closed curve is convex with respect to the Weil-
Petersson metric. That paper provided a lower bound for the Hessian
of the length function; our purpose here is to present a brief derivation
of a concise formula for the Hessian in terms of natural objects on the
surface associated to the curve and the tangent vectors to Teichmüller
space.

To explain this result and add some context, we fix some terminology
and notation. Let S be a smooth closed surface of genus g, and let
T (S) be the Teichmüller space of (isotopy classes of) marked hyperbolic
structures on S. Let [γ] be a free homotopy class of closed curves, not
necessarily simple. Typically γ will denote the representative of [γ] that
is geodesic with respect to a given metric g, with the context making it
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clear whether γ is the immersed curve on the surface or an immersion
from a circle into the surface.

For each hyperbolic surface (S, g), there is a geodesic representative
γ = γg of [γ]. By the uniformization theorem, as each point in T (S)
is represented by a unique hyperbolic metric, say g, the length of the
geodesic representative γ of [γ] defines a function ℓ = ℓγ = ℓγ([g]) on
T (S). We investigate the second derivative of that function.

The Hessian of a function is well-defined once there is a background
metric. There are many metrics on T (S); among the more basic is the
Weil-Petersson metric. Representing the tangent space to Teichmüller
space as the space of Beltrami differentials which are harmonic with
respect to the hyperbolic metric g representing a point in T (S), the
Weil-Petersson metric is the L2 metric on that space with respect to
the hyperbolic area form dAg.

The first goal of this paper is to write a formula for the Weil-Petersson
Hessian of the function.
1.1. Statement of the formula. In this subsection, we describe our
formula in the simplest case; we discuss the situation of the second
derivative of the length function ℓ of a closed curve, with the derivative
taken along a Weil-Petersson geodesic Γ. Even in this case, we require
some notation.

Let Γ = Γ(t) a Weil-Petersson geodesic arc; the class [γ] is represented
by the Γ(t)-geodesic γt. The tangent vector to Teichmüller space at Γ(0)

is given by a harmonic Beltrami differential, say µ = Φ̄
g0
.

We can extend Γ(0)-Fermi coordinates along the curve γ0 to complex
coordinates in a neighborhood of (a subarc of) γ0. In terms of those
coordinates, the quantity − ImΦ

g0
= Imµ is well-defined. Let UΦ denote

the solution to the ordinary differential equation

(1.1) Uyy − U = − ImΦ

g0
,

where here the geodesic is represented by a vertical line in the Fermi
coordinate patch with a parametrization given by arclength.

This is enough terminology so that we may state our main result as

Theorem 1.1. Along the Weil-Petersson geodesic arc Γ(t), the sec-

ond variation d2

dt2 ℓ of the length ℓ(t) = L(Γ(t), [γ]) is given by

d2

dt2
ℓ(t) =

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

ds+

∫

γ0

[UΦ
y ]

2 + [UΦ]2ds

(1.2)

=

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

ds

+
1

2 sinh( ℓ2)

∫∫

γ0×γ0

Imµ(p)[cosh(d(p, q) − ℓ

2
)] Imµ(q)ds(p)ds(q).
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While this paper was under review, Axelsson and Schumacher [AS]
posted an analogous formula for the second variation of geodesic length
on a holomorphically varying family of hyperbolic surfaces.

1.2. Applications and extensions. The formula (1.2) lends itself to
applications. Using well-known techniques for solving and estimating
solutions of the relevant differential equations, we obtain results in a
number of different directions.

Of course, it is immediately apparent that this Hessian is positive def-
inite, even for curves which are not simple. The first summand is writ-

ten in terms of 2(∆− 2)−1 |Φ|2

g2
0

, a ubiquitous term in Teichmüller theory

whose definition involves the global geometry of (S, g). In Lemma 5.1,
we find a locally defined lower bound for this quantity. Thus, when
combined with the second expression for the second term, we obtain an
estimate defined only in terms of local quantities or distance along the
geodesic.

In addition to providing a means to estimate the Hessian from below,
we also obtain an improvement on the basic convexity result: from an
easily derived formula for the gradient of length, we will see (Corol-

lary 8.1) immediately that ℓ
2

3 is convex on all of Teichmüller space. A

recent theorem [Wol08] of Wolpert is that this may be improved to ℓ
1

2

being convex on all of Teichmüller space; we provide a proof for that as
well. The proof is geometric in the sense that it hinges on a comparison
of two harmonic diffeomorphisms of a cylinder.

It is straightforward to extend our derivations both to laminations
and to proper geodesic arcs which connect cusps on a hyperbolic cusped
surface. The explicit nature of formula (1.2) also lends itself to estimates
from above, leading to estimates on the Weil-Petersson connection near
the pinching locus. These were also recently obtained (and announced
some time ago) by Wolpert [Wol08]. We also give a bound from below
on the Hessian of length in terms of the infinitesimal twist.

Our final application is a new proof of Wolpert’s [Wol86b] proof
that the Thurston metric is (a multiple of) the Weil-Petersson met-
ric. We consider a sequence {γn} of curves whose geodesic representa-
tives are becoming equidistributed in the unit tangent bundle T 1(S, g).
Thurston observed that limn→∞Hessℓγn would be a positive definite
quadratic form on T(S,g)T (S): by taking a limit of the right-hand side
of formula (1.2), we see that this Thurston metric is a multiple of the
Weil-Petersson metric. Wolpert’s argument followed a more quasicon-
formal analytic tradition, while this derivation is more Riemannian in
perspective.

1.3. Organization of the paper. We organize the paper as follows.
In Part 1, we derive Theorem 1.1. Computations in Teichmüller theory
often require fixing a gauge; here we find it convenient to vary hyperbolic
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structures (S, gt) under the condition that the identity mapping id :
(S, g0) → (S, gt) is harmonic. This requirement gives the prescribed
curvature equation a particularly convenient form, and our derivation
begins with a sketch of a useful computation from [Wol89]. The rest
of the derivation is self-contained, occupying sections 2–4.

Part 2 of the paper contains the applications and extensions. In
section 5, we find a lower bound for the integrand in the first term;
this leads to an estimate (Corollary 5.2) for the Hessian in terms of an
integral along the curve of local quantities. Section 6 is devoted to a
derivation of our results in the setting of a curve which connects ends
of a (complete) hyperbolic punctured surface. Here, while the length
of a geodesic arc is infinite, the Hessian of a regularized version of the
length is positive and finite. Section 7 extends our work from curves to
laminations. In section 8, we use the formulae to give some geometric
estimates: we quickly prove that not only is the length ℓ of curves

convex, but so is ℓ
2

3 . We then give a longer geometric argument that ℓ
1

2

is also convex. We give a general upper bound for the Hessian, as well as
estimates for the Weil-Petersson connection near the Deligne-Mumford
compactification divisor, and a lower bound on the Hessian in terms
of the twist. Finally, in section 9, we take a limit of formula (1.2) in
Theorem 1.1 over curves that are becoming equidistributed to recover
the result that the Thurston metric is a multiple of the Weil-Petersson
metric.

Acknowledgments. The author is grateful to David Dumas for con-
versations, especially on lengths of laminations; Yair Minsky for point-
ing out the question on convexity of arcs and for encouragement to
find cleaner formulae; Scott Wolpert for comments, particularly on sec-
tion 8.1; and especially Zheng (Zeno) Huang for very careful reading,
criticism, the location of some mistakes, and suggestions for improve-
ments.

This work was partially supported by NSF grants DMS-0139877 and
DMS-0505603.

Part I. A formula for the Weil-Petersson

Hessian of length

We begin with a brief background discussion of some of the theory of
Teichmüller space and the Weil-Petersson metric we will need. Tangent
vectors to Teichmüller space at a point (S, g) are represented by ‘har-

monic Beltrami differentials’ of the form µ = Φ
g , where g is a hyperbolic

metric on S and Φ is a holomorphic quadratic differential on (S, g). The
Weil-Petersson inner product of two such tangent vectors is the L2 inner
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product

(1.3)

〈

Φ

g
,
Ψ

g

〉

= Re

∫

S

Φ

g

Ψ

g
dAreag.

Much is now known about this metric: by means of an introduction to
the subject, the Weil-Petersson metric on Teichmüller space is not com-
plete [Chu76] [Wol75]; it is Kähler [Ahl61], negatively curved with
good expressions [Roy] [Tro86] [Wol86a] for and estimates [Hua05]
[LSY04] [Wolb] [Wola] of the curvatures; it is quasi-isometric to the
pants complex [Bro03], and the isometry group is exactly the (ex-
tended) mapping class group [MW02]. More background on the Weil-
Petersson metric on Teichmüller space may be found in [Wol10]. Of
course, the stimulus for this article and an important ingredient in some
of the results above is that the Weil-Petersson metric is geodesically con-
vex [Wol87].

2. The second derivative of length in space and time

We are interested in computing the second variation of geodesic length
of a curve along a Weil-Petersson geodesic. We imagine the setting as a
fixed differentiable surface S equipped with a family of metrics gt, and
on this surface there is a family of curves γt. The curves γt are all freely
homotopic and may or may not be simple. The defining equation is that
the curves γt are gt-geodesics; we shall shortly write that equation out
in coordinates.

To begin, though, we separate the overall second variation of length
into a term that refers only to the second variation of the metric gt
and a term that refers only to the second variation of the curve γt.
This separation is quite standard for a variational functional. Write the
length of γs in the metric gt as L(gt, γs). Then, in this language, the
geodesic equation takes the form, for all t,

(2.1)
∂

∂s

∣

∣

∣

∣

s=s0

L(gt, γs)

[

∂

∂s
γs

]

= 0,

if γs0 is a gt-geodesic, and
∂
∂sγs is an infinitesimal variation of curves

through γs0 .
The second variation of length of the gt-geodesics γt is given by

(2.2)
d2

dt2
L(gt, γt) = D2

11L(g0, γ0)[ġ, ġ]+2D2
12L(g0, γ0)[ġ][γ̇]+D

2
22L(g0, γ0)[γ̇, γ̇],

where ġ = d
dtgt and γ̇ = d

dtγt. Of course, if γt is a gt-geodesic, then we
write the geodesic equation (2.1) above in this notation as

D2L(gt, γt)[γ̇] = 0
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and so

0 =
d

dt
D2L(gt, γt)[γ̇]

= D1D2L(g0, γ0)[ġ][γ̇] +D2D2L(g0, γ0)[γ̇, γ̇].

Thus,

(2.3) D2
12L(g0, γ0)[ġ][γ̇] = −D2

22L(g0, γ0)[γ̇, γ̇].

Substituting (2.3) into (2.2) yields that

(2.4)
d2

dt2
L(gt, γt) = D2

11L(g0, γ0)[ġ, ġ]−D2
22L(g0, γ0)[γ̇][γ̇].

Some remarks on this equation (2.4) are in order. First, note that
the term D2

22L(g0, γ0)[γ̇][γ̇] is non-negative, as the surface (S, g0) is neg-
atively curved; indeed, this second variation term is positive unless the
vector field γ̇ is tangent to the curve γ0. Thus our task is to prove that
the first term D2

11L(g0, γ0)[ġ, ġ] is larger than the second term.
In the next sections, we evaluate the terms D2

11L and D2
22L via dif-

ferent methods.

3. Second variation of arclength of γ0 in a family of metrics

We briefly recall the computational scheme of [Wol89]. Let Φ ∈
QD(g0) denote a quadratic differential, holomorphic with respect to a
conformal metric g0. Then we may consider a family of metrics on S
decomposed by type as

(3.1) gt = tΦdz2 + g0

(

H(t) +
t2|Φ|2
g2H(t)

)

dzdz̄ + tΦdz̄2.

