A DEFORMATION OF PENNER'S SIMPLICIAL COORDINATE

Tian Yang

Abstract

We find a one-parameter family of coordinates $\left\{\Psi_{h}\right\}_{h \in \mathbb{R}}$ which is a deformation of Penner's simplicial coordinate of the decorated Teichmüller space of an ideally triangulated punctured surface (S, T) of negative Euler characteristic. If $h \geqslant 0$, the decorated Teichmüller space in the Ψ_{h} coordinate becomes an explicit convex polytope $P(T)$ independent of h, and if $h<0$, the decorated Teichmüller space becomes an explicit bounded convex polytope $P_{h}(T)$ so that $P_{h}(T) \subset P_{h^{\prime}}(T)$ if $h<h^{\prime}$. As a consequence, Bowditch-Epstein and Penner's cell decomposition of the decorated Teichmüller space is reproduced.

1. Introduction

Decorated Teichmüller space of a punctured surface was introduced by Penner in [15] as a fiber bundle over the Teichmüller space of complete hyperbolic metrics with cusp ends. He also gave a cell decomposition of the decorated Teichmüller space invariant under the mapping class group action. To give the cell decomposition, Penner used the convex hull construction and introduced the simplicial coordinate Ψ in which the cells can be easily described. In [4], Bowditch-Epstein obtained the same cell decomposition using the Delaunay construction. The corresponding results for the Teichmüller space of a surface with geodesic boundary have also been obtained. Using Penner's convex hull construction, Ushijima [19] found a mapping class group invariant cell decomposition, and following the approach of Bowditch-Epstein [4], Hazel [10] obtained a natural cell decomposition of the Teichmüller space of a surface with fixed geodesic boundary lengths. As a counterpart of Penner's simplical coordinate Ψ, Luo [12] introduced a coordinate Ψ_{0} on the Teichmüller space of an ideally triangulated surface with geodesic boundary, and Mondello [14] pointed out that the Ψ_{0} coordinate gave a natural cell decomposition of the Teichmüller space.

Part of the work is supported by an NSF research fellowship.
Received 04/16/2011.

In [13], Luo deformed the Ψ_{0} coordinate to a one-parameter family of coordinates $\left\{\Psi_{h}\right\}_{h \in \mathbb{R}}$ of the Teichmüller space of a surface with geodesic boundary, and proved that, for $h \geqslant 0$, the image of Ψ_{h} is an explicit open convex polytope independent of h. For $h<0$, Guo [6] proved that the image of Ψ_{h} is an explicit bounded open polytope. It is then a natural question to ask if there is a corresponding deformation of Penner's simplicial coordinate Ψ. The purpose of this paper is to provide an affirmative answer to this question. We give a one-parameter family of coordinates $\left\{\Psi_{h}\right\}_{h \in \mathbb{R}}$ of the decorated Teichmüller space of an ideally triangulated punctured surface so that Ψ_{0} coincides with Penner's simplicial coordinate Ψ (Theorem 1.1). We also describe the image of Ψ_{h} (Theorem 1.2) and show that Ψ_{h} is the unique possible deformation of Ψ (Theorem 5.1). As an application, Bowditch-Epstein and Penner's cell decomposition of the decorated Teichmüller space is reproduced using the Ψ_{h} coordinate (Corollary 1.4). The main results of this paper can be considered as a counterpart of the work of [6], [13] and [8].

To be precise, let \bar{T} be a triangulation of a closed surface \bar{S} and let V, E and F be the set of vertices, edges and triangles of \bar{T} respectively. We call $T=\{\sigma-V \mid \sigma \in F\}$ an ideal triangulation of the punctured surface $S=\bar{S}-V$, and V the set of ideal vertices (or cusps) of S. As a convention in this paper, S is assumed to have negative Euler characteristic. Let $T_{c}(S)$ be the Teichmüller space of complete hyperbolic metrics with cusp ends on S. According to Penner [15], a decorated hyperbolic metric $(d, r) \in T_{c}(S) \times \mathbb{R}_{>0}^{V}$ on S is the equivalence class of a hyperbolic metric d in $T_{c}(S)$ such that each cusp v is associated with a horodisk B_{v} centered at v so that the length of ∂B_{v} is r_{v}. The space of decorated hyperbolic metrics $T_{c}(S) \times \mathbb{R}_{>0}^{V}$ is the decorated Teichmüller space.

Let us recall Penner's simplicial coordinate Ψ. Let $(d, r) \in T_{c}(S) \times$ $\mathbb{R}_{>0}^{V}$ be a decorated hyperbolic metric and let e be an edge of T. If a and a^{\prime} are the generalized angles (see Section 2) facing e, and b, b^{\prime}, c and c^{\prime} are the generalized angles adjacent to e, then Penner's simplicial coordinate $\Psi: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow \mathbb{R}^{E}$ is defined by

$$
\Psi(d, r)(e)=\frac{b+c-a}{2}+\frac{b^{\prime}+c^{\prime}-a^{\prime}}{2} .
$$

An edge path $\left(t_{0}, e_{1}, t_{1}, \ldots, e_{n}, t_{n}\right)$ in a triangulation T is an alternating sequence of edges e_{i} with $e_{i} \neq e_{i+1}$ for $i=1, \ldots, n-1$ and triangles t_{i} so that adjacent triangles t_{i-1} and t_{i} share the same edge e_{i} for any $i=1, \ldots, n$. An edge loop is an edge path with $t_{n}=t_{0}$. A fundamental edge path is an edge path so that each edge in the triangulation appears at most once, and a fundamental edge loop is an edge loop so that each edge in the triangulation appears at most twice. In [15], Penner proved

Figure 1. Penner's simplicial coordinate.
that for any vector $z \in \mathbb{R}_{\geqslant 0}^{E}$ such that $\sum_{i=1}^{k} z\left(e_{i}\right)>0$ for any fundamental edge loop $\left(e_{1}, t_{1}, \ldots, e_{k}, t_{k}\right)$, there exists a unique decorated complete hyperbolic metric (d, r) on S so that $\Psi(d, r)=z$. By using a variational principle on decorated ideal triangles, Guo and Luo [7] were able to prove that Penner's simplicial coordinate $\Psi: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow \mathbb{R}^{E}$ is a smooth embedding with image the convex polytope

$$
\begin{aligned}
P(T)=\left\{z \in \mathbb{R}^{E} \mid\right. & \sum_{i=1}^{k} z\left(e_{i}\right)>0 \\
& \text { for any fundamental edge loop } \left.\left(e_{1}, t_{1}, \ldots, e_{k}, t_{k}\right)\right\} .
\end{aligned}
$$

Let (S, T) be an ideally triangulated punctured surface. To deform Penner's simplicial coordinate, we define for each $h \in \mathbb{R}$ a map $\Psi_{h}: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow \mathbb{R}^{E}$ by

$$
\Psi_{h}(d, r)(e)=\int_{0}^{\frac{b+c-a}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{b^{\prime}+c^{\prime}-a^{\prime}}{2}} e^{h t^{2}} d t
$$

where a and a^{\prime} are the generalized angles facing e, and b, b^{\prime}, c and c^{\prime} are the generalized angles adjacent to e as in Figure 1. The main theorems of this paper are the following
Theorem 1.1. Suppose that (S, T) is an ideally triangulated punctured surface. Then for all $h \in \mathbb{R}$, the map $\Psi_{h}: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow \mathbb{R}^{E}$ is a smooth embedding.
Theorem 1.2. For $h \in \mathbb{R}$ and an ideally triangulated punctured surface (S, T), let $P_{h}(T)$ be the set of points $z \in \mathbb{R}^{E}$ such that
(a) $z(e)<2 \int_{0}^{+\infty} e^{h t^{2}} d t$ for each edge $e \in E$,
(b) $\sum_{i=1}^{n} z\left(e_{i}\right)>-2 \int_{0}^{+\infty} e^{h t^{2}} d t$ for each fundamental edge path (t_{0}, e_{1}, $\left.t_{1}, \ldots, e_{n}, t_{n}\right)$,
(c) $\sum_{i=1}^{n} z\left(e_{i}\right)>0$ for each fundamental edge loop $\left(e_{1}, t_{1}, \ldots, e_{n}, t_{n}\right)$. Then we have $\Psi_{h}\left(T_{c}(S) \times \mathbb{R}_{>0}^{V}\right)=P_{h}(T)$. Furthermore, if $h \geqslant 0$, then conditions (a) and (b) become trivial, and the image of Ψ_{h} is the open convex polytope $P(T)$, hence independent of h; and if $h<0$, then the image $P_{h}(T)$ is a bounded open convex polytope so that $P_{h}(T) \subset P_{h^{\prime}}(T)$ if $h<h^{\prime}$.

Clearly Ψ_{0} coincides with Penner's simplicial coordinate Ψ and Ψ_{h} is a deformation of Ψ. Theorem 1.1 is proved in Section 2 using the strategy of Guo-Luo [7]. We set up a variational principle from the derivative cosine law of decorated ideal triangles whose energy function V_{h} is strictly concave. For $i=1, \ldots,|E|$, each variable of V_{h} is a smooth monotonic function of the edge length l_{i} in the decorated hyperbolic metric (d, r), and Ψ_{h} is the gradient of V_{h}, hence is a smooth embedding. We study various degenerations of decorated ideal triangles in Section 3 with which we will prove Theorem 1.2 in Section 4. We will also prove that $\left\{\Psi_{h}\right\}_{h \in \mathbb{R}}$ is the unique possible deformation of Penner's simplicial coordinate by using a variational principle (Theorem 5.1).

