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CLOSED MAGNETIC GEODESICS ON S§2

MATTHIAS SCHNEIDER

Abstract

We give existence results for simple closed curves with pre-
scribed geodesic curvature on S?, which correspond to periodic
orbits of a charge in a magnetic field.

1. Introduction

The trajectory of a charged particle on an orientable Riemannian
surface (N, g) in a magnetic field given by the magnetic field form Q =
kdA, where k : N — R is the magnitude of the magnetic field and dA
is the area form on N, corresponds to a curve v on N that solves

(1.1) Di gy = k(7)Jg(v)7y

where Dy, is the covariant derivative with respect to g, and Jy(x) is
the rotation by 7/2 in T, N measured with g and the orientation chosen
on N. A curve v in N that solves (1.1) will be called a (k-)magnetic
geodesic. We refer to [4, 12, 6] for the Hamiltonian description of the
motion of a charge in a magnetic field. Taking the scalar product of
(1.1) with 4, we see that if v is a magnetic geodesic, then (v,%) lies on
the energy level E, := {(z,V) € TN : |V|; = c}.

The geodesic curvature kq(v,t) of an immersed curve vy at ¢ is defined
by

kg (7:t) = (0, *((Degh) (£), Ng(7(1)) -
where Ny(v(t)) denotes the unit normal of v at ¢ given by

. -1 .
No(v(t) == [3(B)lg " Jg(v(£))3(2).-

By (1.1), a nonconstant curve v on F, is a k-magnetic geodesic if and
only if its geodesic curvature kgy(,t) is given by k(vy(t))/c. We will take
advantage of the latter description and consider the equation
(1.2) Dy gy = [¥1gk(7)Jg(7)7-
We call equation (1.2) the prescribed geodesic curvature equation, as its
solutions v are constant speed curves with geodesic curvature kq(v,t)

given by k(vy(t)). For fixed k and ¢ > 0 the equations (1.1) and (1.2) are
equivalent in the following sense: If v is a nonconstant solution of (1.2)
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with k replaced by k/c, then the curve t — ~(ct/|¥|y) is a k-magnetic
geodesic on E. and a k-magnetic geodesic on E. solves (1.2) with k
replaced by k/c. We emphasize that unless & = 0, the solutions of (1.1)
lying in different E, are not reparametrizations of each other.

We study the existence of closed curves with prescribed geodesic cur-
vature or equivalently the existence of periodic magnetic geodesics on
prescribed energy levels E..

There are different approaches to this problem: the Morse-Novikov
theory for (possibly multivalued) variational functionals (see [30, 24,
29]), the theory of dynamical systems using methods from symplectic
geometry (see [15, 14, 11, 4, 12, 13, 26]), and Aubry-Mather’s theory
(see [6]).

We suggest a new approach: instead of looking for critical points
of the (possibly multivalued) action functional, we consider solutions
to (1.2) as zeros of the vector field X}, , defined on the Sobolev space
H%2(S', N) as follows: For v € H*?(S', N) we let X}, ;(v) be the unique
weak solution of

(1.3) ( - Dt2,g + 1)Xk,g(’Y) = =Dy oy + [F|gk(7) Jg(7)F

in T,H 22(S1 N). The uniqueness implies that any zero of Xpiyg is a
weak solution of (1.2) which is a classical solution in C%(S*, N) applying
standard regularity theory. The vector field X , as well as the set of

solutions to (1.2) is invariant under a circle action: For § € S! = R/Z
and v € H?>?(S', N) we define 6 x v € H>2(S', N) by

0 x~(t) =~(t+0).
Moreover, for V € T, H*?(S', N) we let
0V :=V(-+0) € Ty, H**(S', N).

Then Xj, 4(0%7) = 0% X}, 4(7) for any v € H*?(S', N) and € S*. Thus,
any zero gives rise to an S'-orbit of zeros and we say that two solutions
y1 and 7, of (1.2) are (geometrically) distinct, if St * 1 # S* * 0.

We will apply this approach to the case N = S?, equipped with a
smooth metric g, and k a positive smooth function on S?. We shall
prove

Theorem 1.1. Let g be a smooth metric and k a positive smooth
function on S%. Suppose that one of the following three assumptions is
satisfied:

(1.4) 4inf(k) > (inj(g)) ™ (27T + (sup K )vol (S%9)),

(1.5) K, >0 and 2inf(k) > sup(K,)z,
(1.6) sup(K,) < 4inf(K,),
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where Ky denotes the Gauss curvature, K, := —min(Kg,0), and inj(g)

denotes the injectivity radius of (S%,g). Then there are at least two
simple solutions of (1.2) in C%(S!,S?).

Concerning the existence of closed k-magnetic geodesics for a positive
smooth function k on (52, g), the following is known (see [11, 12]):

(i) if ¢ > 0 is sufficiently small, then E. contains two simple closed
magnetic geodesics;

(ii) if ¢ is sufficiently close to the round metric go and k is sufficiently
close to a positive constant, then there is a closed magnetic geo-
desic in every energy level E;

(iii) if ¢ > 0 is sufficiently large, then E. contains a closed magnetic
geodesic.

Using the equivalence between (1.1) and (1.2), we obtain from Theorem
1.1

Corollary 1.2. Let g be a smooth metric, k a positive smooth func-
tion on S?, and ¢ > 0. Suppose that one of the following three assump-
tions is satisfied:

(17) e < 4(int(b) (injle)) (2 + (sup K Juol(5% )
(1.8) Ky >0 and ¢ < 2inf(k)(sup(K,)) 2,
sup(Ky) < 4inf(K).

