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THE SPACE OF CAUCHY-RIEMANN STRUCTURES
ON 3-D COMPACT CONTACT MANIFOLDS

JOHN BLAND & THOMAS DUCHAMP

Abstract

We study the action of the group of contact diffeomorphisms
on CR deformations of compact three dimensional CR manifolds.
Using anisotropic function spaces and an anisotropic structure on
the space of contact diffeomorphisms, we establish the existence
of local transverse slices to the action of the contact diffeomor-
phism group in the neighborhood of a fixed embeddable strongly
pseudoconvex CR structure.

1. Introduction

Cauchy-Riemann manifolds arise naturally as the boundary of a boun-
ded domain D C C"*!. In this case, the Cauchy-Riemann structure is
simply that residual complex structure which is inherited from the com-
plex structure on C". Local coordinates for 9D are said to be CR (for
Cauchy-Riemann) if they are the restriction of holomorphic coordinates
in C"*!, and they define a conjugate CR tangent space for D in the
same manner that the holomorphic coordinates on C" define a conju-
gate holomorphic tangent space for C"*!. Intrinsically, one can define
the Cauchy-Riemann structure on 9D by specifying the space of con-
jugate CR tangent vectors in the same manner as one defines the com-
plex structure on C"*! by specifying the conjugate holomorphic tangent
space. All questions which arise for abstract complex structures on a
smooth manifold are equally valid for Cauchy-Riemann manifolds: for
example, the embeddability and local embeddability, or the existence
of holomorphic (CR) coordinates, or how many structures exist up to
equivalence.

The significance of generalizing from complex structures on manifolds
to studying Cauchy-Riemann structures can easily be seen from the fol-
lowing considerations. When D is a bounded domain in C**!,n > 1,
then holomorphic functions on D which extend smoothly to 0D restrict
to 9D as CR functions; on the other hand, a slight generalization of
Hartog’s phenomenon in several complex variables states that CR func-
tions on D extend uniquely to D as holomorphic functions; that is, 0.D
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with its Cauchy-Riemann structure completely determines D with its
complex structure. On the other hand, if we generalize to 3 a complex
analytic space with an isolated singularity at p € X, then the boundary
of a small neighborhood of ¥ inherits a smooth Cauchy-Riemann struc-
ture, whereas the space 3 is singular. On the basis of this observation,
Kuranishi proposed [Ku] to study the deformation space for isolated
singularities by studying the deformation space for Cauchy-Riemann
structures on the boundary of the neighborhood, a smooth compact
manifold.

A case of particular interest is that in which the domain D is strongly
convex (more generally, strongly pseudoconvex). In this case, the bound-
ary admits a natural family of positive definite metrics which are adapted
to the CR structure, and play much the same role that Kahler metrics
play in complex geometry. One consequence of particular importance
is that when M is compact, strongly pseudoconvex, and n > 2 (so
dim M > 5), then M is embeddable. This is definitely not the case
when n = 1, and this case has many deep and interesting features which
have yet to be fully understood.

In this paper, we fix a smooth compact underlying manifold, and
study the space of CR structures on the manifold up to equivalence. In
particular, we study the local deformation theory for the space of CR
structures, and the local action of the contact diffeomorphism group on
the space of such structures. Although for much of the paper we set
up the machinery to work in arbitrary dimensions, our main interest
is in the three dimensional case, and we restrict our attention to this
case in the latter sections of this paper. This was largely a matter of
expedience, since in higher dimensions integrability factors play a role,
and require the introduction of new operators and significantly different
treatment than in the three dimensional case.

Most of the results in this paper rely heavily on [BD1] in which
we developed the machinery to do analysis on contact manifolds using
intrinsically defined anisotropic function spaces.

The outline of the paper is as follows. In Section 2, we give a quick
review of strongly pseudoconvex Cauchy-Riemann structures and the
relevant deformation theory. In Section 3, we define the weighted or
anisotropic function spaces in which we will work, and recall the results
from [BD1] on the space of weighted contact diffeomorphisms which
we will need throughout the remainder of the paper. The inclusion of
these two sections is to fix notation and to help make the paper self-
contained. In Section 4, we study the action of contact diffeomorphisms
on CR structures, computing both the linear and the fully nonlinear
action; it is also in this section that we introduce the notion of complex
contact vector fields, and explain their relation to the symmetry group.
In Section 5, we collect results on homotopy operators for the 9,-complex
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on compact CR manifolds and adapt them to our particular situation;
we also indicate how to split complex contact vector fields into real
contact vector fields and a transverse vector field. Section 6 contains
the main results of the paper. In this section, we obtain normal forms for
CR structures under the action of the group of contact diffeomorphisms
with sharp regularity results. This is accomplished in two steps: first we
obtain a weak normal form with a loss of regularity (Proposition 6.1.2,
Corollary 6.1.4), and then using a priori estimates (Theorem 6.2.7)
we recover the lost regularity (Theorem 6.1.5). It is believed that this
approach to studying the action of infinite dimensional symmetry groups
on underlying structures is new, and may have applications in other
situations.

Leaving rigourous definitions and careful statements until Section 6,
we formulate the main results roughly as follows. Let (M,d,) be a
compact embeddable strongly pseudoconvex CR manifold of dimension
3. Then Theorem 6.1.5 states that there is an open neighbourhoood
in the space of CR structures in which all deformation tensors can be
placed in the normal form Fy, y¢ = i0pY +1, where i0,Y corresponds to
a “Kuranishi wiggle,” that is, a deformation arising from deforming the
embedding of (M, d,) in its ambient surface through a diffeomorphism;
1) represents the obstruction to embeddability; and WX is a contact
diffeomorphism corresponding to the contact vector field X. (Here,
we assume that the CR structures have already been normalized to
have the same underlying contact structure.) Moreover, the map ¢ —
(X4, Ys,14) is continuous in the I'* norms, s > 6, where I'* refers to
the Folland Stein anisotropic Sobolev spaces used throughout.

The second result is a regularity result. With M, dy, ¢, X,Y, 1 as
above, the linearization of the normalizing map at ¢ = 0 is ¢ = 9,(X —
1Y) + 1, and using homotopy operators, it easily follows that if ¢ € 'S,
then X,Y € I'**1 ¢ € TI'S; that is, the homotopy operators induce a
linear decomposition of ¢ into 0,—exact forms and their complement,
where 9 is the image of ¢ under projection onto the complement. The-
orem 6.2.7 states that this same regularity holds for the local nonlin-
ear decomposition of ¢: if Fyy¢ = —i0pY + 1 where ¢ € T'®, then
X,Y e I'*t! o € I'* with corresponding estimates.

Earlier results on normal forms were obtained in [CL] and [B]. The
main idea in both papers was to study the linearized action, and to
construct appropriate function spaces in which one can solve the lin-
earized equation with good estimates. Since the Jy-operator appears
in the linearized equation, the anisotropic function spaces appear nat-
urally. In [CL], they avoided using the anisotropic spaces by work-
ing in the Nash Moser category; they obtained a transverse slice for
smooth CR structures. In [B], we restricted our attention to the case
of the standard S® C C2, and used explicit information to construct an
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anisotropic Hilbert space structure on contact diffeomorphisms near the
identity; the description of transverse slices follows easily from the lin-
earized analysis. However, in [B], the action described for the contact
diffeomorphism group was incorrectly asserted to be C', a necessary
condition to apply the inverse function theorem in Banach spaces and
obtain the transverse slices; a modified action is used in Section 6 of
the current paper to correct this error, combined with a new regular-
ity result to recover the lost regularity. With this modification and
the generalization of the weighted function space structure for contact
diffeomorphisms to arbitrary compact contact manifolds (see [BD1]),
we are now able to obtain local transverse slices to the action of the
contact diffeomorphism group on the space of CR structures for an ar-
bitrary compact embeddable strongly pseudoconvex three dimensional
CR structure.

1.1. Notation. Throughout the paper, M will denote a smooth com-
pact 2n+1 dimensional manifold equipped with a fixed contact distribu-
tion H C TM and a fixed contact one-form 7. As usual, TM and T*M
denote the tangent and cotangent bundles of M, respectively; AP M
denotes the p-th exterior power of T*M, QP(M) the space of smooth
p-forms on M, Lx 3 the Lie derivative of the form 8 with respect to the
vector field X, and X_| 3 interior evaluation.

We give M a fixed Riemannian metric g compatible with 7 (see Equa-
tion (2.1.3) for details), and let |X| denote the norm of the tangent
vector X with respect to g, and we let exp : TM — M denote the
exponential map of the g.

We let

g T"M — H*
denote the projection map. The characteristic (or Reeb) vector field
T is the unique vector field satisfying the conditions 7 n = 1 and
T_l dn = 0. We can then identify the dual contact distribution with the
annihilator of T, i.e.

H*={eT*M : T1p=0} CT*M;
more generally,
NPH*={p e ANP(M) : T 5=0},
and we have the identity
(1.1.1) 71(8) = T (A B).
We endow R?"*! with the contact structure defined by the one-form

n
no = d$2n+1 _ 2 ::En-i-]dx]’
j=1
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1 +1 2n

where (2!,..., 2", 2", ... 2?7 22"F1) are the standard coordinates on
R2"+1 and we let dV denote the standard volume form:

1
dVo = —mo A (dno)"
n.

We denote the contact distribution of 1y by Hy C TR?"*! and we set

0 0 i 0 .
TOZW,X]-:$+$"] anerH_]:W,lSan
Observe that the collection {X;,1 < j < 2n} is a global framing for H.
Note also that the 1-forms

9y2n+l’

7707d$j7 dxn+j7 1< J < n,

are the dual coframe to Ty, Xj, Xp4j, 1 < j < n.
Let f = (f',..., f™) be a smooth, R"-valued function defined on the
closure of a domain D € R?"*!. We define

X[f: X“Xletf fort >0
f fort =0,

where we have introduced the multi-index notation I = (i1,...,1%),
1 <ij; <2n,and X;f = (XsfY..., X7f™). (For t = 0, I denotes
the empty index I = ().) The integer ¢ is called the order of I and
written |].

Remark 1.1.2. We will often have to work in local coordinates
adapted to the contact structure on M. An adapted coordinate chart
for M is a chart ¢ : U — R?"*! for which n = ¢*ny. It follows that
o = Ty and ¢.H = Hg. An adapted atlas consists of the following
data: a fixed finite open cover V;, € Uy, £ = 1,2,...,m and an atlas
{¢¢ : Uy — R?"H1} consisting of adapted coordinate charts. We set
Dy = ¢¢(Vy). By compactness of M and Darboux’s Theorem for con-
tact structures [Arn, page 362], M has an adapted atlas. We shall fix
once and for all an adapted atlas and a partition of unity p, subordinate
to {Ve}.

If F: A— Bis amap between Banach spaces, with norms || - || 4
and || - ||g, respectively, then the expression
IF(HIs < 11f]la

means that there is a constant C' > 0 such that ||F(f)|z < C||f]|.4 for
all f e A
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2. CR Structures

2.1. Deformation theory of CR structures. We begin with a quick
review of the deformation theory of CR structures as presented in the
paper of Akahori, Garfield, and Lee [AGL]. See also [BD2, section 16],
where the special case of the deformation theory of S?"*! is studied
using a similar framework.