The Delaunay cell decomposition of a decorated hyperbolic surface will be reviewed in Section 6 and we will prove the following

Theorem 1.3. Suppose (S, T) is an ideally triangulated punctured surface, and $(d, r) \in T_{c}(S) \times \mathbb{R}_{>0}^{V}$ is a decorated hyperbolic metric so that the horodisks associated to the ideal vertices do not intersect. Then for all $h \in \mathbb{R}$, the corresponding Delaunay decomposition $\Sigma_{d, r}$ coincides with the ideal triangulation T if and only if $\Psi_{h}(d, r)(e)>0$ for each $e \in E$.

Bowditch-Epstein [4] and Penner [15] showed that there is a natural cell decomposition of the decorated Teichmüller space $T_{c}(S) \times \mathbb{R}_{>0}^{V}$ invariant under the mapping class group action. One interesting consequence of Theorems 1.1, 1.2 and 1.3 is the following. Let $A(S)-A_{\infty}(S)$ be the fillable arc complex as in [9], and let $\left|A(S)-A_{\infty}(S)\right|$ be its underlying space. Penner [15] provided a mapping class group equivariant homeomorphism

$$
\Pi: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow\left|A(S)-A_{\infty}(S)\right| \times \mathbb{R}_{>0}
$$

so that the restriction of Π to each simplex of maximum dimension is given by the simplicial coordinate Ψ. Using Penner's method, we have the following

Corollary 1.4. Suppose that S is a punctured surface of negative Euler characteristic.
(a) For all $h>0$, there is a homeomorphism

$$
\Pi_{h}: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow\left|A(S)-A_{\infty}(S)\right| \times \mathbb{R}_{>0}
$$

equivariant under the mapping class group action so that the restriction of Π_{h} to each simplex of maximum dimension is given by the Ψ_{h} coordinate.
(b) The cell structures for various $h>0$ are the same as Penner's.

Acknowledgments. The author would like to thank Feng Luo for instructive discussions on this subject and suggestions for improving this paper, Shiu-chun Wong for making several crucial suggestions on polishing the writing of this paper, Ren Guo, Julien Roger and Jian Song for useful suggestions and Tianling Jin for helpful discussions. The author is also very grateful to the referee for the carefully reading and making many valuable suggestions on both the mathematics and the writing of this paper.

2. A variational principle on decorated ideal triangles

Let (S, T) be an ideally triangulated punctured surface with a set of ideal vertices V and a set of edges E. We assume that S has negative Euler characteristic. The proof of Theorem 1.1 goes as follows. By Penner [15], there is a smooth parametrization of the decorated Teichmüller space $T_{c}(S) \times \mathbb{R}_{>0}^{V}$ by \mathbb{R}^{E} using the edge lengths. From the cosine law of decorated ideal triangles [15], we construct for each $h \in \mathbb{R}$ a smooth strictly convex function V_{h} on a convex subset of \mathbb{R}^{E} so that its gradient is Ψ_{h}. By a variational principle, for each $h \in \mathbb{R}$, the map $\Psi: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow R^{E}$ is a smooth embedding. This variational principle, whose proof is elementary, is: If X is an open convex set in \mathbb{R}^{n} and $f: X \rightarrow \mathbb{R}$ is smooth strictly concave, then the gradient $\nabla f: X \rightarrow \mathbb{R}^{n}$ is injective. Furthermore, if the Hessian of f is negative definite for all $x \in X$, then ∇f is a smooth embedding.

A decorated ideal triangle Δ in the hyperbolic plane \mathbb{H}^{2} is an ideal triangle such that each ideal vertex v is associated with a horodisk B_{v} centered at v. If e_{1} and e_{2} are two edges adjacent to an ideal vertex v of Δ, then the generalized angle of Δ at v is defined to be the length of the intersection of ∂B_{v} and the cusp region enclosed by e_{1} and e_{2}. (In [15], Penner called the generalized angles the h-lengths of a decorated ideal triangle, and in [7], Guo and Luo defined the generalized angle to be twice of the generalized angle defined here.) If e is an edge of Δ with ideal vertices u and v, then the generalized edge length (or edge length for simplicity) of e in Δ is the signed hyperbolic distance between the intersection of e and ∂B_{u} and the intersection of e and ∂B_{v} (Figure 2 (a)). Note that if $B_{u} \cap B_{v} \neq \emptyset$, then the generalized edge length of e is either zero or negative (Figure $2(\mathrm{~b})$). In a decorated hyperbolic metric $(d, r) \in T_{c}(S) \times \mathbb{R}_{>0}^{V}$, each triangle σ in T is isometric to an ideal triangle and the decoration $r \in \mathbb{R}_{>0}^{V}$ induces a decoration on σ. If $e \in E$ is an edge and σ is an ideal triangle adjacent to e, then the generalized
edge length $l_{d, r}(e)$ of e is defined to be the generalized edge length of e in σ. It is clear that $l_{d, r}(e)$ does not depend on the choice of σ.

Figure 2. Generalized angles and edge lengths.
Penner [15] defined the length parametrization

$$
\begin{aligned}
L: T_{c}(S) \times \mathbb{R}_{>0}^{V} & \rightarrow \mathbb{R}^{E} \\
(d, r) & \mapsto l_{d, r}
\end{aligned}
$$

and showed that L is a diffeomorphism. (The exponential of half of the generalized edge length, which is called the λ-length in [15], is sometimes called Penner's coordinate in the literature.) Penner also proved the following cosine law of decorated ideal triangles. Suppose that Δ is a decorated ideal triangle with edge lengths l_{1}, l_{2} and l_{3} and opposite generalized angles θ_{1}, θ_{2} and θ_{3}. For $i, j, k=1,2,3$,

$$
\begin{equation*}
\theta_{i}=e^{\frac{l_{i}-l_{j}-l_{k}}{2}} \text { and } e^{l_{i}}=\frac{1}{\theta_{j} \theta_{k}} \tag{1}
\end{equation*}
$$

As a consequence, there is the sine law of decorated triangles:

$$
\begin{equation*}
\frac{\theta_{1}}{e^{l_{1}}}=\frac{\theta_{2}}{e^{l_{2}}}=\frac{\theta_{3}}{e^{l_{3}}} . \tag{2}
\end{equation*}
$$

For $i, j, k=1,2,3$ and $x_{i}=\frac{\theta_{j}+\theta_{k}-\theta_{i}}{2}$, let $\mu\left(x_{i}\right)=\int_{0}^{x_{i}} e^{h t^{2}} d t$ and $u_{i}=\int_{0}^{l_{i}} e^{-h e^{-t}} d t$. Denote by $U \subset \mathbb{R}^{3}$ the set of all possible values of $u=\left(u_{1}, u_{2}, u_{3}\right)$.
Lemma 2.1. For each $h \in \mathbb{R}$, the differential 1-form $\omega_{h}=\sum_{i=1}^{3} \mu\left(x_{i}\right) d u_{i}$ is closed in U and the function F_{h} defined by the integral $F_{h}(u)=\int_{0}^{u} \omega_{h}$ is strictly concave in U. Furthermore,

$$
\frac{\partial F_{h}}{\partial u_{i}}=\int_{0}^{x_{i}} e^{h t^{2}} d t
$$

Proof. Consider the matrix $H=\left[\frac{\partial \mu\left(x_{i}\right)}{\partial u_{j}}\right]_{3 \times 3}$. The closedness of ω_{h} is equivalent to that H is symmetric, and the strict concavity of F_{h} will follow from the negative definiteness of H. It follows from the partial derivatives of (1) that $\frac{\partial x_{i}}{\partial l_{i}}=-\frac{x_{i}+x_{j}+x_{k}}{2}$ and $\frac{\partial x_{i}}{\partial l_{j}}=\frac{x_{k}}{2}$. We have

$$
\frac{\partial \mu\left(x_{i}\right)}{\partial u_{i}}=\frac{e^{h x_{i}^{2}}}{e^{-h e^{-l_{i}}}} \frac{\partial x_{i}}{\partial l_{i}}=-\frac{x_{i}+x_{j}+x_{k}}{2} e^{h\left(\frac{\theta_{i}^{2}+\theta_{j}^{2}+\theta_{k}^{2}}{4}+\frac{3 \theta_{j} \theta_{k}-\theta_{i} \theta_{k}-\theta_{i} \theta_{j}}{2}\right)}
$$

and for $i \neq j$, we have

$$
\frac{\partial \mu\left(x_{i}\right)}{\partial u_{j}}=\frac{e^{h x_{i}^{2}}}{e^{-h e^{-l_{j}}}} \frac{\partial x_{i}}{\partial l_{j}}=\frac{x_{k}}{2} e^{h\left(\frac{\theta_{i}^{2}+\theta_{j}^{2}+\theta_{k}^{2}}{4}+\frac{\theta_{j} \theta_{k}+\theta_{i} \theta_{k}-\theta_{i} \theta_{j}}{2}\right)},
$$

from which we see that H is symmetric. Let

$$
c=\frac{1}{2} e^{h\left(\frac{\theta_{i}^{2}+\theta_{j}^{2}+\theta_{k}^{2}}{4}-\frac{\theta_{j} \theta_{k}+\theta_{i} \theta_{k}+\theta_{i} \theta_{j}}{2}\right)}>0
$$

and let D be the diagonal matrix whose (i, i)-th entry is $e^{h \theta_{j} \theta_{k}}$. The matrix H can be written as $c D M D$, where

$$
M=\left[\begin{array}{ccc}
-\left(x_{1}+x_{2}+x_{3}\right) & x_{3} & x_{2} \\
x_{3} & -\left(x_{1}+x_{2}+x_{3}\right) & x_{1} \\
x_{2} & x_{1} & -\left(x_{1}+x_{2}+x_{3}\right)
\end{array}\right]
$$

The negative definiteness of H is equivalent to that of M, i.e., the positive definiteness of $-M$. This follows from the direct calculation that each leading principal minor is positive using Sylvester's criterion. q.e.d