Then E. contains at least two simple closed magnetic geodesics.

NI

Condition (1.7) should be compared to the existence results in (7)
and gives bounds on the required smallness of ¢ in terms of geometric
quantities. To show that (1.7) is useful despite the implicit definition
of inj(g), we apply an estimate of inj(g) in [18] and obtain (1.8) as a
special case. The pinching condition (1.6) extends the existence result
in (i7) and shows, for instance, that on the round sphere there are two
simple closed curves of prescribed geodesic curvature k for any posi-
tive function k, which gives a partial solution to a problem posed by
Arnold in [5, 1994-35,1996-18] concerning the existence of closed mag-
netic geodesics on S? on every energy level E..

By the famous Lusternik-Schnirelmann theorem, there are at least
three simple closed geodesics on every Riemannian two sphere (52, g).
As a by-product of our analysis we show that, in general, even if k
is very close to 0, there are no more than two simple closed magnetic
geodesics on S% in F; (see also [14, sec. 7]).

Theorem 1.3. Let gy be the round metric on S*. For any positive
constant ko > 0 there is a smooth function k on S?, which can be chosen
arbitrarily close to ko, such that there are exactly two simple solutions

of (1.2).
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The proof of our existence results is organized as follows. After setting
up notation in Section 2 and introducing the classes of maps and spaces
needed for our analysis, we define in Section 3 a S'-equivariant Poincaré-
Hopf index or S'-degree,

XSI(X7M) €7,

where M is an Sl-invariant subset of prime curves in H%?2(S*, %) and
X belongs to a class of S'-invariant vector fields. The index x g1 (X, M)
is related to the extension of the Leray-Schauder degree to intrinsic
nonlinear problems in [32, 9] and is used combined with the a priori
estimates in Section 6 to count simple periodic solutions of (1.2). We
remark that the standard degree x(X, M), which does not take the S*
invariance into account, vanishes as it detects only fixed points under
the Sl-action, i.e. constant solutions. Equivariant degree theories have
been defined and applied to differential equations by many authors; we
refer to [16, 10, 8, 17, 7] and the references therein. However, we do
not see how to apply these results directly to (1.2).

The vector field X}, , corresponding to the prescribed geodesic curva-
ture problem falls into the class of vector fields, where our S'-degree is
defined. In Section 4 we show that the S'-degree of an isolated zero orbit
of X 4 is given by —i(P,0), where i(P,f) denotes the fixed point in-
dex of the Poincaré map of the corresponding magnetic geodesic. Since
the Poincaré map is area preserving, we obtain from [27, 23] that the
Sl-degree of an isolated zero orbit is bounded below by —1.

Section 5 is devoted to the computation of x g1 (X, 40, M), where ko
is a positive constant, go is the round metric of S2, and M is the set of
simple regular curves in H22(S', 5%). We call equation (1.2) with k = kg
and g = go the unperturbed problem, which is analyzed in detail. The
set of simple solutions to the unperturbed problem is given by circles
of latitude of radius (1 + k:g)_l/ 2 with respect to an arbitrarily chosen
north pole. To compute the S'-degree we slightly perturb the constant
function kg and end up with exactly two nondegenerate solutions of
degree —1. This implies that x g1 (X0, M) = —2.

Section 6 contains the a priori estimates showing that the set of sim-
ple solutions to (1.2) is compact in M under each of the assumptions
(1.4)—(1.6). Together with the perturbative analysis in Section 5, this
yields the proof of Theorem 1.3 and allows us to construct an admissible
homotopy of vector fields between Xy, 4, and X} , whenever k and g
satisfy the assumptions of Theorem 1.1. The homotopy invariance of
the S'-equivariant Poincaré-Hopf index then shows

Xst (Xky’ M) = xs1 (Xko,gov M) = -2.
Since the S'-degree of an isolated zero orbit is always larger than —1,

there are at least two simple solutions of (1.2). The existence result is
given in Section 7.
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2. Preliminaries

Let S? = 0B;1(0) C R? be the standard round sphere with induced
metric go and orientation such that the rotation Jy,(y) is given for y €
S2 by

Jyo (y)(v) :=y x v for all v € T,,S?,

where x denotes the cross product in R3. If we equip S? with a general
Riemannian metric g, then the rotation by 7/2 measured with g is given
by

Jg(y)v = (G(y))_ngO(y)(G(y))v Yo € TyS2,

where G(y) denotes a positive symmetric map G(y) € £(T,S?) satisfy-
ing

<U7w>Ty52,g = <G(y)’U, G(y)w>TyS2,go Vo, w € Ty52-
We consider for m € Ny the set of Sobolev functions
H™2(S' 8%) .= {y € H™*(S',R?) : 4(t) € dB1(0) for a.e. t € S'}.

For m > 1 the set H™2(S!,5%) is a sub-manifold of the Hilbert space
H™2(S1 R3) and is contained in C™~1(S! R3). Hence, if m > 1 then
v € H™2(S1, 5?) satisfies v(t) € B1(0) for all t € S'. In this case the
tangent space T, H™?(S',5?) of H™?(S', S%) at v € H™?(S!,5?) is
given by

T»YHm72(Sl,S2) = {V c Hm’2(Sl,R3) . V(t) (= T’y(t)52 for all ¢ S Sl}

For m = 0 the set H%?(S', ) = L?(S*, S?) fails to be a manifold. In
this case we define for v € H?(S!, §?) the space T, L*(S', S?) by

T,L*(S",8%) == {V € L*(S",R?) : V(t) € T,)S” for ace. t € S'}.