Here z is a conformal coordinate for (S, g0). It is straightforward to
check [SY78] that the metric gt is hyperbolic if

(3.2) ∆g0 logH(t) = 2H(t)− 2t2|Φ|2
g20H(t)

− 2.

(Of course, the pullback of a hyperbolic metric by a diffeomorphism is
hyperbolic, and so we might imagine that if we pullback gt by a family
of diffeomorphisms ψt, then the result ψ∗

t gt would also be hyperbolic.
Here we have chosen a gauge by requiring that the identity map id :
(S, g0) → (S, gt) is harmonic.)

We are interested in second variations. Differentiating twice and ap-
plying the maximum principle to the first derivative (see [Wol89] for
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an expanded description) yields

Ḣ =
d

dt

∣

∣

∣

∣

t=0

H(t) ≡ 0

Ḧ =
d2

dt2

∣

∣

∣

∣

t=0

H(t) = −2(∆− 2)−1 2|Φ|2
g20

.(3.3)

We observe that −2(∆ − 2)−1 is a positive operator and so Ḧ ≥ 0.
Combining (3.1) and (3.3), we conclude that

gt = g(t) = g0dzdz̄ + t(Φdz2 +Φdz̄2)

(3.4)

+ t2/2

(

2|Φ|2
g20

+−2(∆− 2)−1 2|Φ|2
g20

)

g0dzdz̄ +O(t4).

Now use that

D2
11L(g0, γ0)[ġ, ġ] =

d2

dt2

∣

∣

∣

∣

0

L(gt, γ0) =
d2

dt2

∣

∣

∣

∣

t=0

∫

γ0

√
gt.

Substituting (3.4) into this last integral with a choice of coordinate so
that γ0 is a line {Re z = const} and differentiating under the integral
symbol then yields

D2
11L(g0, γ0)[ġ, ġ] =

∫

γ0

−1

4
(g0)

−3/2(2ReΦ)2(3.5)

+
1

2

√
g0

(

2|Φ|2
g20

− 2(∆ − 2)−1 2|Φ|2
g20

)

=

∫

γ0

{

(ImΦ)2

g20
−

[

2(∆ − 2)−1 |Φ|2
g20

]}√
g0,

since |Φ|2 − (ReΦ)2 = (ImΦ)2. Both terms are positive, and so we
see that this expression is positive, as we expected (and needed if the
expression D2

11L−D2
22L is to be positive).

Remark. As an easy model of this method, we quickly reproduce a
formula for the first variation of length. (We’ll have use of this expres-
sion in later sections.)

We compute the first derivative of length ℓ along Γ(t) to be

(3.6)
d

dt
ℓγ(Γ(t)) = D1L(gt, γt)[ġ] +D2L(gt, γt)[γ̇].
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Of course, as γ0 is a geodesic, the second term D2L(gt, γt)[γ̇] = 0 and
from (3.1) and (3.2), we find

d

dt
ℓγ(Γ(t)) =

d

dt

∫

γ0

√
gt(3.7)

=

∫

γ0

d
dtgt

2g0

=

∫

γ0

ReΦ

g0
ds,

by (3.4), concluding the computation.

4. Second variation of g0-arclength of the family γt of
gt-geodesics

Our next step is to evaluate the term D2
22L(g0, γ0) =

d2

dt2L(g0, γt)[γ̇, γ̇]
in (2.4).

It is of course standard (see for example [Spi79b]) that if V is the
variational field of a family of curves through a geodesic γ0, then

(4.1)
d2

dt2
L(g0, γt) =

∫

γ0

∣

∣

∣

∣

∂V

∂s

∣

∣

∣

∣

2

−K|V |2ds

where K = K(s) denotes the Gaussian curvature of the surface at the
point γ0(s). To compare this formula (4.1) to (3.5), we will need to find
an expression for V in terms of the quadratic differential Φ. That is the
main goal of this section.

Of course, the defining equation of γt is that it is a geodesic, or equiva-
lently that its geodesic curvature vanishes. We write this schematically,
in a similar way that we write the length L = L(gt, γt), as a function
κ = κ(gt, γt) of a metric and a curve:

(4.2) κ(gt, γt) = 0.

Differentiating in t at t = 0, we find that

(4.3)
d

dt
κ(g0, γ0)[γ̇] = − d

dt
κ(g0, γ0)[ġ].

As expected, the left-hand side of (4.3) is the classical Jacobi operator
(

d2

ds2
+K

)

, but the right-hand side will involve the first derivatives of

gt, i.e. the metric g0 and the quadratic differential Φ. Our next task
will be to find an expression for the solution γ̇ to (4.3).

4.1. The inhomogeneous Jacobi equation. We first expand the
right-hand side of (4.3). We pick conformal (Fermi) coordinates z =
x+ iy so that the geodesic γ0 is described by {x = const}. These coor-
dinates are a bit unusual in that the geodesic may repeatedly visit the
same points on the surface: it’s possibly better to regard the geodesic as
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embedded in the unit tangent bundle T 1M with z = x+iy its projection
to the surface S.

Then, invoking a coordinate expression for κ (see [Opr04], consistent
with definitions in [Spi79a] and [Spi79b]), we have

d

dt
κ(g0, γ0)[ġ] = − d

dt

{

Γ1
22(t)

√

det g(t)

g22(t)3/2

}

where g(t) = gij(t) is defined by (2.1) as

g(t) =





g11(t) g12(t)

g22(t) g22(t)



(4.4)

=





g0 + 2tReΦ −2t ImΦ

−2t ImΦ g0 − 2tReΦ



+O(t2) =

(

E F
F G

)

.

We include the very classical notation for the first fundamental form at
the end as it actually simplifies some of our notation; for example, we
write

(4.5) κ(t) = −Γ1
22(t)

√
EG− F 2

G3/2
,

where here of course the variables E = E(t), F = F (t), and G = G(t) all
depend on t. Now, in this language, suppressing some of the dependence
on t, we have

(4.6) Γ1
22(t) =

2GFy −GGx − FGy

2(EG − F 2)
.

Since κ(0) = 0 and F (0) ≡ 0, we find that

(4.7)
∂

∂x
g22(0) =

∂

∂x
G = 0 on γ0.

We differentiate (4.6) in t and use (4.7) and F (0) ≡ 0 to find that

d

dt
Γ1
22(t) =

1

2g20
{−4g0(ImΦ)y + 2g0(ReΦ)x + 2(ImΦ)(g0)y}

=
1

2g20
{−2g0(ImΦ)y + 2(ImΦ)(g0)y};

here the last equality follows from the Cauchy-Riemann equations for
the real and imaginary parts of the holomorphic quadratic differential
Φ. We conclude that

(4.8)
d

dt
Γ1
22(t) = − ∂

∂y

{

ImΦ

g0

}

.

Combining (4.3), (4.5), and (4.8) yields the equation we will focus on:

(4.9)
∂2

∂y2
V − V = − ∂

∂y

{

ImΦ

g0

}

.
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Remark. It is easy to compute that the Beltrami differential tangent

to our deformation is given by µ = Φ̄
g0
. In that language, our equation

(4.9) becomes

(4.10) Vyy − V =
∂

∂y
Imµ.

4.2. The primitive of the variation field. The right-hand side of
(4.3) is the derivative of the basic quantity − ImΦ

g0
appearing in (3.5).

This term provides a link between the two different terms D2
11L and

D2
22L of the basic expression (2.4) for the Hessian of length. To find

our first version of a formula for the Hessian of the length function,
we consider the primitive of V = γ̇ along γ and use this to relate the
expressions for D2

11L and D2
22L =

∫

γ0
V ′2 + V 2.

In particular, we begin with the equation (4.9) and then start by
defining a particular primitive U of V . The procedure is in two steps,
as we need to correctly choose the constant for the primitive. So first
we set

(4.11) u(y) =

∫ y

a
V (s)ds.

Note that we need to check the well-definedness of u on γ, as it is a
closed loop; on the other hand, it is enough to check that the period
u(2π)−u(0) =

∫

γ V vanishes (here using the obvious notation of {0, 2π}
for a pair of endpoints for the loop).

For convenience in the sequel, set

(4.12) F =
ImΦ

g0

so that equation (4.9) becomes

(4.13) Vyy − V = −Fy.

Then, for well-definedness of u, we observe that (letting subscripts in-
dicate differentiation in the variable)

u(2π) − u(0) =

∫

γ
V

=

∫

γ
Vyy + Fy

=

∫

γ
(Vy + F)ydy

= 0.(4.14)

Thus u (and u+ c, for any constant c) is well-defined along γ.
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Next begin again with the equation

(4.15) Vyy − V = −Fy,

and then note that

(uyy − u+ F)y = Vyy − V + Fy

= 0.(4.16)

Thus we have that uyy−u+F = c0, where c0 is a constant. In particular,
if we set

(4.17) U = u+ c0

to be another primitive of V , then

(4.18) Uyy − U = −F .

The choice of constant c0 here compensates for the implicit choice of a
constant made when we passed from Fy in (4.13) to F in (4.18).

The point of all of this is that the positive part of the second variation
of length integral (4.1) will turn out to be the energy of U , while the
negative part will once again be the L2 norm of F along ℓ0 (cancelled
out by a term in the metric variation contribution D2

11L).
We compute the contribution −D2

22L from the second variation of
length along the surface through

−D2
22L = −

∫

γ0

V 2
y + V 2dy

(4.19)

=

∫

γ0

VyyV − V 2dy by parts

=

∫

γ0

(Vyy − V )V dy

=

∫

γ0

(−Fy)V dy by (4.9)

=

∫

γ0

FVydy by parts

=

∫

γ0

FUyydy from the definition of U as a primitive of V
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=

∫

γ0

F(U −F)dy from (4.18)

= −
∫

γ0

F2dy +

∫

γ0

UFdy

= −
∫

γ0

F2dy +

∫

γ0

U{−(Uyy − U)}dy from (4.18)

= −
∫

γ0

F2dy +

∫

γ0

U2
y + U2dy by parts.(4.20)

Combining this last equation with (3.5) and (4.1) (and recalling that
we are parametrizing the curve γ0 by arclength s = y), we find that

d2

dt2
L(gt, γt) = D2

11L(g0, γ0)[ġ, ġ]−D2
22L(g0, γ0)[γ̇][γ̇]

=

∫

γ0

F2 −
[

2(∆ − 2)−1 |Φ|2
g20

]

dy −
∫

γ0

V 2
y + V 2dy

=

∫

γ0

F2 −
[

2(∆ − 2)−1 |Φ|2
g20

]

dy(4.21)

−
∫

γ0

F2dy +

∫

γ0

U2
y + U2dy from (4.2)

=

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

ds+

∫

γ0

U2
y + U2dy.(4.22)

In summary, the Weil-Petersson Hessian of length can be expressed
as the sum of two integrals along the curve, each of which has a positive
function as an integrand. The first integrand is the restriction to the
curve of a solution of a differential equation on the surface, and the
second is the energy density of a solution of a differential equation along
the curve.

We record this formula as a theorem, extending Theorem 1.1 from the
introduction. To set the notation, let [γ] be the free homotopy class of
a closed curve (simple or not) on the surface, and Γ(t) a Weil-Petersson
geodesic arc; the class [γ] is represented by the Γ(t)-geodesic γt. The
tangent vector to Teichmüller space at Γ(0) is given by a harmonic

Beltrami differential, say Φ̄
g0
. Let Ψ̄

g0
denote a second harmonic Beltrami

differential on Γ(0).
Let UΦ and UΨ denote the respective solutions to the ordinary dif-

ferential equations (see (1.1))

(4.23) Uyy − U = − ImΦ

g0
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and

(4.24) Uyy − U = − ImΨ

g0
.