Proof of Theorem 1.1. For a decorated hyperbolic metric $(d, r) \in$ $T_{c}(S) \times \mathbb{R}_{>0}^{V}$, let $l_{d, r} \in \mathbb{R}^{E}$ be its length parameter. The integral $u(e)=\int_{0}^{l_{d, r}(e)} e^{-h e^{-t}} d t$ is a smooth monotonic function of $l_{d, r}(e)$, and the possible values of u form an open convex cube U in \mathbb{R}^{E}. With $u_{i}=u\left(e_{i}\right)$, the energy function $V_{h}: U \rightarrow \mathbb{R}$ is defined by

$$
V_{h}(u)=\sum_{\left\{e_{i}, e_{j}, e_{k}\right\}} F_{h}\left(u_{i}, u_{j}, u_{k}\right)
$$

in which the summation is taken over all of the decorated ideal triangles. By Lemma 2.1, V_{h} is smooth and strictly concave in U and

$$
\frac{\partial V_{h}}{\partial u_{i}}=\Psi_{h}\left(e_{i}\right)
$$

i.e., $\nabla V_{h}=\Psi_{h}$. By the variational principle, the map $\Psi_{h}=\nabla V_{h}: U \rightarrow$ \mathbb{R}^{E} is a smooth embedding. q.e.d

3. Degenerations of decorated ideal triangles

To describe the image of Ψ_{h}, we study degenerations of decorated ideal triangles. Suppose Δ is a decorated ideal triangle with edge lengths l_{1}, l_{2} and l_{3} and opposite generalized angles θ_{1}, θ_{2} and θ_{3}.

Lemma 3.1.

(I) If $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(-\infty, c_{2}, c_{3}\right)$ with $c_{2}, c_{3} \in(-\infty,+\infty]$, then $\left\{\theta_{1}\right\}$ converges to 0 , and we can take a subsequence so that at least one of $\left\{\theta_{2}\right\}$ and $\left\{\theta_{3}\right\}$ converges to $+\infty$.
(II) If $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(-\infty,-\infty, c_{3}\right)$ with $c_{3} \in(-\infty,+\infty]$, then $\left\{\theta_{3}\right\}$ converges to $+\infty$, and we can take a subsequence so that at least one of $\left\{\theta_{1}\right\}$ and $\left\{\theta_{2}\right\}$ converges to a finite number.
(III) If $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $(-\infty,-\infty,-\infty)$, then we can take a subsequence such that at least two of $\left\{\theta_{1}\right\},\left\{\theta_{2}\right\}$ and $\left\{\theta_{3}\right\}$ converge to $+\infty$.

Proof. For (I), if $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(-\infty, c_{2}, c_{3}\right)$, then $\left\{\frac{l_{1}-l_{2}-l_{3}}{2}\right\}$ converges to $-\infty$. By cosine law (1), $\left\{\theta_{1}\right\}=\left\{e^{\frac{l_{1}-l_{2}-l_{3}}{2}}\right\}$ converges to 0 . Let $a_{2}=\frac{l_{2}-l_{1}-l_{3}}{2}$ and $a_{3}=\frac{l_{3}-l_{1}-l_{2}}{2}$, so $\left\{a_{2}+a_{3}\right\}=\left\{-l_{1}\right\}$ converges to $+\infty$. Thus, by taking a subsequence if necessary, at least one of $\left\{a_{2}\right\}$ and $\left\{a_{3}\right\}$, say $\left\{a_{2}\right\}$, converges to $+\infty$, and $\left\{\theta_{2}\right\}=\left\{e^{a_{2}}\right\}$ converges to $+\infty$. For (II), if $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(-\infty,-\infty, c_{3}\right)$, then $\left\{\frac{l_{3}-l_{1}-l_{2}}{2}\right\}$ converges to $+\infty$, and $\left\{\theta_{3}\right\}=\left\{e^{\frac{l_{3}-l_{1}-l_{2}}{2}}\right\}$ converges to $+\infty$. Letting $a_{1}=\frac{l_{1}-l_{2}-l_{3}}{2}$ and $a_{2}=\frac{l_{2}-l_{1}-l_{3}}{2}$, we have $\left\{a_{1}+a_{2}\right\}=\left\{-l_{3}\right\}$ converges to $-c_{3}$. Thus, either both $\left\{a_{1}\right\}$ and $\left\{a_{2}\right\}$ converge to a finite number, or by taking a subsequence if necessary, at least one of $\left\{a_{1}\right\}$ and $\left\{a_{2}\right\}$, say $\left\{a_{1}\right\}$, converges to $-\infty$. In the former case, both $\left\{\theta_{1}\right\}=\left\{e^{a_{1}}\right\}$ and $\left\{\theta_{2}\right\}=\left\{e^{a_{2}}\right\}$ converge to a finite number, and in the latter case, $\left\{\theta_{1}\right\}=\left\{e^{a_{1}}\right\}$ converges to 0 . For (III), we have by cosine law (1) that $\left\{\theta_{1} \theta_{2}\right\}=\left\{e^{-l_{3}}\right\}$ converges to $+\infty$. Thus, by taking a subsequence if necessary, at least one of $\left\{\theta_{1}\right\}$ and $\left\{\theta_{2}\right\}$, say $\left\{\theta_{1}\right\}$, converges to $+\infty$. Since $\left\{\theta_{2} \theta_{3}\right\}=\left\{e^{-l_{1}}\right\}$ converges to $+\infty$ as well, by taking a subsequence, at least one of $\left\{\theta_{2}\right\}$ and $\left\{\theta_{3}\right\}$ converges to $+\infty$. q.e.d

We call a converging sequence of decorated ideal triangles in (I), (II) and (III) of Lemma 3.1 a degenerated decorated ideal triangle of type I, $I I$ and $I I I$ respectively. If a is the generalized angle facing an edge e in a decorated triangle Δ, and b and c are the generalized angles adjacent to e, then we call $x(e)=\frac{b+c-a}{2}$ the x-invariant of e in Δ.

Corollary 3.2. If Δ is a degenerated decorated ideal triangle of type I, II or III, then by taking a subsequence if necessary, there is an edge e of Δ such that $\{l(e)\}$ converges to $-\infty$ and $\{x(e)\}$ converges to $+\infty$.

Proof. If Δ is of type I and $\left\{l_{1}\right\}$ converges to $-\infty$, then by Lemma 3.1 (I), $\left\{x_{1}\right\}=\left\{\frac{\theta_{2}+\theta_{3}-\theta_{1}}{2}\right\}$ converges to $+\infty$. If Δ is of type II and $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(-\infty,-\infty, c_{3}\right)$, then by Lemma 3.1 and taking a subsequence if necessary, at least one of $\left\{\theta_{1}\right\}$ and $\left\{\theta_{2}\right\}$, say $\left\{\theta_{1}\right\}$, converges to a finite number, and $\left\{\theta_{3}\right\}$ converges to $+\infty$. Thus, $\left\{l_{1}\right\}$ converges to $-\infty$ and $\left\{x_{1}\right\}=\left\{\frac{\theta_{2}+\theta_{3}-\theta_{1}}{2}\right\}$ converges to $+\infty$. If Δ is of type III, then there are at least two of $\left\{\theta_{1}\right\},\left\{\theta_{2}\right\}$ and $\left\{\theta_{3}\right\}$ that converge to $+\infty$. Suppose $\left\{\theta_{3}\right\}$ is one of the two that converge to $+\infty$. Since $\left\{x_{1}+x_{2}\right\}=\left\{\theta_{3}\right\}$ converges to $+\infty$, by taking a subsequence if necessary, at least one of $\left\{x_{1}\right\}$ and $\left\{x_{2}\right\}$, say $\left\{x_{1}\right\}$, converges to $+\infty$. Thus, $\left\{l_{1}\right\}$ converges to $-\infty$ and $\left\{x_{1}\right\}$ converges to $+\infty$. q.e.d

We call an edge e as in Corollary 3.2 where $l(e) \rightarrow-\infty$ and $x(e) \rightarrow$ $+\infty$ a bad edge of Δ, and otherwise, e is a good edge. Note that there may be more than one bad edge in a degenerated ideal triangle.
Lemma 3.3. Let $\left\{\Delta^{(m)}\right\}$ be a sequence of decorated ideal triangles that converges to a degenerated decorated ideal triangle Δ of type I, II or III. Then we can take a subsequence so that for m sufficiently large, the length of each bad edge of $\Delta^{(m)}$ is strictly less than the length of each good edge.

Proof. If Δ is of type I, then by Lemma 3.1, the length of the only bad edge converges to $-\infty$ and the length of other two edges converge to a finite number. For m sufficiently large, the length of the bad edge is less than the lengths of the good edges.

Figure 3. Type II.
If Δ is of type II, we may assume that $\left\{\left(l_{1}^{(m)}, l_{2}^{(m)}, l_{3}^{(m)}\right)\right\}$ converges to $(-\infty,-\infty, c)$ with $c \in(-\infty,+\infty]$. By Lemma 3.1, there are two cases
to be considered (Figure 3).
Case 1. Suppose that $\theta_{3}^{(m)}$ converges to $+\infty$ and both $\theta_{1}^{(m)}$ and $\theta_{2}^{(m)}$ converge to a finite number. In this case, both l_{1} and l_{2} are bad and converge to $-\infty$. The only good edge length l_{3} converges to $c \in(-\infty,+\infty]$. Hence for m sufficiently large, $l_{1}^{(m)}<l_{3}^{(m)}$ and $l_{2}^{(m)}<l_{3}^{(m)}$.