A metric g on S? induces a metric on H™?(S', S?) for m > 1 by setting
for v € H™2(S1,8%) and V, W € T, H™?(S', 5?)

((=1)-3(Deg)™ + 1)V (),

(O FD)" + )W)

<W/, V>TWH7”’2(SI,SQ),g = /Sl

where Lm /2. denotes the largest integer that does not exceed m/2.
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Let X be a differentiable vector field on H?2(S', 52?). Then the co-
variant (Frechet) derivative DyX,
Dy,X : TH**(S*,S?)) — TH**(S, 5%),
of the vector field X with respect to the metric induced by g is defined

as follows: For v € H*%(S',5?) and V € T,,H*%(S', S?) we consider a
Cl-curve

(—€,6) 35— v, € H*?(S',5?)
satisfying

d
Yo =7 and d_’Ys‘SZO - V,
s
and define
Dy X1, [VI(#) i= Doy (X (3(1) ) ls=o.

For the vector field theory on infinite dimensional manifolds, it is con-
venient to work with Rothe maps instead of compact perturbations of
the identity, because the class of Rothe maps is open in the space of lin-
ear continuous maps. We recall the definition and properties of Rothe
maps given in [32] for the sake of the reader’s convenience. For a Ba-
nach space E, we denote by GL(F) the set of invertible maps in L(E),
and by S(E) the set

S(E)={T €GL(E): tT+ (1—-t)I) € GL(E) for all t € [0,1]}.
Then the set of Rothe maps R(FE) is defined by
R(E)={AcL(E): A=T+C, T € S(F) and C compact}.

The set R(E) is open in L(E) and consists of Fredholm operators of
index 0. Moreover, GR(F) := R(E) N GL(FE) has two components,
GR*(E), with I € GRT(E). For A € GR(E) we let

+1 if Ae GRT(E),
sgnA = ) _
-1 ifAeGR™(E).
If A=1+C € GL(E), where C is compact, then A € GR(E) and sgnA

is given by the usual Leray-Schauder degree of A.
Since g and k are smooth, X}, 4 is a smooth vector field (see [31, sec.

6]) on the set H?éZ(S 1,582 of regular curves,

H%2(8,8%) = {y € H**(S',S8%): #4(t) #0 for all t € S'}.

reg

To compute Dy X}, 44(V) we observe

Dyg( = Diy+ 1) Xpg(15)) = Dsg(— Drg¥s + Hslgh(7:) Ty (75)%s)

2 drys (d’ys .
g

= _Dt,gg - E’%)% + D&g(|75|gk(78)t]g(’73)'.73)-
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Evaluating at s = 0, we obtain
D, (( Dtg"i_l)ng(’Ys))‘s 0
= _Dt gV R ( 7/7)/7"1' |7|g <Dt,gV >gk(7)*}g(7)7
+ "Y’g(k/ )J (V)Y + 1Ylgk(y )(Dng’VV)"}’
(2.1) 1314k (1) Ty (1) Dy V.
Moreover, we have
DS,g((_D?,g + 1)Xk,g('78)) |s=0
= _DS,gD?,ng,g(%HSZO + DS,ng,g(Vst:O
= (= D2y + 1)Dy X g (V) = Dy (B (Vi4) X (1))
(2.2) — Ry(V,%) Dty X g(7)-
Equating (2.1) and (2.2) at a critical point v of X}, 4 leads to
(=Diy +1) Dy X gly(V)
= =D}V = Ry(ViA)d + Iy (Deg Vi 4) gk (1) Jg ()3
+ \’Y!g(k’( W) Tg(7)F + 141k (V) (Dg Ty, V)
(2.3) + [ Y1gk(7)Jg(7) Dr,g V.
We note that (see also [32, thm. 6.1])
( - Dt%g + 1)D9Xk7g‘v(v) = (_th,g + 1)V + T(V),

where T is a linear map from T, H*?(S', %) to T,L*(S', S?) that de-
pends only on V' and its first derivatives and is therefore compact. Tak-
ing the inverse (—D7, + 1)7!, we deduce that DyX} g|, is the form
identity + compact and thus a Rothe map.

For m > 1 the exponential map Exp, : TH™?(S!,5%) — H™2(S!, 5?)
is defined for v € H™?(S,5?%) and V € T, H™?(S1, $?) by

Eapy g(V)(t) 1= Eapy 4V (1),

where Fxp, , denotes the exponential map on (S2,9) at z € S%. Due to
its pointwise definition,

0 x Expy g(V)(t) = Expgay,q(0 x V)(1).

3. The S'-Poincaré-Hopf index

For v € H*?(S',5?) we define the form wy(y) € (T, H>?(S', 5%))*
by

1
(V) : = /0 G0, (= (Dig)? + D)V (1))t

= (%, V)1, H12(51,5%) 9



350 M. SCHNEIDER

Approximating % by vector fields contained in T, H??(S1, S?), it is easy
to see that wy(y) # 0, if v # const. If v € H3%(S1,5?), then w,(y)
extends to a linear form in (75, L*(S1, 5?))* by

we(N(V) 1= (= (Drg)* + 1)%, V)1, 12(51,52).9-

From Riesz’ representation theorem there is Wy(y) € T, H?%(S!,5?)
such that

we(N (V) = (V,Wy(N)1, m22(s1,52),4 YV € T, H**(S',5%),
and
(3.1) (W)= = (-1 n o, H*2(8Y, 82).

Hence
Wy(7) = (—=(Deg)* +1)715
and W, is a C? vector field on H>2(S1, $?).

