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SEMICLASSICAL SPECTRAL INVARIANTS
FOR SCHRÖDINGER OPERATORS

Victor Guillemin & Zuoqin Wang

Abstract

In this article we show how to compute the semiclassical spec-
tral measure associated with the Schrödinger operator on R

n, and,
by examining the first few terms in the asymptotic expansion of
this measure, obtain inverse spectral results in one and two dimen-
sions. (In particular we show that for the Schrödinger operator on
R

2 with a radially symmetric electric potential, V , and magnetic
potential, B, both V and B are spectrally determined.) We also
show that in one dimension there is a very simple explicit identity
relating the spectral measure of the Schrödinger operator with its
Birkhoff canonical form.

1. Introduction

Let

(1.1) S~ = −~
2

2
∆ + V (x)

be the semiclassical Schrödinger operator with potential function, V (x) ∈
C∞(Rn), where ∆ is the Laplacian operator on R

n. We will assume that
V is nonnegative and that for some a > 0, V −1([0, a]) is compact. By
Friedrich’s theorem these assumptions imply that the spectrum of S~
on the interval [0, a) consists of a finite number of discrete eigenvalues

(1.2) λi(~), 1 ≤ i ≤ N(~),

with N(~) → ∞ as ~ → 0. We will show that for f ∈ C∞(R), with
supp(f) ⊂ (−∞, a), one has an asymptotic expansion (see also [DiS],
[HeR])

(1.3) (2πh)n
∑

i

f(λi(~)) ∼
∞
∑

k=0

νk(f)~
2k

with principal term

(1.4) ν0(f) =

∫

f(
ξ2

2
+ V (x)) dx dξ
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and subprincipal term

(1.5) ν1(f) = − 1

24

∫

f (2)(
ξ2

2
+ V (x))

∑

i

∂2V

∂x2i
dx dξ.

We will also give an algorithm for computing the higher order terms
and will show that the kth term is given by an expression of the form

(1.6) νk(f) =

∫ k
∑

j=[ k
2
+1]

f (2j)(
ξ2

2
+ V (x))pk,j(DV, · · · ,D2kV )dxdξ,

where pk,j are universal polynomials, and the DkV ’s the kth partial
derivatives of V . Moreover, to illustrate how this algorithm works we
will compute the terms, νk(f), k = 2, 3, in §3.3. (However, to simplify
these computations slightly we will confine ourselves to the case n = 1.)

One way to think about the result above is to view the left hand side
of (1.3) as defining a measure, µ~, on the interval [0, a), and the right
hand side as an asymptotic expansion of this spectral measure as ~ → 0,

(1.7) µ~ ∼
∑

~
2k

(

d

dt

)2k

µk,

where µk is a measure on [0, a) whose singular support is the set of
critical values of the function, V . This “semiclassical” spectral theorem
is a special case of a semiclassical spectral theorem for elliptic operators
which we will describe in §2, and in §3 we will derive the formulas
(1.4) and (1.5) and the algorithm for computing (1.6) from this more
general result. More explicitly, we’ll show that this more general result
gives, more or less immediately, an expansion similar to (1.7), but with
a “( d

dt
)4k” in place of the ( d

dt
)2k. We’ll then show how to deduce (1.7)

from this expansion by judicious integrations by parts.
In one dimension our results are closely related to recent results of

[Col05], [Col08], [CoG], and [Hez]. In particular, the main result of
[CoG] asserts that if c ∈ [0, a) is an isolated critical value of V and
V −1(c) is a single non-degenerate critical point, p, then the first two
terms in (1.7) determine the Taylor series of V at p, and hence, if V is
analytic in a neighborhood of p, determine V itself in this neighborhood
of p. In [Col08] Colin de Verdière proves a number of much stronger
variants of this result (modulo stronger hypotheses on V ). In particular,
he shows that for a single well potential the spectrum of S~ determines
V up to “pointwise reflection” V (x) ↔ V (−x) without any analyticity
assumptions, provided one makes certain asymmetry assumptions on V :

Theorem 1.1 (Colin de Verdière [Col08]). Suppose the potential
function V is a single well potential; then the semiclassical spectrum
of S~ modulo o(~2) determines V near 0 up to V (x) ↔ V (−x). In
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particular, if V satisfies asymmetric conditions like (4.1),1 then V is
spectrally determined.

Colin de Verdière’s proof is based on a close examination of the principal
and subprincipal terms in the “Bohr-Sommerfeld rules to all orders”
formula that he derives in [Col05]. However, we’ll show in §4 that this
result is also easily deducible from the one-dimensional versions of (1.4)
and (1.5).

The algorithm we will introduce in §2 to calculate the semiclassical
spectral invariants applies to more general semiclassical differential op-
erators. In §5 we will show that for the perturbed Schrödinger operator

(1.8) P~ = −~
2

2
∆ + V (x) + ~

2V1(x)

the first three invariants, νk(f), 0 ≤ k ≤ 2, give a similar inverse spectral
result:

Theorem 1.2. Suppose the potential function V is a single well po-
tential, and V (x) and V1(x) satisfy either of the following:
(a) V (x) is even and V1(x) satisfies asymmetry conditions like (4.1);
(b) V1(x) is odd and V (x) satisfies asymmetry conditions like (4.1),
then the semiclassical spectrum of P~ modulo o(~4) determines V (x) and
V1(x).

We conjecture that the invariants, νk(f), 0 ≤ k < ∞, give one inverse
result for Schrödinger operators with semiclassical potentials, i.e. po-
tentials of the form

V~ ∼
∑

~
2kVk

modulo parity and/or asymmetry conditions. We will also show in §6
(by slightly generalizing a counter-example of Colin de Verdière) that if
one drops his asymmetry assumptions, one can construct uncountable
sets, {Vα, α ∈ (0, 1)}, of single well potentials, the Vα’s all distinct, for
which the µk’s in (1.7) are the same, i.e. which are isospectral modulo
O(~∞). We will also show that in dimensions two or higher there exist
infinite parameter families of potentials which are isospectral modulo
O(~∞).2

1The asymmetric condition we listed is a very simple and special one. We would
like to refer to [Col08] for a more general and complicated asymmetric condition.

2We remark that in a very recent joint work [GuH] by H. Hezari and one of the
authors, it has been proved that the potentials in Colin de Verdière’s example are
isospectral only up to O(~∞) and are not actually isospectral: in fact, for most ~, the
ground states of the Colin de Verdière’s semiclassical isospectral pair are different. A
similar conclusion will also apply to our semiclassical isospectral families.
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We also study the analogues of results (1.3)–(1.7) in the presence of
a magnetic field. In this case the Schrödinger operator becomes

(1.9) S
(m)
~

=

n
∑

k=1

(

~

i

∂

∂xk
+ ak(x)

)2

+ V (x),

where α =
∑

akdxk is the vector potential associated with the magnetic
field and the field itself is the two form

(1.10) B = dα =
∑

Bijdxi ∧ dxj.