Case 2. Suppose that $\theta_{3}^{(m)}$ converges to $+\infty$, and one of $\theta_{1}^{(m)}$ and $\theta_{2}^{(m)}$, say $\theta_{2}^{(m)}$, converges to $+\infty$ and $\theta_{1}^{(m)}$ converges to a finite number. In this case l_{1} is bad. If l_{2} is also bad, then both l_{1} and l_{2} converge to $-\infty$, and l_{3} converges to $c \in(-\infty,+\infty]$. Hence for m sufficiently large, $l_{1}^{(m)}<l_{3}^{(m)}$ and $l_{2}^{(m)}<l_{3}^{(m)}$. If l_{2} is good, then $\theta_{1}^{(m)}<\theta_{2}^{(m)}$ for m sufficiently large, since $\theta_{1}^{(m)}$ converges to a finite number and $\theta_{2}^{(m)}$ converges to $+\infty$. By sine law (2), $l_{1}^{(m)}<l_{2}^{(m)}$.

Figure 4. Type III.

If Δ is of type III, then by Lemma 3.1, we also consider two cases (Figure 4).

Case 1. Two of $\theta_{1}^{(m)}, \theta_{2}^{(m)}$ and $\theta_{3}^{(m)}$, say $\theta_{1}^{(m)}$ and $\theta_{2}^{(m)}$ converge to $+\infty$, and $\theta_{3}^{(m)}$ converges to a finite number. In this case, l_{3} is bad. Since $\theta_{3}^{(m)}<\theta_{1}^{(m)}$ and $\theta_{3}^{(m)}<\theta_{2}^{(m)}$ for m sufficiently large, by sine law (2), $l_{3}^{(m)}<l_{1}^{(m)}$ and $l_{3}^{(m)}<l_{2}^{(m)}$. If one of l_{1} and l_{2}, say l_{2}, is also bad, then $x_{2}^{(m)}=\frac{\theta_{1}^{(m)}+\theta_{3}^{(m)}-\theta_{2}^{(m)}}{2}$ converges to $+\infty$. Since $\theta_{3}^{(m)}$ converges to a finite number, $\theta_{2}^{(m)}<\theta_{1}^{(m)}$ for m sufficiently large. By sine law (2), $l_{2}^{(m)}<l_{1}^{(m)}$.

Case 2. All of $\theta_{1}^{(m)}, \theta_{2}^{(m)}$ and $\theta_{3}^{(m)}$ converge to $+\infty$. In this case, since $x_{i}^{(m)}+x_{j}^{(m)}=\theta_{k}^{(m)}$ converges to $+\infty$, by taking a subsequence if necessary, at least two of $x_{1}^{(m)}, x_{2}^{(m)}$ and $x_{3}^{(m)}$, say $x_{1}^{(m)}$ and $x_{2}^{(m)}$, converge to $+\infty$. Therefore, l_{3} is the only possible good edge length, and $x_{3}^{(m)}$ converges to a finite number. For m sufficiently large, $\theta_{1}^{(m)}=$ $x_{2}^{(m)}+x_{3}^{(m)}<x_{1}^{(m)}+x_{2}^{(m)}=\theta_{3}^{(m)}$ and $\theta_{2}^{(m)}=x_{1}^{(m)}+x_{3}^{(m)}<x_{1}^{(m)}+x_{2}^{(m)}=$ $\theta_{3}^{(m)}$. By sine law (2), $l_{1}^{(m)}<l_{3}^{(m)}$ and $l_{2}^{(m)}<l_{3}^{(m)}$.
q.e.d

Lemma 3.4.

(a) If $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(+\infty, f_{2}, f_{3}\right)$ with $f_{2}, f_{3} \in \mathbb{R}$, then $\left\{\left(\theta_{1}, \theta_{2}\right.\right.$, $\left.\left.\theta_{3}\right)\right\}$ converges to $(+\infty, 0,0)$.
(b) If $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(+\infty,+\infty, f_{3}\right)$ with $f_{3} \in \mathbb{R}$, then $\left\{\theta_{3}\right\}$ converges to 0 .
(c) If $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $(+\infty,+\infty,+\infty)$, then we can take a subsequence such that at least two of $\left\{\theta_{1}\right\},\left\{\theta_{2}\right\}$ and $\left\{\theta_{3}\right\}$ converge to 0.

(c)

Figure 5. Type IV and other types.

We call a converging sequence of decorated ideal triangles in (a) of Lemma 3.4 a degenerated decorated ideal triangle of type IV (Figure 5).

Proof. For (a), if $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(+\infty, f_{2}, f_{3}\right)$, then by cosine law (1), $\left\{\theta_{1}\right\}=\left\{e^{\frac{l_{1}-l_{2}-l_{3}}{2}}\right\}$ converges to $+\infty,\left\{\theta_{2}\right\}=\left\{e^{\frac{l_{2}-l_{1}-l_{3}}{2}}\right\}$ converges to 0 , and $\left\{\theta_{3}\right\}=\left\{e^{\frac{l_{3}-l_{1}-l_{2}}{2}}\right\}$ converges to 0 . For (b), if $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $\left(+\infty,+\infty, f_{3}\right)$, then $\left\{\frac{l_{3}-l_{1}-l_{2}}{2}\right\}$ converges to $-\infty$, and $\left\{\theta_{3}\right\}=\left\{e^{\frac{l_{3}-l_{1}-l_{2}}{2}}\right\}$ converges to 0 . For (c), if $\left\{\left(l_{1}, l_{2}, l_{3}\right)\right\}$ converges to $(+\infty,+\infty,+\infty)$, then we have by cosine law (1) that $\left\{\theta_{1} \theta_{2}\right\}=\left\{e^{-l_{3}}\right\}$ converges to 0 . Thus, by taking a subsequence if necessary, at least one of $\left\{\theta_{1}\right\}$ and $\left\{\theta_{2}\right\}$, say $\left\{\theta_{1}\right\}$, converges to 0 . Since $\left\{\theta_{2} \theta_{3}\right\}=\left\{e^{-l_{1}}\right\}$ converges to 0 as well, by taking a subsequence, at least one of $\left\{\theta_{2}\right\}$ and $\left\{\theta_{3}\right\}$ converges to 0 . q.e.d

4. The image of Ψ_{h}

The image of Ψ_{h} is described in Theorem 1.2. The main task of this section is to give a proof of this theorem. To show that the image of Ψ_{h} is indeed $P_{h}(T)$, we make use of the following propositions which are proved in this section.

Proposition 4.1. $\Psi_{h}\left(T_{c}(S) \times \mathbb{R}_{>0}^{V}\right) \subset P_{h}(T)$ for all $h \in \mathbb{R}$.
Proposition 4.2. For all $h \in \mathbb{R}$, the image $\Psi_{h}\left(T_{c}(S) \times \mathbb{R}_{>0}^{V}\right)$ is closed in $P_{h}(T)$.
Proof of Theorem 1.2. Let $P(T)$ be defined as in Theorem 1.2. For $h \geqslant 0, P(T)=P_{h}(T)$ is determined by finitely many strict linear inequalities corresponding to the fundamental edge loops and hence is an open convex polytope independent of h. For $h<0, P_{h}(T)$ is likewise determined by fundamental edge loops and fundamental edge paths. Moreover, since each edge e can be regarded as a fundamental edge path, conditions (a) and (b) imply that $-2 \int_{0}^{+\infty} e^{h t^{2}} d t<z(e)<2 \int_{0}^{+\infty} e^{h t^{2}} d t$ for each $e \in E$. Thus, $P_{h}(T)$ is bounded. The monotonicity of the function $f(h)=\int_{0}^{+\infty} e^{h t^{2}} d t$ implies that $P_{h}(T) \subset P_{h^{\prime}}(T)$ if $h<h^{\prime}$, and the fact that $\lim _{h \rightarrow-\infty} f(h)=\lim _{h \rightarrow-\infty} \sqrt{\frac{\pi}{-2 h}}=0$ implies that $\bigcap_{h \in \mathbb{R}_{<0}} P_{h}(T)=\emptyset$. By Theorem 1.1 and the Invariance of Domain Theorem, $\Psi_{h}\left(T_{c}(S) \times \mathbb{R}_{>0}^{V}\right)$ is open in $P_{h}(T)$. By Proposition 4.2, $\Psi_{h}\left(T_{c}(S) \times \mathbb{R}_{>0}\right)$ is closed in $P_{h}(T)$. Connectedness of $P_{h}(T)$ therefore implies that $\Psi_{h}\left(T_{c}(S) \times \mathbb{R}_{>0}^{V}\right)=P_{h}(T)$. q.e.d

The following Lemma 4.3 will be used in the proof of Propositions 4.1 and 4.2.

Lemma 4.3. If $r \in \mathbb{R}$ and $x>0$, then
(a) for each $h \in \mathbb{R}$,

$$
\int_{0}^{x+r} e^{h t^{2}} d t+\int_{0}^{x-r} e^{h t^{2}} d t>0
$$

(b) for each $h \geqslant 0$,

$$
\int_{0}^{x+r} e^{h t^{2}} d t+\int_{0}^{x-r} e^{h t^{2}} d t \geqslant 2 \int_{0}^{x} e^{h t^{2}} d t
$$

Proof. For (a), let $f(x)=\int_{0}^{x+r} e^{h t^{2}} d t+\int_{0}^{x-r} e^{h t^{2}} d t$. Since $f^{\prime}(x)=$ $e^{h(x+r)^{2}}+e^{h(x-r)^{2}}>0$, the function f is strictly increasing, hence $f(x)>f(0)=0$ for $x>0$. For (b), let $g(x)=\int_{0}^{x+r} e^{h t^{2}} d t+\int_{0}^{x-r} e^{h t^{2}} d t-$ $2 \int_{0}^{x} e^{h t^{2}} d t$. We have that $g(0)=0$ and $g^{\prime}(x)=e^{h(x+r)^{2}}+e^{h(x-r)^{2}}-$ $2 e^{h x^{2}} \geqslant 0$. The last inequality follows from the convexity of the function $F(t)=e^{h t^{2}}$ for $h \geqslant 0$. Since g is increasing, $g(x) \geqslant g(0)=0$ for $x>0$. q.e.d

