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A NON-ARCHIMEDEAN ANALOGUE OF THE
CALABI-YAU THEOREM FOR TOTALLY
DEGENERATE ABELIAN VARIETIES

Yifeng Liu

Abstract

We show an example of a non-archimedean version of the exis-
tence part of the Calabi-Yau theorem in complex geometry. Pre-
cisely, we study totally degenerate abelian varieties and certain
probability measures on their associated analytic spaces in the
sense of Berkovich.

Introduction

The theorem of Calabi-Yau is one of the most important results in
complex geometry and has many applications (e.g., Yau’s famous paper
[16]). In one version, it claims the following. Let M be a compact
complex manifold with an ample line bundle L. Then for any smooth
positive measure µ on M with

∫
M µ =

∫
M c1(L)

∧dimM , there is a pos-
itive metric ‖ ‖ on L, unique up to a constant multiple, such that
c1(L, ‖ ‖)∧dimM = µ.

One would like to ask a similar question for a non-archimedean field,
for example, if we replace C by Cp and complex manifolds by non-
archimedean analytic spaces, or Berkovich spaces in [1]. Hence let X be
the analytic space associated to a projective variety over Cp equipped
with (the analytification of) an ample line bundle L. Given any in-
tegrable metric ‖ ‖ (cf. [21]) on L, although we do not have a nice
analogue of (1, 1)-form for c1(L, ‖ ‖) in the non-archimedean situation
so far, we can still talk about its top wedge product, i.e., c1(L, ‖ ‖)∧dimM

which is defined by Chambert-Loir in [5]. The top wedge product is a
measure on the underlying compact (metrizable) topological space of X.
If ‖ ‖ is semipositive in the sense of [20, 21], then c1(L, ‖ ‖)∧dimM is a
positive measure in the following sense:

∫
X fc1(L, ‖ ‖)∧dimM ≥ 0 for any

non-negative continuous real function f on X. Then analogously to the
complex case, given a positive measure µ on X with

∫
X µ = degL(X),

we can ask the following two questions:
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(E): Does there exist a semipositive metric ‖ ‖ on L such that

c1(L, ‖ ‖)∧dimM = µ?

(U): If it does, is it unique up to a constant multiple?

The question (U) has been answered positively by Xinyi Yuan and
Shou-Wu Zhang in [18]. Moreover, they have already used this unique-
ness result to prove several exciting theorems in algebraic dynamic sys-
tems. The answer to the question (E) is known to be positive for curves
and measures compactly supported on type II or III points, or the lim-
its of such measures, which is implied by the theory in [19]. In any
dimension, there is a necessary condition for the equality in (E) to hold,
due to a result of Chambert-Loir and Thuillier (cf. [6, corollaire 4.2]),
that µ cannot be supported on a proper algebraic subset of X, which
is well-known in the archimedean case. But even under this restriction,
the answer to (E) is still negative in general, due to several reasons. One
conceptual reason is that the notions of being positive or smooth in the
metric side and the measure side are not quite compatible as in the
complex case. We are still not clear about the nature of this question,
especially for its correct formulation. Nevertheless, we would like to
give one example where the answer to (E) is positive (of course, under
certain restrictions).

Let us consider a totally degenerate abelian variety A, say over Cp,
i.e., the special fibre of its Néron model is a torus, which is also equiv-
alent to saying that the associated analytic space Aan is isomorphic to
a quotient

(
Gd

m

)an
/M for a complete lattice M ⊂ Gd

m(Cp) (cf. Section

1). We have an evaluation map τA : Aan =
(
Gd

m

)an
/M → Rd/Λ with

a complete lattice Λ ⊂ Rd, which is continuous and surjective. This
map has a continuous section iA : Rd/Λ →֒ Aan. In fact, iA identifies
Rd/Λ as a strong deformation retract of Aan for which iA ◦ τA = Φ(·, 1)
for a strong retraction map Φ : Aan × [0, 1] → Aan. Then we prove the
following theorem, which is a certain non-archimedean analogue of the
Calabi-Yau theorem.

Theorem (4.2). Let A be a d-dimensional totally degenerate abelian
variety over k (e.g. Cp) and L ∈ Pic(A) ⊗Z Q an ample class on A.

For any measure µ = fdx of Rd/Λ with f a strictly positive smooth
function, dx the Lebesgue measure on Rd/Λ, and

∫
Rd/Λ µ = degL(A),

there is a semipositive metric ‖ ‖ on L, unique up to a constant multiple,
such that c1(L)

d = (iA)∗µ where L = (L, ‖ ‖).
The main ingredient of the proof is a limit formula for the measure as-

sociated to certain integrable metrics, which is Theorem 3.3. According
to this formula, the existence part ends up with a (real) Monge-Ampère
equation on a real torus, quite similar to the complex case, although
we are doing non-archimedean geometry. In fact, let Rd/Λ be the real
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torus as above with usual coordinate x1, . . . , xd and Lebesgue measure
dx = dx1 · · · dxd. Let (gij)i,j=1,...,d be a positive definite (real symmet-

ric) matrix. Then for any smooth real function f on Rd/Λ such that∫
Rd/Λ efdx = covol(Λ), we will show that there exists a unique smooth

(real) function φ on Rd/Λ such that:

• the matrix
(
gij +

∂2φ
∂xi∂xj

)
is positive definite;

•
∫
Rd/Λ φdx = 0;

• it satisfies the following real Monge-Ampère equation:

det

(
gij +

∂2φ

∂xi∂xj

)
= det (gij) · ef .

The above type of real Monge-Ampère equation has been solved by
Cheng-Yau in [7, §2] without invoking the complex one. There is a
second solution (see [7, §3]) which applies to more general types of
real Monge-Ampère equations on compact Kähler affine flat manifolds,
using a tube domain construction and reducing to the complex case
which has already been solved by Yau [17] when attacking the (classical)
Calabi conjecture. Hence the same PDE problem applies to this non-
archimedean Calabi-Yau theorem as well. We will resolve the equation
along the second line for our special case here, not only in order of
this PDE problem, but also to suggest relations between archimedean
(complex) and non-archimedean pictures.

At last, we would like to make some remarks about notations. We
use | | for non-archimedean norms; ‖ ‖ for metrics on line bundles. But
due to the conventions, we will also use | | for the usual absolute value
of real numbers and total measures; ‖ ‖ for the Euclidean norm of Rd

when d > 1.
For simplicity, we will assume that k is the completion of the algebraic

closure of a p-adic local field, i.e., isomorphic to Cp or
̂
Fp((t)), the comple-

tion of the algebraic closure of Fp((t)). Such restriction on k is unneces-
sary. In fact, all results and argument remain valid for any algebraically
closed non-archimedean Banach field whose valuation is non-trivial: for
example, the completion of the algebraic closure of C((t)). Then one
only needs to use the generalized definition of Chambert-Loir’s measure
given by Gubler in [11, §3].
Acknowledgements. This paper is motivated by works of Xinyi Yuan
and Shou-Wu Zhang [18] on the uniqueness part of the non-archimedean
Calabi-Yau theorem, and Gubler [11] on the tropical geometry of totally
degenerate abelian varieties. The author would like to thank Xander
Faber, Shing-Tung Yau, Xinyi Yuan, and Shou-Wu Zhang for stimulat-
ing discussions. This work was presented in the Number Theory Semi-
nar at Harvard University and AMS Sectional Meeting #1065, Special
Session on Applications of Non-Archimedean Geometry. The author
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1. Mumford’s Construction

In this section, we briefly recall Mumford’s construction of (formal)
models of totally degenerate abelian varieties in [15, §6]; see also [11,
§4, §6].
1.1. Valuation map. Let k be the completion of the algebraic closure
of a p-adic local field. Let | | be the norm on k and its extended valuation
fields, k◦ the subring of k consisting of elements x ∈ k with |x| ≤ 1, k◦◦

the maximal ideal of k◦ consisting of elements x ∈ k with |x| < 1, and

k̃ = k◦/k◦◦ the residue field which is algebraically closed. We fix a
logarithm log such that log |x| ∈ Q for all x ∈ k×.