Definition 2.1.1. Let M be a 2n+1 dimensional manifold. A (rank
n) Cauchy-Riemann structure (CR structure) on M is a rank n complex
subbundle H; gy C TcM of the complexified tangent bundle of M such
that

(i) Huo) N Ha) = {0},
(ii) the integrability condition is satisfied:

[T (H1,0)), I (H1,0))] CT*(H1,0)) -
The bundle Hy ) is called the holomorphic tangent bundle of the CR

structure. As usual, we let H 1) denote the conjugate bundle H q).
The transversality condition (i) implies that Hc = H(y0) @ Ho,1) C
TcM has complex codimension one.

Remark 2.1.2. We recall that when n = 1, the bundle H(; o) is a
complex line bundle, and condition (ii) is automatic. To see this, let Z
be a section of H(y o) that does not vanish on an open set U C M. Then
since [Z,Z] =0,

(fZ,9Z] = (fZ(9) — 9Z(f)) Z

for any two sections, say X = fZ and Y = gZ of H(y o).

Two CR structures H(y o) and H (1,0) are said to be equivalent if there

is a diffeomorphism F' : M — M such that F.H ) = ]fl(l,o). We are
only interested in CR structures up to equivalence.

Observe that Hg is the complexification of a real codimension one
subbundle H C T'M consisting of vectors of the form X +X, X € H (1,0)-
Let n be a real one-form dual to H. The CR structure H, o) is said to

be strongly pseudoconvez if —i dn(X, X ) > 0 for all non-zero X € H1,0).-
In this case, n A (dn)™ is a nowhere vanishing (2n 4 1)-form. In other
words, (M, H) is a contact manifold and 7 is a contact one-form.

The most common examples of CR structures are those arising from
domains in C"*L. Let D = {z € C"*' : p(z) < 1} be a smoothly
bounded domain in C"*! with connected boundary, where p is a smooth
nonnegative function defined on a neighborhood of D, and dp # 0 on
0D. The boundary 9D is a CR-manifold for which the holomorphic
tangent bundle is the intersection of the complexified tangent bundle
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of 9D with the holomorphic tangent bundle of C**!, and if the pull-
back to 0D of the one-form i0p is a contact form, then it is strongly
pseudoconvex. !

We will assume, henceforth, that M is a contact manifold equipped
with a fixed strongly pseudoconvex CR structure H(; gy C TcM such
that Hg is the complexification of the contact distribution of M. We
shall refer to this CR structure as the reference CR structure on M.

The reference CR structure determines an endomorphism J : H — H

satisfying the condition .J? = —Id, which in turn defines a Riemannian
metric g by the formula
(2.1.3) 9(X,Y) =n(X)n(Y) + dn(X, JY).

The metric ¢ is said to be adapted to the CR structure. We let exp :
TM — M denote the exponential map of g. Objects associated to any
other CR structure on M will be decorated with hats. Two strongly
pseudoconvex CR structures on M are said to be isotopic if they can
be connected by a smooth 1-parameter family of strongly pseudoconvex
CR structures. We consider only strongly pseudoconvex CR structures
which are isotopic to the reference CR structure.

2.2. Representation by deformation tensors. Every CR structure
that is isotopic to the reference one can be represented by a deformation
tensor that takes values in H(j ). The proof of this fact relies on a
theorem of John Gray [G| which states that isotopic contact structures
on a compact manifold are equivalent.

Theorem 2.2.1 (Gray). Let n; be a differentiable family of contact
forms on a compact 2n 4+ 1 dimensional manifold M. Then there is a
differentiable family of diffeomorphisms Fy : M — M and a family of
non-vanishing functions p; such that

E () = peno -

Corollary 2.2.2. Every strongly pseudoconver CR structure on M
that is isotopic to the reference one is CR-equivalent to one of the form
H 1,0y where

(2.2.3) H(O,l) = {X — ¢(X) X € H(O,l)}
and ¢ : H 1y — H1) is a map of complex vector bundles, called the
deformation tensor for Hyq).

Proof. The fact that the CR structure is equivalent to one satisfying
the inclusion relation H ;) C Hc follows immediately from Gray’s
theorem. Thus, there is a family H 1)(t), t € [0,1], joining Hg ) to

IThe fact that D is bounded forces the Levi form to be positive at some point on

0D, and hence by the non-degeneracy of dn everywhere on the connected manifold
oD.
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ﬁ(071). For t small, it is clear that there are bundle maps ¢(t) such
that H (0,1)(t) is the graph of —¢(t). The integrability conditions for CR
structures imply that ¢(t) satisfies certain symmetry properties, and
when combined with the transversality condition they imply an a priori
bound on the size of ¢(t), from which the result follows.

We explain in brief. Choose a local basis Z, for H( ), and let
N[ Za, Z3) = —idn(Za, Z5) = h,j define the Levi form.> Then inte-
grability implies in particular that in[Zz — qﬁ%Za, Z5 — qﬁgZy] = 0. Since
NZa, 2] = 02z, Z5] = 0, it follows that z'n[—qﬁ%Za, Zs|+inlZ5, —93 2,
= q%’h,yg — gb%hag = (; this is the_symmetry condition q%’hw* = qS%hag.
It follows that the operator ¢ o ¢ : Hj gy — H( ) has non-negative
eigenvalues since

in[(¢ 0 9)Za, Zg] = (¢ 0 O3 hsp = (D)addhon = W77 (0)padrp

is hermitian positive semi-definite.

Next note that the transversality condition for CR structures (Defini-
tion 2.1.1(ii)) implies that none of the eigenvalues of ¢ o ¢ can be equal
to one. Indeed, suppose to the contrary that (QE)Z(JS?—Y — 52 is a degenerate

matrix. Then there exists v such that vo‘(q_S)quﬁ% = v?, from which one
obtains the relation

v (Za — (8)325) = v (8)26525 — v (0)325 = —v™(8)2(Z5 — ¢525):

that is, the transversality condition is violated for the subspace H 1,0)(t)
and its conjugate.

Since ¢o¢ is isotopic to the zero map by assumption, has non-negative
eigenvalues, and (¢o¢p—I) is nondegenerate, it follows that the eigenval-
ues of the operator (¢ o ¢) are bounded between 0 and 1, which implies
the norm condition. (See [BD2, page 83| where a similar argument is

given.) q.e.d.

Remark 2.2.4. The choice to refer to the map ¢ : H 1) — H )
as the deformation tensor (rather than the conjugate map) is consistent
with the deformation theory for complex structures, and has the advan-
tage that ¢ may be thought of as a “vector-valued (0,1)—form,” thus
fitting naturally within a d—complex (or in this case, a J,—complex).

In light of Corollary 2.2.2, we identify the space of CR structures with
the subset of the space of H(j gy-valued (0,1)-forms. Specifically, if w®

2Here, and for the remainder of this section, we employ the Einstein summation
conventions, with Greek indices ranging from 1 to n, and the conventions for raising
and lowering indices by contraction with the hermitian form h_ 3 and its inverse, with

Pzhas = b5
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is a local coframe of H1? with dual frame Z, of H, (1,0) such that

1
d'r} = 550{6(,0& AN wﬁ,
then the CR deformation tensor can be written as
=30’ ® Za;

it uniquely determines the space of (0, 1)-vectors for its corresponding
CR structure as the subspace of H¢ annihilated by the one-forms

W% = w + qﬁ%wB.
The space of all smooth deformation tensors is given by

(225) Def = Q(O’l) (H(I,O)) ~ [ (H(O,l) ® H(l,O)) .

2.3. The deformation complex. Each deformation of a CR structure
can be expressed as an H(j g)-valued (0,1)-form. In [Aka], Akahori
studied CR deformations by developing the Hodge theory of a certain
complex of vector-valued forms. A similar complex was studied in [BD2]
and used to show that CR deformations of the standard CR structure
on S$2"*! can be parameterized by complex Hamiltonian vector fields.

The space of smooth forms of type (0,q), written Q(O’q)(M), is the
space of sections of the bundle AYHY where H(®1) denotes the dual
bundle of the complex vector bundle H ;). By the integrability condi-
tion for the CR structure, the exterior differential operator d naturally
induces an operator

8y : QD (M) — QO (ar).

Set T1,0)M = TcM/H 1y, where TcM = T'M ®g C is the complex-
ified tangent bundle of M, and let 7y ¢y : TcM — T{10)M denote the
quotient map. The space of T(y g)M-valued forms of type (0,q) is the
space of homomorphisms of complex vector bundles

QOO (T ) M) = T (Home (A Hg1) M, Ti1 0 M) -

By virtue of the integrability condition (Definition 2.1.1(ii)), the op-
erator J extends to an operator on the space of T{; g)M-valued forms
[BIEp, BuMi|, which by abuse of notation we again denote by 0j:

(2.3.1) 0y : QD (T o) M) — QI (T o) M).
This operator is characterized by the following properties:
(2.3.2a) i =0,

(2.3.2b) h(X)(Z) = m1,0[Z, X],

for X € QOO(Ty o) M) =T (T(1,0)M) and Z € T'(Ho 1) M);
(2.3.20) 5{,(04 ApB) = (5{,&) AB+ (—1)‘“04 A gbﬂ,
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for a € QO2)(M) and B € QO (T} o) M).

Remark 2.3.3. The operator defined by Equation (2.3.2b) further
lifts to an operator

O : T(TcM) — QO (T}, ) M)
via the formula
WX = Op(m(1,0X) -
In particular, 9,X is well-defined in the special case where X is a real

vector field. By abuse of notation, we again denote the lifted operator
by 51,.

Remark 2.3.4. When (M, n, H(; o)) is embedded, it bounds a strong-
ly pseudoconvex complex space Y, and there is a natural identification
between T(; g)M and the restriction of the holomorphic tangent bundle
from X. In this case, 0y is naturally identified with the restriction of the
0 operator to the boundary.

3. The Group of Folland-Stein Contact Diffeomorphisms

In the previous section, we showed that every CR structure isotopic to
a reference CR structure can be represented by a deformation tensor. In
Section 4, we study the action of the group of contact diffeomorphisms
on to space of CR structures. In this section, we recall the results from
[BD1] that we need. Details can be found in [BD1].

3.1. Folland-Stein spaces. We begin by recalling the anisotropic func-
tion spaces I'*(M) on M, introduced by Folland and Stein in [F'S], and
their generalizations. These spaces are the natural ones in which to
work in order to obtain sharp estimates for the various operators which
will arise.

Consider an open domain D € R?"*!. The Folland-Stein space I'* =
I'*(D) is the Hilbert space completion of the set of smooth functions on
D with respect to the inner product

(Fopai= > [ 1Xus|Xiglav.
o<|rj<s” P
with associated norm written || f||p.s = \/(f, f), where X; and dV are
as in Section 1.1. Let I'*(D,R™) denote the closure of the smooth R™
valued functions on D with inner product

m
(fa g)D,s = Z(ij g])s
j=1
for smooth functions f = (f!,..., f™) and g = (¢%,...,g™). B
Let (M, n) be a smooth compact contact manifold, and let {¢, : Uy —
R27+1} be an adapted atlas as in Section 1.1. A function f: M — R is



CR DEFORMATIONS 199

said to be a I'* function if the functions f; = f o qﬁzl lie in T'*(Dy) for
all £. For functions f,g € I'S(M), we define the inner product

(f9)s == > _(pefe. pege) Dys -
)4

Similar definitions hold for I'*(M,R™), f,g € I'*(M,R™). The defini-
tion of the function spaces is independent of the choice of adapted atlas
and the local framings X and dV. Although the definition of the inner
products depends upon the choices involved, different choices lead to
equivalent norms.