For the operator (1.9) the analogues of (1.3)–(1.7) are still true, although
the formula (1.6) becomes considerately more complicated. We will show
that the subprincipal term (1.5) is now given by

(1.11)
1

48

∫

f (2)(
1

2

∑

(ξi + ai)
2 + V (x))(−2

∑ ∂2V

∂x2k
+ ‖B‖2)dxdξ.

As a result, we will show

Theorem 1.3. In dimension 2, if both V and B are radially sym-
metric, then they are spectrally determined.

The last part of this paper is devoted to studying the relation of the
spectral measure (1.7) and the Birkhoff canonical forms; the latter has
been proved to be very useful in proving inverse spectral results. In §9
we will prove the following “quantum Birkhoff canonical form” theorem:

Theorem 1.4. If V is a simple single well potential on the inter-
val V −1 ([0, a)), then on this interval S~ is unitarily equivalent to an
operator of the form

(1.12) HQB(S
har
~ , ~2) +O(~∞),

where Shar
~

is the semiclassical harmonic oscillator, i.e. the 1-D Schrödinger

operator with potential, V (x) = x2

2 , and HQB the quantum Birkhoff
canonical form that we will define in §9.

Then in §10 we will show that the spectral measure, µ~, on the inter-
val, (0, a), is given by

(1.13) µ~(f) =

∫ a

0
f(t)

dK

dt
(t, ~2) dt,

where

(1.14) HQB(s, ~
2) = t ⇐⇒ s = K(t, ~2).

In other words,

Theorem 1.5. The spectral measure determines the Birkhoff canon-
ical forms and vice-versa.
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We will end this introduction with a few words on the organization of
this paper. We will prove the asymptotic expansion (1.7) in §2 for general
semiclassical differential operators, with a focus on describing how to
calculate the spectral invariants iteratively. Then in §3 we will apply our
method to calculate the first several semiclassical spectral invariants of
the Schrödinger operator, which will be used to give a simple proof of
Theorem 1.1 in §4. In §5 we consider the perturbed Schrödinger operator
and prove Theorem 1.2. In §6 we will construct families of potentials
that are semiclassical isospectral. §7 and §8 are devoted to the magnetic
Schrödinger operator, and we will prove Theorem 1.3. Finally, in §9 and
§10 we study the relations between the Birkhoff canonical form and the
spectral measure (1.7), and we will prove Theorem 1.4 and Theorem
1.5.

Acknowledgements. The results in this paper were, in large part, in-
spired by conversations with Shlomo Sternberg. We would like to express
to him our warmest thanks. We would also like to express our warmest
thanks to Shijun Zheng for suggestions on Schrödinger operators with
magnetic fields.

Victor Guillemin is supported in part by NSF grant DMS-1005696.

2. The Semiclassical Trace Formula

Let

(2.1) P~ =
∑

|α|≤r

aα(x, ~)(~Dx)
α

be a semiclassical differential operator on R
n, where aα(x, ~) ∈ C∞(Rn×

R). Recall that the Kohn-Nirenberg symbol of P~ is

(2.2) p(x, ξ, ~) =
∑

α

aα(x, ~)ξ
α

and its Weyl symbol is

(2.3) pw(x, ξ, ~) = exp(−~

2
Dξ∂x)p(x, ξ, ~).

We assume that pw is a real-valued function, so that P~ is self-adjoint.
Moreover, we assume that for the interval [a, b], (pw)−1([a, b]), 0 ≤ ~ ≤
h0, is compact. Then by Friedrich’s theorem, the spectrum of P~, ~ < h0,
on the interval [a, b], consists of a finite number of eigenvalues,

(2.4) λi(~), 1 ≤ i ≤ N(~),

with N(~) → ∞ as ~ → 0. Let

(2.5) p(x, ξ, 0) = pw(x, ξ, 0)

be the principal symbols of P~.
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Suppose f ∈ C∞
0 (R) is smooth and compactly supported on (a, b).

Then

f(P~) =
1√
2π

∫

f̂(t)eitP~ dt,

where f̂ is the Fourier transform of f .

Theorem 2.1 ([DiS], [HeR]). The operator f(P~) is a semiclassical
pseudodifferential operator with left Kohn-Nirenberg symbol

(2.6) bf (x, ξ, ~) ∼
∑

k

~
k





∑

l≤2k

bk,l(x, ξ)

(

(
1

i

d

ds
)lf

)

(p0(x, ξ))



 ,

where bk,l is described as follows.

It follows that

(2.7) tracef(P~) = ~
−n

∫

bf (x, ξ, ~) dxdξ +O(~∞).

The coefficients bk,l(x, ξ) in (2.6) can be computed as follows: Let Qα

be the operator

(2.8) Qα =
1

α!

(

∂x + it
∂p0

∂x

)α

,

and let bk(x, ξ, t) be defined iteratively by means of the equation

(2.9)
1

i

∂bm

∂t
=
∑

|α|≥1

∑

j+k+|α|=m

Dα
ξ pjQαbk +

∑

j≥1

pjbm−j

with initial conditions

(2.10) b0(x, ξ, t) = 1

and

(2.11) bm(x, ξ, 0) = 0

for m ≥ 1, where the pj’s are defined by p =
∑

pj~
j. We will show that

bk(x, ξ, t) is a polynomial in t of degree 2k. The functions bk,l(x, ξ) are
just the coefficients of this polynomial,

(2.12) bk(x, ξ, t) =
∑

l≤2k

bk,l(x, ξ)t
l.

2.1. Proof of Theorem 2.1. We will only focus on symbolic calcu-
lus that leads to (2.6), with coefficients described by (2.9)–(2.12), and
refer to ([DiS], [HeR]) for more technical details on the remainder esti-
mates and trace class properties of the remainder. We look for a family
U(t) of semiclassical pseudodifferential differential operators depending
smoothly on t which satisfies the differential equation

(2.13)
1

i

∂

∂t
U(t) = P~U(t)
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with initial condition

(2.14) U(0) = Id.

Let µ(x, y, t, ~) be the Schwartz kernel of U(t). For this to be the kernel
of a pseudodifferential operator, it must have the form

(2.15) µ(x, y, t, ~) = (2π~)−n

∫

a(x, ξ, t, ~)ei
(x−y)·ξ

~ dξ.