Proof of Proposition 4.1. For $h \geqslant 0$, fix a decorated hyperbolic metric $(d, r) \in T_{c}(S) \times \mathbb{R}_{>0}^{V}$. For any fundamental edge loop $\left(e_{1}, t_{1}, \ldots, e_{k}, t_{k}\right)$, let a_{i} be the generalized angle adjacent to e_{i} and e_{i+1} (where $e_{k+1}=e_{1}$). Let the generalized angles of t_{i} facing e_{i} and e_{i+1} respectively be b_{i} and c_{i}. By definition, the contribution of $\sum_{i=1}^{k} z\left(e_{i}\right)$ from t_{i} is

$$
\int_{0}^{\frac{a_{i}+b_{i}-c_{i}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{a_{i}+c_{i}-b_{i}}{2}} e^{h t^{2}} d t
$$

which is strictly larger than 0 from Lemma 4.3 (a) since $a_{i}>0$.
For $h<0$, let e be any edge in the ideal triangulation T, and let a and a^{\prime} be the generalized angles facing e. Let b, c, b^{\prime} and c^{\prime} be the generalized angles adjacent to e. Then

$$
\Psi_{h}(d, r)(e)=\int_{0}^{\frac{b+c-a}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{b^{\prime}+c^{\prime}-a^{\prime}}{2}} e^{h t^{2}} d t<2 \int_{0}^{+\infty} e^{h t^{2}} d t
$$

Thus, condition (a) in the definition of $P_{h}(T)$ is satisfied. Given a fundamental edge path $\left(t_{0}, e_{0}, t_{1}, \ldots, e_{n}, t_{n}\right)$, let θ_{i} be the generalized angle in t_{i} adjacent to e_{i} and e_{i+1} for $i=1, \ldots, n-1$, and let β_{i} and γ_{i} respectively be the generalized angles of t_{i} facing e_{i} and e_{i+1}. Denote by a_{0} the generalized angle of t_{0} facing e_{0}, and by a_{n} the generalized angle of t_{n} facing e_{n}. Let b_{0} and c_{0} be the generalized angles of t_{0} adjacent to e_{0}, and let b_{n} and c_{n} be the generalized angles of t_{n} adjacent to e_{n}. We have

$$
\begin{aligned}
& \sum_{i=1}^{n} \Psi_{h}(d, r)\left(e_{i}\right) \\
= & \int_{0}^{\frac{b_{0}+c_{0}-a_{0}}{2}} e^{h t^{2}} d t+\sum_{i=1}^{n-1}\left(\int_{0}^{\frac{\theta_{i}+\gamma_{i}-\beta_{i}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{\theta_{i}+\beta_{i}-\gamma_{i}}{2}} e^{h t^{2}} d t\right) \\
& +\int_{0}^{\frac{b_{n}+c_{n}-a_{n}}{2}} e^{h t^{2}} d t \\
> & \int_{0}^{\frac{b_{0}+c_{0}-a_{0}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{b_{n}+c_{n}-a_{n}}{2}} e^{h t^{2}} d t \\
> & -2 \int_{0}^{+\infty} e^{h t^{2}} d t,
\end{aligned}
$$

where the first inequality is by Lemma 4.3 (a). Thus, condition (b) is satisfied. Given a fundamental edge loop $\left(e_{1}, t_{1}, \ldots, e_{n}, t_{n}\right)$ with $e_{n+1}=$ e_{1}, let θ_{i} for $i=1, \ldots, n$ be the generalized angle in t_{i} adjacent to e_{i} and e_{i+1}, and let β_{i} (resp. γ_{i}) be the generalized angle in t_{i} facing e_{i} (resp. e_{i+1}). Again by Lemma 4.3 (a),

$$
\sum_{i=1}^{n} \Psi_{h}(d, r)\left(e_{i}\right)=\sum_{i=1}^{n}\left(\int_{0}^{\frac{\theta_{i}+\gamma_{i}-\beta_{i}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{\theta_{i}+\beta_{i}-\gamma_{i}}{2}} e^{h t^{2}} d t\right)>0 .
$$

Thus, condition (c) is satisfied, and $\Psi_{h}\left(T_{c}(S) \times \mathbb{R}_{>0}^{V}\right) \subset P_{h}(T)$. q.e.d
To prove Proposition 4.2, we use Penner's length parametrization. For each sequence $\left\{l^{(m)}\right\}$ in \mathbb{R}^{E} such that $\left\{\Psi_{h}\left(l^{(m)}\right)\right\}$ converges to a point $z \in P(T)$, we claim that $\left\{l^{(m)}\right\}$ contains a subsequence converging to a point in \mathbb{R}^{E}. Let $\theta^{(m)}$ be the generalized angles of the decorated ideal triangles in (S, T) in the decorated hyperbolic metric $l^{(m)}$. By taking a subsequence if necessary, we may assume that $\left\{l^{(m)}\right\}$ converges in $[-\infty,+\infty]^{E}$ and that for each generalized angle θ_{i}, the limit $\lim _{m \rightarrow \infty} \theta_{i}^{(m)}$ exists in $[0,+\infty]$. In the case that $h \geqslant 0$, we need the following

Lemma 4.4. If $h \geqslant 0$, then $\lim _{m \rightarrow \infty} \theta_{i}^{(m)} \in[0,+\infty)$ for all i.
Proof. Suppose to the contrary that $\lim _{m \rightarrow \infty} \theta_{1}^{(m)}=+\infty$ for some generalized angle θ_{1}. Let e_{2} and e_{3} be the edges adjacent to θ_{1} in the triangle t_{1}, and θ_{2} and θ_{3} respectively be the generalized angles facing e_{2} and e_{3}. Take a fundamental edge loop ($e_{n_{1}}, t_{n_{1}}, \ldots, e_{n_{k}}, t_{n_{k}}$) containing $\left(e_{2}, t_{1}, e_{3}\right)$. By Lemma 4.3, we have

$$
\begin{aligned}
\sum_{i=1}^{k} z\left(e_{n_{i}}\right) & =\lim _{m \rightarrow \infty} \sum_{i=1}^{k} \Psi_{h}\left(l^{(m)}\right)\left(e_{n_{i}}\right) \\
& \geqslant \lim _{m \rightarrow \infty}\left(\int_{0}^{\frac{\theta_{1}^{(m)}+\theta_{2}^{(m)}-\theta_{3}^{(m)}}{2}} e^{h t^{2}} d t+\int_{0}^{\theta_{1}^{(m)}+\theta_{3}^{(m)}-\theta_{2}^{(m)}} e^{h t^{2}} d t\right) \\
& \geqslant \lim _{m \rightarrow \infty} 2 \int_{0}^{\frac{\theta_{1}^{(m)}}{2}} e^{h t^{2}} d t \\
& =+\infty
\end{aligned}
$$

This contradicts the assumption that $z \in P(T)$
q.e.d

Proof of Proposition 4.2. For $h \geqslant 0$, by taking a subsequence of $\left\{l^{(m)}\right\}$, we may assume that $\lim _{m \rightarrow \infty} l^{(m)}=l \in[-\infty,+\infty]^{E}$. If l were not in \mathbb{R}^{E}, then there would exist an edge $e \in E$ so that $l(e)= \pm \infty$. Let Δ be a decorated ideal triangle adjacent to e, and let $\theta_{1}^{(m)}$ and $\theta_{2}^{(m)}$ be the generalized angles in Δ adjacent to e in the metric $l^{(m)}$. By (1),

$$
e^{l^{(m)}(e)}=\frac{1}{\theta_{1}^{(m)} \theta_{2}^{(m)}},
$$

and $\theta_{i}^{(m)} \in(0,+\infty)$ for $i=1,2$.
Case 1 If $l(e)=-\infty$, then $e^{l(e)}=0$. By the identity above, one of $\lim _{m \rightarrow \infty} \theta_{i}^{(m)}$ for $i=1,2$ must be $+\infty$. This contradicts Lemma 4.4.

Case 2 If $l(e)=+\infty$, then $e^{l(e)}=+\infty$. By the identity above, one of $\lim _{m \rightarrow \infty} \theta_{i}^{(m)}$ for $i=1,2$ must be zero. Suppose without loss of generality that $\lim _{m \rightarrow \infty} \theta_{1}^{(m)}=0$. Let e_{1} be the edge in the decorated ideal triangle Δ opposite to θ_{2}, and let θ_{3} be the generalized angle in Δ facing e. By (1), we have

$$
e^{l^{(m)}\left(e_{1}\right)}=\frac{1}{\theta_{1}^{(m)} \theta_{3}^{(m)}}
$$

By Lemma 4.4, $\theta_{3}^{(m)}$ is bounded above, hence $l\left(e_{1}\right)=+\infty$. For any decorated ideal triangle Δ adjacent to e with $l(e)=+\infty$, we have an edge e_{1} in Δ and a generalized angle θ_{1} adjacent to e and e_{1} so that $l\left(e_{1}\right)=+\infty$ and $\lim _{m \rightarrow \infty} \theta_{1}^{(m)}=0$. Applying this logic to e_{1} and the decorated ideal triangle Δ_{1} adjacent to e_{1} other than Δ, we obtain the next angle θ_{2} and edge e_{2} in Δ_{1} so that $l\left(e_{2}\right)=+\infty$ and $\lim _{m \rightarrow \infty} \theta_{2}^{(m)}=$ 0 . Since there are only finitely many edges and triangles, this yields a
fundamental edge loop $\left(e_{k}, \Delta_{k}, \ldots, e_{n}, \Delta_{n}\right)$ in T such that $l\left(e_{i}\right)=+\infty$ for $i=k, \ldots, n$ and $\lim _{m \rightarrow \infty} \theta_{i}^{(m)}=0$, where θ_{i} is the generalized angle in Δ_{i-1} adjacent to e_{i-1} and e_{i}. Denote respectively by β_{i} and γ_{i} the generalized angles of Δ_{i-1} facing e_{i-1} and e_{i}, and let $\bar{\beta}_{i}=\lim _{m \rightarrow \infty} \beta_{i}^{(m)}$ and $\bar{\gamma}_{i}=\lim _{m \rightarrow \infty} \gamma_{i}^{(m)}$. By Lemma 4.4, both $\bar{\beta}_{i}$ and $\bar{\gamma}_{i}$ are finite real numbers, and we have