Fix a split torus T = Gd
m,k of rank d ≥ 1 over k. We have the

following valuation map:

τ : T an =
(
Gd

m,k

)an
−→ Rd, t 7→ (− log |T1(t)|, . . . ,− log |Td(t)|)

where
(
Gd

m,k

)an
is the associated k-analytic space (cf. [1, §3.4]) and Ti

are coordinate functions. It is surjective and continuous with respect to
the underlying topology of the analytic space and the usual topology of
Rd. Moreover, τ has a continuous section

i : Rd −→ T an, x 7→ ξx

where ξx is (the unique point of) the Shilov boundary of the affinoid
domain τ−1(x) (cf. [11, corollary 4.5]). Precisely, the k-affinoid algebra
associated to τ−1(x) is

k〈τ−1(x)〉 =




∑

m∈Zd

amum1
1 · · · umd

d

∣∣∣∣∣∣
lim

|m|→∞
− log |am|+m · x = ∞





and the point ξx corresponds to the norm∣∣∣∣∣∣

∑

m∈Zd

amum

∣∣∣∣∣∣
= max

m∈Zd
|am|e−m·x.

Now consider a totally degenerate abelian variety A over k, i.e., the
special fibre of its Néron model is a torus. Then Aan ∼= T an/M for a
complete lattice M ⊂ T (k). By a complete lattice, we mean that M
is a (discrete free) subgroup of T (k) and maps bijectively to a rational
complete lattice Λ ⊂ Rd under τ . Here, we say a complete lattice is
rational if it has a basis whose coordinates are in Q. Hence we have
the induced map τA : Aan → Rd/Λ and iA : Rd/Λ →֒ Aan. In fact, iA
identifies Rd/Λ with a strong deformation retract or a skeleton of Aan

as in [1, §6.5].
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1.2. Rational polytopes. A compact subset ∆ of Rd is called a poly-
tope if it is an intersection of finitely many half-spaces {x ∈ Rd | mi ·x ≥
ci}. We say ∆ is rational if we can choose all mi ∈ Zd and ci ∈ Q. The
dimension dim(∆) of ∆ is its usual topological dimension and we denote
by int(∆) the topological interior of ∆ in Rd. A closed face of ∆ is either
∆ itself or B ∩ ∆ where B is the boundary of a half-space containing
∆. It is obvious that a closed face of a (rational) polytope is again a
(rational) polytope. An open face is a closed face with all its properly
contained closed faces removed.

A (rational) polytopal complex C in Rd is a locally finite set of (ra-
tional) polytopes such that (1) if ∆ ∈ C, then all its closed faces are in
C and (2) if ∆,∆′ ∈ C, then ∆ ∩∆′ is either empty or a closed face of
both ∆ and ∆′. The polytopes of dimension 0 are called vertices. We
say C is a (rational) polytopal decomposition of S ⊂ Rd if S is the union
of all polytopes in C. In particular, if S = Rd, we say C is a (rational)
polytopal decomposition of Rd.

For a (rational) complete lattice Λ ⊂ Rd, we say C is Λ-periodic
if ∆ ∈ C implies ∆ + λλλ ∈ C for all λλλ ∈ Λ. A (rational) polytopal
decomposition CΛ of Rd/Λ for a (rational) complete lattice Λ is a Λ-
periodic (rational) polytopal decomposition C of Rd such that ∆ maps
bijectively to its image under the projection Rd → Rd/Λ for all ∆ ∈ C.
A polytope, a closed face, or an open face of CΛ is a Λ-translation
equivalence class of the corresponding object of C.

A continuous real function f on Rd is called (rational) polytopal if
there is a (rational) polytopal decomposition C of Rd such that f re-
stricted to all ∆ ∈ C is affine (and takes rational values on all vertices).
We denote by Cpoly(R

d) (Crpoly(R
d)) the space of (rational) polytopal

continuous functions on Rd. We have the following simple lemma. More-
over, f is called strongly polytopal convex with respect to C if it is convex
and the maximal connected subsets on which f is affine are ∆ ∈ C with
dim(∆) = d.

Lemma 1.1. Let Λ be a (rational) complete lattice of Rd and f in
Cpoly(R

d) (Crpoly(R
d)) satisfying

1) there exist affine functions zλλλ for all λλλ ∈ Λ satisfying f(x+ λλλ) =
f(x) + zλλλ(x) for all λλλ and x ∈ Rd;

2) if ∆ is any maximal connected subset on which f is affine, then
∆ is a bounded convex subset of Rd.

Then such ∆ is a (rational) polytope and if C is the polytopal complex
generated by all such ∆ and their closed faces, then C is a Λ-periodic
(rational) polytopal decomposition of Rd.

Proof. Since ∆ is closed, it is compact by (2). Since f is (ratio-
nal) polytopal, there is a finite (rational) polytopal decomposition of
∆; hence ∆ itself is a (rational) polytope since it is convex. Let C
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be the (rational) polytopal complex generated by all such ∆ and their
closed faces, which is obviously a polytopal decomposition of Rd. The
Λ-periodicity is implied by (1). q.e.d.

1.3. Formal models. Let X be a projective scheme over k; a k◦-model
X of X is a scheme projective and flat over Speck◦ whose generic fibre
Xη

∼= X. A formal k◦-model X of X is an admissible formal scheme
over Spf k◦ (cf. [11, 2.6]) whose generic fibre Xη

∼= Xan in the sense of

analytic spaces (cf. [2, §1]). We denote by X̃ (resp. X̃ ) the special fibre

of X (resp. X ) which is a proper scheme over Spec k̃. The following
result is due to Mumford in the case that A is the base change of an
abelian variety over a p-adic local field (cf. [15, corollary 6.6]) and
extended by Gubler in the general case (cf. [11, proposition 6.3]).

Proposition 1.2. Given a rational polytopal decomposition CΛ of
Rd/Λ, we may associate a formal k◦-model A of A whose special fibre

Ã is reduced and the irreducible components Y of Ã are toric varieties
and one-to-one correspond to the vertices v of CΛ by v = τA(ξY ), where
ξY ∈ Aan is the point corresponding to Y . The formal scheme A has a
covering by formal open affine sets U∆ for ∆ ∈ CΛ. Moreover, if A is
the base change of an abelian variety over a p-adic local field, then A
can be constructed as a k◦-model.

2. Toric Metrized Line Bundles

In this section, we briefly recall the theory of metrized line bundles
and their associated measure for general varieties. We introduce line
bundles and toric metrized line bundles on A. Then we prove the main
result, identifying certain toric integrable metrics.