The form wy(7y) and the vector W, (7) are equivariant under the S*-
action in the sense that for all € S' and V € T,, H??(S1, $?) we have

Whsry,g (0 % V) = wy(7) (V) and Wy, = 0 x Wy(y).
Using the vector field Wy, we define a vector bundle SH?2(S*, S?) by
SH>?(S',8%) := {(v,V) € TH**(S',S8%) : v # const, V € (W,(7))*}.
Note that SH?*2(S!, S?) is S'-invariant, as
(v, V) e SH*?(S1,5%) — (0 *~,0+V) e SH*?(S', S?) vo e S'.
For v € H?2(S',5?)\ {const} we consider the map
Vo gt Ty H?2(SY, S%) x T,H*?(S*,5%) — SH**(S*, $%)

defined by
(32) 1y g(V,U) = (Ea:p%gv, Projw, (zep, v+ (DExp%g’VU))'
The differential of ¢, 4 at (0,0) is given by
Db l00)(VaU) = (V.U = [[Wy ()| ~2U, W), 255210 W)
Consequently, there is § = 6(, g) > 0 such that 1, 4 restricted to

Bs(0) x Bs(0) N (W, ()" ¢ T,H**(S', S%) x T, H**(S*, 5?)

is a chart for the manifold SH?2(S!, S?) at (v,0). The construction is
Sl-equivariant, for

Vg (0% V,0 5 U) = 0 x4, o(V,U) VO € S*
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and we may choose 6(,g) = 6(f *~,g) for all # € S*. Shrinking 6(7, g)
we may assume, as Fxp, 4 is also a chart for HR2(S1, 8?) with 1 < k < 4
and by (3.1),

(3.3)
X 1,2
TE:cpw,g(V)Hm(Slv 52) = <DtE33p%g(V)> S3) DExp%yW((’ﬁl’H )s
(3.4)
Trap, o H*2(S", 8%) = (Wy(Eapyg(V))) ® DExpy gy (We(7))"),
(3.5)
Proj (1w, (Bap, ()~ © DExpyglv o (We(v)T = (Wy(Bxp, (V)™

and the norm of the projections corresponding to the decompositions in
(3.3) and (3.4) as well as the norm of the map in (3.5) and its inverse
are uniformly bounded with respect to V.

The S'-action is only continuous but not differentiable on H?2(S!, 5?)
as, for instance, the candidate for the differential of the map 6 — 0%~ at
6 =0, ¥, is in general only in T, H1?(S*, S%). We prove the existence of
a slice of the Sl-action (see [19, lem. 2.2.8] and the references therein)
at a curve v with higher regularity and obtain additional differentiability
of the slice map.

Lemma 3.1 (Slice lemma). Let v € H>%(S',S?) be a prime curve,
i.e. a curve with trivial isotropy group {6 € S : O~y =~}. Then there
is an open neighborhood U of 0 in T7H2’2(Sl, S?), such that the map

Sg 0 St xUN (We(y)) - — H>*(S', 5?),
defined by
¥y g(0,V) = 0x Expy 4(V),

is a homeomorphism onto its range, which is open in H?*2(S' S?).
Moreover, the inverse (3. ,)"! satisfies

Projss o (S1,0) ™" € C2(3,4(S" x U0 (W, (1)*), ).
Proof. Fix a prime curve v € H32(S!,5%). We consider for 6y > 0
the map
E, 4 Bs,(0) x Bs,(0) C R/Z x T, H**(S*,5?) - R
defined by

F,40,V) :=we(v) <Exp;i] (6 = E$p%g(V))>.

Note that, as S' acts continuously on H??(S',S?) and Ezxp,, is a
local diffeomorphism, after shrinking 6y > 0 the map F, , is well de-
fined. FExp, 4 is a smooth map, such that for fixed 6 the map V
F, 4(0,V) is also smooth. Moreover, since Exp, (V) is in H*?(S!, 5?)
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and DExp, 4|y maps L? vector fields along v into L? vector fields along
Ezxp, 4(V), the map

0 — Ea;p;é (9 * Exp%g(V))

is C? from By, (0) C R/Z to T, L*(S!,5?), the space of L? vector fields
along v. For v € H*?(S!,5?) the form wy(y) is in (T,L*(S, S%))*.
Thus, 0 — F,4(0,V) is C? as well as F,,. Fix V € T,H>%(S1, $?).
Since
DGny,g|(0,0) = WQ(V)(’V)’ #0,

by the implicit function theorem and after shrinking §y > 0 we get a
unique C?-map

09t Bs,(0) € T,H*?*(S*,S%) — Bs,(0) CR/Z
such that

E, 4(04,4(V),V) =0 in Bs,(0) C T, H**(S', S?).

Hence, we may define locally around ~

Vygla) : = Ea:p;é(a%g(Ea;p;;(a)) * Q) € <Wg(’y)>l.
Using the uniqueness of 0., 4 and the fact that v is prime, it is standard
to see that X, 4 is injective and that the inverse is given locally around
0o * v for fixed y € S by
Ey_,i] = (00,0) + (=04 40 Exp;i] o (=box), V5,4 0 (—00%)).
This finishes the proof. q.e.d.

We will compute the Poincaré-Hopf index for the following class of vec-
tor fields.

Definition 3.2. Let M be an open S'-invariant subset of prime
curves in H>?(S1,8%). A C? vector field X on M is called (M, g,S")-
admissible, if

(1) X is S'-equivariant, i.e. X(0%7y) = 0xX () for all (6,7) € S*x M.

(2) X is proper in M, i.e. the set {y € M : X(y) =0} is compact.