Our initial condition (2.14) amounts to saying that

(2.16) a(x, ξ, 0, ~) = 1.

Set
a(x, ξ, t, ~) = eitp0(x,ξ)b(x, ξ, t, ~),

and then (2.16) becomes

(2.17) b(x, ξ, 0, ~) = 1

while (2.13) yields

(2.18)
1

i

∂

∂t

(

eitp0(x,ξ)b(x, ξ, t, ~)
)

= p(x, ξ, ~) ⋆
(

eitp0(x,ξ)b(x, ξ, t, ~)
)

,

where ⋆ is the star product defining the symbol of the composition of
two pseudodifferential operators. We can expand (2.18) out as

eitp0
(

1

i

∂b

∂t
+ p0b

)

∼
∑

α

~
α

α!
Dα

ξ p∂
α
x (e

itp0b),

write
∂αx (e

itp0b) = eitp0(e−itp0∂αx e
itp0b),

and cancel the factor eitp0 from both sides of the preceding equation to
get

1

i

∂b

∂t
+ p0b ∼

∑

α

~
α

α!
Dα

ξ pQ
αb,

where Q is the operator

Q = ∂x + it
∂p0

∂x
.

Since Q0 = I, we can rewrite the previous equation as

(2.19)
1

i

∂b

∂t
∼
∑

|α|≥1

~
α

α!
Dα

ξ pQ
αb+ (p − p0)b.

Let us expand b and p in powers of ~,

b ∼
∑

k

bk(x, ξ, t)~
k, p ∼

∑

k

pk~
k,

and equate powers of (2.19). This gives us the series of equations

(2.20)
1

i

∂bm

∂t
=
∑

|α|≥1

∑

j+k+|α|=m

1

α!
Dα

ξ pjQ
αbk +

∑

j≥1

pjbm−j



110 V. GUILLEMIN & Z. WANG

with initial conditions

b0(x, ξ, t) ≡ 1, bm(x, ξ, 0) ≡ 0 for m ≥ 1,

and we can solve these equations recursively by integration.

Proposition 2.2. bm(x, ξ, t) is a polynomial in t of degree at most
2m.

Proof. Proof by induction. We know this for m = 0. For j+k+ |α| =
m, we know by induction that Qαbk is a polynomial in t of degree at
most |α|+2k = m− j + k ≤ m+ k < 2m, so integration shows that bm
is a polynomial in t of degree at most 2m. q.e.d.

3. Spectral Invariants for Schrödinger Operators

In this section we will focus on the operators (1.1), so that

(3.1) p(x, ξ, ~) = p0(x, ξ) =
ξ2

2
+ V (x).

We would like to compute tracef(S~) for f ∈ C∞
0 (−a, a) via the semi-

classical trace formula (2.7). Notice that from (2.6), (2.7), and (2.10) it
follows that the first trace invariant is

∫

f(p(x, ξ)) dxdξ,

which implies Weyl’s law, ([GuS] §9.8), for the asymptotic distributions
of the eigenvalues (2.4).

To compute the next trace invariant, we note that for the Schrödinger
operator (1.1), the operator Qα has the form

(3.2) Qα =
1

α!

(

∂x + it
∂V

∂x

)α

.

It follows from (2.9) that

1

i

∂bm

∂t
=
∑

|α|≥1

∑

k+|α|=m

Dα
ξ p0Q

αbk

=
∑

k

ξk

i

(

∂

∂xk
+ it

∂V

∂xk

)

bm−1 −
1

2

∑

k

(

∂

∂xk
+ it

∂V

∂xk

)2

bm−2.

Since b0(x, ξ, t) = 1 and b1(x, ξ, 0) = 0, we have

b1(x, ξ, t) =
it2

2

∑

l

ξl
∂V

∂xl
,
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and thus

1

i

∂b2

∂t
=
∑

k

ξk

i

(

∂

∂xk

+ it
∂V

∂xk

)

(
it2

2

∑

l

ξl
∂V

∂xl
)

− 1

2

∑

k

(

∂

∂xk
+ it

∂V

∂xk

)2

(1)

=
t2

2

∑

k,l

ξkξl

(

∂2V

∂xk∂xl
+ it

∂V

∂xk

∂V

∂xl

)

− 1

2

∑

k

(

it
∂2V

∂x2k
− t2

∂V

∂xk

∂V

∂xk

)

.

It follows that

(3.3)

b2(x, ξ, t) =
t2

4

∑

k

∂2V

∂x2k
+
it3

6





∑

k

(
∂V

∂xk
)2 +

∑

k,l

ξkξl
∂2V

∂xk∂xl





− t4

8

∑

k,l

ξkξl
∂V

∂xk

∂V

∂xl
.

Thus the next trace invariant will be the integral

(3.4)

∫

−1

4

∑

k

∂2V

∂x2k
f ′′(

ξ2

2
+ V (x)) − 1

6

∑

k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x))

− 1

6

∑

k,l

ξkξl
∂2V

∂xk∂xl
f (3)(

ξ2

2
+ V (x))

− 1

8

∑

k,l

ξkξl
∂V

∂xk

∂V

∂xl
f (4)(

ξ2

2
+ V (x)) dxdξ.

We can apply to these expressions the integration by parts formula,

(3.5)

∫

∂A

∂xk
B(

ξ2

2
+ V (x)) dxdξ = −

∫

A(x)
∂V

∂xk
B′(

ξ2

2
+ V (x)) dxdξ

and

(3.6)

∫

ξkξlA(x)B
′(
ξ2

2
+V (x)) dxdξ = −

∫

δlkA(x)B(
ξ2

2
+V (x)) dxdξ.

Applying (3.5) to the first term in (3.4), we get
∫

1

4

∑

k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x)) dxdξ,

and by applying (3.6), the fourth term in (3.4) becomes
∫

1

8

∑

k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x)) dxdξ.
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Finally, applying both (3.6) and (3.5), the third term in (3.4) becomes
∫

−1

6

∑

k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x)) dxdξ.

So the integral (3.4) can be simplified to

1

24

∫

∑

k

(
∂V

∂xk
)2f (3)(

ξ2

2
+ V (x)) dxdξ.

We conclude

Theorem 3.1. The first two terms of (2.7) are

(3.7)

tracef(S~) =

∫

f

(

ξ2

2
+ V (x)

)

dxdξ +
1

24
~
2

∫

∑

k

(
∂V

∂xk
)2f (3)

(

ξ2

2
+ V (x)

)

dxdξ +O(~4).