$$
\begin{aligned}
\sum_{i=k}^{n} z\left(e_{i}\right) & =\lim _{m \rightarrow \infty} \sum_{i=k}^{n} \Psi_{h}\left(l^{(m)}\right)\left(e_{i}\right) \\
& =\lim _{m \rightarrow \infty} \sum_{i=k}^{n}\left(\int_{0}^{\frac{\theta_{i}^{(m)}+\beta_{i}^{(m)}-\gamma_{i}^{(m)}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{\theta_{i}^{(m)}+\gamma_{i}^{(m)}-\beta_{i}^{(m)}}{2}} e^{h t^{2}} d t\right) \\
& =\sum_{i=k}^{n}\left(\int_{0}^{\frac{\bar{\beta}_{i}-\bar{\gamma}_{i}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{\bar{\gamma}_{i}-\bar{\beta}_{i}}{2}} e^{h t^{2}} d t\right) \\
& =0 .
\end{aligned}
$$

This contradicts the assumption that $z \in P(T)$.
For $h<0$ and each sequence $\left\{l^{(m)}\right\}$ in \mathbb{R}^{E} so that $\left\{\Psi_{h}\left(l^{(m)}\right)\right\}$ converges to a point $z \in P_{h}(T)$, we claim that $\left\{l^{(m)}\right\}$ contains a subsequence converging to a point in \mathbb{R}^{E}. By taking a subsequence if necessary, we may assume that $\left\{l^{(m)}\right\}$ converges to $l \in[-\infty,+\infty]^{E}$. If l were not in \mathbb{R}^{E}, there would exist an edge e so that $l(e)= \pm \infty$.

Case 1. If $l(e)=-\infty$ for some $e \in E$, then there is a degenerated decorated ideal triangle Δ of type I, II or III. By Corollary 3.2, there is a bad edge e_{1} in Δ. Let Δ_{1} be the other decorated ideal triangle adjacent to e_{1}, and let x_{0} and x_{1} respectively be the x-invariants of e_{1} in Δ and Δ_{1}. If e_{1} is bad in Δ_{1}, then

$$
\begin{aligned}
z\left(e_{1}\right) & =\lim _{m \rightarrow \infty} \Psi_{h}\left(l^{(m)}\right)\left(e_{1}\right)=\lim _{m \rightarrow \infty}\left(\int_{0}^{x_{0}^{(m)}} e^{h t^{2}} d t+\int_{0}^{x_{1}^{(m)}} e^{h t^{2}} d t\right) \\
& =2 \int_{0}^{+\infty} e^{h t^{2}} d t
\end{aligned}
$$

which contradicts the assumption that $z \in P_{h}(T)$. Therefore e_{1} has to be a good edge in Δ_{1}. Since $l\left(e_{1}\right)=-\infty$, the decorated triangle Δ_{1} is degenerated of type I, II or III. By Corollary 3.2, there is a bad edge e_{2} in Δ_{1}. For the same reason, e_{2} has to be good in the other decorated ideal triangle Δ_{2} adjacent to e_{2}, and there is a bad edge e_{3} in Δ_{2}. Serially applying this logic and using that there are finitely many edges, we
find an edge loop $\left(e_{k}, \Delta_{k}, \ldots, e_{n}, \Delta_{n}\right)$ with $e_{n+1}=e_{k}$ so that for each $i=k, \ldots, n$ the edge e_{i} is good in Δ_{i} and the edge e_{i+1} is bad in Δ_{i}. By Lemma 3.3, we can take a subsequence so that $l^{(m)}\left(e_{i}\right)>l^{(m)}\left(e_{i+1}\right)$ for m sufficiently large. Thus, we have $l^{(m)}\left(e_{k}\right)>l^{(m)}\left(e_{n+1}\right)$, which contradicts that $e_{n+1}=e_{k}$.

In light of Case 1, we may assume that $l \in(-\infty,+\infty]^{E}$.
Case 2. If $l(e)=+\infty$ for some $e \in E$, let Δ_{1} be a decorated ideal triangle adjacent to e. If Δ_{1} is not of type IV, then by Lemma 3.4, there is an edge e_{1} of Δ_{1} and an generalized angle θ_{1} adjacent to e and e_{1} so that $l\left(e_{1}\right)=+\infty$ and $\lim _{m \rightarrow \infty} \theta_{1}^{(m)}=0$ (see Figure 5). The other decorated ideal triangle Δ_{2} adjacent to e_{1} is either of type IV or contains an edge e_{2} and a generalized angle θ_{2} adjacent to e_{1} and e_{2} so that $l\left(e_{2}\right)=+\infty$ and $\lim _{m \rightarrow \infty} \theta_{2}^{(m)}=0$. Again, the serial application of this procedure terminates with an edge e_{p} and a decorated ideal triangle Δ_{p+1} adjacent to e_{p} so that $l\left(e_{p}\right)=+\infty$ and Δ_{p+1} is of type IV, or since there are only finitely many edges, produces a fundamental edge loop $\left(e_{k}, \Delta_{k}, \ldots, e_{n}, \Delta_{n}\right)$ such that $l\left(e_{i}\right)=+\infty$ for $i=k, \ldots, n$ and $\lim _{m \rightarrow \infty} \theta_{i}^{(m)}=0$, where θ_{i} is the generalized angle in Δ_{i} adjacent to e_{i} and e_{i+1}. If it yields such a fundamental edge loop $\left(e_{k}, \Delta_{k}, \ldots, e_{n}, \Delta_{n}\right)$, denote by β_{i} (resp. γ_{i}) the generalized angle in Δ_{i} facing e_{i} (resp. e_{i+1}) for $i=k, \ldots, n$. Let $\bar{\beta}_{i}=\lim _{m \rightarrow \infty} \beta_{i}^{(m)}$ and $\bar{\gamma}_{i}=\lim _{m \rightarrow \infty} \gamma_{i}^{(m)}$, so that

$$
\begin{aligned}
\sum_{i=k}^{n} z\left(e_{i}\right) & =\lim _{m \rightarrow \infty} \sum_{i=1}^{k} \Psi_{h}\left(l^{(m)}\right)\left(e_{i}\right) \\
& =\lim _{m \rightarrow \infty} \sum_{i=1}^{k}\left(\int_{0}^{\frac{\theta_{i}^{(m)}+\beta_{i}^{(m)}-\gamma_{i}^{(m)}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{\theta_{i}^{(m)}+\gamma_{i}^{(m)}-\beta_{i}^{(m)}}{2}} e^{h t^{2}} d t\right) \\
& =\sum_{i=1}^{k}\left(\int_{0}^{\frac{\bar{\beta}_{i}-\bar{\gamma}_{i}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{\bar{\gamma}_{i}-\bar{\beta}_{i}}{2}} e^{h t^{2}} d t\right) \\
& =0,
\end{aligned}
$$

which contradicts the assumption that $z \in P_{h}(T)$. If it terminates with e_{p} and Δ_{p+1} of type IV, then we consider the other decorated ideal triangle Δ_{0} adjacent to e. If Δ_{0} is not of type IV, then it contains an edge e_{-1} and a generalized angle θ_{0} adjacent to e_{-1} and e so that $l\left(e_{-1}\right)=$ $+\infty$ and $\lim _{m \rightarrow \infty} \theta_{0}^{(m)}=0$. As before, either there is a fundamental edge loop, contradicting the assumption that $z \in P_{h}(T)$, or the procedure terminates with an edge e_{-q} and a decorated ideal triangle Δ_{-q} adjacent to e_{-q} so that $l\left(e_{-q}\right)=+\infty$ and Δ_{-q} is of type IV. If the procedure
stops at e_{-q} and Δ_{-q} of type IV, we get a fundamental edge path $\left(\Delta_{-q}, e_{-q}, \ldots, e_{p}, \Delta_{p+1}\right)$, where $e_{0}=e$, such that Δ_{-q} and Δ_{p} are of type IV with $l\left(e_{-q}\right)=+\infty$ and $l\left(e_{p}\right)=+\infty$, and $\lim _{m \rightarrow \infty} \theta_{i}^{(m)}=0$, where θ_{i} is the generalized angle of Δ_{i} adjacent to e_{i-1} and e_{i} for $i=$ $1-q, \ldots, p$. Denote by a_{-q} the generalized angle of Δ_{-q} facing e_{-q}, and by a_{p} the generalized angle of Δ_{p+1} facing e_{p}. Let b_{-q} and c_{-q} be the generalized angles of Δ_{-q} adjacent to e_{-q}, and let b_{p} and c_{p} be the generalized angles of Δ_{p+1} adjacent to e_{p}. We find

$$
\begin{aligned}
\sum_{i=-q}^{p} z\left(e_{i}\right)= & \lim _{m \rightarrow \infty} \sum_{i=-q}^{p} \Psi_{h}\left(l^{(m)}\right)\left(e_{i}\right) \\
= & \lim _{m \rightarrow \infty}\left(\int_{0}^{\frac{b_{-q}^{(m)}+c_{-q}^{(m)}-a_{-q}^{(m)}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{b_{p}^{(m)}+c_{p}^{(m)}-a_{p}^{(m)}}{2}} e^{h t^{2}} d t\right. \\
& \left.+\sum_{i=1-q}^{p}\left(\int_{0}^{\frac{\theta_{i}^{(m)}+\beta_{i}^{(m)}-\gamma_{i}^{(m)}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{\theta_{i}^{(m)}+\gamma_{i}^{(m)}-\beta_{i}^{(m)}}{2}} e^{h t^{2}} d t\right)\right) \\
= & \int_{0}^{-\infty} e^{h t^{2}} d t+\int_{0}^{-\infty} e^{h t^{2}} d t \\
& +\sum_{i=1-q}^{p}\left(\int_{0}^{\frac{\bar{\beta}_{i}-\bar{\gamma}_{i}}{2}} e^{h t^{2}} d t+\int_{0}^{\frac{\bar{\gamma}_{i}-\bar{\beta}_{i}}{2}} e^{h t^{2}} d t\right) \\
= & -2 \int_{0}^{+\infty} e^{h t^{2}} d t,
\end{aligned}
$$

which contradicts the assumption that $z \in P_{h}(T)$.
q.e.d

5. Uniqueness of the energy function

Let Δ be a decorated ideal triangle with edge lengths l_{1}, l_{2}, l_{3} with opposite generalized angles $\theta_{1}, \theta_{2}, \theta_{3}$ and set $x_{i}=\frac{\theta_{j}+\theta_{k}-\theta_{i}}{2}$ for $i, j, k=$ $1,2,3$. The following theorem shows that Ψ_{h} is the unique possible deformation of Penner's simplicial coordinate by using the variational principle stated in Section 2.