This is enough terminology so that we may summarize our discussion
as

Theorem 4.1. Along the Weil-Petersson geodesic arc Γ(t), the sec-

ond variation d2

dt2
ℓ of the length ℓ(t) = L(Γ(t), [γ]) is given by

(4.25)
d2

dt2
ℓ(t) =

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

ds+

∫

γ0

[UΦ
y ]2 + [UΦ]2ds.

More generally, the Weil-Petersson Hessian HessL[ Φ̄g0 ,
Ψ̄
g0
] is given by

(4.26)

HessL[
Φ̄

g0
,
Ψ̄

g0
] =

∫

γ0

−2(∆− 2)−1ReΦΨ̄

g20
ds+

∫

γ0

UΦ
y U

Ψ
y + UΦUΨds.

Proof. The solutions UΦ and UΨ to (4.23) and (4.24) are unique, and
the equations are linear in the unknown and the parameters Φ and Ψ.
Thus the unique solution UΦ+Ψ to

(4.27) Uyy − U = − Im(Φ + Ψ)

g0

satisfies

(4.28) UΦ+Ψ = UΦ + UΨ.

Then a straightforward polarization of (1.2), together with our under-
standing (4.28), yields (4.26). q.e.d.

Remark. In terms of our previous notation for the Beltrami differ-

ential µ = Φ̄
g0
, the equation (4.23) takes the form

(4.29) Uyy − U = Imµ.

4.3. A geometric kernel representation. The second term of equa-
tion (1.2) is expressed as the energy of the solution of a differential
equation. We wish to provide a more geometric interpretation; not only
do we hope that this version is more appealing on its own, but it will
be important in section 9 where we treat the Thurston metric via the
Hessian of the length function, and in section 8 when we estimate the
Hessian of length from below in terms of infinitesimal twist. Indeed, the
kernel representation will exhibit the dependence of the Hessian on the
“infinitesimal twist” component of the deformation.
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To begin, note that the second term of (1.2) (=(4.25)) may be written

∫

γ0

U2
y + U2ds = −

∫

γ0

U(Uyy − U)ds

=

∫

γ0

U(s)F(s)ds

in the notation where F(s) = Im Φ
g0

= − Imµ, since

Uyy − U = −F

by (4.18). It is well-known that we can represent the solution U(s) to
(4.18) by

U(s) = −
∫

F(t)K(s, t)dt

for kernels K(s, t) which satisfy

(4.30)
d2

dt2
K(s, t)−K(s, t) = δs(t).

It is easy to find the solutions to (4.30) using that the solutions to
d2

dt2
K(s, t) −K(s, t) = 0 are linear combinations of sinh(t) and cosh(t).

(Indeed, if we represent γ0 as the interval [−L/2, L/2] with endpoints
identified, set s0 = ±L/2 to be an endpoint, and look to solve (4.30)
on that interval, then it is evident that setting K(s, t) = − cosh(t) is
correct up to an easily computed multiplicative constant.) In general,
for γ parametrized by an interval of length L (so that we may choose
|t− s| < L/2), we have that

K(s, t) =







−1
2
cosh(s−t−L/2)

sinh(L
2
)

, t < s

−1
2
cosh(t−s−L/2)

sinh(L
2
)

, t > s

solves (4.30) (where we require that |t− s| < L/2).
Of course, the variables s and t parametrize the curve γ0 with respect

to arclength, and so, for |s− t| < L/2, we have |s− t| = d(γ0(s), γ0(t)).
Thus K(s, t) admits the description in terms of p = γ0(s), q = γ0(t) as

(4.31) K(p, q) = −1

2

cosh(d(p, q) − L/2)

sinh(L/2)
.
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This leads to the representation

d2

dt2
ℓ(t) =

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

+

∫

γ0

U2
y (s) + U2(s)ds

=

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

−
∫

γ0

U(s) Imµ(s)ds

=

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

−
∫

γ0

Imµ(s)

∫

γ0

K(s, t) Imµ(t)dtds

=

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

−
∫∫

γ0×γ0

Imµ(s)K(s, t) Imµ(t)dtds

=

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

−
∫∫

γ0×γ0

Imµ(p)K(p, q) Imµ(q)ds(p)ds(q)

=

∫

γ0

−2(∆− 2)−1 |Φ|2
g20

(4.32)

+
1

2 sinh(L2 )

∫∫

γ0×γ0

Imµ(p)[cosh(d(p, q)− L

2
)] Imµ(q)ds(p)ds(q),(4.33)

where ds(p) and ds(q) refer to arclength measure.

Part II. Extensions and applications of the

formula for the Hessian

5. A lower bound expressed in terms of pointwise quantities

We claim

Lemma 5.1. Let v = 1/3 |Φ|2
g2

0

. Then v is a subsolution of (∆−2)f = − 2|Φ|2
g2

0

and in particular 0 ≤ v ≤ −2(∆− 2)−1( |Φ|2
g2

0

).

We begin by noting that the curvature of a metric expressed as G|dz|2 is
given by

K(G|dz|2) = −1

2

1

G
∆0 logG

where ∆0 = ∂2x + ∂2y .

Then using that K(g0|dz|2) ≡ −1 and that |Φ0||dz|2 is a flat metric with
concentrated (Dirac function type) curvature singularities at the zeroes Φ−1(0)
of Φ, we see that

∆0 log
|Φ|2
g20

= ∆0 log |Φ|2 −∆0 log g
2
0

= −4|Φ|K(|Φ||dz|2) + 4g0K(g0)

= 4|Φ|
∑

p∈Φ−1(0)

πδp degp Φ− 4g0,
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where δp indicates a delta function at p. On the other hand, using that

∆0 logF = ∆0F
F − |∇0F |2

F 2 , we see we may write

∆0 log
|Φ|2
g20

=
∆0

|Φ|2
g2

0

|Φ|2
g2

0

−
|∇0

(

|Φ|2
g2

0

)

|2
(

|Φ|2
g2

0

)2 .

Putting the last two of these displayed equations together yields

1

g0
∆0

|Φ|2
g20

=
|Φ|2
g20



4
|Φ|
g0

∑

p∈Φ−1(0)

πδp degp Φ



− 4
|Φ|2
g20

+
|∇0

(

|Φ|2
g2

0

)

|2
|Φ|2
g2

0

g0

In particular, writing ∆ = 1
g0
∆0 for the g0-Laplace Beltrami operator on S,

and noting the vanishing of the first term on the right-hand side (in particular,
notice that at zeroes p of Φ, where δp 6= 0, the sum is multiplied by the factor
Φ(p), which vanishes because p is a zero of Φ), we conclude that

∆
|Φ|2
g20

≥ −4
|Φ|2
g20

.

We are of course interested in the operator ∆ − 2, so we note the obvious
implication that

(∆− 2)
|Φ|2
g20

≥ −6
|Φ|2
g20

so that v = 1/3 |Φ|2
g2

0

is a subsolution for the equation (∆− 2)f = −2 |Φ|2
g2

0

.

It is obvious that v = 1
3
|Φ|2
g2

0

≥ 0, and if f satisfies (∆ − 2)f = − 2|Φ|2
g2

0

,

then ∆(f − v) ≤ 2(f − v) and so the minimum principle guarantees that at a
minimum of (f−v), we have f−v ≥ 0; hence f−v ≥ 0 everywhere, concluding
the proof of the lemma. q.e.d.

Combining Lemma 5.1 with Theorem 1.1 we obtain

Corollary 5.2. Let Φ ∈ QD(g0) be a holomorphic quadratic differential in
(Σ, g0) and let Γ(t) denote a Weil-Petersson geodesic arc with initial tangent
vector given by the harmonic Beltrami differential Φg−1

0 . Let ℓ(t) denote the
geodesic length of a representative γt of a curve class [γ] on S. Then, for γ0
the geodesic represented of [γ] on Γ(0), we have

d2

dt2

∣

∣

∣

∣

t=0

ℓ(t) ≥ 1

3

∫

γ0

|Φ|2
g20

ds.q.e.d.

We will apply this estimate in section 8.

6. The second variation of the length of an arc

In this section, we adapt our derivation to the case where S is a surface of
finite genus with a finite number of punctures, and we are interested in the
variation of length of an arc α that runs between two of the punctures (or a
puncture itself). Naturally, the length of such an arc is infinite, so we will be
discussing the variation of some regularization of its length; nevertheless, all of
the basic considerations will extend to this case with only minor modifications.
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6.1. Notation and preliminaries. Let αt be the geodesic on (S, gt) that
connects punctures p and q in a fixed homotopy class (rel p and q). Consider a
sequence of points pn, qn ∈ α0 with pn → p and qn → q. These points pn and
qn pass through horocycles linking p and q (respectively) that vary in length
and position with t. Consider a family of gt-horocycles near pn whose gt-length
agrees with the g0-length ℓ

+
n of the horocycle through pn. There is of course an

analogous family near qn of horocycles whose gt-lengths are required to be a
fixed constant ℓ−n . Let {αt,n} be the homotopy of gt-geodesic arcs connecting
those horocycles.

Of course, a consequence of this construction and the uniqueness of geodesic
arcs in hyperbolic space connecting two points at infinity is that for n > m,
we have that αt,m ⊂ αt,n.

Our plan is to derive a formula for

d2

dt2
L(gt, αt,n),

and show that the limit exists and is independent of the choice of the sequence
{pn, qn}.

We learned while preparing this manuscript that Wolpert [Wol09] recently
found an inequality in the analogous case of finite length arcs between horo-
cycles. (Indeed, in the course of our derivation, we will also treat this case.)

It is easy to check that the formal preliminaries remain the same as in the
derivation of (2.4), and so we conclude

(6.1)
d2

dt
L(gt, αt,n) = D2

11L(g0, α0,n)[ġ, ġ]−D2
22L(g0, α0,n)[α̇0,n, α̇0,n].

6.2. The second variation of arclength of α0,n in gt. As in the case of
a closed curve, the first term in (6.1) is relatively straightforward to compute;
the only new issue to consider is the dependence of the term on the choice
of endpoints pn, qn of αt,n. Indeed, exactly as in the derivation of (3.5), we
formally compute

(6.2) D2
11L(g0, α0,n) =

∫

α0,n

{ | ImΦ|2
g20

− 2(∆− 2)−1 |Φ|2
g20

)

}√
g0

where the principal issue is to determine the meaning of (∆ − 2)−1 |Φ|2
g2

0

. We

discuss this in the next subsection.

6.3. Variations of metrics of finite area. The basic point here in under-

standing −2(∆ − 2)−1 |Φ|2
g2

0

is to construe it as 1
2Ḧ for the family of pullback

metrics gt in (3.1). As these maps id : (S, g0) → (S, gt) are harmonic, we can
apply some results from the theory of harmonic maps between cusped hyper-
bolic surfaces. We show in this subsection that the positive function Ḧ (what

we have written in the previous subsection as −2(∆ − 2)−1 |Φ|2
g2

0

) is integrable

on proper arcs, so that
∫

α0,n

1
2Ḧds is well-defined.

In this direction, results in [Wol91] (Theorem 5.1) and of Lohkamp (see
the remark after Theorem 4 in [Loh91], especially with Lemma 12 informed
by Proposition 3.13 in [Wol91]) proved that H(t) ∈ Ck,α(S, g0) is analytic in

t on the compactified surface M̄ . In particular, Ḧ is bounded.
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Indeed, we can easily show from this that Ḧ = O( 1
(log 1

r
)α
) = O(y−α) for

some α ∈ (0, 1) as r → 0. The basic elements of this argument are that
1

(log 1

r
)α

= y−α for some α ∈ (0, 1) is a supersolution of the equation (∆ −
2)Ḧ = −2‖Φ‖2 on the cusp, as well as the point that the kernel of (∆ − 2)
on a half-infinite cylinder C = {Im z > 1, |Re z| < 1/2} (with the standard
identifications) is spanned by the pair of functions k1(z) = y2 and k2(z) = y−1.
With that background, consider, on the finite cylinder {1 < Im z < yn}, a
function Hj(z) of the form Hj(z) = C0y

−α + C1y
−1 + ǫjy

2.