2.1. Metrized line bundles and measure. The general theory of
metrized line bundles is developed in [20], [21]; see also [5] and [10].
Let X be a projective scheme over k, and L a line bundle over X (or
more generally, a class in Pic(X) ⊗Z Q). A metric ‖ ‖ on L assigns to
every open subset U of Xan and a section s ∈ Γ(U,Lan), a continuous
function ‖s‖U : U → R≥0 such that

1) ‖fs‖U = |f | · ‖s‖U for all f ∈ Γ(U,OU );
2) ‖s‖U (x) = 0 if and only if s(x) = 0 for x ∈ U ;
3) for any other s′ ∈ Γ(U ′, Lan) such that s′|U∩U ′ = s|U∩U ′ , we have

‖s′‖U ′ |U∩U ′ = ‖s‖U |U∩U ′ .

We say a metric is algebraic if it is defined by a model (X ,L ) where
X is a k◦-model of X and L is a line bundle on X such that Lη

∼= Le

for some integer e ≥ 1. A metric is formal if we replace the k◦-model
X by a formal k◦-model X , and L by a formal line bundle L on X
such that Lη

∼= (Le)an. In fact, all formal metrics are algebraic. An
algebraic (resp. formal) metric is called semipositive if L (resp. L) has
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non-negative degree on every closed curve on the special fibre X̃ (resp.

X̃ ) over k◦. In general, a metric on L is called semipositive if it is the
uniform limit of algebraic semipositive metrics. A metrized line bundle
is called integrable if it is isomorphic to a quotient of two semipositive
metrized line bundles.

Next we recall the construction of measures by Chambert-Loir in [5,
§2]. For simplicity, we only recall the algebraic case (which we only need
for calculation later), and for the general case, one needs to pass to the
limit, for which we refer to [5, §2] for details. Let X be as above of
dimension d ≥ 1, and consider d classes Li ∈ Pic(X)⊗ZQ (i = 1, . . . , d)
of line bundles. We endow Li with an algebraic measure ‖ ‖i induced
by (X ,Li) with (Li)η ∼= Lei

i on a common model X which is assumed

to be normal. Let Yj be the reduced irreducible components of X̃ and
ξj the unique point in the inverse image of the generic point of Yj under

the reduction map π : Xan → X̃ . Then we define

c1(L1) ∧ · · · ∧ c1(Ld) =
1

e1 · · · ed
∑

j

mj (c1(L1) · · · c1(Ld)|Yj) δξj

(2.1)

where Li = (Li, ‖ ‖i), mj is the multiplicity of Yj in X̃ and δξj is the
normalized Dirac measure supported at ξj. In general, the measure

c1(L1) ∧ · · · ∧ c1(Ld) is symmetric and Q-multilinear, and we have
∫

Xan

c1(L1) ∧ · · · ∧ c1(Ld) = c1(L1) · · · c1(Ld)|X.(2.2)

2.2. Line bundles on A. The theory of line bundles on totally degen-
erate abelian varieties is very similar to that over the complex field. We
refer to [3, §2] and [8, chapter 6] for more details.

Let A be a totally degenerate abelian variety as above and M̌ =
Homk(T,Gm,k) the character group of T . Let Ť be the split torus with

character group M , i.e., Ť = Homk(M,Gm,k). Then Ǎan is canonically

isomorphic to Ť an/M̌ where Ǎ is the dual abelian variety of A. Let
L be a line bundle on A; the pull-back of Lan to T an is trivial and is
identified with T an×Gan

a,k. Hence L
an is identified with a quotient (T an×

Gan
a,k)/M where the action of M on T an is given by an element µ 7→ Zµ

of H1(M,O(T )×). The function Zµ has the form Zµ = dµσµ where dµ ∈
k×, µ 7→ σµ is a group homomorphism σ : M → M̌ and dµνd

−1
µ d−1

ν =
σν(µ). By the isomorphism τ : M → Λ, we get a unique symmetric
bilinear form b on Rd such that b(τ(µ), τ(ν)) = − log |σν(µ)|. Then b
is positive definite if and only if L is ample. Since σµ is a character,
|Zµ| factors through τ and hence uniquely determines a function zλλλ on

Rd, such that zλλλ(τ(t)) = − log |Zµ(t)| for all µ ∈ M and t ∈ T , where
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λλλ = τ(µ). The function zλλλ is affine with

zλλλ(x) = zλλλ(0) + b(x,λλλ), λλλ ∈ Λ, x ∈ Rd.(2.3)

By linearity, we can also assign b and zλλλ to any class L ∈ Pic(A)⊗Z Q.
Before stating the next lemma, we introduce some notations. We fix

a Z-basis (λλλ1, . . . ,λλλd) of Λ once for all and let F = {x = x1λλλ1 + · · · +
xdλλλd | 0 ≤ xi < 1} be a fundamental domain of Λ. The volume of the
closure F under the usual Lebesgue measure dx of Rd only depends on
Λ and will be denoted by covol(Λ). We define RF = max

x,x′∈F ‖x− x′‖
and rF to be the maximal radius of balls contained in F. We denote by
Sd−1 ⊂ Rd the standard unit ball, SOd the special orthogonal group of
Rd, and Sd the group of d-permutations.

Let (e1, . . . , ed) be the standard basis of the Euclidean space Rd,
C l(Rd) (l ≥ 0 and C = C 0) the space of real functions whose l-th
partial derivatives exist and are continuous, C∞(Rd) the space of real
smooth functions, and C k,α(Rd) (k ≥ 0, α ∈ [0, 1)) the spaces of real
functions whose k-th partial derivatives exist and are Hölder continuous
with exponential α. We denote by C l

≥0(R
d) the subspace of functions

non-negative everywhere and C l
>0(R

d) that of functions positive every-

where; similarly, we have C∞
≥0(R

d), C∞
>0(R

d), C
k,α
≥0 (Rd), and C

k,α
>0 (Rd).

For a certain function f , we write fi = ∇eif , fij = ∇ei∇ejf , and
fijk = ∇ei∇ej∇ekf if the corresponding directional derivatives exist.

Let q(x) = 1
2b(x,x) be the associated quadratic form and

Hq = d! det (qij)i,j=1,...,d

which is a constant associated to q. We have the following lemma.

Lemma 2.1. If L ∈ Pic(A)⊗Z Q is an ample class, then degL(A) =
covol(Λ)Hq.

Proof. Consider the morphism φL : A → Ǎ associated to L. Its lifting
T → Ť restricts to µ : M → M̌ on M . It is easy to see that µ is injective
since L is ample and

deg(µ) = [M̌ : µ(M)] = covol(Λ)−1 det (b(λλλi,λλλj))i,j=1,...,d

= covol(Λ) det (qij)i,j=1,...,d .

By [3, theorem 6.15], deg(φL) = deg(µ)2, and by the Riemann-Roch the-
orem [14, §16], (degL(A)/d!)2 = deg(φL). Since L is ample, degL(A) >
0 and hence equals covol(Λ)Hq. q.e.d.

2.3. Toric metrized line bundles. Recall that an element f inside
Crpoly(R

d) is a continuous real function on Rd such that there is a ra-

tional polytopal decomposition C of Rd satisfying that f restricted to
all ∆ ∈ C is affine and takes rational values on vertices. The following
proposition is due to Gubler.