In deriving (3.7) we have assumed that f is compactly supported.
However, since the spectrum of S~ is bounded from below by zero, the
left and right hand sides of (3.7) are unchanged if we replace the “f” in
(3.7) by any function, f , with support on (−∞, a), and, as a consequence
of this remark, it is easy to see that the following two integrals,

(3.8)

∫

ξ2

2
+V (x)≤λ

dxdξ

and

(3.9)

∫

ξ2

2
+V (x)≤λ

∑

k

(
∂V

∂xk
)2dxdξ,

are determined by the spectrum (2.4) on the interval [0, a]. Moreover,
from (3.7), one reads off the Weyl law: For 0 < λ < a,

(3.10) #{λi(~) ≤ λ} = (2π~)−n

(

Vol(
ξ2

2
+ V (x) ≤ λ) +O(~)

)

.

We also note that the second term in the formula (3.7) can, by (3.6),
be written in the form

1

24
~
2

∫

∑

k

∂2V

∂x2k
f (2)(

ξ2

2
+ V (x)) dxdξ.

3.1. Proof of (1.6). To prove (1.6), we notice that for m even, the
lowest degree term in the polynomial bm is of degree m

2 +1; thus we can
write

bm =
m
∑

l=−m
2
+1

bm,lt
m+l.
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Putting this into the iteration formula, we will get

m+ l

i
bm,l =

∑ ξk

i

∂bm−1,l

∂xk
+
∑

ξk
∂V

∂xk
bm−1,l−1 −

1

2

∑ ∂2bm−2,l+1

∂x2k

− i

2
(
∂

∂xk

∂V

∂xk
+
∂V

∂xk

∂

∂xk
)bm−2,l +

1

2

∑

(
∂V

∂xk
)2bm−2,l−1,

from which one can easily conclude that for l ≥ 0,

(3.11) bm,l =
∑

ξα(
∂V

∂x
)βpα,β(DV, . . . ,D

mV )

where pα,β is a polynomial, and |α| + |β| ≥ 2l − 1. It follows that, by

applying the integration by parts formula (3.5) and (3.6), all the f (m+l),
l ≥ 0, in the integrand of the ~

nth term in the expansion (2.6) can be
replaced by f (m). In other words, only derivatives of f of degree ≤ 2k
figure in the expression for νk(f). For those terms involving derivatives
of order less than 2k, one can also use integration by parts to show that
each f (m) can be replaced by an f (m+1) and an f (m−1). In particular,
we can replace all the odd derivatives by even derivatives. This proves
(1.6).

3.2. More Spectral Invariants in 1-dimension. For simplicity, we
will only consider the dimension one case. One can solve the equation
(2.9) for the Schrödinger operator with initial conditions (2.10) and
(2.11) inductively, and get in general

(3.12) b2m(x, ξ, t) =
4m
∑

k=m+1

tk
∑

n+t=k−m,n≤m

l1+···+lt=2m

ξ2nV (l1) · · ·V (lt)an,l,

and

(3.13) b2m−1(x, ξ, t) =
4m−2
∑

k=m+1

tk
∑

n+t=k−m,n≤m−1
l1+···+lt=2m−1

ξ2n+1V (l1) · · · V (lt)ãn,l,

where an,l and ãn,l are constants depending on n and l1, · · · , lt. In par-
ticular,

(3.14)

b3(x, ξ, t) =
t3

6
ξV (3)(x) +

t4

3
iξ

(

V ′(x)V ′′(x) +
1

8
ξ2V (3)

)

− t5

12
ξ
(

V ′(x)3 + ξ2V ′(x)V ′′(x)
)

− t6

48
iξ3V ′(x)3,
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and
(3.15)

b4(x, ξ, t) =− t3

24
iV (4)(x) + t4

(

7

96
V ′′(x)2 +

5

48
V ′(x)V (3)(x) +

1

16
ξ2V (4)(x)

)

+ t5
(

13

120
iV ′(x)2V ′′(x) +

13

120
iξ2V ′′(x)2 +

19

120
iξ2V ′(x)V (3)(x)

+
1

120
iξ4V (4)(x)

)

+ t6
(

− 1

72
V ′(x)4 − 47

288
ξ2V ′(x)2V ′′(x)− 1

72
ξ4V ′′(x)2

− 1

48
ξ4V ′(x)V (3)(x)

)

− t7

48

(

iξ2V ′(x)4 + iξ4V ′(x)2V ′′(x)
)

+
t8

384
ξ4V ′(x)4.

The order ~k term is given by integrating the above formula with tk replaced

by 1
ik
f (k)( ξ

2

2 + V (x)). By integration by parts,

∫

ξ2kA(x)B(k)(
ξ2

2
+V (x)) dxdξ = (−1)k(2k−1)!!

∫

A(x)B(
ξ2

2
+V (x)) dxdξ,

so we can simplify the integral to
∫ (

V (4)f (3)

240
+

(V ′′)2f (4)

160
+
V ′V ′′′f (4)

120
+

11(V ′)2V ′′f (5)

1440
+

(V ′)4f (6)

1152

)

dxdξ.

Note that
∫

V (4)f (3) = −
∫

V ′V ′′′f (4) =

∫

V ′′V ′′f (4) + V ′′V ′V ′f (5)

and
∫

V ′V ′V ′′f (5) = −
∫

(

2V ′V ′V ′′f (5) + V ′V ′V ′V ′f (6)
)

,

so we can finally simplify the integral to
∫ (

1

480
(V ′′(x))2f (4)(

ξ2

2
+ V (x)) +

7

3456
(V ′(x))4f (6)(

ξ2

2
+ V (x))

)

dxdξ,

or
1

288

∫ (

ξ4

5
(V ′′(x))2 +

7

12
(V ′(x))4

)

f (6)(
ξ2

2
+ V (x)) dxdξ.

This can also be written in a more compact form as

1

1152

∫

(7V ′V ′′′ +
47

5
(V ′′(x))2)f (4)(

ξ2

2
+ V (x)) dxdξ.

It follows that
∫

ξ2

2
+V (x)≤λ

(7V ′V ′′′ +
47

5
(V ′′(x))2)dxdξ

is spectrally determined.
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4. Inverse Spectral Results: Recovering a Single Well Potential

Suppose V is a “single well potential,” i.e. has a unique nondegenerate
critical point at x = 0 with minimal value V (0) = 0, and V is increasing for x
positive, and decreasing for x negative. For simplicity, assume in addition that

(4.1) −V ′(−x) > V ′(x)

holds for all x > 0. We will show how the spectral invariants (3.8) and (3.9)
enable us to recover V (x).

y

x x

ξ

ξ2

2 + V (x) = λ

y = V (x)
λ

−x2(λ) x1(λ)

A2 A1

Figure 1. Single well potential.