(3) X is orthogonal to W, i.e. wy(v)(X(v)) =0 for all v € M.

(4) X is a Rothe field, i.e. if X(S' xv) =0 then
DyX|, € R(T,H**(S",5%)) and Projyy, ()2 © DgX |y € R(Wy(7))™H).

(5) X 1is elliptic, i.e. there is € > 0 such that for all finite sets of
charts

{(Bapy, g, B2s,(0) : v € HY?(S', %) for 1 <i <n},
and finite sets

{Wz S T«/Z.H4,2(Sl’5'2) : ||Wi||TWH4v2(Sl,S2) <e fOT 1< < ’I’L},
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there holds: If o € .61 Exp., 4(Bs,(0)) C H*>2(S1,5?) satisfies

X(a) =Y Projuy, (o)~ © DExpy; gl paps1 (@) (Wi)
i=1

then o is in H¥2(S', S?).
Property (4) does not depend on the particular element ~ of the
critical orbit S' * «y, because from 0 * X (v) = X (6 * y) we get
(3.6) Dy X |y = (—6%) 0 Dy X|gsy 0 (0%),

and Rothe maps are invariant under conjugacy. Concerning the reg-
ularity property (5), taking W; = 0, we deduce that if X(y) = 0
then v € H*2(S!,5%). Furthermore, if v € H%?(S!,5?) then the map
0 — 0%~ is C? from S* to H>2(S', S?). Hence, if X () = 0 then

(3.7) 0= Dg(X (0 *7))lo=0 = Dy X[ (¥),

such that the kernel of D,X|, at a critical orbit S* %~ is nontrivial.
The parameter £ > 0 ensures that (5) remains stable under small per-
turbations used in the Sard-Smale lemma below. If X is a vector field
orthogonal to Wy and X (y) = 0, then

0= D(<X(04)a Wg(a»TQHZ’Q(Sl,Sz),g)"Y = (DgXHa Wg(’Y)>T7H2»2(Sl,52),g
where the various curvature terms and terms containing derivatives of
W, vanish as X (v) = 0. Thus, X(v) = 0 implies

(3.8) DyX|, : T,H**(S',5%) — (W,())*,

and the projection Projyy, )+ in (4) is unnecessary.

Lemma 3.3. The vector field Xy, ; defined in (1.3) is S*-equivariant,
orthogonal to Wy, elliptic, and a C?-Rothe field with respect to the set
Hfé%](Sl, S?) of regular curves.

Proof. From Section 1 and Section 2, the vector field Xy, is Sl
equivariant and a C?-Rothe field. Furthermore, we obtain for a €

H2’2(Sl, 52)

(Xg(), Wy(a))r, m22(s1,52),9 = /31 (6(t), (=D, + 1) Xy g(a)(t)) g dt
= [ 600, =Drste) + la(0) k(0 (0) T, (ale) (1)
: : 1d,. .
= _/Sl (a(t), Dia(t))g dt = — /1 §E<a,a>g dt = 0.

S
To show that X}, , is elliptic, we fix

{(y, W;) € TH"(S',8%) : W; € Bs,(0), 1 <i <n},
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where (Exp-, 4, B2s,(0)) is a chart around +;, and o € ,r_rﬁl Exp., 4(B5,(0))

satisfying
X g(x ZPI‘OJ Wo(a))L © DEa;p%g\Exp )(WZ)
i=1
Then
Dt g — [@lgk() Jg(@)d
= (=D}, +1) ) _ Projuy, (o)t © DExpy, 4l Bapty () (Wi)-
i=1

We fix 1 < i < n and get
Dt2 GProjw, W, (o))t ODExp%g|Exp 1 (a)(W)
- Dtg(DE‘Tp’Yug’E:cp WZ))

<DExp’Yz,9’Emp ( )7 g( )>Dt2,gWg(a)7

as well as
D2 (DExp%g|Exp*1 (a )(WZ))(t)
= D*Expy, ) 4| ol Bapsl, @) D} Expy! (a)(t)(Wi(t)) + Rui,(t)
= D2E:17p% |Emp e )(t)D(Exp%(t),g)_l|a(t)Dt,gd(t)(Wi(t))
+ Ry,i(),
where Ry ; and Ry ; consist of lower order terms containing only deriva-

tives of o up to order 1 and derivatives of ; and W; up to order 2. Thus
« is a solution of

(1= A@)) Dt gc = |d|gh(e) Jy(a)d + R(t)

(39) =S ADEpy gt ) (W), Wy(@))(~DFy + DWy(a),
i=1

where R contains only derivatives of a up to order 1 and derivatives of

~v; and W; up to order 2, and A(t) € L( a(t)S ) is given by

n
Vi Z D2E~Tp%-(t),g‘Exp;i{g(a)(t)(D(Exp%(t),g)_l‘a(t)v)(wi(t))-

i=1
Since H?2-bounds yield L*>°-bounds, choosing max ||W;|| small enough
independently of {v;} and «, we may assume [|A(t)|| < 1 and A is of
class H?? with respect to t. Since v; and W; are in H*? and (—Dt%g +
)W, (a) = &, the right hand side of (3.9) is in H%2. By standard
regularity results, o is in H>2, such that the right hand side of (3.9) is
in H??, which yields o € H*2. Consequently, X} g is elliptic. q.e.d.
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Definition 3.4. Let M be an open S'-invariant subset of prime
curves in H>?(S',S2), S'xv C M, and X an (M, g, S")-admissible
vector field on M.

The orbit S* * v is called a critical orbit of X, if X (v) = 0.