A NON-ARCHIMEDEAN ANALOGUE OF THE CALABI-YAU THEOREM 95

Proposition 2.2. Let L = (T ×Ga,k)/M be a line bundle on A given
by a cocycle (Zµ)µ∈M as above. Let A be a formal k◦-model determined

by a rational polytopal decomposition CΛ of Rd/Λ given by C.
1) There is a one-to-one correspondence between the following two

sets: The first consists of all formal metrics of L, i.e., formal
model L of Le (with e minimal) on A, with trivialization (U∆)∆∈CΛ ;
and the second consists of functions g ∈ Crpoly(R

d), affine on ∆
for any ∆ ∈ C, satisfying

g(x+ λλλ) = g(x) + zλλλ(x); λλλ ∈ Λ, x ∈ Rd.(2.4)

Moreover, if we denote by ‖ ‖ the corresponding formal metric on
L, then we have

g ◦ τ = − log(p∗‖1‖)(2.5)

on T an, where p : T an → Aan is the natural projection and p∗‖ · ‖
is the pull-back metric on the trivial line bundle on T an.

2) The reduction L̃ is ample if and only if g is strongly polytopal
convex with respect to C.

Proof. For (1), by (2.4) and the fact that there exists mλλλ ∈ Zd for
all λλλ ∈ Λ such that b(x,λλλ) = mλλλ · x, we can find a smallest integer
e ≥ 1 such that e · g has integer gradient everywhere. Then by [11,
proposition 6.6], e · g determines a formal model L of Le. Hence g
determines a formal metric on L. The last identity (2.5) follows from
the same proposition. For (2), it follows from [11, corollary 6.7]. q.e.d.

Definition 2.3. Given a class L ∈ Pic(A) ⊗Z Q such that Le is a
line bundle, we call a metric on L whose e-th power is a metric on
Le determined by the above proposition a toric formal metric, and the
corresponding function g (divided by e) the associated formal Green
function. We denote by Gfor(L) the set of all formal Green functions of
L, and G+(L) the set of all uniform limits of formal Green functions of
L associated to semipositive toric formal metrics which we call semi-
positive Green functions. It is easy to see that g ∈ G+(L) also satisfies
(2.4), and the metric determined by (2.5) is semipositive in its original
sense. Similarly, we denote by Gint(L) the set of difference of functions
in G+(L

′) and G+(L
′′) with L = L′ ⊗ (L′′)−1 which we call integrable

Green functions; hence the corresponding metric is integrable. More-
over, the set of integrable Green functions for all classes L ∈ Pic(A)⊗ZQ:
Gint(A) =

⋃
Gint(L) is a vector space over Q. All classes in Pic(A)⊗ZQ

equipped with a metric corresponding to a Green function in Gint(A) are
called toric metrized line bundles. At last we denote by G (L) the set
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of continuous real functions satisfying (2.4), and we simply call them
Green functions of L.

The following theorem provides a certain large class of semipositive
Green functions for an ample line bundle.

Theorem 2.4. Let L ∈ Pic(A)⊗ZQ be an ample class and g ∈ G (L)∩
C 2(Rd) such that the Hessian matrix (gij(x))i,j=1,...,d is semipositive
definite everywhere; then g is inside G+(L).

Remark 2.5. This theorem and its Corollary 2.11 are crucial for our
main results since they provide a large class of functions which should
be the Green functions of toric metrics on L. The proof is based on
Lemmas 2.6 to 2.10, in which Lemma 2.9 will also be used in the proof
of Theorem 3.3. But we will not single it out, since it appears naturally
in a series of estimates, as we will see in the following proof.

Proof. The proof is divided into several steps.
Step 1. We reduce to the case where (gij(x))i,j=1,...,d is positive defi-

nite for all x ∈ Rd.
First, there exists a function gcan ∈ G (L) ∩ C 2(Rd) such that the

matrix ((gcan)ij(x)) is positive definite. Indeed, by [8, lemma 6.5.2 (4)],
there is a group homomorphism c : Λ → Q such that zλλλ(0) = q(λλλ)+c(λλλ).
We linearly extend c to Rd and define gcan = q + c; then gcan ∈ G (L) ∩
C 2(Rd) and ((gcan)ij(x)) is a constant positive definite matrix. Next,

for any g ∈ G (L)∩C 2(Rd), gij is Λ-periodic for any (i, j) and g−gcan is
a Λ-periodic C 2-function. For any g in the proposition, let f = g− gcan
and gt = gcan + tf for t ∈ [0, 1]; then gt → g1 = g when t → 1 and
((gt)ij(x)) are positive definite for all t < 1. The claim follows.

Step 2. Now fix a function g as in the proposition, but with the
condition that (gij(x))i,j=1,...,d is positive definite; we are going to con-
struct a sequence of functions gn ∈ Gfor(L) ∩ G+(L) approaching g. For
any u ∈ Sd−1, the function ∇u∇ug is Λ-periodic and strictly positive;
hence there exist 0 < hg < Hg such that hg < ∇u∇ug(x) < Hg for any

u ∈ Sd−1 and x ∈ Rd.
Let N be a sufficiently large integer; for j = (j1, . . . , jd) ∈

(
1
NZ
)d
, we

let λλλj = j1λλλ1 + · · · + jdλλλd. For each j such that λλλj ∈ F, we choose a

positive number ǫN (j) < 1
N2 such that g(λλλj) − ǫN (j) ∈ Q and a vector

ǫǫǫN (j) such that ‖ǫǫǫN (j)‖ < 1
N , ∇g(λλλj)−ǫǫǫN (j) ∈ Qd and the graph of the

function

g
(N)
λλλj

(x) = (∇g(λλλj)− ǫǫǫN (j)) (x− λλλj) + g(λλλj)− ǫN (j)
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is below the graph of g, which is possible since g is strictly convex. For

general j, we let j0 be the unique element in
(
1
NZ
)d

such that j−j0 ∈ Zd

and λλλj0 ∈ F. Then we define

g
(N)
λλλj

(x) = (∇g(λλλj)− ǫǫǫN (j0)) (x− λλλj) + g(λλλj)− ǫN (j0).

By construction, g
(N)
λλλj

∈ Crpoly(R). We need the following lemma.

Lemma 2.6. For each j ∈
(
1
NZ
)d

and λλλ ∈ Λ, we have

g(x)− g
(N)
λλλj

(x) = g(x+ λλλ)− g
(N)
λλλj+λλλ(x+ λλλ).

Proof. By definition, we have

g
(N)
λλλj+λλλ(x+ λλλ)− g

(N)
λλλj

(x)

= (∇g(λλλj +λλλ)−∇g(λλλj)) (x− λλλj) + g(λλλj + λλλ)− g(λλλj)

=∇zλλλ(λλλj)(x− λλλj) + zλλλ(λλλj)

=zλλλ(x)

=g(x+ λλλ)− g(x)

where the third equality is because zλλλ is affine. q.e.d.

Step 3. We define a function g(N) by

g(N)(x) = sup
j

g
(N)
λλλj

(x)

which is less than g(x). We have

Lemma 2.7. For any compact subset V ⊂ Rd, there exists a finite

subset JV ⊂
(
1
NZ
)d

such that

g(N)(x) = max
j∈JV

g
(N)
λλλj

(x)

for all x ∈ V .

Proof. We only need to prove that for given M ∈ R, there are only

finitely many j such that g
(N)
λλλj

(x) ≥ M for some x ∈ V . For a given

j, we try to give a lower bound for the difference g(x) − g
(N)
λλλj

(x). Let
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u = x− λλλj; by definition,

g(x)− g
(N)
λλλj

(x)

>
(
g(x) − g

(N)
λλλj

(x)
)
−
(
g(λλλj)− g

(N)
λλλj

(λλλj)
)

=

∫ 1

0

d

dt

(
g(λλλj + tu)− g

(N)
λλλj

(λλλj + tu)
)
dt

=

∫ 1

0
∇ug(λλλj + tu)dt−∇ug(λλλj) + ǫǫǫN (j0) · u

=

∫ 1

0

(
∇ug(λλλj) +

∫ t

0
∇u∇ug(λλλj + su)ds

)
dt−∇ug(λλλj) + ǫǫǫN (j0) · u

=

∫ 1

0

∫ t

0
∇u∇ug(λλλj + su)dsdt+ ǫǫǫN (j0) · u

>
hg‖u‖2

2
− ‖ǫǫǫN (j0)‖ · ‖u‖

>
hg‖u‖2

2
− ‖u‖

N
.