Let F': M — M be a C'-map from M into a smooth m-dimensional
manifold M. Choose an adapted atlas {(¢¢, Ug, Vp)} for M and a smooth

atlas {¢¢ : Uy — R™} for M such that
F(Ug) C ﬁg, and Fg(Dg) C ﬁg

for all £, where Fy = ¢yo F o %—1 2o (Up) — R™ and 15@ € gbg(ﬁg) is
a collection of open domains such that {@Z_l(ﬁg)} covers M. The map
F is said to be a I'* map if F restricts to an element Fy € Fs(Dg,Rﬁ@)
for all £. It is not difficult to show that the notion of a I'* map is
independent of the choice of atlases and that Fy restricts to an element
in I'*(D) for any open set D CC ¢y (Up).

Let T'S(M, M) for s > n + 4 denote the topological space of I'* maps
between M and M. The restriction s > n+4 ensures that the maps are
C'. More generally, consider a smooth fiber bundle 7 : P — M, with
base a compact contact manifold. The space I'*(P) of I'* sections of 7
is defined in the obvious way by choosing an adapted atlas for M such
that 7=1(Uy) — Uy is trivial for all £ and requiring the local coordinate

representations of sections to be I'¥ maps from U, into the fiber of .
(See [BD1] for details.)

3.2. The smooth manifold of Folland-Stein diffeomorphisms.
Let D*(M) C I'S(M, M) denote the space of I'* diffeomorphisms of
M. We showed in [BD1] that D*(M) is an open subset of I'*(M, M)
for all s > 2n + 4. Let DZ,,,,(M) C D*(M) denote the subspace of I'
contact diffeomorphisms of M. In [BD1], we obtained a local coordinate
chart for contact diffeomorphisms in a neighborhood of the identity,
and we showed that D7 (M) is a topological group with respect to
composition, provided that s > 2n + 4.

More precisely, let g be a metric adapted to the contact structure such
as the one constructed in Section 1.1. The exponential map induces
various maps between I'* spaces that we need to parameterize contact
diffeomorphisms. If X is a vector field, we use the notation F'x to denote

the map
(3.2.1) Fx :=expoX : M — M.
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Recall that because M is compact, the map Fx is a diffeomorphism
for X sufficiently small. The following proposition summarizes various
smoothness properties of the maps that we need to construct our local
coordinate charts for contact diffeomorphisms.

Proposition 3.2.2. Let I'S(T'M) denote the space of I'® sections of
TM. For s> (2n+4), the map

exp: ¥(TM) - T°(M,M) : X — Fx =expoX

is smooth. Moreover, there is a neighborhood U C T?"*4(TM) such
that Fx is in D*(M) for all X € U® and all s > 2n + 4, where U* :=
UNTE(TM); and the restriction

exp : U° — D*(M)

is a homeomorphism from U® to a neighborhood of the identity diffeo-
morphism.

In general, the diffeomorphism F'x of Proposition 3.2.2 will not be a
contact diffeomorphism. However, in [BD1] we showed that the subset
of U? for which it is a contact diffeomorphism is smoothly parameter-
ized by the set of contact vector fields in a neighborhood of the zero
section. As shown in [BD1], this implies that the space of I'* contact
diffeomorphisms is a smooth Hilbert manifold.

We now introduce some notation that will be necessary to express
the sharp estimates used later in the paper. Choose an adapted atlas
¢ : Up — R2*F1 for M and a collection of open sets V; € U, covering M
as in Section 1.1 and let p; be a partition of unity subordinate to {V;}.
By compactness of M, there is a constant ¢ > 0 such that exp(x, X) € Uy
for all z € V, all X € TM,, with |X| < ¢, and all £. Let X be a C!
vector field with | X| < c.

Fix a chart, say ¢y, and set U = Uy and V' = V}. To simplify notation,
we adopt the Einstein summation conventions, letting Roman indices
range from 1 to 2n + 1. As explained in [BD1], by the second order
Taylor’s formula with integral remainder, there exist smooth functions
ij (z, X) (locally defined) on T'M such that

(3.2.3) F% = exp(z, X) = 2 + XF + ij(a:,X)Xin .

A standard computation using Equation (3.2.3) then yields the following
expansion for the pull-back of a ¢g-form by Fx.

Lemma 3.2.4 ([BD1]). Let ¢ be a smooth q-form on M and choose
a coordinate patch U = Uy, with V =V, € U. Let ¢ > 0 be chosen so
that exp(x, X) € U for allx € V and all X € T,M with |X| < c. Then
there are (locally defined) smooth fiber bundle maps

it BM|, — AMY|, and Q3; - BM|, — AT M|, ,
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where BM = {X € TM : |X| < ¢}, such that for any C' vector field
X:M — BM CTM the equation

Fx =1+ Lx + Q;(X) X' X7 + QF(X) A X'dX!
is satisfied on all of V.

Henceforth, we will use the notation

(3.2.5) Qu(X) = Fx () —¢ — Lx¢
to denote the non-linear part of the pull-back F%. The lemma states
that in local coordinates

(3.2.6) Qu(X) = QL(X) X'X7 + Q(X) A X'dXI

where Qilj and Q?j are smooth differential forms on BM]|,, C TM,
which depend on the smooth form v and on the coordinate chart ¢,.
Because the maps ()f; are smooth differential forms for any smooth ¢-

form ), and because M is compact, we have the following corollary to
Lemma 3.2.4, which we prove in [BD1]:

Lemma 3.2.7. Let b be a smooth q form. Then the following esti-
mates are satisfied for all X € T5(TM), s > 2n + 6, such that | X| < c:

(a) IEXYlls—2 < [19lls—2 + [[£xlls—2 + [ X[ls—2 1 X]]s
(b)  NEXY) Anlls—1 = lv Anlls—1 + 1ILx% Anlls—1 + [ X [s—1 1 X]ls -

Moreover, the estimate

(c)
| (Qu(X1) — Qu(X2)) Anlls—1 =< [[X1 — Xaofls—1 ([[X1ls + [ X2lls)
+ | X1 — Xolls ([ X1 lls—1 + 1 X2ls-1),

holds for any two vector fields X;, i = 1,2 with | X;| < c.

Remark 3.2.9. As shown in [BD1]|, for ¢) a smooth p-form, the
maps X — F5¢ and X +— n A Fx1 define smooth maps
S(TM) — I*"2(APM), for s > 2n + 6,
and
DS(TM) — DY (APTIM) | for s > 2n + 5.

Recall that the condition for the diffeomorphism Fx to be a contact
diffeomorphism is the vanishing of the one-form F%7n mod 1. Hence
by Equation (3.2.5), Fx is a contact diffeomorphism if and only if it
satisfies the condition

(3.2.10) Lxn+ Qn(X) =0 mod .

Furthermore, by Equation (3.2.6), the linearization of this condition at
the zero vector field is the condition

Lxn=0mod n,
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i.e. X is a contact vector field.

Remark 3.2.11. Using the characteristic vector field T" for the con-
tact form 7, we may express any vector field X as X = X7 + Xy,
where Xp belongs to the contact distribution. Applying the Cartan
identity

Lx(n) =XJddnp+dX)n) =Xy dy+dXx°
yields the well known facts (i) that the vector field X is a contact vector
field if and only if

(3.2.12) dX° = —Xg 1 dn mod 7;

and (ii) that X is completely determined by the real-valued function
X% = X_| n. For this reason, X_| n is called the generating function
for X and is denoted by gx. In [BD1], we proved that there is an
isomorphism
1—‘5

cont

(TM) - TS M) : X = gx = X1 7.

The main result of [BD1] is the construction of a smooth parametriza-
tion W of the space of I'*-contact diffeomorphisms near the identity dif-
feomorphism by contact vector fields near the zero vector field. The
parametrization ¥ in turn induces a smooth structure on the space
Ds,,. (M) of all I'*-contact diffeomorphisms.

cont

Theorem 3.2.13 ([BD1]). For all s > 2n+4, and ford C T*"T4(T M)
sufficiently small, there is a smooth map

TS, (TM)NU — U° CT°(TM)

cont
such that the following holds: for allY e UNT*(T M), Fy is a contact
diffeomorphism if and only if Y = W(X) for some X € '3, ,(TM)NU.
Moreover, the map V is of the form

U(X) =X+ B(X)(X,X),
where B : (TS, (TM)NU) x T%,, (TM) x TS

cont cont cont
smooth and bilinear in the last two factors.

(TM) — T5(TM) is

This theorem implies the following global result:

Theorem 3.2.14 ([BD1]). Let (M,n) be a compact contact mani-
fold. For s > (2n + 4), the space of TS contact diffeomorphisms is a
smooth Hilbert manifold.

We close this section with the a priori estimates for the nonlinear
term B(X)(X, X), which we proved in [BD1] and which we require in
Section 6:

Proposition 3.2.15 ([BD1]). For X e V* =T%_.(TM)NU*,

cont

(a) W (X) = Xls < [IXT[s | X5 -1
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Moreover, for all X1, Xo € V7,
(b)

I(W(X2) = Xo) = (U(X1) = X)ls < [[Xa = Xalls—a (1 Xzlls + | X]]s)
+ [1X2 = Xa[s([1 X2lls—1 + [ Xalls-1) -

4. The Action of the Contact Diffeomorphism Group

There is a natural action of contact diffeomorphisms on the space of
CR deformations:

D5 (M) x QOD(H5)) = QOD(H )

The main result of this section (Proposition 4.1.12) is a formula for F*¢
in the special case where F' = Fy x).

Let F be a contact diffeomorphism, and let ¢ be a deformation tensor.
Let ﬁ(O,l) C Hc = Hg,1) ® H(1,0) denote the anti-holomorphic tangent
bundle of the strongly pseudoconvex CR structure associated to ¢, and
define the pull-back CR structure F*Jfl(o,l) C Hc to be the CR structure
with anti-holomorphic subbundle

A~

F*(H(O,l)) = {Z € H(C . F*Z € ﬁ(oﬂ)} .

It is straightforward to check that if F} and F5 are two contact diffeo-
morphisms, then the identity

(Fpo Fl)*(ﬁ(o,l)) = Ff(Fik(ﬁ(o,l)))

holds. By Corollary 2.2.2, if F is isotopic to the identity, then F* H (0,1) 18
represented by a deformation tensor, which we call the pull-back CR de-
formation, denoted by F™*¢.

4.1. Local formulse. We need a local formula for F\’fj( X)(b that exhibits
the non-linear dependence on the contact vector field X. It will also
prove important to single out terms involving composition of the com-
ponents of the tensor ¢ with Fy(x); we accomplish this by introducing
an auxiliary contact vector field Y into some formulse.

Choose an adapted atlas and subordinate partition of unity as in
Remark 1.1.2. By smoothness of the map X — Fy(x) and compactness
of M, for all sufficiently small X, the condition

Fyx)(Ve) € Up

holds for all £. Next let n,w?,w? = wd be a coframing for TcM on Uy,
with H(g 1) the annihilator of n, w®.
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For ease of notation, we temporarily suppress the index ¢ and set
F:F\II(X) Then
(4.1.1)

F*(ﬁ(071)): {ZEHC - 7 F*(wa—ktb%cﬁ):O, fora:1,2,...,n}.

One sees immediately that

(4.1.2) F*(w™ + ¢%w5) = Agwﬁ + ngﬁ mod 7,
where
(4.1.3a) § = Zgd F*(w* + ¢3wT)

=(Zp) F*w®) + (¢S o F) (Zp! F*w7)
(4.1.3b) Bf = Zz | F*(w* + ¢5w")

= (25 F*w®) + (¢S o F) (Z5 F*w7) .