For 0 < λ < a, we let −x2(λ) < 0 < x1(λ) be the intersections of the curve
ξ2

2 + V (x) = λ with the x-axis on the (x, ξ) plane. We will denote by A1 the
region in the first quadrant bounded by this curve, and by A2 the region in
the second quadrant bounded by this curve. Then from (3.8) and (3.9) we can
determine

(4.2)

∫

A1

+

∫

A2

dxdξ

and

(4.3)

∫

A1

+

∫

A2

V ′(x)2dxdξ.

Let x = f1(s) be the inverse of the function s = V (x), x ∈ (0, a). Then

∫

A1

V ′(x)2 dxdξ =

∫ x1(λ)

0

V ′(x)2
∫

√
2(λ−V (x))

0

dξdx

=

∫ x1(λ)

0

V ′(x)2
√

2λ− 2V (x) dx

=

∫ λ

0

√
2λ− 2s V ′(f1(s)) ds

=

∫ λ

0

√
2λ− 2s

(

df1

ds

)−1

ds.

Similarly,
∫

A2

V ′(x)2 dxdξ =

∫ λ

0

√
2λ− 2s

(

df2

ds

)−1

ds,
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where x = f2(s) is the inverse of the function s = V (−x), x > 0. So the
spectrum of S~ determines

(4.4)

∫ λ

0

√
λ− s

(

(
df1

ds
)−1 + (

df2

ds
)−1

)

ds.

Similarly, the knowledge of the integral (4.2) amounts to the knowledge of

(4.5)

∫ λ

0

√
λ− s

(

df1

ds
+
df2

ds

)

ds.

Recall now that the fractional integration operation of Abel,

(4.6) Jag(λ) =
1

Γ(a)

∫ λ

0

(λ− t)a−1g(t) dt

for a > 0, satisfies JaJb = Ja+b. Hence if we apply J1/2 to the expression
(4.5) and (4.4) and then differentiate by λ two times, we recover df1

ds + df2
ds and

(df1ds )
−1 + (df2ds )

−1 from the spectral data. In other words, we can determine
f ′
1 and f ′

2 up to the ambiguity f ′
1 ↔ f ′

2. However, by (4.1), f ′
1 > f ′

2. So we
can from the above determine f ′

1 and f ′
2, and hence fi, i = 1, 2. This proves

Theorem 1.1.

Remark 4.1. The formula (4.5) can be used to construct lots of Zoll po-
tentials, i.e. potentials for which the Hamiltonian flow vH associated with
H = ξ2+V (x) is periodic of period 2π. It is clear that the potential V (x) = x2

has this property and is the only even potential with this property. However,
by (4.5) and the area-period relation (see Proposition 7.1), every single well
potential V for which

f1(s) + f2(s) = 2s1/2

has this property. We will discuss some implications of this in a sequel to this
paper.

Remark 4.2. The same argument also shows that if V is decreasing on
(−∞,−a) and is increasing on (b,∞), and that V is known on (−a, b), then
we can recover V everywhere. In particular, we can recover symmetric double
well potentials.

5. Inverse Spectral Results: Recovering Potentials for
1-dimensional Perturbed Schrödinger Operators

Consider the 1-dimensional perturbed Schrödinger operator

(5.1) P~ = −~
2

2
∆+ V (x) + ~

2V1(x).

For this operator we have

p0(x, ξ) =
ξ2

2
+ V (x)

and
p2(x, ξ) = V1(x).

By iterative use of (2.9), we get

(5.2) b2 = bold2 + iV1(x)t
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and

(5.3)
b4 = bold4 +

t2

2
(
1

2
V ′′
1 − V 2

1 ) + i
t3

3
(
1

2
ξ2V ′′

1 + V ′V ′
1 +

3

4
V ′′V1)

+
t4

4
(−2

3
V ′V ′V1 +

1

3
ξ2V ′′V1) + i

t5

5
(−5

8
ξ2V ′V ′V1),

where bold2 and bold4 are the corresponding polynomials for the unperturbed
Schrödinger operator with potential V that we computed in §3. By integration
by parts, we conclude that the first three semiclassical spectral invariants for
the operator (5.1) are

Iλ =

∫

ξ2

2
+V (x)<λ

dx dξ

IIλ =

∫

ξ2

2
+V (x)<λ

(
1

24
V ′′ + Ṽ1V

′)dx dξ

and

IIIλ =

∫

ξ2

2
+V (x)<λ

(
7

1152
V ′V ′′′ +

47

5760
V ′′V ′′ +

7

24
V ′V ′V1 +WV ′)dx dξ,

where

Ṽ1(x) =

∫ x

0

V1(t)dt,

W (x) =

∫ x

0

W̃ (t)V ′(t)dt

and

W̃ (x) =

∫ x

0

W (t)dt =

∫ x

0

(− 1

12
V ′′
1 +

1

2
V 2
1 )dt.

Now suppose that V is an even single well potential. Then from Iλ one can
recover the potential function V . To recover the perturbation, V1, let x = f(s)
be the inverse of the function s = V (x) for x > 0. Since V is known, IIλ
determines

∫

ξ2

2
+V (x)<λ

Ṽ1(x)V
′(x)dx dξ,

which equals

J3/2(Ṽ1(f(λ)) − Ṽ1(−f(λ))),
where J is the fractional integral as before. It follows that one can recover the
function

Ṽ1(x)− Ṽ1(−x)
for 0 < x < a, and by taking the derivative, the function

(5.4) V1(x) + V1(−x), x > 0.

Next let’s extract information from the third invariant, IIIλ. The first two
terms in the integrand of IIIλ are already known since we know V . The third
term, by the same method above, gives

V ′(x)V1(x) − V ′(−x)V1(−x).
Since V is even, V ′ is odd. So the above expression equals

V ′(x)(V1(x) + V1(−x)),



118 V. GUILLEMIN & Z. WANG

which is already known. So the only new information comes from the last term,
which gives us

W (x) −W (−x).
Taking the derivative, we get the function

W̃ (x)V ′(x) + W̃ (−x)V ′(−x) = (W̃ (x) − W̃ (−x))V ′(x).

So the function W̃ (x)−W̃ (−x) is spectrally determined. Taking the derivative
again, we recover the function

W (x) +W (−x) = − 1

12
(V ′′

1 (x) + V ′′
1 (−x)) + 1

2
(V 2

1 (x) + V 2
1 (−x)).