We see that there is NM > 0 such that ‖λλλj − x‖ > NM implies

g
(N)
λλλj

(x) < M . Hence the lemma follows. q.e.d.

The above lemma implies that g(N) ∈ Crpoly(R
d) and is convex. On

the other hand, if g(N)(x) = g
(N)
λλλj

(x) for some j, then g(N)(x + λλλ) =

g
(N)
λλλj+λλλ(x+λλλ) for all λλλ ∈ Λ since, by Lemma 2.6, g

(N)
λλλj′

(x+λλλ) > g
(N)
λλλj+λλλ(x+λλλ)

will imply that g
(N)
λλλj′−λλλ(x) > g

(N)
λλλj

(x), which is a contradiction. Again by

the same lemma, we conclude that g(N) satisfies (2.4) and hence is inside
G (L).

Step 4. Before proving that g(N) is semipositive formal, we would like
to bound the difference of it and g.

Lemma 2.8. For any x ∈ Rd, we have

0 ≤ g(x) − g(N)(x) <
R2

F ·Hg + 2RF + 2

2N2
.

Proof. The proof follows the same line as in Lemma 2.7. Hence we
have

g(x) − g(N)(x) <
Hg

2
‖λλλj − x‖2 + 1

N
‖λλλj − x‖+ 1

N2

for any j. In fact, we can choose j such that ‖λλλj − x‖ ≤ RF

N . Hence the
lemma follows. q.e.d.

Conversely, we have the following lemma on the estimate of the gra-
dient, which will be used also in the next section.
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Lemma 2.9. Let f be any convex rational polytopal continuous func-
tion on Rd. Suppose that |f(x) − g(x)| < ǫ for any x ∈ Rd; then for
any d-dimensional polytope ∆ on which f is affine, ‖m∆ −∇g(x0)‖ ≤
2
√

ǫHg for all x0 ∈ ∆, where m∆ is the gradient of f on ∆.

Proof. By continuity, we can assume that x0 ∈ int(∆) and x0 = 0.

We only need to prove the lemma for f̃ and g̃ where f̃(x) = f(x) −
∇g(0) · (x) − g(0) and g̃(x) = g(x) − ∇g(0) · (x) − g(0). In this case,
we need to prove that ‖m∆‖ < 2

√
ǫHg. For any u ∈ Sd−1, we assume

that m∆ · u ≥ 0, since otherwise we can take −u. For t > 0, consider
(
f̃(tu)− g̃(tu)

)
−
(
f̃(0)− g̃(0)

)

=

∫ t

0

(
∇uf̃(su)−∇ug̃(su)

)
ds

≥m∆ · u t−
∫ t

0

∫ s

0
∇u∇ug̃(ru)drds

>m∆ · u t− Hgt
2

2

where the first inequality is due to the assumption that f is convex. On
the other hand, it is less than 2ǫ; hence we have

Hgt
2

2
−m∆ · u t+ 2ǫ > 0

for all t > 0. Hence m∆ · u < 2
√

ǫHg and then ‖m∆‖ ≤ 2
√

ǫHg. q.e.d.

The above lemma immediately implies the following:

Lemma 2.10. Let f and ∆ be as above; then for any x,x′ ∈ ∆, the
distance ‖x− x′‖ ≤ 4

hg

√
ǫHg.

Proof. Let x′ − x = tu with u ∈ Sd−1 and t = ‖x − x′‖ ≥ 0. Since
x,x′ ∈ ∆ and f is affine on ∆, we have

hgt ≤
∣∣∣∣
∫ t

0
∇u∇ug(x+ su)ds

∣∣∣∣ =
∣∣∇ug(x

′)−∇ug(x)
∣∣ ≤ 4

√
ǫHg

by the above lemma. Hence t = ‖x− x′‖ ≤ 4
hg

√
ǫHg. q.e.d.

In particular, if we apply the above lemma to g(N), we see that ∆ is
compact for any maximal connected subset ∆ on which g(N) is affine.

Step 5. We would like to apply Lemma 1.1. Hence we need to show

that ∆ is convex. By Lemma 2.7, g(N) coincides with some g
(N)
λλλj

re-

stricted to ∆. Suppose that there are x0,x1 ∈ ∆ and t ∈ (0, 1) such

that xt = tx1 + (1− t)x0 6∈ ∆; then g(N)(xt) = g
(N)
λλλj′

(xt) for some j′ 6= j.

Again by construction, g
(N)
λλλj′

(xt) > g
(N)
λλλj

(xt). Hence there is one point
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x ∈ {x0,x1} such that g
(N)
λλλj′

(x) > g
(N)
λλλj

(x) which is a contradiction. Now

by Lemma 1.1, g(N) determines a Λ-periodic rational polytopal decom-
position C of Rd.

Finally, we prove that for any ∆ ∈ C, ∆ maps bijectively to its image
under the projection p : Rd → Rd/Λ when N is sufficiently large. We
can assume dim(∆) = d. By Lemmas 2.8 and 2.10, we see that this
holds if

4

hg

√
R2

F
·Hg + 2RF + 2

2N2
·Hg < 2rF.

Now by Proposition 2.2, g(N) is a semipositive formal Green function
for large N . Hence the theorem follows by Lemma 2.8. q.e.d.

The above theorem has the following direct corollary.

Corollary 2.11. For any class L ∈ Pic(A) ⊗Z Q, if g ∈ G (L) ∩
C 2(Rd), then g is integrable, i.e., g ∈ Gint(L).

3. A Limit Formula for the Measure

In this section, we prove a formula for the measure of metrics deter-
mined by certain integrable Green functions.

3.1. Measures on torus and mixed Hessian. Recall that we have
a closed manifold Rd/Λ. Similar to Rd as in 2.2, we define various
spaces of real functions C ?(Rd/Λ), C ?

≥0(R
d/Λ), and C ?

>0(R
d/Λ) for

? = l; ∞; k, α. A measure on Rd/Λ is a continuous linear functional
µ : C (Rd/Λ) → R; it is semipositive if µ(f) ≥ 0 for all f ∈ C≥0(R

d/Λ);
positive if µ(f) > 0 for 0 6= f ∈ C≥0(R

d/Λ). The space of all (resp. semi-
positive, positive) measures is denoted by M (Rd/Λ) (resp. M≥0(R

d/Λ),
M>0(R

d/Λ)). It is endowed with the weak-∗ topology; i.e., a sequence
µn → µ if and only if µn(f) → µ(f) for all f ∈ C (Rd/Λ). Recall that
we have the Lebesgue measure dx on Rd/Λ; hence the spaces of func-
tions C ?(Rd/Λ) can be identified as subspaces M ?(Rd/Λ) of the space of
measures by integration against dx for ? = l; ∞; k, α. Under this iden-
tification, being semipositive (i.e., non-negative) or positive (i.e., strictly
positive) for a function coincides with that for a measure. Hence we also
introduce the notation M ?

≥0(R
d/Λ) or M ?