The orbit S'*~ is called a nondegenerate critical orbit of X, if X (v) =
0 and
(3.10) DyXly o (W)™ = (Wy(7))*

s an isomorphism.

If SY %~y is critical, then using the chart ¥, , given in (3.2) we de-
fine, after possibly shrinking 6 > 0, a map X7 € C?(Bs(0) N (W, (7)),
(Wy(1))™) by
(3.11) X7(V) := Projy o zﬁ;; (Exp%g(V), X(Exp%g(V))),

where Proj, denotes the projection on the second component.
The orbit S* * ~y is called an isolated critical orbit of X, if X(y) =0
and V =0 is an isolated zero of X7.

The nondegeneracy of a critical orbit does not depend on the choice
of v in St % .

Lemma 3.5. Under the assumptions of Definition 3.4, a tangent
vector V€ Bs(0) N (Wy(y))* is a (nondegenerate) zero of X7 if and
only if S*x Exp, 4(V) is a (nondegenerate) critical orbit of X.

Proof. From the fact that X (Exp, 4(V)) L Wy(Exp, 4(V)), we get
XN(V)=0<+= X(Expy4(V)) =0.
Moreover, if X7(V') =0, then
DX"|y = Projy 0 DY 1| (Eap, ,(v)0)
o (DEzpy4lv, DyX|pap. vy 0 DExpyglv)

=A"1o DQX‘E:BP«,,Q(V) o DExp~ 4|v,

where A : (Wy(7))t — (Wy(Ezp, 4(V))* is given by
A = Projw, (Bap, ,(v))- © DETpyglv.

By (3.5) the map A is an isomorphism. Consequently, the map DX7|y
is invertible, if and only if

(3.12)
DgX‘Expy,g(V) o DExpy4lv <VVg(El’p%g(V)>L — <VVg(Ew%g(V))>L

is an isomorphism. The injectivity in (3.12), (3.3), and (3.7) implies that
the kernel of the map D,X| Eap.4(v) 18 one dimensional and given by
(DiExpy 4(V)). As DyX|gap. (v is a Rothe map and thus a Fredholm
operator of index 0, we deduce that (3.12) implies the nondegeneracy
of Exp, 4(V). If (3.10) holds with v replaced by Exp, 4(V), then the
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kernel of Dy X| g, (v is one dimensional, and from (3.3) we infer that
(3.12) holds, which finishes the proof. q.e.d.

Definition 3.6. Let g, for t € [0,1] be a family of smooth metrics on
S2, which induces a corresponding family of metrics on H>2(S1,5?),
still denoted by g;. Let M be an open S'-invariant subset of prime
curves in H>2(S',S?) and Xo, X1 two vector-fields on M such that X;
is (M, g;, S')-admissible for i = 0,1. A C? family of vector-fields X (t,-)
on M fort € [0,1] is called an (M, g¢, S*)-homotopy between Xo and
X17 Zf

e X(0,) =Xp and X(1,-) = X,

o {(t,y) €[0,1] x M : X(¢t,v) =0} is compact,

o X;:= X(t,-) is (M, g;, S*)-admissible for all t € [0,1].

We write (M, g, S*)-homotopy, if the family of metrics g; is constant.

If X is an (M, g;, S')-homotopy, then differentiating

(X(t7), Wy, (V) 1, 22(51,52),9, = O
we see as in (3.8) for (tp,v0) € X~1(0),
(3.13) Dy Xty : R x Th H¥?(S',5%) — (W, (70)) 9.
Moreover, analogous to (3.11), there is § > 0 such that
X'too € 02(35@0) X B(S(O) N <Wgt0 (/70)>J_’gt07 <Wgt0 (70)>J_7gt0)7
where

Xt07“/0 (tv V) = PI‘Oj3 ° w«;)l,to (tv E$p“{o,gt0 (V)v X(ta E$p“{o,gt0 (V))) ’
and 1, 4, is a chart around (9,70, 0) of the bundle

S[O,l]H2’2(Sl,S2) = {(t,7,V) €[0,1] x TH**(S1,5?) : ~ # const

and V € (W, (7))},
defined in a neighborhood of (tp,0,0) in
[0,1] x T H*2(S1,5%) x (W, (70)) %0
by
(3.14)
Ur o (8. V,U) = (t, Bxpy,g,, Vi Projoy,, (Bape gq, V)40t (DEzpy g, [vU)).

Definition 3.7. Let X be an (M, g;, S')-homotopy and (to, S*x~g) €
[0,1] x M. The orbit (to, S* *¥o) is called a nondegenerate zero of X,
if X(to,70) =0 and

(3.15) DyXl(ty,0) = R X Wy (70)) 190 = (W, (7))o
18 surjective.

Analogously to Lemma 3.5, we obtain for a homotopy X.
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Lemma 3.8. Under the assumptions of Definition 3.7, the tuple
(t,V) in Bs(to) x Bs(0) N (W, (7)) %% is a (nondegenerate) zero of
X0 if and only if the orbit (t, St * Expyg g, (V') s a (nondegenerate)
zero of X.

We give an S' equivariant version of the Sard-Smale lemma [28, 25].

Lemma 3.9. Let M be an open S'-invariant subset of prime curves
in H>2(S1,5%) and X an (M, g, S*)-admissible vector field on M. Let
U be an open neighborhood of the zeros of X. Then there exists a
(M, g, S*)-admissible vector field Y such that Y has only finitely many
1solated, mondegenerate zeros, Y equals X outside U, and there is an
(M, g, S*)-homotopy connecting X and Y .