Since we have already determined V1(x) + V1(−x), and thus V ′′
1 (x) + V ′′

1 (−x),
for x > 0, we conclude that the function

(5.5) V 2
1 (x) + V 2

1 (−x), x > 0

is spectrally determined. This together with (5.4) determines V1(x) modulo an
asymmetry assumption of type 4.1.

Similarly, if V is a single well potential while perturbation V1 is an odd
function, then (5.4) vanishes, and thus the invariants Iλ and IIλ will determine
V modulo condition (4.1), and this in turn determines V1 according to (5.5).
This completes the proof of Theorem 1.2.

6. Counterexamples

Let V ∈ C∞(Rn) be a single well potential as in the previous section. Then
we know that the spectrum of the Schrödinger operator (1.1) is discrete. The
question “to what extent does this spectrum determine V ?” is still an open
one; however, we will show in this section

Proposition 6.1. (1) In dimension one there exists a family of uncountable
potentials for which the spectral invariants (1.6) are the same.
(2) In dimension greater than one there even exist infinite parameter families
of potentials for which these invariants are the same.

We first observe that if A : Rn → R
n is an orthogonal transformation, i.e.

A ∈ O(n), then

A∗ ◦ S~ ◦ (A−1)∗ = SA
~ ,

where

SA
~ =

~
2

2
∆ + V A(x)

and V A(x) = V (Ax). Thus, if Kf(x, y, ~) is the Schwartz kernel of the operator
f(S~), then Kf (Ax,Ay, ~) is the Schwartz kernel of the operator f(SA

~
), and

by (1.6), Kf(Ax,Ax, ~) has an asymptotic expansion of the form

(2π~)−n
∑

k

~
k

∫

bk,l(Ax, ξ)

(

(
1

i

d

ds
)lf

)( |ξ|2
2

+ V (Ax)

)

dξ.

In particular, since the function bk,l(x, ξ) in the expansion (1.6) has the form

(6.1) bk,l =
∑

ξαPα,k,l(DV, . . . , D
2kV ),
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the corresponding function for SA
~

has the form

(6.2) bAk,l =
∑

ξαPα,k,l(DV
A, . . . , D2kV A),

and hence in particular

(6.3) bk,l(ξ, Ax) =
∑

ξαpα,k,l(DV
A, . . . , D2kV A)

for all x ∈ R
n.

Now choose V to be rotationally symmetric and let ρi(x) be a non-negative
C∞ function with support on the set

i < |x| < i+ 1, x1 > 0, . . . , xn > 0

with ρi = 0 for i odd and ρi 6= 0 for i even. Then, fixing a sequence of rotations,

A = {Ai ∈ O(n), i = 1, 2, 3, . . .},

the potentials

VA = V (x) +
∑

ρi(Aix)

have the same spectral invariants (1.6) for all sequences, A, as can be seen by
writing

∫

bk,l(ξ,DVA, . . . , D
2kVA)f

l

(

ξ2

2
+ VA

)

dxdξ

=
∑

∫

i≤|x|≤i+1

bk,l(ξ,DVA, . . . , D
2kVA)f

l

(

ξ2

2
+ VA

)

dxdξ

=
∑

∫

i≤|x|≤i+1

bk,l(ξ,D(V + ρi)
A, . . . ,

D2k(V + ρi)
Ai)f l

(

ξ2

2
+ (V + ρi)

Ai

)

dxdξ

and observing that this is equal to

∑

∫

i≤|x|≤i+1

bk,l(ξ,D(V + ρi), . . . , D
2k(V + ρi))f

l(
|ξ2|
2

+ V + ρi) dxdξ

by the equation (6.3).
In dimension one this construction doesn’t give us an infinite parameter

family of potentials with the same spectral invariants, but it is easy to see that
it does give us uncountable potentials for which these invariants are the same.
Namely, for every α ∈ [0, 1) let

α = .α1α2α3 · · ·

be the binary expansion of α and choose A2i to be the rotation x → −x if
αi is one, and x → x if αi is zero. This example (which is a slightly modified
version of a counterexample of Colin de Verdière in [Col08]) shows why the
assumption (4.1) (or some asymmetry condition similar to (4.1)) is necessary
in the hypotheses of Theorem 4.1.
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7. Semiclassical Spectral Invariants for Schrödinger Operators with
Magnetic Fields

In this section we will show how the results in §3 can be extended to
Schrödinger operators with magnetic fields. Recall that a semiclassical Schrödinger
operator with magnetic field on R

n has the form

(7.1) Sm
~ :=

1

2

∑

j

(

~

i

∂

∂xj
+ aj(x)

)2

+ V (x)

where ak ∈ C∞(Rn) are smooth functions defining a magnetic field B, which

in dimension 3 is given by ~B = ~∇ × ~a, and in arbitrary dimension by the
2-form B = d(

∑

akdxk). We will assume that the vector potential ~a satisfies
the Coulomb gauge condition,

(7.2) ∇ · ~a =
∑

j

∂aj

∂xj
= 0.

(In view of the definition of B, one can always choose such a Coulomb vector
potential.) In this case, the Kohn-Nirenberg symbol of the operator (7.1) is
given by

(7.3) p(x, ξ, ~) =
1

2

∑

j

(ξj + aj(x))
2 + V (x).

Recall that

(7.4) Qα =
1

α!

∏

k

(

∂

∂xk
+ it

∂p

∂xk

)αk

,

so the iteration formula (2.9) becomes
(7.5)

1

i

∂bm

∂t
=
∑

k

1

i

∂p

∂ξk

(

∂

∂xk
+ it

∂p

∂xk

)

bm−1 −
1

2

∑

k

(

∂

∂xk
+ it

∂p

∂xk

)2

bm−2,

from which it is easy to see that

(7.6) b1(x, ξ, t) =
∑

k

∂p

∂ξk

∂p

∂xk

it2

2
.

Thus the “first” spectral invariant is

∫

∑

k

(ξk + ak(x))
∂p

∂xk
f (2)(p) dxdξ = −

∫

∑

k

∂ak

∂xk
f ′(p)dxdξ = 0,

where we used the fact
∑ ∂ak

∂xk
= 0.
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With a little more effort we get for the next term

b2(x, ξ, t) =
t2

4

∑

k

∂2p

∂x2k

+
it3

6





∑

k,l

∂p

∂ξk

∂al

∂xk

∂p

∂xl
+
∑

k,l

∂p

∂ξk

∂p

∂ξl

∂2p

∂xk∂xl
+
∑

k

(
∂p

∂xk
)2





+
−t4
8

∑

k,l

∂p

∂ξk

∂p

∂xk

∂p

∂ξl

∂p

∂xl
,

and, by integration by parts, the spectral invariant

(7.7) I2 = − 1

24

∫





∑

k

∂2p

∂x2k
−
∑

k,l

∂ak

∂xl

∂al

∂xk



 f (2)(p(x, ξ))dxdξ.