>0(R
d/Λ) for ? = l; ∞; k, α

for their obvious meaning. We write µ ≤ µ′ if µ′ − µ ∈ M≥0(R
d/Λ).

Finally, we denote by |µ| the total mass of µ, i.e., |µ| = µ(1). It is easy
to see that if µ is semipositive and |µ| = 0, then µ = 0.
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Definition 3.1. For functions g1, . . . , gd ∈ C 2(Rd), we define the
so-called mixed Hessian of g1, . . . , gd to be the function

Hessg1,...,gd(x) =
∑

µ,ν∈Sd

ǫ(µν)

d∏

i=1

(gi)µ(i)ν(i)(x)

where ǫ(µ) = 1 (resp. −1) if µ is an even (resp. odd) permutation.
(The subscript i in gi is not to be confused with the one for the i-th
derivative of g.) In particular, when g1 = · · · = gd = g,

Hessg(x) := Hessg,...,g(x) = d! det(gij(x))i,j=1,...,d

is d! times the determinant of the usual Hessian matrix of g.

The following lemma is an easy exercise in calculus.

Lemma 3.2. Let L ∈ Pic(A)⊗ZQ be an ample class and g1, . . . , gd ∈
G (L) ∩ C 3(Rd); then Hessg1,...,gd is Λ-periodic and hence in C 1(Rd/Λ).
We have

∫

Rd/Λ
Hessg1,...,gd(x)dx = degL(A).

Proof. First, we check the case g1 = · · · = gd = gcan. Then

∫

Rd/Λ
Hessgcan(x)dx =

∫

Rd/Λ
Hqdx = covol(Λ)Hq

which equals degL(A) by Lemma 2.1. In general, since any two g, g′ ∈
G (L) ∩ C 3(Rd) differ by a Λ-periodic function f ∈ C 3(Rd), by mul-
tilinearity and symmetry, we only need to prove that for such f and
g2, . . . , gd ∈ G (L) ∩ C 3(Rd),

∫

Rd/Λ
Hessf,g2,...,gd(x)dx = 0.(3.1)

By a linear change of coordinates, one can assume that λλλi = ei for
i = 1, . . . , d. Hence (3.1) becomes

∫

[0,1]d
Hessf,g2,...,gd(x)dx1 · · · dxd = 0.

For each i = 1, . . . , d, let us denote by

F+
i = {x = (x1, . . . , xd) ∈ [0, 1]d | xi = 1}

F−
i = {x = (x1, . . . , xd) ∈ [0, 1]d | xi = 0}.
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Then∫

[0,1]d
Hessf,g2,...,gd(x)dx1 · · · dxd

=

∫

[0,1]d

∑

µ,ν∈Sd

ǫ(µν)fµ(1)ν(1)

d∏

i=2

(gi)µ(i)ν(i)dx1 · · · dxd

=
∑

µ,ν∈Sd

ǫ(µν)

(∫

F+
µ(1)

fν(1)

d∏

i=2

(gi)µ(i)ν(i)dy −
∫

F−

µ(1)

fν(1)

d∏

i=2

(gi)µ(i)ν(i)dy− Sµ,ν

)

=−
∑

µ,ν∈Sd

ǫ(µν)Sµ,ν

since f and (gi)µ(i)ν(i) are Λ-periodic, where

Sµ,ν =

∫

[0,1]d
fν(1)

d∑

j=2

(gj)µ(1)µ(j)ν(j)

d∏

i=2
i 6=j

(gi)µ(i)ν(i)dx1 · · · dxd.

But then∑

µ,ν∈Sd

ǫ(µν)Sµ,ν

=
d∑

j=2

∑

ν∈Sd

ǫ(ν)

∫

[0,1]d
fν(1)



∑

µ∈Sd

ǫ(µ)(gj)µ(1)µ(j)ν(j)

d∏

i=2
i 6=j

(gi)µ(i)ν(i)


 dx1 · · · dxd

=0

since in the inner summation, the terms with µ and µ′ such that µ′(1) =
µ(j), µ′(j) = µ(1), and µ′(i) = µ(i) for i 6= 1, j cancel each other. Hence
the lemma follows. q.e.d.

3.2. Limit formula for the measure. Before we state the formula,
we would like to introduce the notion of dual polytopes. The main
reference for this is [13, §2, §3]. Let C be a (rational) polytopal de-
composition of Rd and f be a (rational) polytopal function, strongly
polytopal convex with respect to C. Then for any vertex v ∈ C, let
star(v) be the set of all d-dimensional polytopes ∆ ∈ C containing v
and for such ∆, let m∆ be the gradient of f on ∆ (which is just the
peg in [13]). Then the dual polytope of v with respect to f is defined to
be the convex hull of points m∆ for all ∆ ∈ star(v), which we denote
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by v̂f and is denoted by ∆(v)f in [11]. It is a d-dimensional (rational)
polytope.

Now we are going to prove the following main theorem of this section.
Recall that we have the embedding iA : Rd/Λ →֒ Aan.

Theorem 3.3. Let Li = (Li, ‖ ‖i) (i = 1, . . . , d) be d integrable
metrized line bundles on A, where ‖ ‖i are toric metrics determined by
Green functions gi ∈ G (Li) ∩ C 3(Rd) (cf. Corollary 2.11). Then we
have the following equality of measures on Aan:

c1(L1) ∧ · · · ∧ c1(Ld) = (iA)∗Hessg1,...,gddx.

Proof. The reader may compare this formula with the one stated in
[22, theorem 3.4.2], where the author considers the triple product of
curves and measures with singularities.

The proof of the theorem is divided into several steps.
Step 1. First we reduce to the case L1 = · · · = Ld = L = (L, ‖ ‖)

where L is an ample line bundle on A and ‖ ‖ is determined by a
Green function g ∈ G+(L)∩C 3(Rd) such that the matrix (gij)i,j=1,...,d is
positive definite everywhere. Assuming the theorem holds for this case,
consider the subset G ′(A) ⊂ Gint(A) consisting of such Green functions.
Then g, g′ ∈ G ′(A) implies ag + bg′ ∈ G ′(A) for (a, b) ∈ Z2

≥0 − {(0, 0)}.
For any continuous function f on Aan, consider the functional

ℓf (g1, . . . , gd) =
(
c1(L1) ∧ · · · ∧ c1(Ld)− (iA)∗Hessg1,...,gddx

)
(f)

which is symmetric and Q-multilinear in g1, . . . , gd and ℓf (g, . . . , g) = 0
for g ∈ G ′(A) by our assumption. Then for g1, . . . , gd ∈ G ′(A) and
t1, . . . , td ∈ Zd

>0,

0 = ℓf

(
d∑

i=1

tigi, . . . ,

d∑

i=1

tigi

)

=
∑

k1,...,kd≥0
k1+···+kd=d

d!

k1! · · · kd!
ℓf (. . . , gi, . . . , gi, . . .)t

k1
1 · · · tkdd

where gi appears di times in the second ℓf . Hence ℓf (. . . , gi, . . . , gi, . . .) =
0. In particular, ℓf (g1, . . . , gd) = 0 for all gi ∈ G ′(A). But on the other

hand, G ′(A) generates the whole space Gint(A) ∩ C 3(Rd) by definition
and the existence and smoothness of gcan. Then ℓf (g1, . . . , gd) = 0 for

all gi ∈ Gint(A) ∩ C 3(Rd). The theorem follows.
Step 2. Now fix g ∈ G ′(A) as above and assume g ∈ G+(L) for an

ample line bundle L. By Proposition 2.2, there are gn ∈ Gfor(L) such
that gn → g and the corresponding formal k◦-models (Xn,Ln) satisfying

that L̃n is ample on X̃n. Hence the models are in fact algebrizable. Now
we view Xn as schemes projective and flat over Spec k◦ and (Ln)η ∼= Len .
We denote the corresponding metrized line bundle determined by gn by
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Ln = (L, ‖ ‖n) and by g by L = (L, ‖ ‖). By (2.1) and Proposition
1.2, the measure c1(Ln)