By Lemma 3.2.4, one has the formulae

(4.1.4a) Fro® = w® + Lxw® + Lig(x)—x) 0" + Que (¥(X))
and
(4.1.4Db) Fro® = w® + Lyx)w® + Qua(¥(X)),

for one-forms Qe and @ a as in Equation (3.2.6). Consequently,
(4.1.5) F* (w* 4 ¢5w7) = w*+ Lxw + (¢S 0 Fy(x))w +Q%(X, X, ¢) ,
where the expression Q%*(X,Y, ¢) is defined by the formula
QY(X,Y, ) :=Lyx)—xw* + (¢S 0 Fyyy) Lox)w?

+{Que (T(X)) + (65 © Fu(v)) Qur (T(X))}

for Y a second, sufficiently small, contact vector field.

To single out the terms of the form ¢S o Fy(x), we replace the term
¢S o I in Equations (4.1.3a) and (4.1.3b) by ¢S o Fy(y) to get matrix-
valued functions
(4.1.7) A=A(X,Y,¢) and B=B(X,Y,¢).

Using the identity

ZBJ (ﬁxwa) = —(EXZB)J w® = (EZEX)J w® = (51)X)g,

(4.1.6)

and the expression for 0, X in Remark 2.3.3, yields the following formulse
for the entries of A(X,Y, ¢) and B(X,Y, ¢):

(4.1.8&) g = (5% + ZﬁJ Lxw® + ZgJ QRY(X,Y, ¢)
and

(4.1.8Db) Bf = (&X)% + (050 Fy)) + 251 Q*(X,Y,9).
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Finally, expressing A~'B in the form A™'B = B+ A~}(I — A)B yields
the identity

@ = X + (65 0 Fagx) + E3(X, X, 6)) o @ Zq
where
(4.1.9) E5(X,Y,¢) = Z5) Q¥(X,Y,¢) + [A~'(I — A)BI3
and where A = A(X,Y,¢), B= B(X,Y, ).

Using the partition of unity, we globalize these local formulae to obtain
the vector-valued one-forms

(4.1.10) ¢ o Fy(x) : sz (6750 Fyx)) Wy @ Zea
and
(4.1.11) E(X,Y, ) : Z,oé 5(X,Y,0) we ® Zio -

Noting that u =", p¢- pp and 9 X = >, pe0,X then immediately gives
the next proposition, which we need to prove the normal form theorem
of Section 6.

Proposition 4.1.12. Let (Fy(x),¢) € DL (M)xT* (HOY @ H o)

cont

be near (idpyr,0). Then F\;(X@ is given by

(a) V) ® = X + ¢ o Fyx) +E(X, X, 9).

The linearized action at the identity map and the zero deformation ten-
S0T 18

Remark 4.1.13. These equations require some care in interpreta-
tion. First, notice that the terms F(f,( X)qﬁ and 0, X are in fact globally
defined tensors, and make invariant sense. On the other hand, ¢o Fy(y,)
and £(X,Y, ¢) have been defined using local coordinates and are coor-
dinate dependent.

Remark 4.1.14. Observe that for s > 2n 4+ 4 the map (X,Y, ¢) —
E(X,Y, ¢) extends to the map

& Do (TM) XD (TM)XT* (HOD @ Heyg)) — T° (HOD @ Hiy )

cont cont

between Folland-Stein spaces. In Section 6.2 we obtain estimates for &£
that play a critical role in the proof of our normal form theorem.
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4.2. Complex contact vector fields. By Equation (b), the action of
the group of contact diffeomorphisms suggests normalizing deformation
tensors by the image of 0,X where X is a real contact vector field.
On the other hand, since 0,X = 8(m(1,0)X), it is natural to normalize
the deformation tensor by the image of 9,X for X € TaoM. We
accomplish this by introducing the notion of complex contact vector
fields.3
Begin by recalling that T(; g)M is defined as the quotient bundle

0— H(O,l) — T(CM w T(l,O)M — 0.

Noting that TcM = H; gy © H,1) ® C- T, where T is the Reeb vector
field, we see that the restriction of 7(; o) to H(10) ® C-T' is an isomor-
phism of complex vector bundles. Thus, we shall identify T(; gy M with
H19) ®C-T when it is convenient.

Next observe that the composite map

T(1,0)

TM — TeM % Ty M

is injective with image the subbundle {Z € T, )M : n(Z) € R}.
Consequently, there are natural identifications

(4.2.1) TM=Hyp @R -T:={X € TyoM : 1(X) € R};

and it is easy to check that the inclusion I'*(T'M) C I'*(T{; 5)M) is norm
preserving.

Because H(g ) is contained in the annihilator of 7, the quantity
n(Z) is well-defined for all Z € T{; pyM. In addition, the quantity

7O (Z ] dn) is well-defined, where 7(OY : ToM* — H(OD denotes the
natural projection map. More precisely, let*

7Oz dn) == 7OV(Z ] an),

for any Z € TeM such that 77(170)2 =Z.
Finally, recall from Remark 3.2.12 that a real vector field X is a
contact vector field if and only if it satisfies the identity

dX°+ X 1 dnp=0 mod 7,

where X° = X _| 5. This is equivalent to the two conditions

W (dX° + X1 dn) =0and W (dX° + X_| dn) =0
for all W € H(y o).

Since X is real, W (dX°+ X dn) = W (dX°+ X_ dn). This
leads us to the following definition.

3This corresponds to the notion of Hamiltonian vector fields as used in [BD2].

“Independence of the choice of Z is an immediate consequence of the identity
dn(W1, W) = 0 for all W1, W> € H,1y.
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Definition 4.2.2. We say that a (1,0)-vector field Z € I'(T(1,0)M)
is a complex contact vector field if it satisfies the condition

Ay (ZJ ) +7OV(Z1 dn) = 0.
We denote by T'%,,,+(T(1,0)M) the Folland-Stein completion of the space

of complex contact vector fields.
The following lemma places this definition in context.
Lemma 4.2.3. Let X € I'(TcM) be a real vector field. Then the
following are equivalent:
(a) X is a contact vector field.
(b) X satisfies the identity
(X1 n) +7OV(X 1 dp) =0

where 701 TEM — H(*0 1)M is the restriction operator.
(c) The vector-valued one-form 0,X takes values in H)-

Proof. By the observations above, a real vector field X is contact if
and only if

Wl (dXIn)+XJdp)=0 VWeHqy.

This is simply condition 4.2.3(b), thus establishing the equivalence of
4.2.3(a) and 4.2.3(b). The equivalence of 4.2.3(b) and 4.2.3(c) is a spe-
cial case of Lemma 4.2.4 below. q.e.d.

The next lemma gives a useful characterization of complex contact
vector fields. Before stating the lemma, we remark that the quotient
bundle 7{; o)M has a naturally defined subbundle determined by the
vanishing of 7, that is

H(C/H(OJ) = {Z € T(I,O)M . T](Z) = O} C T(l,O)M‘

A simple computation shows that the map () defined above re-
stricts to an isomorphism H(; o) ~ Hc/H (). Hence, we may identify
Hc/H g 1y-valued forms with Hj oy-valued forms.

Lemma 4.2.4. The vector field Z € T'(T(1 gyM) is a complex contact
vector field if and only if 0,2 is an H o)-valued (0, 1)-form.

Proof. Suppose that 0,2 takes its values in H, (1,0); that is, that
(4.2.5) n(0Z(W))=0 VW eHqy .
By Equation (2.3.2b),

1 (Z(W)) = —n (r(1,0)[2,W]) = —n (12, W]) ;
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but
n([2,W]) = —dn(Z,W) + Zn(W) — Wn(Z)
= —dn(Z,W) - W(Z1 n)
— W (2 dn+8y(z] ) .

Thus, 9,7 takes its values in H(j oy if and only if W_| (Z_| dn+8,(Z_1 1))
=0, forall W € H, (0,1)> Which is equivalent to Z being complex contact.
q.e.d.

5. Homotopy Operators for CR Manifolds

In this section, we will collect various results concerning the existence
and regularity of homotopy operators on compact, embedded strongly
pseudoconvex CR manifolds. We restrict our statements to the special
case of compact, embedded, three dimensional strongly pseudoconvex
CR manifolds. More details of these constructions and their generaliza-
tions can be found in, e.g., [BuMi|, [Miy1].

5.1. Miyajima’s homotopy operators. First, we have the following
result for the 9 complex. It follows immediately from the vector bun-
dle valued version contained in [Miy2], where the vector bundle is the
trivial line bundle, and P = N 5;; , but the result is essentially contained
in [BeGr]. Roughly speaking, it says that there exists a partial inverse
and a Szeg6 projector with good estimates.

Theorem 5.1.1. There exist linear operators H : C*°(M) — C*°(M),
P QO = C=®(M), and S : QOV (M) — QOD (M), such that the
following identities and estimates are satisfied:

(a) OpoH=0, PoS=0, So00,=0
(b)  u= Pyu+ Hu and o = 9P + Sa
©  NH@Is < fulls, I1P@)ls < lallsr  [S@lls < s,

for all u € C®(M), a € QOY(M), and s > 0.

(d)  H extends to a self-adjoint, projection operator on L*(M,C).

Similarly, homotopy operators for T(; o) M-valued (0,1) forms also
exist, with similar estimates [Miy2]. These estimates work in general
for vector-valued forms, where the vector bundle is the restriction of a
complex vector bundle which extends to the complex manifold bounded
by M as a holomorphic bundle. (If the complex space X bounded by
M is singular, we first resolve the singularities of X and then apply the
above definition.)
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Theorem 5.1.2 (Miyajima [Miy1], [Miy2]). There exist linear op-
erators

(a) 5bOP:0, Po@Q =0, Qoéb:()
(b) Z = PO,Z + pZ and ¢ = OyPp + Q¢
©  MPllser <llolls,  NQals <Miglls, Nl < 11215,

for all Z € T(T(; ) M), ¢ € QOV(T( )M), and s > 0.

Finally, there exist linear operators L : Q(O’l)(T(LO)M) — I(T1,00M)
and N : T°°(T 0)M) — T'(T(1,0)M), with L a smooth horizontal linear
first order differential operator such that

(d) P=NolL,
and N satisfies the estimate
(e) IN(Z)||s+2 < | Z||s for all Z € FOO(T(LO)M), s> 0.

5.2. Homotopy operators for complex contact vector fields.
These homotopy formulae do not single out contact vector fields in any
significant manner. We now show how to modify the homotopy opera-
tors in order to do so. We begin by introducing the raising and lowering
operators induced by the nondegenerate two form dn:

Definition 5.2.1. The lowering operator is the vector bundle map
(V:TM - H* : X —X"=X1ldy
whose restriction to H C T'M is an isomorphism between the contact
distribution and its dual space. The raising operator is the inverse
(V:H* > H : ¢ .

Remark 5.2.2. The maps ()’ and ( )! of Definition 5.2.1 induce

(complex) linear maps
( )b ZT(L())M — H(O’l) : Z(l,O) — Z(L())J d?’]
and
( )ﬁ cHOD Hq ),

where the map ( )jj is an isomorphism of complex vector bundles. Ob-
serve that by construction,
(5.2.3) Z=n(Z)T + (2°)

for all Z € T°°(T(1,0)M). Notice also that by Definition 4.2.2, Z is an

element of the space I'¢g,;(T(1,0)M) of complex contact vector fields if

and only if it satisfies the identity
(5.2.4) o (n(2)+2°=0.
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Thus, every complex contact vector field is of the form
(5.2.5) Zy = [T — (Opf)*

for f a smooth complex valued function. Moreover, the inclusion TM —
T(1,0)M induces the inclusion

0o
I‘cont

(TM) < T (Tu M) = X v Z

cont 9x >
where gx = n(X). (See Remark 3.2.11.)