Then, for appropriate choices of ǫj → 0, we find that Hj(z) majorizes Ḧ;
letting j → ∞ and ǫj → 0 while C0 and C1 stay bounded (as the boundary

values Ḧ(z) for {Im z = 1} are fixed independently of j) allows us to conclude

that Ḧ(z) decays like C0y
−α + C1y

−1. Thus Ḧ(z) = O(y−α) = O( 1
(log 1

r
)α
).

Looking ahead to the final form of the second variation of length, it is worth
recording the

Proposition 6.1. Let pn → p and qn → q, and let α0,n be the geodesic arc
connecting pn to qn as in the introduction to the section. Then

∫

α0,n

−2(∆− 2)−1 |Φ|2
g20

ds =

∫

α0,n

1

2
Ḧds

converges as n→ ∞.

Proof. In the upper half plane coordinates, we have that for each end of an
α0,n,

(6.3)

∫

α0,n

Ḧds =
∫ yn

a

Ḧdy

y
=

∫ yn

a

O(
1

yα
)
dy

y
= O(1) as n→ ∞.

The proposition then follows from the integrals being positive. q.e.d.

6.4. The Jacobi Field for an Arc. The next term we must address is the
second term in (6.1). The variational vector field, defined geometrically, also
satisfies (4.9). Here, of course the variational field V = Vn depends on n, as it
is defined in terms of αt,n; our notation is meant to reflect that.

Our curves αt,n have endpoints pt,n and qt,n on horocycles of fixed length
ℓ+n and ℓ−n , respectively, which we will abbreviate as ℓ±n . Naturally, these
endpoints move on the fixed manifold M with t. It is well-known that the
second variation of arclength for a family of geodesics connecting points pt,n
and qt,n is given by

(6.4) D2
22L =

∫

αt,n

V ′2 + V 2ds+∇V V |p0,n
q0,n

Our plan is to evaluate this expression in four steps: first we show that the
term that depends on the endpoints is negligible in n. Then we show that the
variational field V, which satisfies equation (4.9) with boundary terms given by
d
dtpt,n and d

dtqt,n, is close to a solution of (4.9) with vanishing boundary terms;

in particular, using the latter variational field inD2
22L =

∫

αt,n
V ′2+V 2ds would

result in a negligible change. Our third step is to evaluate the integral, finding
some error terms. Finally, we will make the easy observation that the error
terms vanish rapidly with n.
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6.5. The variation of the endpoints. The arcs αt,n are defined to be arcs
perpendicular to gt-horocycles of gt-length ℓ

±
n . (Of course, ℓ±n → 0 as n→ ∞.)

In this subsection, we find that the endpoints pt,n and qt,n of these arcs vary
only slightly if n is large. First we look for how the point p0,n might vary in
a path p̂t,n in the direction normal to the horocycle, while still staying on the
gt-horocycle of length ℓ±n . Then we consider how far p̂t,n is from the actual
endpoint pt,n of the geodesic arc αt,n.

To begin, we first wish to observe that the horocycle itself does not vary
much. To see this, note that the defining conditions for the horocycle h =
h(s) = ht(s) are

√
ghkss + Γk

ijh
i
sh

j
s = −Jk

i h
i
s(gmnh

m
s h

n
s )

1

2

∫

h

(gijh
i
sh

j
s)

1

2 ds = ℓ±n

where gij =
tgij ,Γ

k
ij =

tΓk
ij , and J

k
i = tJk

i are the time t metric, its Christoffel
symbols, and its almost complex structure. It’s useful to imagine ht(s) as
parametrized by arclength. Note that in these coordinates, the length of ∂

∂x1

varies in x2; thus so do gij(x) and J
k
i (x).

Differentiating in time both the condition of the horocycle being constant
curvature and being of length ℓ±n , we find conditions for the normal variation
field W k = d

dth
k. Looking ahead, we choose coordinates (x1, x2) on M so

that x1 = s is tangential to the horocycle while x2 = J d
ds is normal to the

horocycle. Our differentiated pair of equations then take the form

√
gW 2

ss + { ∂

∂x2
Γ2
11(h

1
s)

2 +
1

2

∂

∂x2
g11(h

1
s)

2{J2
1h

1
s}[g11(h1s)2]−

1

2 }W 2(6.5)

= −(
d

dt
Γ2,t
11 )−

1

2
(
d

dt
gmn)h

m
s h

n
sJ

2
1h

1
s[g11(h

1
s)

2]−
1

2

∫

h

[g11(h
1
s)

2]−
1

2 (
∂

∂x2
g11)(h

1
s)

2W 2 = −
∫

h

[g11(h
1
s)

2]−
1

2 { d
dt
g11}(h1s)2

As the horocycle is a loop, we may write W 2(s) as a Fourier series

W 2(s) =
∑

ame
2πims.

The second equation above, using that in our coordinates ∂
∂x2 g11 = −2(g11)

3

2 ,

shows that a0 = 1
2

∫

d
dtg11(h(s))ds. However, as |ġ| ≍ |Φ|, we see that |ġ| ≍

e
− 1

ℓ
±
n ; hence a0 = O(e

− 1

ℓ
±
n ), and so the first equation in (6.5) then controls

the remaining Fourier coefficients. After integrating the first equation for W 2

against W 2, we obtain
∑

(1 + 4π2m2)a2m =
∑

a2m +
∑

bmam,

where {bm} are the Fourier coefficients for the terms on the right-hand side
of the first equation in (6.5): these terms depend on time derivatives of the
metric and its Christoffel symbols. Our estimates on d

dtgij and d
dtΓ

k
ij imply

that (
∑

b2m)
1

2 ≤ O(e
− 1

ℓ
±
n ). So applying Cauchy-Schwarz and our estimate on

a0, we find that

(

′
∑

m2a2m)
1

2 ≤ O(e
− 1

ℓ
±
n ).
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The geometric conclusion of this analysis is that if we allow initial points
pn ∈ α0,n and qn ∈ α0,n to flow along with the horocycles H+

n and H+
n of gt-

length ℓ±n but restricted to stay in an arc normal to the original horocycle, then
the resulting paths p̂t,n and q̂t,n of points (normal to H+

n and H−
n ) are of size

O(e
− 1

ℓ
±
n ) in C∞, as are the horocycles Ht

n themselves. In particular, the angle
made between a geodesic arc connecting the pair of gt-horocycles of length ℓ

±
n

at p̂t,n and q̂t,n with the horocyclesHt
n is π

2 −O(e
− 1

ℓ
±
n ). Elementary hyperbolic

geometry then says that, if the shortest geodesic between those horocycles Ht
n

meets those same horocycles at the points pt,n and qt,n, then the paths p̂t,n

and pt,n (respectively, the paths q̂t,n and qt,n) differ by O(e
−2 1

ℓ
±
n ) in C2. We

summarize this analysis as

Lemma 6.2. Let Γt
n be a family of shortest geodesic arcs connecting gt-

horocycles Ht
nof gt-length ℓ

±
n . Let Vn = d

dtΓ
t
n. Then ‖∇Vn

Vn‖ → 0 as n→ ∞.

Of course the vector field V is defined as Vn = d
dtαt,n, and so has possibly

non-vanishing boundary values d
dtpt,n and d

dtqt,n. It is convenient in the com-
putations which follow to replace this vector field by one, say for the moment
Wn, whose boundary values vanish. We observe that this replacement will
have only a negligible effect on the second derivative of length.

Lemma 6.3. For variation vector fields Vn and Wn defined by Vn = d
dtαt,n

and Wn satisfying the variational equation (4.9) with vanishing boundary val-
ues, we have that

∫

α0,n

V ′2
n + V 2

n −W ′2
n −W 2

n = o(1)

as n→ ∞.

Proof. The two vector fields satisfy the same equation, but differ in their
boundary conditions. Yet, at the points p0,n and q0,n, the change in boundary

conditions is O(e
− 1

ℓ
±
n ), by the analysis in the proof of the previous lemma.

Thus the difference Yn = Wn − Vn satisfies the equation Y ′′
n − Yn = 0 with

boundary values Yn = O(e
− 1

ℓ
±
n ): we conclude that on the interval x ∈ [−L

2 ,
L
2 ],

we can estimate the difference |Wn − Vn| = |Yn| ≤ o(n)

cosh(L
2
)
coshx. Using this

estimate and the boundedness of Wn (maximum principle), we find that
∫

α0,n

V ′2
n + V 2

n −W ′2
n −W 2

n = o(e
− 1

ℓ
±
n ),

as desired. q.e.d.

6.6. Formulas for the variation of finite arcs. Our next step is to compute
the second variation of length of the finite arcs. In view of the previous lemma,
for the resulting integral, we may consider the vector field Vn as satisfying the
basic equation (4.9) with vanishing boundary conditions, as long as we carry

along the error term of o(e
− 1

ℓ
±
n )—we will follow this expositional course, rather

than change the notation for the variational field at this stage.
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As in our discussion of the closed curve case, we express the vector field Vn
as an integral of the inhomogeneous term of (4.9) against the kernel for the

operator d2

dy2 − 1 in (4.9).

It is straightforward to check that the kernel for the operator d2

dy2 −1 on the

segment [−Ln

2 ,
Ln

2 ] is given by

(6.6) Kn(y, s) =







K−
n (y, s) = − sinh(Ln

2
+s) sinh(Ln

2
−y)

sinh(Ln)
, −Ln

2 ≤ s ≤ y ≤ Ln

2

K+
n (y, s)− sinh(Ln

2
−s) sinh(Ln

2
+y)

sinh(Ln)
, −Ln

2 ≤ y ≤ s ≤ Ln

2 .

This gives the representations

Vn(y) =

∫ qn

pn

Kn(y, s)(Imµ)′(s)ds,

or in terms of the quantity F = Imµ = − ImΦ/g0 defined in (4.12), we have

(6.7) Vn(y) = −
∫ qn

pn

Kn(y, s)F ′(s)ds.

Now, we return to computing D2
22L, which, by the classical formula (6.4)

and our computations in Lemmas 6.2 and 6.3, we may write as

D2
22L =

∫ L
2

−L
2

(V ′′
n − Vn)Vnds+ o(e

− 1

ℓ
±
n ).

Taking the error term to the right-hand side so as to focus on the integrated
terms, we rewrite this expression in terms of the representation (6.7) as

D2
22L+ o(e

− 1

ℓ
±
n ) =

∫ L
2

−L
2

F ′(y)

∫ y

−L
2

K−
n (y, s)F ′(s)dsdy

+

∫ L
2

−L
2

F ′(y)

∫ L
2

y

K+
n (y, s)F ′(s)dsdy

= I1 + I2.