Notice that

∂2p

∂x2k
=
∑

j

∂2aj

∂x2k

∂p

∂ξj
+
∑

j

(

∂aj

∂xk

)2

+
∂2V

∂x2k

and

‖B‖2 = trB2 = 2
∑

j,k

∂ak

∂xj

∂aj

∂xk
− 2

∑

j,k

(
∂ak

∂xj
)2.

So the subprincipal term is given by

1

48

∫

f (2)(p(x, ξ))

(

‖B‖2 − 2
∑

k

∂2V

∂x2k

)

dx dξ.

Finally, since the spectral invariants have to be gauge invariant by definition,
and since any magnetic field has by gauge change a Coulomb vector potential
representation, the integral

∫

p<λ

(

‖B‖2 − 2
∑

k

∂2V

∂x2k

)

dx dξ

is spectrally determined for an arbitrary vector potential. Thus we proved

Theorem 7.1. For the semiclassical Schrödinger operator (7.1) with mag-
netic field B, the spectral measure ν(f) = tracef(Sm

~
) for f ∈ C∞

0 (R) has an
asymptotic expansion

νm(f) ∼ (2π~)−n
∑

νmr (f)~2r,

where

νm0 (f) =

∫

f(p(x, ξ, ~))dxdξ

and

νm1 (f) =
1

48

∫

f (2)(p(x, ξ, ~))(‖B‖2 − 2
∑ ∂2V

∂x2i
).
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8. A Inverse Result for the Schrödinger Operator
with a Magnetic Field

Making the change of coordinates (x, ξ) → (x, ξ + a(x)), the expressions
(7.1) and (7.1) simplify to

νm0 (f) =

∫

f(ξ2 + V )dxdξ

and

νm1 (f) =
1

48

∫

f (2)(ξ2 + V )(‖B‖2 − 2
∑ ∂2V

∂x2i
)dxdξ.

In other words, for all λ, the integrals

Iλ =

∫

ξ2+V (x)<λ

dxdξ

and

IIλ =

∫

ξ2+V (x)<λ

(‖B‖2 − 2
∑ ∂2V

∂x2i
)dxdξ

are spectrally determined.
Now assume that the dimension is 2, so that the magnetic field B is actually

a scalar B = Bdx1 ∧ dx2. Moreover, assume that V is a radially symmetric
single well potential, and the magnetic field B is also radially symmetric. In-
troducing polar coordinates

x21 + x22 = s, dx1 ∧ dx2 =
1

2
ds ∧ dθ

ξ21 + ξ22 = t, dξ1 ∧ dξ2 =
1

2
dt ∧ dψ,

we can rewrite the integral Iλ as

Iλ = π2

∫ s(λ)

0

(λ− V (s))ds,

where V (s(λ)) = λ. Making the coordinate change V (s) = x ⇔ s = f(x) as
before, we get

Iλ = π2

∫ λ

0

(λ− x)
df

dx
dx.

A similar argument shows

IIλ = π2

∫ λ

0

(λ− x)H(f(x))
df

dx
dx,

where
H(s) = B(s)2 − 4sV ′′(s)− 2V ′(s).

It follows that from the spectral data, we can determine

f ′(λ) =
1

π2

d2

dλ2
Iλ

and

H(f(λ))f ′(λ) =
1

π2

d2

dλ2
IIλ.

So if we normalize V (0) = 0 as before, we can recover V from the first equation
and B from the second equation.
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Remark 8.1. In higher dimensions, one can show by a similar (but slightly
more complicated) argument that V and ‖B‖ are both spectrally determined
if they are radially symmetric.

9. The Birkhoff Canonical Form Theorem for the
1-D Schrödinger Operator

Suppose that V −1 ([0, a]) is a closed interval, [c, d], with c < 0 < d and
V (0) = 0. Moreover, suppose that on this interval, V ′′ > 0. We will show
below that there exists a semiclassical Fourier integral operator

U : C∞
0 (R) → C∞(R)

with the properties

(9.1) Uf(S~)U t = f(HQB(S
har
~

, ~)) +O(~∞)

for all f ∈ C∞
0 ((−∞, a)), and

(9.2) UU tA = A

for all semiclassical pseudodifferential operators with microsupport onH−1 ([0, a)).
To prove these assertions, we will need some standard facts about Hamiltonian

systems in two dimensions: With H(x, ξ) = ξ2

2 +V (x) as above, let v = vH be
the Hamiltonian vector field

vH =
∂H

∂ξ

∂

∂x
− ∂H

∂x

∂

∂ξ
,

and for λ < a, let γ(t, λ) be the integral curve of v with initial point γ(0, λ)
lying on the x-axis and H(γ(0, λ)) = λ. Then, since LvH = 0, H(γ(t, λ)) = λ

for all t. Let T (λ) be the time required for this curve to return to its initial
point, i.e.

γ(t, λ) 6= γ(0, λ), for 0 < t < T (λ)

and

γ(T (λ), λ) = γ(0, λ).

Proposition 9.1 (The area-period relation). Let A(λ) be the area of the
set {(x, ξ) | H(x, ξ) < λ}. Then

(9.3)
d

dλ
A(λ) = T (λ).

Proof. Let w be the gradient vector field
(

(
∂H

∂x
)2 + (

∂H

∂ξ
)2
)−1(

∂H

∂x

∂

∂x
+
∂H

∂ξ

∂

∂ξ

)

ρ(H)

where ρ(t) = 0 for t < ε
2 and ρ(t) = 1 for t > ε. Then for λ > ε and t positive,

exp(tw) maps the set H = λ onto the set H = λ+ t and hence

A(λ + t) =

∫

H=λ+t

dx dξ =

∫

H=λ

(exp tw)∗ dx dξ.

So for t = 0,

d

dt
A(λ+ t) =

∫

H≤λ

Lw dx dξ =

∫

H≤λ

dι(w)dxdξ =

∫

H=λ

ι(w)dxdξ.
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But on H = λ,

ι(w)dxdξ =

(

(
∂H

∂x
)2 + (

∂H

∂ξ
)2
)−1(

∂H

∂x
dξ − ∂H

∂ξ
dx

)

.

Hence, by the Hamilton-Jacobi equations

dx =
∂H

∂ξ
dt

and

dξ = −∂H
∂x

dt,

the right hand side is just −dt. So
dA

dλ
(λ) = −

∫

H=λ

dt = T (λ).

q.e.d.