Proposition 5.2.6. There exist smooth linear operators

P,S : I®(T(1,0)M) — T®(T(1,0)M)

satisfying the following:
(a) Z=PZ+S8Z forall Z €T>(T0M)
(b)  range(P) = ker(8) = g, (Ti1,0)M)
(c) PoS=0, SoP=0, PoP=P, andSoS=8
@) PZlls < 1 Z]s and ||SZ|ls < |Z]|s for all Z € T™(T(1,0)M).

Proof. Choose a vector field Z € I'(T(; )M ), and compute as follows
using the homotopy operators from Theorems 5.1.1 and 5.1.2:

Z=n(Z)T + (2°)*
= (HO(2)) + POMZ))T +{8P(2) + 5(2))
Add and subtract the term P(Z”)T and rearrange to get
(5:27)  Z={(H0(Z) - P@)T +@0,P(2")) |
+ { (P@(2)) + P(2") T+ (S(Zb))”} .

Define P, S : [°°(T,0)M) — T°°(T(1,0)M) to be the linear operators
given by the formulee

P(7) = (Hn(2) ~ P2)) T+ (BP(2))
8(2) = (P@O(2) + P(2) T+ (s(2))"

By construction, Z = PZ+S827.
We claim that PZ is a smooth complex contact vector field. This
follows from Equation (5.2.4) and the computation

0, (n(P(2)))+P(2)" = BH((Z))-0P(2)+0,P(2°) = B,H(1(Z)) = 0.
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Observe also that by (5.2.4),

8(2) = (P@m(2)) + P(2) T+ (5(2))
— (P(=2)+ P(2")) T + (S(=8,(n(2))))* = (<0 =0

for all Z € T¢5,,4(T(1,0)M).

cont

We have shown that P takes values in I'S9, (T, (1,0M) and tha
vanishes on I'g,

tS
cont(T(1,00M). These facts, combined with Equation (a),
imply that P and S satisfy the identities:

PoS=0, SoP=0, PoP=P, andSoS=3,
as well as the equalities

Loont(T(1,00)M) = range(P) = ker(S).

The estimates follow from the estimates in Theorems 5.1.1 and 5.1.2.
q.e.d.

Remark 5.2.8. Because the projection operators 75,3 in Proposi-
tion 5.2.6 preserve the Folland-Stein regularity, they extend to projec-
tion operators on the Folland-Stein space I'*(7(1 )M ) and they induce
a direct sum decomposition

I*(T1,0)M) = Léone(T(a,00M) © ker(P)

with T,(T(10) M) = ker(S) = range(P) € T*(T}; 0, M).

The following variant of Theorem 5.1.2 highlights the role of contact
vector fields.

Theorem 5.2.9. There exist linear operators P : Q(O’l)(T(LO)M) —
U2 (TaoM) and H : QOY(T g M) — QOD(T}y o) M) such that:

cont
b) ¢ =08Po+Ho for all p € QO (T( o) M)
C) 5{,7707'[:0, 7‘[05(,7720
d) Ho gbZ =0 forall Z € re (T(l,O)M)

cont

) Pells+1 < lolls,  1HSls < lI¢lls for all ¢ € QD (T ) M).

a) Z=PowZ+pZ foral Z €T (T1,0)M)

~~ Y~ N

Moreover,

®)  Me(Dls < Zls for all Z € T'5,1(T(1,0M), s > 0.
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Finally, there exist smooth linear operators L : Q(O’l)(T(l,O)M) —
I®°(Ta0M) and N : T (T(1,0)M) — T°°(T(1,0)M) with L a horizontal
first order differential operator, such that

(g) P=NoL
(h)  [IN(2)ls+2 < |Z]|s for all Z € T(T(1,0)M), s > 0.

Proof. The key step in the proof is to express the homotopy operator
P of Theorem 5.1.2 as the sum of two operators P and S, defined by
the formulas
P=PoPand S=8oP.
By Proposition 5.2.6, P = P+ S and the image of P is contained in the
space I'go,,1(T(1,0)M) of smooth complex contact vector fields. Next let
H =0,08 + Q, where @ is as in Theorem 5.1.2.
To prove (a), let Z be a complex contact vector field and note that
by 5.1.2(b),

Z:P5b2+pZ:P8_bZ+85bZ+pZ.

We need only show that S0,Z = 0, for Z complex contact. First observe
that whenever Z is a complex contact vector field, then P8,Z is also
complex contact. This follows easily from Lemma 4.2.4, the formula
POyZ = Z—p(Z), and dyp(Z) = 0. Consequently, S(9,Z) = S(PZ) =
0, for all Z € T'g5,,1(T(1,0)M).

To prove the homotopy formula (b), notice that Proposition 5.2.6(a)
implies the decomposition

P=P+S;
then use the homotopy formula 5.1.2(b) to compute as follows:
¢ = 51)P¢+Q¢ = 51,73(;54-51,5@—!-@(25 = 51)'P¢+/H¢.

We now prove parts (c¢) and (d). First observe that S o 9P = 0.
Since P¢ is complex contact, PJyP¢ is complex contact. Therefore,
SO Pp = S(PI,Pp) = 0. Next observe that 9,(P o 3,S) = 0 as follows:
For ¢ € Q(O’l)(T(LO)M), compute as follows:

éb’P(Zﬁ = OyP (ébP¢ + 5{,3(]5 + Q(ﬁ) = 8{,775(,7)(25 + 5;,7?5;,&5;
on the other hand,
HPh = 0P (9sPo) + 0bS(0yPo) + Q(OpPg) = PP .

Thus, (P 00,S) = 0. Finally, the identities Qo 0, = PoQ =80Q =0
follow immediately from Theorem 5.1.2. Then the identities 9,PoH = 0
and Hod,P = 0 follow from the identities Oy(PodpS) = 0 and Sod,P =
0.

To prove part (g), set £ =L and N’ =P o N. Since P = P o P and
by (5.1.2¢c) P = N o L, it follows that P = N o L.
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The estimates (e), (f), and (h) follow immediately from the estimates
in Theorems 5.1.1 and 5.1.2. g.e.d.

Notice that in the last theorem, since Q(O’l)(H(l,o)) C Q(O’l)(T(LO)M),
it follows that for ¢ € Q(O’l)(H(l,o)), we have ¢ = 9,Pp+H¢. Moreover,
since the range of P is the space of complex contact vector fields, then
P € Q(O’l)(H(LO)) (see Lemma 4.2.4). It follows that #H restricts
to an operator H : Q(O’l)(H(LO)) — Q(Ovl)(H(LO)). Therefore, we can
restrict the homotopy formula to the horizontal vector valued forms.
We state this next, using the same symbols to denote the restricted
operators without risk of confusion.

Corollary 5.2.10. There exist homotopy operators P : Q(O’l)(H(LO)) —
0% (TaoM), H:QOD(Hq o) — QO (Hy o)) such that:

cont

(a) ¢ =Po+Ho for all p € QOV(H( )
(b) HPoH=0 HodP =0

() HodZ=0 forall Z € I35, (T,0M)

(

cont

A Pollssr < llls  I1HSls < s for all ¢ € QD (H{y ).

Moreover, noting that the harmonic projection p restricts to a map
p: Taont(Ta,0M) = 1'%, (Tia,0)M)-

cont cont

() Z=PdZ+pZ for all Z € T25,(T(1,0)M)

cont

() Mle(2)lls < 1Z]]s for all Z € T'5,(Ti1,0M),s = 0.

5.3. Harmonic decomposition of complex contact vector fields.
In this section, we obtain a decomposition of complex contact vector
fields into real contact vector fields and a complementary subspace.
Recall from Equation (5.2.5) that the space of complex contact vector
fields is parameterized by complex valued functions as follows:

fes Zp=fT— (Bpf)*.

The observation that this parametrization agrees with the parametriza-
tion of real contact vector fields as introduced in Remark 3.2.11 sug-
gests constructing the decomposition using the naive projection oper-
ator mre @ Zf +> Zre(y)- Unfortunately, this projection map is not
continuous in the Folland-Stein norm. We see this as follows. By virtue
of the identification T(y )M = H(1 )@ C-T) the Folland-Stein structure
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on the space of complex contact vector fields is
(Zr.2)s = ((fT= @), (9T — (g)*))
= (IT.9D), + (@h)*, B9)" )
= (f,9)s+ (0 Obg),
12113 LI + 136 f11Z
On the other hand, since Zge(y) = 1/2(Zy + Z5),
1 Zre(s) |2 = 1/4l1Z5 + Z53 = [IRe(£)IIZ + 1/4]105f + B fIIZ
Let fi be a sequence of CR functions with |0y frlls — oo and || fxlls

bounded. Then ||Zy, ||s is bounded, but

1 -— 1
| Zre(so)ll2 = IRe(fu)llZ + ZHc‘?bkai = |Re(fx)|I2 + Zﬂabkag — 00.

Therefore, to obtain a bounded projection, we have to proceed differ-
ently. We need the following regularity lemma.

Lemma 5.3.1. The estimate ||ul|s+2 < ||Re(I + Op)ul|s holds for any
smooth, real-valued function w. In particular, if Re(I + Op)u is smooth,
then so is u.

Proof. One easily verifies that for u real, the identity Re(u + Oyu) =
U+ ﬁA ru holds, where Ap is the Laplace operator in the Rumin
complex. The estimate follows from the corresponding estimate for Ag,
proved in [R, BD3|. q.e.d.

Next let f be a smooth, complex valued function f. Then Re(f+0f)
is smooth, and Lemma 5.3.1 implies that there is a unique, smooth, real-
valued function u, satisfying the equation

I+ 2n1+2AR)u — Re(f + O, f).

Proposition 5.3.2. For all s > 2n + 4, the map
Agr)~'Re(f + Opf)

f=u=U+

2n 4+ 2

induces a bounded projection operator
TRe : I‘iont (T(l,O)M) — I‘iont

with image T, ,(TM).

cont

(T(L())M) : Zf — Zu

Proof. By construction, mre(Z,) = Z, for u real. Consequently, 7R,
is a projection operator, as claimed. To prove that 7R, is bounded, note
that regularity for Ag justifies estimating as follows:

1Zulls < llulls + 10ulls < fullssa < (T +

om g Rl
= HRe(f + Dbf)Hs—l =< ”f”s—l + HDbf”s—l .
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But ||y flls—1 = 10;06f|ls—1 < [10f||s implies the estimate

”Zu”s =< ”f”s—l + Hébf”s = HZf”s-
q.e.d.

The projection map mgre induces the decomposition

Fggnt (T(l,O)M) = F?Snt (TM) @V )
where
(533) V= {Y eT%,(TagM) : mre(iY) =0}

Let V?® denote the closure of V in the I'* norm. It will prove convenient
to adopt the notational convention

(5.3.4) Zy=X;—iYy,
where X := mRre(Zf) € I'%5,(T'M) and Yy := 7w (Z5) is the projection

cont
Tm ‘= Z(Id — 7TRe) : Zf — Yf .
Moreover, the estimate
[ X lls + 1Y lls < 12l
holds for all f € I'*(M,C), with s > 2n + 4.

Remark 5.3.5. We caution the reader that although X is real, it
is not the real part of Zy.