We treat the integrals in turn. We begin with

I1 ≡
∫ L

2

−L
2

F ′(y)

∫ y

−L
2

K−
n (y, s)F ′(s)dsdy

= −
∫ L

2

−L
2

F(y)
∂

∂y

∫ y

−L
2

K−
n (y, s)F ′(s)dsdy + F

(

L

2

)∫ L
2

−L
2

K−
n

(

L

2
, s

)

F ′(s)ds

−F
(

−L
2

)

· 0
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= −
∫ L

2

L
2

F(y)K−
n (y, y)F ′(y)dy −

∫ L
2

−L
2

F(y)

∫ y

−L
2

∂

∂y
K−

n (y, s)F ′(s)dsdy

+ oL(1)

=

∫ L
2

−L
2

{F(y)}2 ∂
∂y
K−

n (y, y)dy − 1

2

{

F
(

L

2

)}2

K−
n

(

L

2
,
L

2

)

+
1

2

{

F
(

−L
2

)}2

K−
n

(

−L
2
,−L

2

)

+

∫ L
2

−L
2

F(y)

∫ y

−L
2

∂

∂s

∂

∂y
K−

n (y, s)F(s)dsdy −
∫ L

2

−L
2

F(y)

[

F(y)
∂

∂y
K−

n (y, s)|s=y −F
(

−L
2

)

∂

∂y
K−

n

(

y,−L
2

)]

dy + oL(1).

In this succession of equalities, the first step is via integration by parts on
the outer integral, the second is through an application of the fundamental
theorem of calculus, and the third step is via another integration by parts.

Next use the following estimates and fact. First, both ∂
∂yK

−
n (y, y) and

F(±L
2 ) are rapidly decreasing in L; moreover, ∂

∂s
∂
∂yK

−
n (y, s) differs from−K−

n (y, s)

by a term that is rapidly decreasing in L. Also, F(L2 )
∂
∂yK

−
n (y, L2 ) is rapidly

decreasing in L, and ∂
∂yK

−
n (y,−L

2 ) = 0. Finally, note that ∂
∂yK

−
n (y, y) → 0

but ∂
∂yK

−
n (y, s) = 1

2 + oL(1).

Similarly,

I2 ≡
∫ L

2

−L
2

F ′(y)

∫ L
2

y

K+
n (y, s)F ′(s)dsdy

=

∫ L
2

−L
2

F(y)

∫ L
2

y

∂

∂s

∂

∂y
K+

n (y, s)F(s)dsdy

+

∫ L
2

−L
2

[F(y)]2
∂

∂y
K+

n (y, s)|s=ydy + oL(1).

Thus,

D2
22L = I1 + I2

=

∫ L
2

−L
2

F(y)

∫ L
2

L
2

−Kn(y, s)F(s)dsdy +

∫ L
2

−L
2

[F(y)]2[
∂

∂y
K+

n (y, s)|s=y

− ∂

∂y
K−

n (y, s)|s=y]dy + oL(1)

= −
∫ L

2

−L
2

F(y)

∫ L
2

L
2

Kn(y, s)F(s)dsdy +

∫ L
2

−L
2

[F(y)]2dy.

Finally, we wish to take a limit, sending L → ∞, or alternatively, for our
horocycle of length ℓ±n , letting n → ∞ or the length to zero. To do this we
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observe that the kernels Kn tend to limits

K(y, s) =

{

− es−y

2 , s ≤ y

− ey−s

2 , y ≤ s

which we can write succinctly as

(6.8) K(y, s) = −1

2
e−d(y,s).

We conclude that the limit of the term D2
22L (as L → ∞) may be written

as

(6.9) D2
22L = −1

2

∫∫

α0×α0

e−d(s,y) Imµ(s) Im ν(y)dsdy +

∫

α0

[F(y)]2dy.

Finally, we combine the original formal equation (6.1) with the equation
(6.2) for the first term and what we have now in (6.9) for the second term to
find—after an important cancellation of the terms

∫

α0

[F(y)]2dy—the formula

d2

dt
L(gt, αt,n) =

∫

α0

− 2(∆− 2)−1 |Φ|2
g20

√
g0

+
1

2

∫∫

α0×α0

e−d(s,y) Imµ(s) Im ν(y)dsdy.

Here, of course, we have made use of Proposition 6.1 to allow us to pass
from the finite integral in equation (6.2) to the integral over the entire arc α0.

We summarize our discussion in this section with formulae for the second
variations of an open arc α analogous to those in Theorem 1.1 for the second
variations of length of a simple closed curve γ.

Theorem 6.4. Along the Weil-Petersson geodesic arc Γ(t), the second vari-

ation d2

dt2 ℓ of the Γ(t)-length ℓ(t) = L(Γ(t), α) of a (class of an) arc α is given
by the (convergent) expression
(6.10)
d2

dt2
ℓ(t) =

∫

α

−(∆− 2)−1 2|Φ|2
g20

ds+
1

2

∫∫

α×α

e−d(s,y) Imµ(s) Imµ(y)dsdy.

More generally, the Weil-Petersson Hessian HessL[ Φ̄g0 ,
barΨ
g0

] is given by the

(convergent) expression

HessL[
Φ̄

g0
,
Ψ̄

g0
] =

∫

α

− (∆− 2)−1 2ReΦΨ̄

g20
ds(6.11)

+
1

2

∫∫

α×α

e−d(s,y) Imµ(s) Im ν(y)dsdy,

where µ = Φ̄
g0

and ν = Ψ̄
g0

are the harmonic Beltrami differential representatives

of two tangent directions at [g0].
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7. Convexity for laminations

We have already seen in Theorem 1.1 and Corollary 5.2 that if γ is a simple
closed curve, then on a Weil-Petersson ray Γ = Γ(t), we have

(7.1)
d2

dt2
ℓγ(Γ(t)) ≥

1

3

∫

γ

‖Φt‖2ds

where Φ(t) is the holomorphic quadratic differential tangent to Γ at Γ(t), and

‖Φ‖ = |Φ|
g0

. In this section, we extend that result to prove the

Proposition 7.1. Let Γ = Γ(t) be a Weil-Petersson ray and λ a measured
lamination on S. Then

(7.2)
d2

dt2
ℓλ(Γ(t)) ≥

1

3

∫

λ

‖Φt‖2ds

where Φt is the holomorphic quadratic differential tangent to Γ at Γ(t).

Our definition of
∫

λ ‖Φ‖2ds is straightforward and parallels the definition
of length of the lamination λ. See [Bon01] for a background discussion. In
particular, a measured lamination λ is defined as a measure λ(k) =

∫

k
dλ

on transverse arcs k. Choose arcs k1, . . . , kJ which are transverse to λ and
construct flow boxes {Fi} for λ bounded by the kj and parallel to λ.

Then if Gλ is the geodesic lamination underlying λ, then λ − ∪jkj is a
(possibly infinite) collection of finite length arcs. The length of λ is then the
integral, with respect to the transverse measure dλ of λ, of the lengths of
the finite arc components. More precisely, we lift each of these components

λ to λ̂a ⊂ T 1M , endow λ̂a with the natural arclength measure ds, and then
integrate the product to get

ℓ(λ) =:

∫

λ

ds =:

∫∫

λa

dsdλ(a).

In order to define
∫

λ ‖Φ‖2ds, we proceed analogously, except that we note that

the function ‖Φ‖2 on S then naturally defines a measure ‖Φ‖2ds on T 1M . In
other words, we set

∫

λ

‖Φ‖2ds =
∫∫

λa

‖Φ‖2dsdλ(a).

Proof of Proposition 7.1. Let γn be a sequence of simple closed curves con-
verging to λ. The idea is to apply (7.1) to γn and then take a limit in n to
find (7.2).

Now ℓγ and ℓλ are real analytic functions on Γ [Ker85], and thus since

ℓγn
→ ℓλ, so does d2

dt2 ℓγn
→ d2

dt2 ℓλ. Thus the left-hand sides of (7.1) converge
to the left-hand side of (7.2).

For the right-hand side, the argument is virtually tautological. We first
note that the arclength measure ‖Φ‖2ds is continuous on T 1M . Then, choose
n sufficiently large so that the flow boxes {Fi} described above also serve as
flow boxes for γn. The definition of convergence in ML then easily implies
that the right-hand side of (7.1) converges to the right-hand side of (7.2).
q.e.d.
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8. Convexity of ℓ
1

2 ; upper and lower bounds on the Hessian

8.1. The function ℓ
1

2 .

8.1.1. The function ℓ
2

3 . In light of (7.1), we can quickly refine the basic
convexity result for the length ℓ to a convexity result for a concave function of
ℓ, namely ℓ

2

3 . We will see in the next subsection that this is not sharp, but at
this stage this particular bound is elementary, so we include it.

To begin, recall from (3.7) that the first variation of length may be expressed
as

d

dt
ℓγ(Γ(t)) =

∫

γ0

ReΦ

g0
ds.

We can then estimate this derivative as
∣

∣

d

dt
ℓγ(Γ(t))

∣

∣ ≤
∫

γ0

∣

∣

ReΦ

g0

∣

∣ds

≤
(

∫

γ0

|Φ|2
g20

ds
)

1

2 ℓ
1

2

γ0
.

Squaring and combining with (7.1) yields

(8.1) ℓ
d2

dt2
ℓγ(Γ(t)) ≥

1

3

( d

dt
ℓγ(Γ(t))

)2
.

We compute d2

dt2 ℓ
2

3 (Γt) and substitute in the above inequality to conclude the

Corollary 8.1. The function ℓ
2

3 is Weil-Petersson convex on Teichmüller
space.

8.1.2. The length of an annulus. In this subsection, we compute in two
ways the second variation of the length of the core geodesic in a hyperbolic
annulus; the basic result is well-known (see Example 3.6 in [Wol08]).

Let C(ℓ) denote a complete hyperbolic annulus whose core geodesic has
length ℓ. This cylinder may be parametrized as

C(ℓ) = [− π

2ℓ
,
π

2ℓ
]× [0, 1],

where top and bottom edges are identified, and we consider the metric cylinder
as equipped with the hyperbolic metric g = ds2ℓ = ℓ2 sec2 ℓx|dz|2.

Consider the rotationally harmonic map R(t) : C(ℓ) → C(ℓ + t) which does
not twist the boundary; in other words, this map may be expressed in coordi-
nates as R(t) = u(t) + iv(t) where u(t)(z) = u(t)(x) and v(t)(z) = y. Now the
rotationally invariant holomorphic quadratic differentials on a cylinder have
a particularly simple form: we may write one as Φ = cdz2 in the complex
coordinates above. We may then compute

ν =
R(t)z̄
R(t)z

=
u′ − 1

u′ + 1

and so u′ = 1+ν
1−ν . On the other hand, since c = Φ = g(ℓ(t))H(ℓ(t))ν(t), we see

since ν(0) = 0 and H(ℓ(0)) = 1, that ċ = gν̇ = g d
dt [

u′−1
u′+1 ] =

u̇′

2 g. We conclude

that d
dtu

′
t = 2 ċ

g .
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If c(t) is the factor so that the Hopf differential is parametrizing a family of
harmonic maps R(t) : C(ℓ) → C(ℓ + t) whose targets are progressing through
Teichmüller space T (C) at unit Weil-Petersson speed, then the choice of c(t)
provides for c(t)dz2 to be the Hopf differential for the map R(t).

Now, for w(t) to have image C(ℓ + t), we must have the boundary of C(ℓ)
map to the boundary of C(ℓ+ t), i.e.

π

2(ℓ+ t)
= u(

π

2ℓ
) =

∫ π
2ℓ

0

u′(x)dx + u(0).

Upon differentiating in t, we obtain

− π

2ℓ2
=

∫ π
2ℓ

0

u̇′

=

∫ π
2ℓ

0

2ċg−1

= 2ċ

∫ π
2ℓ

0

ℓ−2 cos2 ℓxdx

=
πċ

2ℓ3

after finding the resulting elementary integrals. We obtain ċ = −ℓ. Therefore

‖ ∂
∂ℓ

‖2WP = ‖ċg−1
ℓ ‖2WP = ‖(−ℓ)ℓ−2 cos2 ℓx‖2WP =

π

2ℓ

after another explicit integration. Thus ‖ ∂
∂ℓ‖WP = ( π

2ℓ)
1

2 and so ds2WP = π
2ℓdℓ

2

on the Teichmüller space T (C). This implies that on this space, dℓ
ds = (2ℓπ )

1

2

and so ℓ = (2π)−1s2. Thus the length ℓ of the core geodesic satisfies that ℓ
1

2

is convex, but not convex to any lower power.