Theorem 5.1. Let μ and u be two non-constant smooth functions. $U p$ to an overall scale, there is a unique closed 1 -form $\omega=\sum_{i=1}^{3} \mu\left(x_{i}\right) d u\left(l_{i}\right)$ which is given by

$$
w_{h}=\sum_{i=1}^{3} \int^{x_{i}} e^{h t^{2}} d t d\left(\int^{l_{i}} e^{-h e^{-t}} d t\right)
$$

for some $h \in \mathbb{R}$.

The proof of Theorem 5.1 makes use of the following lemma.
Lemma 5.2. Let f and g be two non-constant smooth functions on \mathbb{R}. If $\frac{f\left(x_{i}\right)}{g\left(l_{j}\right)}$ is symmetric in $i, j=1,2$, then there are constants h, c_{1} and c_{2} so that

$$
f(t)=e^{h t^{2}+c_{1}} \quad \text { and } \quad g(t)=e^{-h e^{-t}+c_{2}}
$$

Proof. By taking $\frac{\partial}{\partial l_{k}}$ in the equality $\frac{f\left(x_{i}\right)}{g\left(l_{j}\right)}=\frac{f\left(x_{j}\right)}{g\left(l_{i}\right)}$, we have $\frac{f^{\prime}\left(x_{i}\right)}{g\left(l_{j}\right)} \frac{\partial x_{i}}{\partial l_{k}}=$ $\frac{f^{\prime}\left(x_{j}\right)}{g\left(l_{i}\right)} \frac{\partial x_{j}}{\partial l_{k}}$ for $i, j, k=1,2,3$. We deduce from (1) that $\frac{\partial x_{i}}{\partial l_{j}}=\frac{x_{k}}{2}$, so $\frac{f^{\prime}\left(x_{i}\right)}{g\left(l_{j}\right)} \frac{x_{j}}{2}=\frac{f^{\prime}\left(x_{j}\right)}{g\left(l_{i}\right)} \frac{x_{i}}{2}$. Thus, $\frac{f^{\prime}\left(x_{i}\right)}{f^{\prime}\left(x_{j}\right)} \frac{x_{j}}{x_{i}}=\frac{g\left(l_{j}\right)}{g\left(l_{i}\right)}=\frac{f\left(x_{i}\right)}{f\left(x_{j}\right)}$, which implies $\frac{f^{\prime}\left(x_{i}\right)}{f\left(x_{i}\right)} \frac{1}{x_{i}}=\frac{f^{\prime}\left(x_{j}\right)}{f\left(x_{j}\right)} \frac{1}{x_{j}}$ and $\frac{f^{\prime}(t) \frac{1}{f(t)}=2 h_{1} \text { for some } h_{1} \in \mathbb{R} \text {. Solving this }{ }^{\prime} \text {. }}{}$ ordinary differential equation for f, we find

$$
f(t)=e^{h_{1} t^{2}+c_{1}}
$$

for some $c_{1} \in \mathbb{R}$. By taking $\frac{\partial}{\partial x_{k}}$ in the equality $\frac{g\left(l_{i}\right)}{f\left(x_{j}\right)}=\frac{g\left(l_{j}\right)}{f\left(x_{i}\right)}$, we have $\frac{g^{\prime}\left(l_{i}\right)}{f\left(x_{j}\right)} \frac{\partial l_{i}}{\partial x_{k}}=\frac{g^{\prime}\left(l_{j}\right)}{f\left(x_{i}\right)} \frac{\partial l_{j}}{\partial x_{k}}$ for $i, j, k=1,2,3$. From (1) again, we deduce that $\frac{\partial l_{i}}{\partial x_{j}}=-\frac{1}{\theta_{k}}$, so $-\frac{g^{\prime}\left(l_{i}\right)}{f\left(x_{j}\right)} \frac{1}{\theta_{j}}=-\frac{g^{\prime}\left(l_{j}\right)}{f\left(x_{i}\right)} \frac{1}{\theta_{i}}$. Thus, $\frac{g^{\prime}\left(l_{i}\right)}{g^{\prime}\left(l_{j}\right)} \frac{e^{l_{i}}}{e^{l_{j}}}=\frac{g^{\prime}\left(l_{i}\right)}{g^{\prime}\left(l_{j}\right)} \frac{\theta_{i}}{\theta_{j}}=\frac{f\left(x_{j}\right)}{f\left(x_{i}\right)}=$ $\frac{g\left(l_{i}\right)}{g\left(l_{j}\right)}$, which implies $\frac{g^{\prime}\left(l_{i}\right)}{g\left(l_{i}\right)} e^{l_{i}}=\frac{g^{\prime}\left(l_{j}\right)}{g\left(l_{j}\right)} e^{l_{j}}$ and $\frac{g^{\prime}(t)}{g(t)} e^{t}=h_{2}$ for some $h_{2} \in \mathbb{R}$. Solving this ordinary differential equation for g, we find

$$
g(t)=e^{-h_{2} e^{-t}+c_{2}}
$$

for some $c_{1} \in \mathbb{R}$. From $f(t)=e^{h_{1} t^{2}+c_{1}}$ and the equality $\frac{f\left(x_{i}\right)}{g\left(l_{j}\right)}=\frac{f\left(x_{j}\right)}{g\left(l_{i}\right)}$, we conclude that $h_{1}=h_{2}$.
q.e.d

Proof of Theorem 5.1. The differential 1-form $\omega=\sum_{i=1}^{3} \mu\left(x_{i}\right) d u\left(l_{i}\right)$ is closed if and only if $\frac{\partial \mu\left(x_{i}\right)}{\partial u\left(l_{j}\right)}=\frac{\mu^{\prime}\left(x_{i}\right)}{u^{\prime}\left(l_{j}\right)} \frac{\partial x_{i}}{\partial l_{j}}$ is symmetric in i and j. Since $\frac{\partial x_{i}}{\partial l_{j}}=\frac{\partial x_{j}}{\partial l_{i}}=\frac{x_{k}}{2}, \omega$ is closed if and only if $\frac{\mu^{\prime}\left(x_{i}\right)}{u^{\prime}\left(l_{j}\right)}$ is symmetric in i and j. By Lemma 5.2, if $\frac{\mu^{\prime}\left(x_{i}\right)}{u^{\prime}\left(l_{j}\right)}$ is symmetric in i and j, then $\mu^{\prime}\left(x_{i}\right)=e^{h x_{i}^{2}+c_{1}}$ and $u^{\prime}\left(l_{i}\right)=e^{-h e^{-l_{i}+c_{2}}}$ for some constants h, c_{1} and c_{2}.

6. Ψ_{h} and the Delaunay decomposition

We first review the construction of the Delaunay decomposition associated to a decorated hyperbolic metric following Bowditch-Epstein [4]. Suppose S is a punctured surface with a set of ideal vertices V, and let (d, r) be a decorated hyperbolic metric on S so that the horodisks associated to the ideal vertices do not intersect. Let B_{v} be the horodisks associated to the ideal vertex v, and let $B=\bigcup_{v \in V} B_{v}$. The spine $\Gamma_{d, r}$ of S is the set of points in S which have at least two distinct shortest geodesics to ∂B. The spine $\Gamma_{d, r}$ is shown [4] to be a graph whose edges
are geodesic arcs on S.
Let $e_{1}^{*}, \ldots, e_{N}^{*}$ be the edges of $\Gamma_{d, r}$. By construction each interior point of an edge e_{i}^{*} has exactly two distinct shortest geodesics to ∂B. For each edge e_{i}^{*}, there are two horodisks B_{1} and B_{2} (possibly coincide) so that points in the interior of e_{i}^{*} have precisely two shortest geodesics to ∂B_{1} and ∂B_{2}. Let e_{i} be the shortest geodesic from ∂B_{1} to ∂B_{2}. It is known that e_{i} intersects e_{i}^{*} perpendicularly, and $\left\{e_{1}, \ldots, e_{N}\right\}$ are disjoint. The components of $S \backslash\left\{e_{1}, \ldots, e_{N}\right\}$ consists of decorated polygons (ideal polygons with horodisks associated to the ideal vertices) which are the 2-cells of the Delaunay decomposition $\Sigma_{d, r}$. The 1-cells of $\Sigma_{d, r}$ consist of the edges $\left\{e_{1}, \ldots, e_{N}\right\}$ and the arcs on ∂B which are the intersection of ∂B with the ideal polygons. For a generic decorated hyperbolic metric (d, r), each 2-cell of $\Sigma_{d, r}$ is a decorated ideal triangle, and $\Sigma_{d, r}$ is a decorated ideal triangulation of S.