Remark 5.3.6. We could at this point let ¢V be a rather arbitrary
complement to I'SS ,(T'M). The only properties for V' that are impor-

cont
tant in what follows are:

(a) Ton(ToM) =I5 (TM) & iV
(b) onnt(T(l,O)M) = zont(TM) ©ive
() [ X[s + IY]ls < [ X —iY][s,

for all s > 2n + 4.

6. Normal Form for CR Deformations

In this section, we study the action of the contact diffeomorphism
group on the space of deformations of a fixed embeddable CR structure
(M, H0)) on a compact three dimensional manifold M.

There are significant differences in the analysis between the three di-
mensional case and higher dimensions. These arise since first, there are
no integrability conditions in dimension three, and second, the relevant
operators are not subelliptic in three dimensions. While the analysis
generalizes to higher dimensions, the details are numerous and every-
thing requires a separate statement, including the introduction of new
operators to take into account the integrability conditions. Since in
dimensions at least five, it is well known that all compact, strongly
pseudoconvex CR manifolds are embeddable, our main interest is in the
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three dimensional case where the situation is more subtle and less well
understood. Henceforth, we will restrict our attention to this case.

Before beginning the statement and proof of the main results, we
make some comments to motivate the definitions and statements. The
contact diffeomorphism group acts on the space of deformation tensors,
and the linearization of the action at the identity map and the zero
deformation tensor is (X, ®) — (9X + ¢), where X is a contact vector
field. On the other hand, the Hodge decomposition of Corollary 5.2.10
shows that a deformation tensor can be split as ¢ = 9,Pp + He, where
P¢ is a complex contact vector field, and H¢ serves as the “harmonic
part” of the deformation. If we split the complex contact vector fields
as Py = X — 1Y, where X is a real contact vector field, and Y lies
in a transverse subspace (see Section 5.3), then Y can be heuristically
thought of as infinitesimally arising from one of Kuranishi’s “wiggles”
of the embedded CR manifold within its ambient surface. The normal
form should then be i0,Y + ¢4, that is, a harmonic form plus a wiggle.

This overview suggests that we should consider a map 'S, (TM) @
iV @ker P — Def and show that for all ¢ € Def, there exist (X, Y, )
such that F$( X)qﬁ = i0pY +1; here, Fyx) is the contact diffeomorphism
defined by ¥(X) as in Theorem 3.2.13. Unfortunately, this map loses
regularity since the linearization involves differentiation of ¢ in the direc-
tion of X. To circumvent this difficulty, we carry along a copy of ¢ and
consider the modified map (¢, X,Y, ) — (o, F$(X)¢—(i5bY+1/))). This
map is now invertible (modulo a kernel—the CR vector fields-which is
easily incorporated) giving a weak normal form:

for every ¢, there is a triple (X,Y, 1) such that F$(X)¢ = i0pY + 1.

However, in the proof, the normal form i0,Y + ¢ has less regularity
than ¢. This can be viewed as a weak Hodge decomposition for the
nonlinear theory. But, taking our lead from the proof of regularity
for the standard linear Hodge theory, we obtain a priori estimates in
Section 6.2 to improve the regularity and establish a strong normal form:

if Fyx)® = i0yY + 1 with ¢ € T'®, then X,Y € It ¢ € I'*.

Remark. We expect that this approach of first using linear analysis to
obtain a weak normal form and then a priori estimates to obtain the
strong normal form will find a wide range of use in other applications.

6.1. Statement of the Normal Form Theorem. Throughout the
remainder of the paper, (M, H(; o)) is a fixed embeddable compact three
dimensional CR manifold.

We first establish notation. Let H! = kerP C Q(Ovl)(H(LO)) rep-
resent the “harmonic deformation tensors,” where P is as in Corol-
lary 5.2.10, and denote the CR vector fields by Fsctzl(TM) = ker 9, N
FSH(T(LO)M). Let I'*(H') denote the Folland-Stein completion of H! in
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FS(Q(O’D(H(LO))). Notice that I'*(H!) is closed in the space of deforma-
tion tensors I'*( Def) = I‘S(Q(Ovl)(H(LO))) and that by Corollary 5.2.10,

T3 (QOY(H ) = range(d,) & T*(H') .
We define the map:®

(6.1.1a) @ :T*T2(Def) @ TSIV (TM) @ VST @ TS(HY)

cont

— T2 Def) & T(Def) & TEH (TM)

by the formula
(61.10) (0, X,Y,0) = (6, Fx)6 — i0Y — 1w, p(X —iY)).

Proposition 6.1.2. The map @ is a local diffeomorphism in a neigh-
borhood of the origin.

Proof. By the inverse function theorem for Banach spaces, it is suffi-
cient to establish that:

(1) @ is locally C;
(2) d®|0,0,0,0) is invertible.

To establish (1), notice that all terms in the map ® are linear, and
smooth (see Theorem 5.1.2), except F$( X)¢, so it suffices to check the

regularity of this term. By Remark 3.2.9, X — (Z3 F\;(X)w) and
X — (Zs] F\’f,(X)cD) are smooth maps from I'**! contact vector fields
to I'* functions. We proved in [BD1] that the map®

sY2(M) o DL (M) - T5(M) : (u,F) —»uoF

cont

is C'!. From the local expressions in formule (4.1.3a) and (4.1.3b) and
the fact that the matrix A in these formulee is invertible, it follows that

the term (¢, X) — F$(X)¢ is C', completing the proof that the map ®
is C'1.

We next check that d® is invertible at the origin. Let (qS, X.Y, 1/)) be
a tangent vector at the origin. Then

®This corrects an error in [B] when we mistakenly asserted the map ® to be C*
if we take the first factor on each side to be in I'*( Def). In Section 6.2, we obtain
a priori estimates to establish a local nonlinear Hodge theory and recover the lost
regularity.

SNotice that the differential of this map is the Lie derivative of u, which explains
the loss in regularity on w.
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It is clear that this map has trivial kernel and that it is surjective. In
fact, using the homotopy operators P, H, we can verify that the inverse
map
(d®)~' : T2 Def) @ T(Def) @ T (T M)
— I*P2(Def) @ T3)(TM) & VST & T*(HY)

cont

is given by

(d®) (¢, X, €) = (&, TRe(P(X = &) +&), Tt (P(x = 6) +&), —H(x = 9)).

To verify that this is the inverse of d® g ), compute as follows:
(d®) " (D, X — i)Y + b — b, p(X —iY))
= (¢, TRe(P(Dp X — i0pY — ) 4 p(X — i),
Tim (P X — i0,Y — ) + p(X —iY)),
— H(DX — i0Y — ) = (¢, X,Y,0)).
g.e.d.

By the implicit function theorem, inverting ® gives rise to the C*
map

(6.1.32) T°T2(Def) — DILL(M) @ VST @ T (HY) 1 ¢ s (Fy, Yy, 100)

cont

defined by the constraint

(613b) (¢=X¢=Y¢7¢¢) = @_1(¢7070)7
with Fy = Fyx, and ¢ in a sufficiently small neighborhood of the origin.

Corollary 6.1.4. There exist neighborhoods 0 € U C [$+2(Def)
and idy € U C DEFL(M) such that for any ¢ € U, there is a contact

cont

diffeomorphism Fy € U such that F, (;(;5 18 contained in the subspace
Oy (iVT) @ T3(H') C I'*(Def). The equation

Fi¢ = i0yYy + ¢y € I*(Def)

determines Fy, Yy, and 1y up to the CR-vector field p(X4 —iYy), which
is in turn determined by the additional constraint p(X4 —iYy) = 0.

We call the deformation tensor
Fyxp = Z'gby(b + 1)y € I'*(Def)

the normal form of ¢. The following theorem, which is proved using a
priori estimates, gives increased regularity for the normal form. It is an
immediate corollary to Theorem 6.2.7 below.
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Theorem 6.1.5. The map ¢ — (Fy, Yy, 1) defines a C° map of the
form
FS+2( Def) N Ds+3 (M) fa Vs+3 D Fs+2(H1) ,

cont

for sufficiently small ¢ € T572(Def). In particular, the normal form
Fid = (i0yYy + 1)
is contained in 9, (iV*T3) @ T*T2(H') C IT**2(Def).

Remark 6.1.6. As noted in Remark 5.3.6, we have some freedom

in the choice of V53, the complementary subspace to T'S13(TM) in
I

i;;f}(T(LO)M ). If the original CR manifold admits a free S! action as
a symmetry, we can choose all homotopy operators to be S equivari-
ant. Complex contact vector fields then have Fourier expansions, and
we can choose our complement V' to consist of complex vector fields of
the form Z;, where f has only positive (respectively negative) Fourier
coefficients. In [B], we made these choices to obtain the interior (re-
spectively exterior) normal form.

In general, since M is embeddable it follows that M — % for some

compact complex surface ¥ as a separating hypersurface (see [Le]).
The elements of V' correspond on the infinitesimal level to Kuranishi’s
“wiggles,” that is, CR structures which are induced on M through in-
finitesimal isotopies of M within ¥. In this regard, one expects the
factor v to correspond to deformations of the singularities of the “fill-
in” of M (that is, the pseudoconvex side of ¥ bounded by M) or to
non-embeddable structures on M.
6.2. A priori estimates for the action on CR structures. We now
proceed to establish the a priori regularity estimates for the action of
the contact diffeomorphism group on the space of deformation tensors
that we need to establish Theorem 6.1.5.

Let X be a contact vector field and let ¢ be a CR deformation,
expressed relative to a local frame Z, and dual coframe WP oas ¢ =
qﬁ%wﬁ ® Zo. For X and ¢ sufficiently small, we will obtain estimates for

the deformation tensor for the pull-back CR structure p = F*¢.”

Remark 6.2.1. Since we are restricting ourselves to a small neigh-
borhood of the embeddable structure, we may choose the neighborhood
small enough to have the following uniform estimates:

[10lls+2 <C,  lullst2 <€ and [|[ X0 <C

where C'is a fixed (sufficiently small) constant. Since when || X ||s11 < C
one has [|X|s11 ~ [[Fy(x)lls+1, and one can choose C such that in
addition

I Foxyllse1 < C,

" Although we have restricted to the three dimensional case n = 1, we continue to
use index notation to help distinguish between functions and coefficients of tensors.
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here and in what follows we use the norm on contact diffeomorphisms
[Fyx)lls+1 = [[W(X)|[s+1, where Fy(x) = expo¥(X).

Remark 6.2.2. We will repeatedly use the estimates

1£9lls < [1flsllglls—1 + [[flls—1llglls

and

-1
lg o Flls < (lglls + NgllsllFlls—1 + lglls—1 | Flls) - (1 + [|[F|ls-1)°
< lglls + lgllslFlls—1 + llglls—1 [ Fls

forall s >2n+4 =26 (sincen =1), f,g € I'*(M), and F' € D, ,,(M),
|IF|| < 1, without comment. The first estimate was proved in [BD1]
(for general n). The second estimate follows easily by writing g o F' in
local coordinates and computing ||goF'||y,s in a coordinate neighborhood
U C M using the chain rule. In the last estimate, we used the fixed

bound on X to conclude that (1 + ||F|s_1)*~! < 1.