Proof. As X is proper and X~1(0) ¢ H*2(S", S?) using Lemma 3.1
we may cover X ~!(0) with finitely many open sets

X_l(o) C igl St Efppvi,g(Béi(O) N <Wg(%‘)>l),
U St Brpy, o(Bss, (0) N (Wy(3))™) < U,

where §; > 0, the slice £, , is defined in ST x Bss, (0), and X7 is defined
in Bss, (0) N (Wy(y))t fori=1,...,n.

Then DX7i|g is in R((W,(v:))*), which is open in L((W,(y:))1).
Thus DX |y remains a Rothe map for V close to 0 and consequently
a Fredholm operator of index 0. As Fredholm maps are locally proper,
we may assume for all 1 < ¢ < n that the map X" is proper and Rothe
on Bags, (0) N (W ()t ie.

DX |y € R(Wy(3))'") ¥V € Bay, (0) N (W, ()
Bas, (0) N (Wy(3))" 1 (X7) 7 (K) is compact

for all compact sets K C (Wy(v;))*.
To construct Y, we proceed step by step and construct Y such that
(i) Y; equals X outside L/_ St « Exp., o(Bas, (0) N (Wy (7)) L),

ii) Y.71(0) is a subset of
J

U %% Eapy, (Bs, (0) N (W (30))),
(iii) the critical orbits of Y; in
J -
0 "+ Eapy, y(B5 (0) N (W (30))),
are isolated and nondegenerate.

Since each X is proper, || X (+)|| is bounded below by a positive constant
in

U1 St % Bapy, g(Bas, (0) \ Y S % Bapy, 4(Bs, (0).
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Consequently, (i¢) remains valid for all small perturbations of X.

We start with Yy := X. In the jth step we consider Y;/_]l By the
Sard-Smale lemma there is V; € (Wy(v;))=NT,, H*?(S*, 5?) arbitrarily
close to zero, such that Y]V_Jl—l—V] has only nondegenerate zeros in By, (0)N
W, ()

Since v; € H*2(S!,5?), the map 6 — 0x~; is in C?(St, H*2(S!, 52))
and S! x 7; is a C? sub-manifold of H*%(S1,5?). Shrinking &; > 0,
we may assume the distance function dgy(-, S! x v;) in the Riemannian
manifold H??2(St, S?) satisfies

dg (-, St ’Yj)z S 02(51 * Expvj7g(B25j(0) N <Wg('}’j)>l)7R)a
and there are €;1,€52 > 0 such that the set
{y € 8" % Exps, g(Bas, (0) N (Wy(y)) )« g1 < dg(v, 8" % y5) < gj2}
is contained in
St Bapy, o ((Bas; (0) \ Bs; (0)) N (W (7;))").

We take a cut-off function n € C2°(R, [0,1]) such that n = 1 in [0,&;1]
and 7(z) =0 for > ;5. Using Lemma 3.1, we define

0; € C*(S"  Bxpy,,4(Bas; (0) N (Wy(;))*), 8%

by 6; := Projg: o (E%g)_l and the vector field Y; on M by
Yi(v) = Yj-1(7),
if ¥ & ST * Exps, g(Bas, (0) N (Wy(v5))+) and

Y;(v) = Yima(y)+n(dg (v, 8 % 75))
PI'Oj2 © ij (7)*v;,9 (Expg_Jl(ﬁ/)*% ,g(fY)a 9] (’Y) * ‘/})7

if ¥ € St Expy, o(Bas, (0) N (Wy(7;)) ).

Note that the map 6 — (6 xv;,0 % V;) is in C?(St, TH>2(S', 5?)) as
(v, V;) € THY2(S,5?). Tt is easy to see that Y; is an S! equivariant
C? vector field, which is orthogonal to W, by construction. If ||V}]|
is small enough, then (i)-(iii) continue to hold for Y; as well as the
Rothe property, because Rothe maps and nondegenerate critical orbits
are stable under small perturbations. Moreover, cos(t)?Y;_1 + sin(t)%Y;
is proper for any ¢ € [0, /2], because cos(t)2Y;_1 +sin(¢)?Y; equals Yj_y
outside S! * Exp.; o(Bas; (0) N (Wy(v;))1), which is proper, and the ze-
ros of cos(t)2Y;_1 + sin(t)?Y; inside S* * Exp,; ¢(Bas, (0) N (Wy(y;))*)
are contained in the compact set S Emp%g((Yﬁl)_l([O, 11V;)). If
Y;_1 is elliptic with constant €;_; > 0, then taking ||V}|| small enough,



CLOSED MAGNETIC GEODESICS ON §2 359

cos(t)2Yj_1 + sin(¢)?Y; remains elliptic with constant e; = ¢;_1/2, be-
cause Yj(7) and Y;_i(v) differ only by

APTOjw, (3))+ © DEwpg, (4 (0300 % V5),

where A € [0,1] and 6;(7) *v; and 6;(7) * V; are in H*2.
For j = n we arrive at the desired vector-field Y. q.e.d.

IS
5.9 Emp@j(v)*'v]ng

Essentially the same arguments lead to the following lemma.

Lemma 3.10. Let M be an open S'-invariant subset of prime curves
in H*2(S',8%), g; for t € [0,1] a smooth family of metrics on S2,
and X an (M, g, S')-homotopy between two vector-fields Xo and X
on M, which have only finitely many critical orbits in M that are all
nondegenerate. Let U be an open neighborhood of the zeros of X. Then
there exists an (M, gy, St)-homotopy Y and ¢ > 0 such that Yy(y) =

Xi(v) for
(t,v) € ([0,e] U1 —g,1]) x MU ([0,1] x M)\ U,
and
DY |y : R X (W, (7)) = (W, (7))
is surjective for all zeros (t,7y) of Y.