∧d is supported on iA(R
d/Λ) and hence also for

their limit. If we let µn be the measure c1(Ln)
∧d restricted on Rd/Λ

and µ = limn µn, then we only need to prove that µ = µg as elements

in M (Rd/Λ), where µg is the measure Hessgdx ∈ M 3
>0(R

d/Λ).
We claim that for any δ > 0, we have

µ ≤ (1 + δ)µg.(3.2)

Assuming this, then µ ≤ µg. But by (2.2) and Lemma 3.2, |µ| = |µg|;
i.e., |µg − µ| = 0. Hence µ = µg, which confirms the theorem.

Step 3. The last step is dedicated to proving the above claim (3.2).
We prove that for any δ > 0 and f ∈ C≥0(R

d/Λ), µ(f) ≤ (1 + δ)µg(f).

Given ǫ1 > 0, take Ln as above such that |gn − g| < ǫ1; then the
model Xn determines a rational polytopal decomposition (Cn)Λ of Rd/Λ
which comes from a Λ-periodic rational polytopal decomposition Cn of
Rd. The function gn is rational polytopal and strongly polytopal convex
with respect to Cn. By Proposition 1.2, the set of irreducible components

of X̃n is identified with the set of Λ-translation classes of vertices in Cn.
Hence if we denote Yv the irreducible component corresponding to v,
then Yv = Yv′ if and only if v = v′ + λλλ for some λλλ ∈ Λ. By (2.1), we
have

µn =
1

edn

∑

v∈F

degLn
(Yv)δp(v)(3.3)

where we recall that F ⊂ Rd is the fixed fundamental domain of Λ and
p : Rd → Rd/Λ is the projection. Here, the multiplicities mj appearing
in (2.1) are all 1 since the special fibre is reduced by Proposition 1.2.

We recall a formula in [11, p. 366 (36)] which is deduced from [9,
p.112 corollary], that

degLn
(Yv) = d! · vol(v̂engn)

where v̂engn is the dual polytope defined before the theorem. Hence we
have

(3.3) = d!
∑

v∈F

vol(v̂gn)δp(v).(3.4)

For any integer N > 0, we divide F into Nd blocks as follows. For
(b1, . . . , bd) ∈ {0, 1, . . . , N − 1}d, let

F
(N)
b1,...,bd

=

{
x = x1λλλ1 + · · ·+ xdλλλd | bi

N
≤ xi <

bi + 1

N

}
.
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Then F =
⊔

F
(N)
b1,...,bd

and F
(N)
b1,...,bd

is a d-dimensional rational polytope.

For any ǫ2 > 0, there exists N(ǫ2) > 0 such that for any N ≥ N(ǫ2),

max
x∈F

(N)
b1,...,bd

gij(x)− min
x∈F

(N)
b1,...,bd

gij(x) < ǫ2(3.5)

for all i, j = 1, . . . , d and (b1, . . . , bd) by uniform continuity. We now
assume N ≥ N(ǫ2) and consider a block, say without lost of generality,

F(N) = F
(N)
0,...,0. Then

µn|F(N)(f) = d!
∑

v∈F(N)

vol(v̂gn)f(v) ≤ d! · vol
(
∆(N)

)
· sup
x∈F(N)

f(x)

where ∆(N) is the convex hull of m∆ (pegs induced by gn) for (finitely

many) d-dimensional polytopes ∆ ∈ Cn such that ∆ ∩ F(N) 6= ∅. Now
we are going to give an upper bound for this volume. Let x0 be the

point 1
2N (λλλ1 + · · · + λλλd), which is the center of symmetry of F(N). The

volume vol
(
∆(N)

)
will keep unchanged under the following operations:

(a): We replace gn by g̃n where

g̃n(x) = gn(x)−∇g(x0) · (x− x0)− g(x0).

(We also let g̃(x) = g(x) −∇g(x0) · (x− x0)− g(x0).)
(b): We make a translation x′ = x− x0.
(c): We apply a rotation x′′ = R.x′ for some R ∈ SOd.

Hence we may assume that

(a’): ∇g(0) = 0; g(0) = 0 and |gn − g| < ǫ1 by (a).
(b’):

(gij(0)) =




h11
h22

. . .

hdd




with hg < h11 ≤ · · · ≤ hdd < Hg.
(c’):

F(N) =

{
x = x1λλλ

′
1 + · · ·+ xdλλλ

′
d

∣∣∣∣ −
1

2N
≤ xi <

1

2N

}

where λλλ′
i = R.λλλi for certain R ∈ SOd.

For any ǫ3 ≥ 0, we also introduce the set

F(N)
g,ǫ3 =

{
x′ = (1 + ǫ3)

d∑

i=1

hiixiei

∣∣∣∣∣ x =
d∑

i=1

xiei ∈ F(N)

}
.

The following lemma is obvious.
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Lemma 3.4. For any x′ ∈ F
(N)
g,0 , the ball B

(
x′,

ǫ3hgrF
N

)
is contained

in F
(N)
g,ǫ3.

Now for any x ∈ F(N), we have

gi(x) =

∫ 1

0
∇x∇eig(tx)dt.

By (3.5), we have

|gi(x)− hiixi| =
∣∣∣∣
∫ 1

0
∇x∇eig(tx)dt− hiixi

∣∣∣∣

=

∣∣∣∣∣∣

d∑

j=1

xj

∫ 1

0
gij(tx)dt−

d∑

j=1

xjgij(0)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

d∑

j=1

xj

∫ 1

0
(gij(tx)− gij(0))dt

∣∣∣∣∣∣

≤ ǫ2(|x1|+ · · ·+ |xd|) ≤
ǫ2 · dRF

2N
.

The point x′ = h11x1e1 + · · ·+ hddxded is in F
(N)
g,0 . Let m∆(x) be (any)

peg of ∆ containing x; then we have, by Lemma 2.9,

‖m∆(x)− x′‖ ≤‖m∆(x)−∇g(x)‖ + ‖∇g(x)− x′‖

≤2
√

ǫ1 ·Hg +
ǫ2 · d

3
2RF

2N
.

Hence, by Lemma 3.4, if we can make choices of ǫ1, ǫ2, and ǫ3 such that

2ǫ3hgrF ≥ ǫ2 · d
3
2RF + 4N

√
ǫ1 ·Hg,

then m∆(x) ∈ F
(N)
g,ǫ3. Since the latter is convex, we have vol

(
∆(N)

)
≤

vol
(
F
(N)
g,ǫ3

)
= (1+ǫ3)

dh11 · · · hdd ·vol
(
F(N)

)
. Now we let ǫ3 =

d
√
1 + δ−1,

ǫ2 = ǫ3hgrFd
− 3

2R−1
Λ . Then for a fixed N ≥ N(ǫ2), when n is large

enough and hence we can take

ǫ1 ≤
1

Hg

(
ǫ3hgrF
4N

)2

,

we have

µn|F(N)(f) ≤(1 + δ)d! · h11 · · · hdd · sup
x∈F(N)

f(x)

≤(1 + δ) sup
x∈F(N)

f ·Hessg(x) · vol
(
F(N)

)
.