Our next goal is to obtain estimates for the deformation tensor for
the pull-back p = F$(X)¢‘

Lemma 6.2.3. Let F' = Fyx) and s > 6. Then

I o Flls < ll¢lls + 18lls - [ XNls—1 + lllls—1 - 1 Xl -

Proof. Observe that on each coordinate patch Uy,

lpe(@ 0 F)ellvg,s < lllve,s + 1@llve,sll Fellvgs—1 + [@llvg,s1l Fellvg,s

=< lells +118lls1Flls—1 + |olls—1 1 F[s
=< lls + @l 1P X ls—1 + [[@lls—2 [T (X) ||
=< olls + llls I X Ns—1 + @ lls—1 1 X5
The result follows from finiteness of the cover Up. q.e.d.

Next let £(X,Y, ) be the vector-valued one-form defined by Equa-
tion (4.1.11). Then we have the following estimates:

Lemma 6.2.4. For s > 6, let ¢ € I'*( Def) be a deformation tensor
with ||¢||s < C and let X, Y € TSTL(TM) be vector fields with | X ||s41 <

cont

C, ||[Y]|s+1 < C, for C chosen as in Remark (6.2.1). Then
1€, Y, d)lls < (I Xls + [[¢ 0 Fuy)lls) - 1 X s41 -

Let ¢; € I'*(Def), j = 1,2 be two deformation tensors with ||¢;lls <
C, and let X;,Y; € DSYL(TM), j = 1,2 be contact vector fields with
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[Xjlls+1 < Cs Yjlls41 < C. Then

(X1, Y1, ¢1) — E(X2, Y2, d2)]|s
< (X lls+1 + [ X2lls+1) - [ X — Xolls + (1 Xalls + [ X2ls) - 1 X7 — X251
+ ([ X1 lls+1 + [ X2lls+1) - |1 0 F1 — g2 0 Falls
+ ([[¢1 0 Fills + [|#2 0 Falls) - [[ X1 — Xalls+1,

where Fj = Fy(y;), j =1,2.

Proof. By Equation (4.1.11), our proof amounts to obtaining suffi-
ciently good estimates on the entries of the matrices A(X,Y,¢) and
B(X,Y, ¢) defined in Equations (4.1.7). Recall the local formula for A
and B:

g = 5% + ZBJ Lxw® + ZBJ QY(X,Y, )
Bf = (0sX)5 + (85 © Fuv)) + Z3d Q*(X,Y,9).
The estimate

1€51s < 1252 QV(X, Y. 0)lls + | A I[( — A)BISs

follows immediately from the formula for £¢.

We estimate each term on the right-hand side. First, using Propo-
sition 3.2.15 to estimate W(X) — X and observing that the estimate
1Zs]) Que(¥(X))|ls < [[¥(X)]s]|¥(X)|s4+1 follows immediately from
the local formula (3.2.6), we obtain

1251 Q*(X,Y,9)lls

< 1Zsd Loxy—xwlls + [1(¢S 0 Fovy)Zsd Loy |s
+ 128 Que (¥ (X)) s + 165 0 Fur)) Zs Qus (¥(X))lls
< ¥(X) = Xls41+ | 0 Forylls 125 Loxyw?|ls—1
+ ¢ 0 Fyylls—1 12! Loxywlls + 125 Qua (T(X))]s
+ ¢ o Fyw)lls—1lZs- Qur (¥ (X))l
+ 1160 Fo)llslZp) Qua (¥ (X))lls—
<N XIs [ X414 [ © Forylls [2X)][s
+ {16 0 Fygyy lls—1 12 (X)[s+1 + L) s [ (X) |54
+ {160 Fyvy lls—1 [ (X))l 19 (X)|s41
+ 16 © Fyy)lls [ (X [[s—1 LX)
<N Xs 1 Xs41 + ¢ 0 Forylls 1 X|ls + 16 0 Fyvylls—1 1 X [ls41
X s [ X s1 + 16 0 Fyyylls—1[[ X ] [[ X 541
+ 160 Fyy lsl[ X lls—1 1X 1[5
< (IXlls +ll¢ 0 Foprylls) - 1 X [[s1
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with a similar estimate for | Z5 | Q%(X,Y, ¢)||s. Next

1T = AT Nls = [1(Z7) Lxw™ + Z, 1 Q*(X,Y, )l
<X Ns1 + (X + 1@ © Folls) - 1 X st

which implies in particular that A = I — (I — A) is invertible. More
precisely, because the matrix A = [Ag] is of the form I+ (small matrix),
a series expansion for A~! yields the estimate ||A™'—1||s < || X ||s51+]/¢0
Fyyylls - | X|s+1 which is uniformly bounded by a constant depending
only on the constant C' in Remark 6.2.1. Also
1Bl = [(@X)] + (61 0 Fury) + 25| Q(X.Y, )l
< Xlls+1 +ll¢ 0 Folls + (1 Xls + 16 0 Fayylls) - 1 X]ls41,

SO
I - A)BIE,
<@ = AN BIjlls—1 + NI = A5 lls1[I[Bl3]s
< AIX s+ (X Nls + M6 © Fagrylls) - 1 X 1541}
X s +lld 0 Fyylls—1 + (I Xs—1 + 16 0 Fygyylls—1) - [ X1ls }
+ XM + (X Nls—1 + 1o 0 Foprylls—1) - 1X s }
AIX s+ + 1l 0 Fyrylls + (IXls + 160 Fyyylls) - [1X |41}
<X [s+1 - (X + (¢ 0 Fuyy)lls—1)
+ 1 X[ - (1 X o1 + [1(# 0 Fyvy)lls)
< (IXls + ¢ 0 Fyvylls) - 1 X541 -
This completes the proof of the first estimate.
To prove the second estimate, let A; = A(X;, Y], ¢;), B; = B(X;,Y;, ¢;),
& =E&(X;,Y,05), j=1,2. Then
AT'By - AJ'By = A7Y(By - By) — (A — AT By
= [(Bi = B2) + A7 (I = A1)(B1 — By)]
—[A51 (A1 = A2) AT By

Using this in Equation (4.1.9), we obtain the equality

(61— &5 = Z5 | (Q%(X1,Y1, 1) — Q%(X2, Y2, 62))
AT = A (Br - B2)l§ — [Ay (A1 — A2) AT Bo§ .

Choose the constant C' in Remark 6.2.1 sufficiently small to ensure that
”Aj_l”s < ' for some fixed constant C’. The triangle inequality then
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gives

(6.2.5) [[[&1 = &Flls < [1Z5-] Q%(X1, Y1, 1) — Z5) Q%(X2,Y2, d2)|s
+ (I = A1)(B1 — B2)lls + [[(A1r — A2)|ls[| Bz2[ls—1
+[[(A1 — A2)|ls—1]| Balls -

We estimate all four terms on the right-hand side of (6.2.5) in a similar
manner. We present the estimate of the first term in detail and leave the
verification of the estimates of the remaining two terms to the reader.
Rearranging terms and simplifying gives

Zzl QU(X1, Y1, ¢1) — Zzd Q%(X2, Y2, ¢2)
= {ZBJ E\I/(Xl)—Xlwa + ((;5‘11’,7 o Fl)ZBJ ,C\I,(Xl)w;y
+ Z5d Que (¥(X1)) + (975 0 F1)Z5] Qua (¥ (Xl))}
— {Z3d Loxs)—x.w® + (055 0 F2) Z5 1 Ly(xyyw
+ Z5 1 Que(¥(X2)) + (655 0 F2)Z5) Quv (¥(X2)) }
= 25 Liw(x)—x1)-(w(xz)~X2) (W)
+(Z5d Que(¥(X1)) — Z5] Que(¥(X2))
+ {(#15 0 1) Z5] Lyx)w? — (¢55 0 F2)Z5 ] Lyx,yw}
+ {(¢75 0 F1)Z5]) Qua(¥(X1)) = (655 0 F2)Z5) Qua(¥(X2))}
By our previous estimates, we may estimate as follows:
1Z5) Q(X1,Y1, 1) — Z5) Q%(X2,Ya, 62
=< NZz) Lowx)—x)—(w(x2)—x2)@ |ls
+ 125 Que(¥(X1)) —ZBJ Que (¥ (X2))]]s
+ (635 0 F1)Z5] Lyxw? — (655 0 Fa)Zg Ly(x,yw”|ls
+ ”(‘Zs(lx,:y C’Fl)ZﬁJ Qu(¥(X1)) — (¢2,»70F2) ZBJ Qu (Y(X2))lls
< (W (X) = X1) = (U(X2) — X2)[[s41
+ [1X1 = Xalls - ([ Xalls1 4+ [ X2lls42)
+ [ X1 — Xolls+1 - ([[Xalls + HX2H )
+ (915 0 F1)Z5] Lyxyw” — (955 0 F2)Z5 ] Ly(x,w 7|l
+ (675 0 F1)Zg) Qur(¥(X1)) — (955 0 F2)Zz ) Qu (¥ (X2))|s

where we have used Lemma 3.2.7(c),

< 1X = Xofls - ([ Xalls+1 + 1 X2lls+1)
+ [ X1 = Xolls+1 - ([[Xalls + HXzH ),
+ (915 0 F1)Z5] Lyxyw? — (955 0 F2)Z5] ﬁq/(xz)&ﬁ”s
+ (%5 0 F1)Z5 ) Qua(V(X1)) — (d25 © F2)Z5 ] Qur (¥(X2))ls,
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where we have used Proposition 3.2.15(b).
Observe that

(¢35 0 F1)Z5) Ly(xyw? — (055 © F2) Zg) Lu(xy)w s
=< (g1 0 Fills—1 + [[¢2 0 Falls—1) - [[ X1 — Xa[ls+1
+ (|1 0 Fills + [|f2 © Folls) - | X1 — Xal|s
+ ([ X1lls + [ Xzlls) - |1 0 Ft — ¢2 0 Fofls
+ ([ X1 lls41 + [[X2lls41) - [|¢1 0 F1 — ¢2 0 Folls—1
< (ll¢1 o Fills + g2 © Falls) - | X1 — Xa[[s41
+ (X1 lls+1 + [ Xalls+1) - |91 0 F1 — ¢2 0 B[,

where we have used the identity f1 g1 — fo g2 = f1 (91— g92) + (f1— f2) g2
and the corresponding estimate

|l fi91 — f292lls
< (I fills=1 + [ f2lls=1) - lgr = g2lls + (I f1lls + [[f2ls) - 191 — g2ls—1
+ (lg1lls—1 + llg2lls—1) - [I1f1 = flls + (lg1lls + llgalls) - If1 — falls—1 -

A similar argument yields the estimate

[(¢1 0 F1)Z5 ) Qu(¥(X1)) — (P20 F2)Z5 | Qu(¥(X2))lls
< (g1 0 Fills + Iz 0 Falls) - [[ X1 — Xalls11
+ (1 Xal[s+1 + [[X2lls+1) - |91 0 1 — ¢a 0 Bl
Thus
1250 Q%(X1,Y1, 1) — Zz] Q%(X2,Ya, 2)|s

< (I X ls1 + 1 X2 lls41) - [[ X1 — Xalls
+ (X1 lls + 1 Xalls) - [[ X1 — Xolls41
+ (IXalls+1 + [[X2l[s1) - [[¢1 0 F1 — @2 0 Fofs
+ (lo1 0 Fils + [|¢2 0 Falls) - [[ X1 — Xof[s+1-

q.e.d.

Our proof of the a priori estimates from which Theorem 6.1.5 follows
requires one more technical lemma. For k£ > 6 and € > 0 small, let
¢ € T¥(Def) and Xo € TE(TM) with ||¢|x < € and || Xo|| < e. Then
the map

T£§10 : F]cgoti(T(l,O)M) %Flgoti(T(l,o)M) 0 Z = Z+P (E(mre(Z), X0, 9))
is defined for all Z in a sufficiently small ball about the origin.