Let D be a 2 -cell of $\Sigma_{d, r}$. We call the hyperbolic circle on S tangent to all arcs of $D \cap \partial B$ the inscribed circle of D. By the construction of the Delaunay decomposition, for each 2 -cell D of $\Sigma_{d, r}$, there is exactly one vertex v^{*} of the spine $\Gamma_{d, r}$ lying in the interior of D. Moreover, v^{*} is of equal distance to all arcs of $D \cap \partial B$, hence is the center of the inscribed circle of D. Thus, the center of the inscribed circle of each 2 -cell D of the Delaunay decomposition is in the interior of D. We need the following proposition of Penner [17] whose proof is included here to the convenience of the readers.

Lemma 6.1. ([17]) Suppose Δ is a decorated ideal triangle with edge lengths $l_{i}>0$ and opposite generalized angles θ_{i} for $i=1,2,3$. Then $x_{i}=\frac{\theta_{j}+\theta_{k}-\theta_{i}}{2}>0$ for $i=1,2,3$ if and only if the center of the inscribed circle of Δ is in the interior of Δ.

Proof. For $i=1,2,3$ let B_{i} be the horodisks associated to the ideal vertices of Δ, and let Z_{i} be the point of tangency of the inscribe circle of Δ and ∂B_{i}. Label the intersection of the horodisks and the edges of Δ by $X_{1}, Y_{1}, X_{2}, Y_{2}, X_{3}$ and Y_{3} cyclically as in Figure 6(a). For two points A and B in the hyperbolic plane \mathbb{H}^{2}, let $A B$ be the geodesic segment connecting A and B, and let $|A B|$ the length of $A B$. If the center v of the inscribed circle is in the interior of Δ, then $x_{i}=\left|X_{i} Z_{i+1}\right|>0$ for $i=1,2,3$. If v is on $X_{i} Y_{i}$, or v and Δ are on different sides of $X_{i} Y_{i}$ for some $i \in\{1,2,3\}$, then $x_{i}=-\left|X_{i} Z_{i+1}\right| \leqslant 0$. See Figure 6 (b). q.e.d

Proof of Theorem 1.3. Let (d, r) be a decorated hyperbolic metric so that the associated Delaunay decomposition $\Sigma_{d, r}$ is a decorated ideal triangulation of S. For each edge e of $\Sigma_{d, r}$, let Δ and Δ^{\prime} be the decorated ideal triangles adjacent to e, and let θ_{1} and θ_{1}^{\prime} respectively be the

Figure 6. The inscribed circle.
generalized angles of Δ and Δ^{\prime} facing e, and $\theta_{2}, \theta_{3}, \theta_{2}^{\prime}$ and θ_{3}^{\prime} be the generalized angles adjacent to e. Let $x(e)=\frac{\theta_{2}+\theta_{3}-\theta_{1}}{2}$ and $x^{\prime}(e)=\frac{\theta_{2}^{\prime}+\theta_{3}^{\prime}-\theta_{1}^{\prime}}{2}$. From Lemma 6.1 and the fact that the center of the inscribed circle of each 2 -cell of the Delaunay decomposition is in the interior of the 2 -cell, we conclude that $x(e)$ and $x^{\prime}(e)$ are positive, and

$$
\Psi_{h}(d, r)(e)=\int_{0}^{x(e)} e^{h t^{2}} d t+\int_{0}^{x^{\prime}(e)} e^{h t^{2}} d t>0
$$

On the other hand, if T is an ideal triangulation of S such that $\Psi_{h}(d, r)(e) \leqslant 0$ for some edge e, then at least one of $x(e)$ and $x^{\prime}(e)$, say $x(e)$, is less than or equal to zero. By Lemma 6.1, the center of the inscribed circle of Δ is not in the interior of Δ. Since the center of the inscribed circle of each 2 -cell of the Delaunay decomposition has to be in the interior of the 2-cell, T cannot be the Delaunay decomposition $\Sigma_{d, r}$ of S.
q.e.d

7. Further questions

Suppose Δ is a decorated ideal triangle with edge lengths l_{1}, l_{2} and l_{3} and opposite generalized angles θ_{1}, θ_{2} and θ_{3}. For each $h \neq-1$, the differential 1-form $\omega_{h}=\sum_{i=1}^{3} \theta_{i}^{h+1} d e^{-(h+1) l_{i}}$ is closed in \mathbb{R}^{3}. However, the primitive $F_{h}(u)=\int_{0}^{u} \omega_{h}$ is not strictly concave on \mathbb{R}^{3}. Let (S, T) be an ideally triangulated punctured surface. For each $h \neq-1$, we define a map $\Phi_{h}: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow \mathbb{R}^{E}$ by

$$
\Phi_{h}(d, r)(e)=\theta^{h+1}+\theta^{\prime h+1}
$$

where θ and θ^{\prime} are the generalized angles facing e. To the best of the author's knowledge, there is no counterexample to the following

Conjecture 7.1. The map $\Phi_{h}: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow \mathbb{R}^{E}$ is a smooth embedding, and the image of Φ_{h} is a convex polytope.

The motivation of this conjecture is as follows. Penner's simplical coordinate Ψ and its deformation Ψ_{h} are in some sense analogues to Colin de Vedière's invariant [5] for circle packings in a different setting, and the quantities Φ_{h} are the corresponding analogues to Rivin's invariant [18] for the polyhedra surfaces in this setting, see also [1] and [11].

By Corollary 1.4, for each $h \geqslant 0$, there is a homeomorphism

$$
\Pi_{h}: T_{c}(S) \times \mathbb{R}_{>0}^{V} \rightarrow\left|A(S)-A_{\infty}(S)\right| \times \mathbb{R}_{>0}
$$

equivariant under the mapping class group action. If $h \neq h^{\prime}$, then $\Pi_{h^{\prime}}^{-1} \Pi_{h}$ is a self-homeomorphism of the decorated Teichmüller space equivariant under the mapping class group action. These self-homeomorphisms deserve a further study. We do not know yet if these selfhomeomorphisms are smooth on the decorated Teichmüller space. As suggested by the referee of this article, it also seems natural to ask if these self-homeomorphisms have bounded distortion.

The Weil-Pertersson Kähler form on the Teichmüller space was computed in the length coordinates in [16]. How to express the WeilPetersson symplectic form on the decorated Teichmüller space in terms of the simplicial coordinate Ψ and in terms of the Ψ_{h} coordinate, and how to relate the Ψ_{h} coordinate to the quantum Teichmüller space are interesting problems ([2], [3], [14] and [17]).

References

[1] A.I. Bobenko \& B.A. Springborn, Variational principles for circle patterns and Koebe's theorem. Trans. Amer. Math. Soc. 356 (2004) 659-689, MR 2022715.
[2] F. Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form. Ann. Fac. Sci. Toulouse Math. (6) 5 (1996) 233297, MR 1413855.
[3] F. Bonahon \& X. Liu, Representations of the quantum Teichmüller space and invariants of surface diffeomorphisms. Geom. Topol. 11 (2007) 889-937, MR 2326938.
[4] B.H. Bowditch \& D.B.A. Epstein, Natural triangulations associated to a surface. Topology 27 (1988) 91-117, MR 0935529.
[5] Y. Colin de Verdière, Un principe variationnel pour les empilements de cercles. Invent. Math. 104 (1991) 655-669, MR 1106755.
[6] R. Guo, On parameterizations of Teichmüller spaces of surfaces with boundary. J. Differential Geom. 82 (2009) 629-640, MR 2534990.
[7] R. Guo \& F. Luo, Rigidity of polyhedral surfaces. II. Geom. Topol. 13 (2009) 1265-1312, MR 2496046.
[8] R. Guo \& F. Luo, Cell decompositions of Teichmüller spaces of surfaces with boundary. Preprint, arXiv:1006.3119.
[9] J.L. Harer, The virtual cohomological dimension of the mapping class group of an orientable surface. Invent. Math. 84 (1986) 157-176, MR 0830043.
[10] G.P. Hazel, Triangulating Teichmüller space using the Ricci flow. Ph.D. thesis, University of California, San Diego. 2004, MR 2706365.
[11] G. Leibon, Characterizing the Delaunay decomposition of compact hyperbolic surfaces. Geom. Topol. 6 (2002) 361-391, MR 1914573.
[12] F. Luo, On Teichmüller spaces of surfaces with boundary. Duke Math. J. 139 (2007) 463-482, MR 2350850.
[13] F. Luo, Rigidity of polyhedral surfaces. Preprint, arXiv:math/0612714.
[14] G. Mondello, Triangulated Riemann surfaces with boundary and the WeilPetersson Poisson structure. J. Differential Geom. 81 (2009) 391-436, MR 2472178.
[15] R.C. Penner, The decorated Teichmüller space of punctured surfaces. Comm. Math. Phys. 113 (1987) 299-339, MR 0919235.
[16] R.C. Penner, Weil-Petersson volumes. J. Differential Geom. 35 (1992), no. 3, 559-608, MR 1163449.
[17] R.C. Penner, An arithmetic problem in surface geometry. In: The moduli space of curves (Texel Island, 1994), 427-466, Progr. Math., 129, Birkhauser 1995, MR 1363066.
[18] I. Rivin, Euclidean structures on simplicial and hyperbolic volume. Ann. of Math. (2) 139 (1994) 553-580, MR 1283870.
[19] A. Ushijima, A canonical cellular decomposition of the Teichmüller space of compact surface with boundary. Comm. Math. Phys. 201 (1990) 305-326, MR 1682230.

Department of Mathematics
Rutgers University
New Brunswick, NJ 08854, USA
E-mail address: tianyang@math.rutgers.edu