A NON-ARCHIMEDEAN ANALOGUE OF THE CALABI-YAU THEOREM 107

Summing over all (b1, . . . , bd), we have

µn(f) ≤ (1 + δ)
∑

(b1,...,bd)

sup
x∈F

(N)
b1,...,bd

f ·Hessg(x) · vol
(
F
(N)
b1,...,bd

)
.

Let n → ∞ and then N → ∞; we have

µ(f) ≤ (1 + δ)

∫

F

f(x)Hessg(x)dx,

which confirms the claim (3.2). q.e.d.

4. A Calabi-Yau Theorem

In this section, we state and prove the non-archimedean analogue of
the Calabi-Yau theorem for totally degenerate abelian varieties.

4.1. Review of the classical Calabi-Yau theorem. Let us have a
quick review of the Calabi conjecture which is proved by Yau in complex
geometry. For details, we refer to Yau’s original paper [17] and also the
book [12, chapter 5] by Joyce. For simplicity, we just state it for the
algebraic case. Hence let M be a connected compact complex manifold
of dimension d ≥ 1 and L an ample line bundle on it. Given any
smooth metric ‖ ‖ on L, we have the Chern class ω = c1(L, ‖ ‖) which
is a (smooth) (1, 1)-form on M . It determines a measure, i.e., a top form
µ = ω∧d onM . We say ‖ ‖ is positive if ω is positive definite everywhere.
Then the measure µ is obviously positive. The Calabi conjecture asserts
that given any smooth positive (d, d)-form µ′ such that

∫
M µ′ =

∫
M µ,

there exists a smooth positive measure ‖ ‖′ on L, unique up to a scalar,
such that µ′ = (ω′)∧d where ω′ = c1(L, ‖ ‖′).

If we write µ′ = efµ for a unique smooth real function f on M , then
the Calabi conjecture asserts that there exists a unique smooth real
function φ such that

(1): ω + ddcφ is a positive (1, 1)-form;
(2):

∫
M φµ = 0;

(3): (ω + ddcφ)∧d = efµ.

If we choose a local coordinate z1, . . . , zd on an open set U in M , then(
gαβ̄
)
α,β̄=1,...,d

is a d × d hermitian matrix, where g is the Riemannian

metric associated with ω. Then the condition (3) reads as

(3’):

det

(
gαβ̄ +

∂2φ

∂zα∂z̄β̄

)
= ef det

(
gαβ̄
)

(4.1)

which is a complex Monge-Ampère equation.

More generally, ω could just be a Kähler form. The existence part of
the following theorem is due to Yau and the uniqueness part is due to
Calabi.
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Theorem 4.1. Let M , ω be as above; then

Existence: (cf. [17, §4, theorem 1]) for any f ∈ C k(M) (k ≥ 3),
there exists φ ∈ C k+1,α(M) for any α ∈ [0, 1) satisfying (1)–(3);

Uniqueness: (cf. [4], [17, §5, theorem 3]) for any f ∈ C 1(M),
there is at most one φ ∈ C 3(M) satisfying (1)–(3).

4.2. A non-archimedean analogue. Recall that we have a totally
degenerate abelian variety A of dimension d over k and an ample class
L ∈ Pic(A)⊗Z Q. For any integrable metrized line bundle L = (L, ‖ ‖),
we define the measure c1(L)

∧d on the analytic space Aan. Also, we have
a skeleton iA : Rd/Λ →֒ Aan. The following is a Calabi-Yau theorem
in the current setting for positive measures supported on this skeleton,
which has certain smoothness in the real-analytic sense.

Theorem 4.2 (Non-archimedean Calabi-Yau). Let A, L, iA be
as above. For any µ ∈ M k

>0(R
d/Λ) (k ≥ 3) such that |µ| = degL(A),

there is a semipositive metric ‖ ‖ on L, unique up to a scalar, such
that c1(L)

∧d = (iA)∗µ where L = (L, ‖ ‖). Moreover, L is toric in
the sense of Definition 2.3, whose corresponding Green function g is in
G+(L) ∩ C k+1,α(Rd) for any α ∈ [0, 1).

Proof. The uniqueness part follows from the general theorem on the
uniqueness [18, theorem 1.1.1] proved by Yuan and Zhang.

Now we prove the existence. Recall that we have a canonical Green
function gcan for L, which determines a measure µcan on Rd/Λ (which
is just Hq times the Lebesgue measure). By Theorems 2.4 and 3.3, we

only need to prove that for a given f ∈ C k(Rd/Λ) (k ≥ 3) such that∫
Rd/Λ efdx = covol(Λ), there exists a function φ ∈ C k+1,α(Rd/Λ) for

any α ∈ [0, 1) such that:

• The matrix ((gcan)ij + φij)i,j=1,...,d is positive definite.

• It satisfies the real Monge-Ampère equation

det

(
(gcan)ij +

∂2φ

∂xi∂xj

)
=

Hq

d!
ef .(4.2)

• If f ∈ C∞(Rd/Λ), then φ ∈ C∞(Rd/Λ).

Then we set g = gcan + φ.
We would like to deduce the above PDE problem from the complex

case, i.e., Theorem 4.1, as we have promised. Inspired by the formula
defining the mixed Hessian, we introduce the following manifold:

A = Rd/Λ⊕ Rd/Λ

where we write (x1, . . . , xd; y1, . . . , yd) for the usual chart. The tangent
bundle has a canonical splitting TA = T1 ⊕ T2 where Ti is the pull-back
of the tangent bundle on the i-th Rd/Λ. Write ui = ∂xi and vi = ∂yi
and define a complex structure J on TA by Jui = vi, Jvi = −ui (i =
1, . . . , d). Then as a complex manifold, A is isomorphic to Cd/(Λ⊕ iΛ).
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We define

ð
(
(ui, vj), (ui′ , vj′)

)
=

1

2

(
(gcan)ii′ + (gcan)jj′

)
.

Then ð is a Riemannian metric on A and ωω(w,w′) = ð(Jw,w′) is a
Kähler metric on (A, J) with µµ = ωω∧d. Define ℧(x,y) = f(x) which is in
C k(A). Then ((A, J), ωω,℧) is in the situation of Theorem 4.1. Applying
this theorem, we see that there is a unique function φφ ∈ C k+1,α(A) for
any α ∈ [0, 1) satisfying (1)–(3). If we write the Monge-Ampère equation
(4.1) explicitly in the current situation, we see that φφ satisfies

det

(
ðαβ̄ +

∂2φφ(x,y)

∂zα∂z̄β̄

)
=

Hq

d!
ef(x)(4.3)

where zα = xα + iyα and z̄β̄ = xβ̄ − iyβ̄ . For any y0 ∈ Rd/Λ, let

φφy0(x,y) = φφ(x,y − y0). Then φφy0 is also a C k+1,α-solution satisfying
(1)–(3). Hence by the uniqueness, φφy0 = φφ for any y0, i.e.,

∂φφ

∂yi
≡ 0; i = 1, . . . , d.

Restricting to Rd/Λ×{0}, we see that φ(x) := φφ(x,0) ∈ C k+1,α(Rd/Λ)
for any α ∈ [0, 1), satisfies the real Monge-Ampère equation (4.2) and
such that ((gcan)ij + φij) is positive definite. Hence the theorem is
proved. q.e.d.
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