Lemma 6.2.6. There exists a sufficiently small € > 0 such that
the following holds. For all ¢ € T*(Def) and Xy € T, (TM) such

cont

that || Xollx < € and ||@|lx < €, the equation T(f}lo(Z) = W has a
unique solution Z € FkH(T(LO)M) such that || Z||x+1 < 2€ for all

cont
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W e FkH(T(LO)M) with ||W||k+1 < €. Moreover, the solution satis-

cont

fies the estimate || Z||kr1 < 2||W||gt1-

Proof. We first show that we can choose & > 0 so that the map
Z — P(E(mre(Z), X0, ¢)) is a contraction mapping in Flgj;th(T(l,o)M)

for || Z||k+1 < 0. To see this, first note that by Lemma 6.2.4, for ¢ €
I*(Def) with ||¢||r < C, for C sufficiently small, the estimate

H‘S’(X17X07¢) - g(X27X07¢)Hk
=< (I X1l + [ X2llk+1 + I © Follg) - [[ X1 — Xa|lx+1
holds for all X, Xy € T*YL(TM), with || X1 < C, j = 1,2. Thus,

cont

H,P(g(leXm (b)) - P(g(X27X07 (b))”k—l-l
< (I X1llk+1 + [ X2llkt1 + |9 o Follx) - [[ X1 — Xallkt1 -
Consequently, for 6’ > 0 sufficiently small,

1
[P(E(X1, Xo,9)) — P(E(X2, X0, 9))lkt1 < §HX1 — Xollk+1,

provided ||¢Hk < 5/7 ||XJH/€+1 < 5,7 J=12
Now choose § < ¢ so that ||mre(Z)||k+1 < ¢’ for || Z]|k4+1 < 0. Then
for X; = mre(Z;), j = 1,2,

1
IP(E(mRe Z1, X0, @) — P(E(TReZ2, X0, ®)) k41 < §HZl = Zollkt1,

provided || Z;|[541 < 9.

Finally, set ¢ = §/2. Choose any W € Flj;llt(T(Lo)M) and de-
fine the sequence Z,, n = 0,1,2,... inductively by Zy = 0, Z,+1 =
W — P(E(mre(Zn), Xo,)). Since £(0,Xo,¢) = 0, Z; = W. Conse-
quently, {Z,} is Cauchy with ||Z,+1 — Zn|lkr1 < %HZ,L — Zn—1llk+1-
Therefore, ||Zn|k+1 < 2||W|k+1. Thus, the sequence converges to
a solution Z of the equation Ty x,(Z) = W satisfying the estimate
| Z]lk+1 < 2|[W||g+1- Uniqueness of the solution follows from the con-

traction mapping property. q.e.d.

We are now able to obtain the a prior: estimates that we promised
and from which Theorem 6.1.5 follows.

Theorem 6.2.7. Fiz a smooth background embeddable CR structure
on M as above, and let

P Q(O’l) (H(LO)) — I

e t(TaoyM) and H : QOD(H ) — QD (H( )
be the linear operators of Corollary 5.2.10. Then for s > 6, there exists

€ > 0 such that the following holds:
Suppose that ¢ € T512(Def), X € TEFL(TM) (so Fyx) € DEFL(M)),

cont cont

Y € Vot and o € T'(Def) satisfy the conditions
AX =) =0, [Fagllss <, [6llosz <e, and € kerP.
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If the deformation tensor pu = F$(X)¢ — i0Y — 1) is contained in
D5t2(Def) and ||ulls+2 < €, then

Fyxy € DELS(M), Y € VP2, and 1 € T5T2(Def).

cont

Moreover, the following estimates are satisfied:

[Fwx)lls+3 = | Dlls+2 + [l plls+2
1Y lls+3 < 9lls+2 + [[plls+2
0] s42 < [[@lls42 + [[1tlls42 -

Proof. Substitution of the expression for F&k}( X)(b given in Proposi-
tion 4.1.12 in the formula for u gives

p=0X +¢oFyix)—idY —¢+E(X, X, )

where ¢ o F' and £ are defined as in (4.1.10) and (4.1.11).
We first prove that || X||s+3, [|Y]|s+3, and ||¥]|s+2 are finite. Applying
the operator P and using the hypothesis P(¢) = 0 gives

(6.2.8) P(p) = P(OpyX —i0Y) +P(po F) +P(EX, X, ).

Since p(X —iY) = 0, it follows that X —iY = P(0,(X — iY)), and
solving for X — Y in the last equation, we have:

(6.2.9) X —iY +PE(X, X, ) = Pl — do Fyx).

Next we “freeze coefficients” in (6.2.9). Let Xy —iYy = X —¢Y and
set W = P(u — ¢ o Fyx,)) € Fij,i(T(l,o)M). Choose € such that

Lemma 6.2.6 holds for K = s+ 1,s + 2,s + 3. Then Xy — Y} is the

unique solution in Fij,}t(T(l,o)M ) of the equation

(6.2.10) Thx(Z) =W for k=s+1.

We now perform the first of two bootstrapping steps. Notice that
¢ and g are small in I'**? and, hence, small in I'**!, and that X is
also small in I'**!. Consequently, the map Tg X, 18 defined for k =
s+ 2. Lemma 6.2.6 then shows that Equation (6.2.10) with k = s + 2

has a unique solution in I'$}2 (T1,0)M). It follows that Xo —iYp is in

cont
s+2
Fcont

[ X0 — iYolls12 < [[Wllsr2 < [t — ¢ 0 Fyxo)llse1 < lullss1 + [|llst1 -

The second bootstrap proceeds as follows. We now know that Xy and
¢ are both in T2 and that W = P(u — ¢ o Fy(x,)) is in [T, By our
choice of €, we can solve Equation (6.2.10) with £ = s + 3 to conclude
that Xg—1Yp isin Pi;;i(T(l,o)M)- Moreover, we have X —1Y = Xy —1Y)
with the a priori estimate

HX — ’L'YH5+3 =< ||,u||s+2 + ||¢Hs+2 .

(T(1,0)M). Lemma 6.2.3 then gives the a priori estimate
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Finally, since ¢ = F*¢ — i0,Y — p, it follows that 1 is in '**2 and
satisfies the a priori estimate

[Pllsv2 < llpllsrz + 10llst2 + 1 X sz + 1Y lss < [lullst2 + I@lls+2-

This establishes the a priori bounds, and hence the a priori estimates
for Fyy(x), Y, and 4. q.e.d.

Proof of Theorem 6.1.5. That Fy, Yy, and 1), are in the appropriate
spaces is an immediate corollary of Theorem 6.2.7. It remains only to
show that the map is continuous.

Choose smooth ¢; € T*2(Def) and p; € T'*T2(Def) such that

HH—) ¢ and p; HH—) p. By the analysis above, there exist X; €
‘Nls+2 Hls+2

TE3(TM), Y; € Vo713, and ; € T*+2(H') such that the contact diffeo-

cont

morphisms Fj = Fy(x;) € D31T3(M) satisfy the conditions

cont
i = Fio; —idyYy — 5, p(X;—iY;) =0,

with F; — F,Y; — Y, and ¢; — 1. By the a priori esti-

[I-llse1 I-llse1 II1l's
mates ||Fjlls4+2 < [[@jlls+1 + [l lls+15 (Y lls+2 < [[@5lls+1 + l1t]ls+1, and
1¥lls+1 < l|@5lls+1 + ||t |ls+1 established above, we note, in particular,
that F}, Y;, v; are bounded sequences in I'**2, I'**2 and T'**!, respec-

tively. Also note that, by continuity of composition, F} M—) F and
“lls+1

¢; — ¢ together imply ¢; o F} |—> polF.

\llil\‘f‘(:zow show that the sequence! ';gjl and Y; are Cauchy in T2 (T M).
We estimate || X; — X;||s42 as follows. Writing
1 =0p(X; —iY;)+¢joF; —v;+&  (see (4.1.10) and (4.1.11))
with Fj = Fy(x,), & = E(X;,Xj,¢;) yields the formula
f1j—pi = Op(X;—X;) =0 (Y —Y:) = (5 —1i) +(dj0F — pio F3) +(E— &) -

Applying the operator P and using the facts P(v;) = 0, PIy(X; — iY;)
= X; — 1Y} as above, gives:

Py — i) =P (06(Xj — Xi) — i0p(Y; — Vi)
+ P(djoFj—¢io F;) + P(E; — &)
=(Xj = Xi) —i(Y; = Yi) + P(¢; 0 Fj — ¢i o Fy) + P(€; — &)

Solving for (X; — X;) —i(Y; — Y;), we have:

(Xj = X;) —i(Y; = Y5) = Puj — i) — P(gjo Fj — ¢pio Fy) = P(E; — &)
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We can estimate the s 4+ 2 norm for (X; — X;) as follows, using our a
priori bound [|X||s4+2 < K on the sequence:

1 X5 — Xills+2 + 1Y — Yills+2
<X = X3) —i(Y) = Yi)[ls+2
<Py = pi)lls+2 + [1P(&j 0 Fj — ¢ 0 ) [[sq2 + [[P(Ej — &)ls+2
<My = wills+1 + 165 0 Fj — ¢y o Fil|s1 4+ €5 — Eills1
<Muj — pills+1 + 11 (@5 0 Fj — ¢i 0 Fy) [|s1
+ (1 Xills+2 + [ X;lls+2) - [(@5 0 Fj — ¢ 0 Fy)||s41
+ (g o Fills+1 + 165 0 Fills+1) - |1 X5 — Xills+2
+ (1 X [[s+2 + 1 Xills+2) - X5 — Xills+1
+ (12X [s1 + 1 Xl[s+1) - [ X5 — Xillst2
<Nwj = pillssr + 11 (@5 0 Fj — ¢i 0 Fy) [|s11 + K [[(¢5 0 Fj — ¢i o Fy)|ls+1
+ (185141 + 185 ls+1 1 5 lls + N[5l sl Fjlls1) - 1K — Xills+2
+ (I@ills+1 + [1@ills+1ll Fills + N @illsFills+1) - [1 X5 — Xills+2
+ K[| X — Xills+1 + Cl|X; — Xills42
<[y = wills+1 + |65 0 Fj — i o Fills41
+ K ([[(¢5 0 Fj — ¢i o Fy)|ls+1 + |1 X — Xills41) + ClIX; — Xills+2

For ||o|ls+1, ||ie||s+1 sufficiently small (that is, for C sufficiently small),
we can absorb the last term on the right-hand side to obtain an a prior:
estimate on the sequence:

1X5 — Xillsw2 <l — pillss1 + 1| (@5 0 Fj — @i o F3) ||s11
+ 11X = Xillsg1;
(X)) = (X)) [ls+2 <I[X5 — Xills+2
<M = wills+1 + [ (@5 0 Fj — ¢i 0 Fy) ||s41
+ 11X — Xillsg1;
1Y = Yills+2 <llpy — pills+1 + || (95 0 Fj — di 0 F5) [[s41
+ 1 X — Xillst1 -

Using the facts that ¢; o Fj, p;, and X; are Cauchy in I's*t1 we have
that X; and Y are Cauchy in I'**2 and that X;—+XandY; =Y in
rst2,

Bootstrapping one more time, using the facts that ¢; o I}, u;, and
X are Cauchy in I'**2, we have that X and Yj are Cauchy in I's*3 and
that X; - X and ¥; = Y in I'*+3. This establishes continuity of the
map in Theorem 6.1.5 and completes the proof of the theorem. q.e.d.
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