8.1.3. ℓ
1

2 is convex. We now offer a geometric proof of Wolpert’s recent

result [Wol08] that ℓ
1

2

γ is Weil-Petersson convex. In effect, we will compare
the general case to the rotationally symmetric case we treated explicitly just
above, finding that the rotationally invariant case is an extremum in the space
of cases.
Comparison of lifted harmonic map to rotationally invariant map. The essen-
tial point is best understood in the setting of the annular covers (C, g̃t) of the
family of surfaces (S, gt). Consider the harmonic maps wt : (S, g0) → (S, gt)
and their lifts w̃t : (S, g̃0) → (S, g̃t). These lifts are in the homotopy class of
the rotationally invariant harmonic map Rt : C(ℓ0) → C(ℓt), where ℓγ(gt) = ℓt.
Now wt is conformal only at the (isolated) zeroes of the Hopf differential,
and so, off of small neighborhoods of the zeroes of the lifted Hopf differential,
the harmonic map w̃t has quasi-isometric constant uniformly bounded away
from 1. By contrast, one can either compute or reason geometrically that the
rotationally invariant harmonic map Rt : C(ℓ0) → C(ℓt) has quasi-isometric
constant tending uniformly to 1 as one leaves compacta in C(ℓ0): the image
curves are growing exponentially in length, so because the longitudinal curves
are stretching at incomparably lower rates, the requirement of energy efficiency
forces the map to be increasingly close to an isometry as one leaves compact
sets.
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Let HR(t) be the holomorphic energy (see equations (3.1)–(3.3)) of the
rotationally invariant map R(t), and H(t) be the holomorphic energy of w̃t.
Since both R(t) and w̃t are the identity when t = 0, and since, as we have
just seen, R(t) is asymptotically an isometry while w̃t is boundedly away from
being the identity off small sets, then we find

Ḧ(t) ≥ ḦR(t)

outside some large compact set (at least away from small neighborhoods of the

zeroes of the lift Φ̃ of Φ). [Here we are using that the real analytic functions
H(t),HR(t) ≥ 1, that H(0) = HR(0) = 1 everywhere, and that HR(t)(z) → 1
as z → ∂C(ℓ0).] In particular, parametrizing C(ℓ) as in subsection 8.1.2, we see
that

(8.2)

∫

x=± π
2ℓ

∓δ

Ḧ(t) ≥
∫

x=± π
2ℓ

∓δ

ḦR(t).

A comparison of ODEs. The rest of the proof follows by applying other in-
equalities that reflect that R(t) is a harmonic map of lower (regularized in
some way) energy than w̃t. In particular, consider the Fourier expansion
Φ =

∑

bn(x)e
2πiny of the quadratic differential Φ (where the map w̃t has

Hopf differential Φ).
Because

ℓ̇ =

∫

x=0

ReΦ

g

√
gdy = ℓRe b0

we know that the Hopf differential ΦR for the rotationally invariant map R(t)
must be ΦR = Re b0dz

2 on C(ℓ): this is because the targets C(ℓ+ t) agree for
the two maps wt and R(t), and hence the change in core-curve length is the
same.

The upshot is that, for an arbitrary constant curvature circle {x = ξ}, we
have

(8.3)

∫

x=ξ

|Φ|2
g2

ds = g−
3

2 (x)
∑

|bn|2 ≥ g−
3

2 (x)(Re b0)
2 =

∫

x=ξ

|ΦR|2
g2

ds.

Of course, we know from formula (1.2) that

ℓ̈ ≥
∫

γ0

−2(∆− 2)−1 |Φ|2
g2

ds =
1

2

∫

γ0

Ḧds.

To estimate this last integral, let u be the solution of

∆gu− 2u =
−2|Φ|2
g2

.

If we were to integrate this equation along the vertical parameter curves {x =
const}, we would obtain an ordinary differential equation for the function
∫

x
udy =

∫

x
1
2Ḧdy in the single variable x ∈ (− π

2ℓ ,
π
2ℓ ), i.e.

(8.4)
1

g
∂2x

∫

x

udy − 2

∫

x

udy = −2

∫

x

|Φ|2
g2

dy.

Of course, a similar equation holds for the integrals
∫

x
1
2ḦRdy and

∫

x
|ΦR|2
g2 dy

associated to the rotationally invariant map. Indeed, inequality (8.2) says

that there are boundary points x = ± π
2ℓ ∓ δ at which

∫

x
1
2ḦRdy ≤

∫

x
1
2Ḧdy;
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moreover, inequality (8.3) asserts that on the interval (− π
2ℓ ,

π
2ℓ ), the right-hand

side of (8.4) is less in the lifted case than in the rotationally invariant case.
The upshot is that the comparison principle for ordinary differential equa-

tions implies that

∫

x

−2(∆− 2)−1 |Φ|2
g2

dy =

∫

x

1

2
ḦRdy

≥
∫

x

1

2
Ḧdy

=

∫

x

−2(∆− 2)−1 (Re b0)
2

g2
dy.

In particular, specializing to the curve {x = 0}, and recalling the implication
above of (1.2), we find

ℓ̈ ≥
∫

γ0

−2(∆− 2)−1 |Φ|2
g2

≥
∫

γ0

−2(∆− 2)−1 (Re b0)
2

g2
= ℓ̈R ≥ 2

˙ℓR
2

ℓR
= 2

ℓ̇2

ℓ
.

Here the last inequality is inherited from the rotationally invariant case of
the last subsection. For the last equality, we simply recall that our choice
that Re

∫

γ0

Φ =
∫

γ0

ΦR implies that the infinitesimal change of lengths agrees

between the lifted and rotationally invariant maps. We conclude

Corollary 8.2. (Wolpert [Wol08]) The function ℓ
1

2 is Weil-Petersson con-
vex in the Teichmüller space T (S).

8.2. A general upper bound for the Hessian. We have already seen a
lower bound for the Hessian of length in Corollary 5.2 and Proposition 7.1. In
this passage, we note an easy upper bound as well.

We begin by noting that if

(∆− 2)h = −2
|Φ|2
g20

on a surface S, then the maximum principle implies

(8.5) h ≤ ‖|Φ|
2

g20
‖∞

where the right-hand side is the maximum of the function |Φ|2
g2

0

on S. In the

formula (1.2), this will estimate the first term.
To estimate the second term, we consider equation (4.18) (combined with

(4.12))

(8.6) Uyy − U = − ImΦ

g0
.

The maximum principle then implies that

(8.7) U ≤ max
γ

∣

∣

ImΦ

g0

∣

∣.
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Thus the second term in formula (1.2) is estimated as
∫

γ

U2
y + U2 = −

∫

γ

(Uyy − U)U(8.8)

=

∫

γ

(
ImΦ

g0
)U

≤
∫

γ

(

max
γ

∣

∣

ImΦ

g0

∣

∣

)(

max
γ

∣

∣

ImΦ

g0

∣

∣

)

after a substitution

= ℓγ(max
γ

∣

∣

ImΦ

g0

∣

∣)2.

We conclude, taking into account Corollary 5.2, that

Corollary 8.3.

(8.9)
1

3

∫

γ

‖Φt‖2ds ≤
d2

dt2
ℓγ(Γ(t)) ≤ ℓγ(max

S
‖ |Φ|

2

g20
‖+ (max

γ

∣

∣

ImΦ

g0

∣

∣)2).

8.3. Estimates for the Weil-Petersson connection near the compact-

ification divisor. In this passage we refine the method above to estimate the
Weil-Petersson connection on a codimension two distribution P ⊂ TM of the
tangent bundle near the Deligne-Mumford compactification divisor (i.e. for
surfaces with small injectivity radius) which is in some sense “parallel” to the
tangent bundle of the compactification divisor. Roughly, we prove that P is
quite flat, in the sense that for X,Y ∈ P , we will have that the normal compo-
nent (∇XY )⊥ of (∇XY ) satisfies (∇XY )⊥ = O(ℓ2). (Here ℓ signifies the length
of the curve which vanishes on the nearby component of the compactification
divisor.)

To state this precisely, we choose a simple closed curve γ ⊂ S and a small
number ℓ > 0; we consider the level set Lγ(ℓ) of hyperbolic surfaces for which
L(·, γ) = ℓ. The set Lγ(ℓ) is a submanifold of the Teichmüller space T of real
codimension one, and it is orthogonal to the vector grad ℓγ , the Weil-Petersson
gradient of ℓγ . Let J be the almost complex structure of T and consider the
projection τ ∈ TLγ(ℓ) of J grad ℓγ into TLγ(ℓ). Let P ⊂ TLγ(ℓ) denote the
distribution of (dim T − 2)-planes in TLγ(ℓ) orthogonal to the span of grad ℓγ
and τ ; note that P is Weil-Petersson orthogonal to both grad ℓγ and J grad ℓγ .

Remark. One does not expect P to be integrable. In particular, one does
not expect that J grad ℓγ is parallel to the Fenchel-Nielsen twist vector field.
(See [Wol82].) Nevertheless, it will be a consequence of equation (8.11) of the
early part of the next proof that, as ℓγ → 0, the distribution P converges to
the tangent bundle TCγ of the compactification divisor Cγ = {ℓγ = 0} of the
augmented Teichmüller space T̄ . (Compare [Wol91].)

Now, for X ∈ P and Y a section of P → T (i.e. a vector field on Lγ(ℓ)),
we can consider the Weil-Petersson covariant derivative ∇XY . Of course, the
vector ∇XY has components both in P and in the orthogonal complement
P⊥ of P ; we focus here on the component of this vector in the orthogonal
complement.

Remark. It might be difficult to formulate general results on the full vector
∇XY in useful and incisive ways. For example, if we were to “lift” a curve α
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from the compactification divisor Cγ to an almost parallel curve α̂ tangent to

P , then since ∇α̇α̇ ⊂ TCγ can be arbitrary, so might we expect ∇ ˙̂α
˙̂α to have

an arbitrary non-orthogonal component.

Our main result in this section is

Theorem 8.4. In the notation above, for X ∈ P and Y ⊂ P of unit norm,
we have

(8.10) (∇XY )⊥ =< ∇XY,P⊥ >= O(ℓ2γ).

In particular, < ∇XY, grad ℓγ >= O(ℓ2γ) and < ∇XY, J grad ℓγ >= O(ℓ2γ).

Remark. Similar results were obtained recently by Wolpert [Wol08] and
[Wol09], using his estimates on the Hessian. From the formula for the Hessian
presented in (1.2), we see in the present derivation the elementary nature of
the expansion of ∇XY in ℓγ . The flatness of order O(ℓ2γ) occurs because the
(explicit) rotationally invariant even solution u(x) = x tan ℓx+1/ℓ of the Jacobi
equation has the following property: at the core geodesic of the cylinder, this
function u(x) is smaller by a factor comparable to O(ℓγ) than it is on the
boundary of the cylinder. Since the geodesic has length O(ℓγ), the dominant
term of the integral of u(x) over the geodesic decays like O(ℓ2γ).

Proof. We begin the proof of Theorem 8.4 with a preliminary proposition
characterizing the quadratic differentials which represent elements of P .

Proposition 8.5. Let X ∈ T[M,g]T with X ∈ P and Φ = ΦX be a holomor-

phic quadratic differential on the surface (S, g) for which Φ̄/g is a harmonic
Beltrami differential representing X. Then for γ the geodesic on S used to
define Lγ(ℓ), we have

(8.11)

∫

γ

Φ

g
ds = 0.