For λ = a, let c = A(λ)
2π and let

H0
QB : [0, c] → [0, a]

be the function defined by the identities

H0
QB(s) = λ ⇐⇒ s =

A(λ)

2π

and let

HCB(x, ξ) := H0
QB(

x2 + ξ2

2
).

Thus by definition

(9.4) ACB(λ) = area{HCB < λ} = A(λ).

Now let v be the Hamiltonian vector field associated with the Hamiltonian, H ,
as above and vCB the corresponding vector field for HCB. Also as above let
γ(t, λ) be the integral curve of v on the level set, H = λ, with initial point on
the x-axis, and let γCB(t, λ) be the analogous integral curve of vCB. We will
define a map of the set H < a onto the set HCB < a by requiring

(9.5)

i. f∗HCB = H,

ii. f maps the x-axis into itself,

iii. f(γ(t, λ)) = γCB(t, λ).

Notice that this mapping is well defined by Proposition 9.1. Namely, by the
identity (9.4) and the area-period relation, the time it takes for the trajectory
γ(t, λ) to circumnavigate this level set H = λ coincides with the time it takes
for γCB(t, λ) to circumnavigate the level set HCB = λ. It’s also clear that
the mapping defined by (9.5), i − iii, is a smooth mapping except perhaps at
the origin, and in fact, since it satisfies f∗HBC = H and f∗vH = vHCB

, is
a symplectomorphism. We claim that it is a C∞ symplectomorphism at the
origin as well. This slightly non-trivial fact follows from the classical Birkhoff
canonical form theorem for the Taylor series of f at the origin. (The proof
of this is basically just a formal power series version of the proof above. See
[GPU], §3, for details.)
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Now let U0 : C∞
0 (R) → C∞(R) be a semiclassical Fourier integral oper-

ator quantizing f with the property (9.2). By Egorov’s theorem, U0S~U t
0 is

a zeroth order semiclassical pseudodifferential operator with leading symbol

H0
QB(

x2+ξ2

2 ) on the set {(x, ξ) | H0
QB < a}, and hence the operator

U0S~U t
0 −H0(Shar

~
)

is a semiclassical pseudodifferential operator on this set with leading symbol
of order ~2. We’ll show next that this O(~2) can be improved to an O(~4). To
do so, however, we’ll need the following lemma:

Lemma 9.2. Let g be a C∞ function on the set H−1(0, a). Then there
exists a C∞ function, h, on this set and a function ρ ∈ C∞(0, a) such that

(9.6) g = Lvh+ ρ(H).

Proof. Let

ρ(λ) =

∫ T (λ)

0

g(γ(t, λ)) dt

and let g1 = g − ρ(H). Then
∫ T (λ)

0

g1(γ(t, λ)) dt = 0.

So one obtains a function h satisfying (9.6) by setting

h(γ(t, λ)) =

∫ t

0

g1(γ(t, λ)) dt.

q.e.d.

Remark. The identity (9.6) can be rewritten as

(9.7) g = {H,h}+ ρ(H).

Now let −~
2g be the leading symbol of

S~ − U t
0H

0
QB(S

har
~

)U0 =: ~2R0.

Then if h and ρ are the functions (9.6) and Q is a self-adjoint pseudodifferential
operator with leading symbol h, one has, by (9.7),

exp(i~2Q)S~ exp(−i~2Q) = S~ + i[Q,S~]~
2 +O(~4)

= S~ − ~
2(R0 + ρ(S~)) +O(~4).

Hence, if we replace U0 by U1 = U0 exp(i~
2Q), we have

(9.8)
U1S~U t

1 = H0
QB(S

har
~ ) + ~

2ρ
(

H0
QB(S

har
~ )

)

+O(~4)

= H0
QB(S

har
~

) +H1
QB(S

har
~

) +O(~4)

microlocally on the set H−1(0, a).
As above there’s an issue of whether (9.8) holds microlocally at the origin as

well, or alternatively: whether, for the g above, the solutions h and ρ of (9.7)
extend smoothly over x = ξ = 0. This, however, follows as above from known
facts about Birkhoff canonical forms in a formal neighborhood of a critical
point of the Hamiltonian H ; for more details, cf. [GuU].
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To summarize what we’ve proved above: “Quantum Birkhoff modulo ~2” im-
plies “Quantum Birkhoff modulo ~

4.” The inductive step, “Quantum Birkhoff
modulo ~

2k,” implies “Quantum Birkhoff modulo ~
2k+2” is proved in exactly

the same way. We will omit the details.

10. Birkhoff Canonical Forms and Spectral Measures

Let’s first recall the following form of Euler-Maclaurin formula proven by S.
Sternberg and the first author:

Lemma 10.1. [GuS2] Let g ∈ S(R) be a Schwartz function, then as
N → ∞,

1

N

∞
∑

k=0

g(
k

N
) ∼

∫ ∞

0

g(x)dx +
g(0)

2N
+

∞
∑

n=1

(−1)n]
Bn

(2n)!
g(2n−1)(0)N−2n,

where Bk’s are the Bernoulli numbers.

In particular, if g(s) is a C∞
0 function on the interval (0,∞). Then the remain-

der terms in the right hand vanish, and we get
∞
∑

n=0

g

(

~(n+
1

2
)

)

=
1

~

∫ ∞

0

g(s) ds+O(~∞).

Hence for f ∈ C∞
0 (0, a),

tracef(HQB(S
har
~ , ~)) =

1

~

∫ ∞

0

f(HQB(s, ~)) ds+O(~∞).

Thus, by (9.1) and (9.2),

(10.1) µ~(f) = tracef(S~) =
1

~

∫ ∞

0

f(HQB(s, ~)) ds+O(~∞).

Thus, if K(t, ~) is the inverse of the function HQB(s, ~) on the interval 0 <
t < a, i.e. for 0 < t < a,

K(t, ~) = s ⇐⇒ HQB(s, ~) = t,

then (10.1) can be rewritten as

(10.2) µ~(f) =
1

~

∫ a

0

f(t)
dK

dt
dt+O(~∞),

or more succinctly as

(10.3) µ~ =
1

~

dK

dt
dt+O(~∞).

Hence, in view of the results of §6, this gives one an easy way to recover
HQB(s, ~) from V and its derivatives via fractional integration.
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Math., 292, Birkhäuser/Springer, New York, 2011, MR 2809469.

[CoG] Y. Colin de Verdière & V. Guillemin, A Semi-classical Inverse Problem

I: Taylor Expansion, Geometric aspects of analysis and mechanics, 81–95,
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