Proof. Since X ∈ P , we have < X, grad ℓγ >= 0. But from (3.7), we find
that

0 =< X, grad ℓγ >

= X(ℓγ)

=

∫

γ

ReΦ

g
ds.

Of course the other defining condition of X ∈ P is that < X, J grad ℓγ >= 0.
But since the Weil-Petersson metric is Kähler, this implies

0 =< X, J grad ℓγ >

= − < JX, grad ℓγ > .

But JX is represented by iΦ̄/g, and so we derive as above that

0 =

∫

γ

Re iΦ

g
ds,

proving the result.
q.e.d.
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Remark. The covectors in T ∗Cγ are represented by holomorphic quadratic
differentials which have at worst simple poles at the nodes. On the other hand,

a generic (real) covector in T ∗
ΣT̄ (written as (

dtj
tj
, dsk) in the customary (~s,~t)

plumbing notation) described in terms of a meromorphic quadratic differential
with a second order pole and other data (see e.g. [Wol91]), at an element
Σ ∈ Cγ has a second order pole with a non-vanishing residue at the node
obtained by pinching γ.

Continuation of the Proof of Theorem 8.4. The heart of the matter is a
computation of Hessℓγ(X,X), in particular to prove

Lemma 8.6. For X ⊂ P as above, we have

(8.12) Hessℓγ(X,X) = O(ℓ2γ).

To see that this is enough, note first that polarization will imply then that
Hessℓγ(X,Y ) = O(ℓ2γ) for X,Y ⊂ P of unit norm. But then

− < ∇XY, grad ℓγ > = −(∇XY )ℓγ

= (XY −∇XY )ℓγ since X,Y are tangent to Lγ(ℓ)

= Hessℓγ(X,Y ) by definition

= O(ℓ2γ) by Lemma 8.6.(8.13)

Moreover,

< ∇XY, J grad ℓγ > = − < J∇XY, grad ℓγ >

as J is a Weil-Petersson isometry

= − < ∇XJY, grad ℓγ >

as Weil-Petersson is a Kähler metric

= − < ∇XZ, grad ℓγ >

for some Z ∈ P as P is J-invariant, being orthogonal to a J-invariant subspace
of a Kähler manifold. Then < ∇XY, J grad ℓγ >= O(ℓ2γ) follows in the manner
of (8.13). This concludes the proof of Theorem 8.4, pending the proof of the
main lemma. q.e.d.

Proof of Lemma 8.6. The basic idea of the proof is to estimate the terms in
the formula (1.2) for the Hessian, where we take X to be represented by a
harmonic Beltrami differential µ = Φ̄/g, and we apply the features of X ⊂
P ⊂ TLγ(ℓ) to prove that those terms are small. In particular, because the
length L(g, γ) is small, the geodesic γ is embedded in a wide, thin collar. Then,
by Proposition 8.5, we learn that |Φ| must decay rapidly toward the center of
the collar. Those facts together are enough to conclude that each of the pair
of terms in (1.2) is small.

We carry out the plan in steps.

Step 0. The collar Consider the collar C = [− 1
ℓ sec

−1 1
ℓ ,

1
ℓ sec

−1 1
ℓ ] ×

[0, 1] with horizontal edges [− 1
ℓ sec

−1 1
ℓ ,

1
ℓ sec

−1 1
ℓ ]×{0, 1} identified, equipped

with the hyperbolic metric g0 = ℓ2 sec2 ℓx|dz2|. This collar C embeds in a
neighborhood of the geodesic γ, with {0} × [0, 1] mapping onto γ.
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Step 1. Decay of |Φ| On this annular collar C, we may regard the
quadratic differential Φ as a function (or more formally, we divide Φ by the
nonvanishing holomorphic quadratic differential dz2 to obtain a function in
the quotient). Then, by the rotational invariance of the collar (or by working
in Fermi coordinates), we see that g may be taken as constant along γ, and
so the conditions in Proposition 8.5 imply that Φ has no period in the collar.
Finally, we estimate boundary conditions.

Since, for ℓ small, everyX ⊂ P ⊂ TLγ(ℓ) can be approximated on compacta
away from γ by an integrable meromorphic quadratic differential on a noded
Riemann surface in the compactification divisor Cγ , and the collection of such
quadratic differentials of unit Weil-Petersson norm is compact, we see that we
may take |Φ| as bounded on the horocycle of length one on ∂C.

Because Φ is holomorphic and hence harmonic, the vanishing of the period
together with the fixed boundary conditions is enough to show that |Φ| decays
rapidly on the interior of the cylinder.

We can obtain an estimate of this decay through a Fourier analysis of Φ.
On the cylinder C, set Φ =

∑

an(x)e
2πiny . Then the harmonicity of Φ implies

0 = △Φ =
∑

(a′′n(x)− 4πn2an(x))e
2πiny

and in particular the equations

a′′n(x) − 4πn2an(x) = 0.

Now as a0(0) =
∫

x=0
Φ = 0 by (8.11), we find that

∫

γ∗ Φ = 0 along any cycle

γ∗ in Cγ homologous to γ; hence a0(x) = 0.
Of course,

∫

∂Cγ
|Φ|2 ≤ C0 by our argument on limits above, and so

(8.14)
∑

n6=0

a2n(±
1

ℓ
sec−1 1

ℓ
) =

∫

∂Cγ

|Φ|2 ≤ C0.

We note that

(
∑

n6=0

a2n(x))
′′ =

∑

n6=0

2a′′nan + 2(a′n)
2(8.15)

=
∑

n6=0

8π2n2a2n + 2(a′n)
2 by (8.3)

≥ 8π2
∑

n6=0

a2n.

Thus, by the maximum principle applied to the differential inequality (8.15)
with boundary conditions (8.14), we have

(8.16)

∫

x=x0

|Φ|2 ≤ C0 cosh
√
8πx0

cosh
√
8π(1ℓ sec

−1 1
ℓ )

:= D cosh
√
8πx0.

Finally, consider Φ(z0) for z0 = x0 + iy0, a fixed point of the collar. Note
that on our parametrization of the collar, the balls of radius 1

2 inject into the
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parameter domain. As Φ is harmonic,

|Φ(z0)| ≤
4

π
|
∫

B 1

2

(z0)

Φ|

≤ 4√
π
(

∫

B 1

2

(z0)

|Φ|2) 1

2

<
4√
π
(

∫

|Re(z−z0)|≤ 1

2

|Φ|2) 1

2

=
4√
π
(

∫ Re z0+
1

2

Re z0− 1

2

∫

x=t

|Φ|2dydt) 1

2

≤ 4√
π
(

∫ Re z0+
1

2

Re z0− 1

2

D cosh
√
8πtdt)

1

2 by (8.16)

= D1(cosh
√
8πx0)

1

2 .

We conclude that

|Φ(z0)|2 < D2 cosh
√
8πx0,

where (using (8.16))

(8.17) D2 = O(e−
√

8π
ℓ )

in ℓ, for ℓ small, justifying our remark about the decay of |Φ(z)| into the collar.

Step 2. The function U There are two terms in the formula (1.2) for
the Hessian; here we estimate the one involving the energy of the function U .
In particular, we already know from (8.8) that

∫

γ0

U ′2 + U2 ≤ ℓ(max
|Φ|
g

)2

≤ ℓg−2|x=0D2

= O(ℓ−3e
−

√
8π

ℓ )

using g|x=0 = ℓ2 and (8.17). This term is then consistent with the statement
of the lemma that Hessℓ(X,X) ≤ O(ℓ2).

Step 3. The function (△− 2)−1 |Φ|2
g2 We are left to estimate the second

term in the expression (1.2) for Hessℓ(X,X), namely
∫

γ

−2(△− 2)−1 |Φ|2
g2

.

In particular, we need to estimate the solution u0 to the equation

(8.18) (△− 2)u0 = −2
|Φ|2
g2

evaluated on the core geodesic.
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We again estimate the solution to this by estimating it on the cylinder Cγ ,
on which we have good control on |Φ|2

g2 . Of course we already know from the

maximum principle (see (8.5)) that

u0 ≤ sup
|Φ|2
g2

.

Now the latter is bounded on Cγ , and the complement of Cγ has bounded

geometry on which
∫

M∼Cγ

|Φ|2
g2 dAg ≤ 1 (because Φ is of unit Weil-Petersson

norm). We conclude that there is a C0 for which

|Φ|2
g2

∣

∣

∂Cγ
≤ C0.

Thus by the maximum principle, it is enough to estimate the solution u of the
boundary value problem

1

g
u′′(x)− 2u(x) =

D2 cosh
√
8πx

g2

u(±1

ℓ
sec−1 1

ℓ
) = C0.

Using that g = ℓ2 sec2 ℓx, we rewrite the equation above as

u′′(x) − 2ℓ2(sec2 ℓx)u(x) = D3 cosh(
√
8πx) cos2 ℓx(8.19)

u(±1

ℓ
sec−1 1

ℓ
) = C0,

where D3 = O(ℓ−2e−
√
8π/ℓ). The homogeneous equation

u′′(x)− 2ℓ2(sec2 ℓx)u(x) = 0

has the two solutions

u1(x) = tan ℓx(8.20)

u2(x) = x tan ℓx+
1

ℓ
.

Using these, one can solve for a particular solution of the form u0 = u1v1+u2v2
by elementary integrations, namely

v1 =

∫

u2D3 cosh(
√
8πx) cos2 ℓx

v2 = −
∫

u1D3 cosh(
√
8πx) cos2 ℓx.

An asymptotic expansion shows that u1v1 + u2v2|∂Cγ
= O(1); this is actually

quite remarkable, as both u1v1 and u2v2 are separately comparable to ℓ−3 on

∂Cγ . Moreover, u1v1 + u2v2|x=0 = O(e−
√
8π/ℓℓ−2). With these computations

in mind, we observe that the general solution to (8.19) is given by

u = c1u1 + c2u2 + u1v1 + u2v2.
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By our estimates on u1v1 + u2v2|∂Cγ
and the definitions of u1 and u2, we see

that we may take c1 = O(ℓ) and c2 = O(ℓ2). Thus we compute that

u(0) = c1u1(0) + c2u2(0) + u1(0)v1(0) + u2(0)v2(0)

= c2u2(0) + u2(0)v2(0) since u1(0) = 0

= O(ℓ) +O(e−
√
8π/ℓℓ−3)

= O(ℓ).

We conclude that −2(△− 2)−1 |Φ|2
g2

∣

∣

∣

γ
= u0

∣

∣

∣

γ
≤ u(0) = O(ℓ) and so

∫

γ

−2(△− 2)−1 |Φ|2
g2

=

∫

γ

uds ≤ O(ℓ)

∫

γ

ds

= O(ℓ2).

Combining the estimate for this term of the Hessian with the estimate for
the other term of the Hessian discussed in Step 2 concludes the proof of the
lemma.

q.e.d.

8.4. Upper bounds on twisting. We have seen in (3.7) that the period
Re

∫

γ0

Φ
g0
ds = Re

∫

γ0

Φ√
g0
dy (where the latter integral is expressed as the pe-

riod of the one-form Φ√
g0

around a parameter loop {x = const}) records the

infinitesimal change in the length of the curve [γ0] under the deformation de-
termined by Φ.

We turn our attention in this section to the imaginary part Im
∫

γ0

Φ
g0
ds =

Im
∫

γ0

Φ√
g0
dy of the period of the one-form Φ√

g0
, which we may regard as re-

flecting the ‘twist’ of the surface about [γ0] or the twist of the Weil-Petersson
geodesic Γ about the locus {ℓγ0

= 0} in the augmented Teichmüller space.
In particular, immediately from our main formula (1.2) we have

d2

dt2
ℓ(t) ≥ 1

2 sinh( ℓ2 )

∫∫

γ0×γ0

Imµ(p)[cosh(d(p, q) − ℓ

2
)] Imµ(q)ds(p)ds(q)

≥ 1

2 sinh( ℓ2 )

∫

γ0

Im
Φ(p)

g0(p)
ds(p)

∫

γ0

Im
Φ(q)

g0(q)
ds(q),

since cosh(d(p, q)− ℓ
2 ) ≥ 1. Thus defining

Perγ0
Φ =

∫

γ0

Φ

g0
ds,

we conclude immediately the

Proposition 8.7. If d
dtgt = 2ReΦ, then d2

dt2 ℓγ0
(t) ≥ (ImPerγ0

Φ)2.

Example 1. We imagine a Weil-Petersson geodesic arc parametrized at
unit speed with a large component of ‘twist’ near the locus {ℓγ0

= 0}. Let
C denote a collar around the short geodesic γ0, so that in the collar C =
[−a, a]× [0, 1], the metric g0 and the quadratic differential Φ may be expressed
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as g0 = ℓ2 sec2 ℓx|dz|2 and Φ = cdz2+ l.o.t. Then these conditions translate to

1 = ‖ Φ
g0

‖2 =

∫∫

R

|Φ|2
g20

dA

≥
∫∫

C

|Φ|2
g20

dA

≍
∫ 1

0

∫ a

−a

c2

ℓ2 sec2 ℓx
dxdy

= c2O(ℓ3)

after an explicit integration. Thus c ≤ O(ℓ
3

2 ). In this example, we study a
geodesic path where we assume this residue term c to be as large as these
considerations allow, i.e. we assume that along Γ, we have the constant term

cdz2 for the deformation term Φ to satisfy c ≥ k0ℓ
3

2 , for some fixed constant
k0. Of course, we are continuing to imagine this geodesic arc Γ to be near the
locus {ℓγ0

= 0}.
We next apply the above proposition in this setting to obtain a bound on

the behavior of the Weil-Petersson geodesic arc Γ. As we are assuming ℓ to be
small, we have that sinh ℓ

2 ≍ ℓ
2 , and thus the proposition yields

d2

ds2
ℓ(s) ≥ k1

ℓ
(

∫ 1

0

Φ

ℓ2 sec2 ℓx
ℓ sec ℓxdy|{x=0})

2

=
k1
ℓ
(

∫ 1

0

c

ℓ
dy)2

=
k1
ℓ
(
O(ℓ

3

2

ℓ
)2

= O(1).

Now for a geodesic progressing at unit speed, we have seen in (3.7) that |dℓγ0ds | =
|Re

∫

Φ
g0
ds|, and so, for small ℓ, is also bounded by a computation similar to

the one just above. Putting together the estimates

|dℓ(s)
ds

| < O(ℓ
1

2 )

| d
2

ds2
ℓ(s)| ≥ O(1)

shows that such a twisting geodesic can only stay near the locus {ℓγ0
= 0} for

a brief (o(1)) length.

9. The Thurston metric and the Weil-Petersson metric

¿From the formula (1.2), we can easily derive the result [Wol86b] (see also
[McM08] and [Bon88]) that the Thurston metric is a multiple of the Weil-
Petersson metric.

9.1. The Thurston metric. We begin by recalling the Thurston metric.
To define this, imagine a sequence {γn} of closed curves which are becom-
ing equidistributed in the sense that if B is a ball in the unit tangent bundle



THE WEIL-PETERSSON HESSIAN OF LENGTH 165

T 1S, and we lift γn to its representative in T 1S, then

lim
n→∞

ℓ(γn ∩B)

ℓ(γn)
=

Volume(B)

Volume(T 1S)
.

Thurston noted that since, for such a sequence of curves, dℓ(γn)
ℓ(γn)

→ 0 as

n→ ∞, then Hessℓ(γn)
ℓ(γn)

would tend to a symmetric quadratic form on T (S); by

the convexity of the length function, this tensor would be positive semi-definite,
hence a (pseudo)-metric. Wolpert showed that

Theorem 9.1. [Wol86b]. The Thurston metric is a multiple of the Weil-
Petersson metric.

The goal of the present section is to give a proof of this result that proceeds
from evaluating formula (1.2) on a sequence {γn} of curves that are becoming
equidistributed in T 1S.

9.2. First variation. We begin by first showing that dℓ(γn)/ℓ(γn) → 0 as
n→ ∞. Recall from (3.7) that

d

dt
L(gt, γn,t) =

∫

γn(0)

ReΦ

g0
ds.

Now, the curves γn have unit tangent vectors d
dsγn(s) which equidistribute

themselves in T 1S, and so

1

ℓ(γn)

d

dt
L(gt, γn,t) = − 1

ℓ(γn)

∫

γn

ReΦ

g0
ds

= −
∫

γn

ReΦ

g0

ds

ℓ(γn)

→
∫∫∫

T 1S

ReΦ(p, θ)

g0

d volT 1S(p, θ)

vol(T 1S)

where we interpret the meaning of the notation as follows. In the discussion
so far, we have written ReΦ to denote the value of the expression Reϕ, when
the quadratic differential Φ = ϕdz2 was written in coordinates z = x+ iy with
∂
∂y being tangent to the geodesic. Now the vector field ∂

∂y lifts to the canon-

ical vector fields in T 1S tangent to the geodesic flow. We let the expression
ReΦ(p, θ) denote the value of ReΦ on the surface in terms of a coordinate
z = x + iy in which the geodesic direction described by (p, θ) ∈ T 1S is in the
coordinate direction ∂

∂y . Of course, if we change surface coordinates so that

zθ = e−iθz, then for Φ = ϕθdz
2
θ , we have ϕθ = e2iθϕ0. Thus, when we inte-

grate along the fiber of T 1S → S (with respect to θ in the coordinates (z, θ)

for T 1S), we find
∫ Reϕ(p,θ)

g0
dθ = 0.
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9.3. The second variation. We recall the (second) formula (1.2) for the
second variation of length:

1

ℓ(γn)

d2

dt2
ℓ(γn(t))

=
1

ℓ(γn)

∫

−(∆− 2)−1 2|Φ|2
g20

ds

+
1

ℓ(γn)

∫∫

γn×γn

Imµ(p)
cosh(d(p, q)− ℓ(γn)

2 )

2 sinh( ℓ(γn)
2 )

Imµ(q)ds(p)ds(q)

=
1

ℓ(γn)

∫

−2(∆− 2)−1 |Φ|2
g20

ds

+
1

ℓ(γn)

∫

γn

ImΦ(p)

g0(p)

∫

γn

cosh(d(p, q) − ℓ(γn)/2)

2 sinh(ℓ(γn)/2)

ImΦ(q)

g0(q)
dqdp

= I1 + I2.

We examine the two integrals I1 and I2 separately. The first integral is
immediate, as

I1 =

∫

γn

−2(∆− 2)−1 |Φ|2
g20

ds

ℓ(γn)
−→ 2π

∫∫

M

−2(∆− 2)−1 |Φ|2
g20

dArea

2πArea

by the equidistribution property, and
∫∫

M

−2(∆− 2)−1 |Φ|2
g20

dArea

Area
=

∫∫

{−2(∆− 2)−1(1)} |Φ|
2

g20

dArea

Area

as the operator (∆− 2)−1 is self-adjoint. Then as −2(∆− 2)−1(1) = 1, we find
that

(9.1) I1 −→
∫∫ |Φ|2

g20

dArea

Area
.

9.4. The integral I2. We turn next to I2, where the computation is a bit
more involved. Our basic plan mirrors our discussion of the first variation; we
extend the terms in the integrand of I2 to all of T 1S, and then integrate over
the circular fiber to be left with an integral over the surface.

We begin our more detailed discussion of the second (energy) integral by
considering the version (4.33) of it in terms of a geometric kernel, i.e.

I2 =
1

ℓ(γn)

∫

γ0

ImΦ(p)

g0(p)

∫

γ0

cosh(d(p, q) − L/2)

2 sinh(L/2)

ImΦ(q)

g0(q)
dqdp

where L = ℓ(γ0).
Now considering γ0 as an embedded curve in the unit tangent bundle T 1(S, g0),

if we fix the point p = (p̄, v) ∈ T 1S as representing a point p̄ ∈ S and a unit
vector v ∈ T 1

pS, then a point q = (q̄, w) along γ0 at distance t from p could be
written

q = expp̄ tv = Gtp

where Gt denotes the geodesic flow in T 1S for distance t.



THE WEIL-PETERSSON HESSIAN OF LENGTH 167

Thus we see that as L→ ∞, the integral I2 converges to

lim
L→∞

I2 =

∫

T 1S

ImΦ(p)

g0(p)

∫ ∞

0

e−t

2
(
ImΦ(Gtp)

g0(Gt(p))
+

ImΦ(G−tp)

g0(G−t(p))
)

dtdp

vol(T 1S)
.

Of course, as p varies in the fiber {(p̄, eiθv)} over p̄ ∈ S, we observe the
points Gt(p̄, v) also arising as G−t(p̄,−v), and so we may rewrite the above
limit integral as

lim
L→∞

I2 =

∫

T 1S

ImΦ(p)

g0(p)

∫ ∞

0

e−t ImΦ(Gtp)

g0(Gt(p))

dtdp

vol(T 1S)
.

To evaluate this last integral, imagine p̄ = 0 in the disk {|z| < 1}, and we
represent the hyperbolic metric as

g0 =
4|dz|2

(1 − r2)2
= g0(0)(1− r2)−2|dz|2.

An important matter here (as it was in the calculation of the first variation) is
the question of how to interpret the meaning of ImΦ(q) in these coordinates:
recall that we understood Im Φ

g0
to be the value of Im Φ

g0
when we defined the

geodesic γ0 as a vertical line in the coordinate system. In the fixed coordinate
system of the disk {|z| < 1}, write Φ = φ(z)dz2; then since the hyperbolic
geodesic through the origin and the point z = reiθ is given by the ray teiθ, we
see that ImΦ|reiθ = Im e2iθφ(reiθ). With this notation, our integral becomes

lim
L→∞

I2

=

∫

S

∫ 2π

0

Im e2iθφ(0)

g0(p)
e−t Im e2iθφ(r(t)eiθ)

g0(p)(1− r(t)2)−2

dtdθdArea

2πArea(S)

=

∫

S

∫ ∞

0

e−t(1− r(t)2)2

g20(p)

∫ 2π

0

Im(e2iθφ(0)) Im(e2iθφ(r(t)eiθ))
dtdθdArea

2πArea(S)
.

Using the change-of-coordinates formula e−tdt = 2(1+r)−2dr and the mean
value theorem for harmonic functions (together with a half-angle formula to
simplify the averaging), we find

lim
L→∞

I2 =

∫

S

1

g0(p)2

(∫ 1

0

2(1− r)2dr

) |φ(0)|2
2

dArea

Area(S)

=
1

3

∫

S

|Φ(p)|2
g0(p)2

dArea(p)

Area(S)
.(9.2)

Combining (9.1) and (9.2), we verify Theorem 9.1. In particular,

lim
n−→∞

Hessℓ(γn)

ℓ(γn)
=

4

3

∫

S

|Φ(p)|2
g0(p)2

dArea(p)

Area(S)

=
4

3Area(S)
‖µ‖2WP.

Remark. The constant 4
3 found here agrees with that found by Wolpert

[Wol86b] and McMullen [McM08]. See the comments ([McM08], p. 376)
of McMullen on the consistency of conventions.
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