For the rest of this section we let M be an open S'-invariant subset
of prime curves in H*2?(S1,5?) and X an (M, g, S*)-admissible vector
field on M. We shall define the S'-equivariant Poincaré-Hopf index
Xs1(X, M) of the vector-field X with respect to the set M. We begin
with the definition of the local degree of an isolated, nondegenerate
critical orbit of X.

We fix a nondegenerate critical orbit S' x vy of X in M. As X is
(M, g, S')-admissible, DX |,, € GR((W,(v0))*) and we define the local
degree of X at S x vy by

degloc,S1 (X7 Sl * 70) = SganX"YO‘
From (3.6) the local degree does not depend on the choice of 7 in S 7.
Definition 3.11 (S!'-degree). Let X be (M, g, S*)-admissible. From
Lemma 3.9 there is a vector field Y, which is (M, g, S)-homotopic to
X, with only finitely many critical orbits that are all nondegenerate.

The S'-equivariant Poincaré-Hopf index (or S'-degree) of X in M is
defined by

XSI(X7M) = Z degloc,Sl(Y:Sl*/y)'
{SlxyCM: Y (S1xv)=0}

If St~y is an isolated critical orbit of X, we define the local S*-degree
of X in S %~y by

degyoe 51 (X, 5" % 70) == x51(X, 5" * Bs(7)),
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where we choose § > 0 such that S* % g is the unique critical orbit of
X in the geodesic ball Bs(S' * 7).

To show that the definition does not depend on the particular choice
of Y or §, and that the S'-degree does not change under homotopies in
the class of (M, g, S')-admissible vector-fields, we prove

Lemma 3.12. Let g; fort € [0,1] be a continuous family of metrics
on H*?(S',5%). Suppose X is an (M, g;, S*)-homotopy between Xy and
X1, such that the zeros of Xy and Xy are isolated and mondegenerate.
Then

Xsl(Xo,M) = Xsl(leM)-

Proof. By Lemma 3.10 we may assume that the homotopy X is non-
degenerate, i.e. DX%7 is surjective whenever X (¢, S! % v) = 0.

Fix (to,7) € X1(0). From the implicit function theorem, Lemma
3.1, and Lemma 3.8 there is a regular C* curve ¢ = (¢, ¢,) € C1(I,R x
M) with I = (—1,1) for ¢ty € (0,1) and I = [0,1) for ¢, € {0,1}, such
that X (c(s)) =0, ¢(0) = (to,7), and the map

SYx I3 (0,s) = (ci(s),0 % cy(s)) = 0% c(s)

parametrizes the zero set X ~1(0) locally around (tg, 7o), where we define
the action of S on tuples (¢,7) by 0 = (¢,7) := (¢,0 x 7).

The ellipticity of X; shows that ¢, (s) € H*?(S',5?); thus é,(s) is in
T, (sH**(S', 5?) and from (3.1) we deduce that

¢y(s) is transversal to (WQCt(S)(c,y(s))f-vgc,s(s),

Since 0 # ¢/(0) € R x (Wy, (70))%%, we see from the construction of ¢
that we may assume for all s € I,

(3.16) d(s) is transversal to (0, ¢4(s)).

By the S'-equivariance of X, (3.16), and the fact that Dgct(s)X’Ct(S)yc'y(s)

is a Fredholm operator of index 1 with image (W, (S)(cw(s))fﬂgcds) of
codimension 1, we find

(3.17) kernel Dgct(s)X|Ct(s),cw(S) = <Cl(8), (O,C}/(S)».

Fix (c1,11) and (e, I3) such that S x ci(s1) = S x ca(sg) for some
s1 € I and s9 € Iy. Then from the uniqueness part in the construction
of co we get 3 € S! such that 6y * c2(s2) = c1(s1). From its con-
struction, 6 * c5(s2) is contained in the kernel of DX, () spanned by
(¢} (1), (0, (c1)4(s1))). Since ¢} (s1) and 63 * c(s2) are both transversal
to (0, (c1)y(s1)), there is 0 # A\; € R and Ay € R such that

Ba * c5(s2) = A1cy(51) + A2(0, (¢1)4(51)).



CLOSED MAGNETIC GEODESICS ON §2 361

We choose a function 6y € CY(I,R/Z) satisfying 63(s3) = 6o and
04(s2) = — Ao, define & € C1(I, M) by E(s) := 62(s) * ca(s), and get

Cy(s2) = 02 % ch(s2) + (0,02 * (c2),(52))05(s2) = Aicy(s1).

With an additional change in the s parameter, we may easily arrive
at @(s2) = cj(s1) in such a way that the map (6,s) — 6 x Ca(s)
still parametrizes S * cy(I). This gives a recipe how to obtain from
two overlapping local parametrizations (c1, I1) and (cz, I3) of X71(0) a
parametrization of the union S* x ¢1(I;) U S* x ca(I3). As in the classi-
fication of one dimensional manifolds [21], we deduce that X~1(0) is a
two dimensional manifold with components diffeomorphic to S* x S! or
St x [0,1].

Let P be a component of X~1(0) with boundary, i.e., of the type
St % [0,1], such that a parametrization of P is given by

(0,5) € S' x [0,1] = 0 % c(s),
where ¢ € C1([0,1],[0,1] x M). First we change c to arrive at
(3.18)  (s) ER x (W, (cy(s))) 9 C R x T, () H**(S", %)
To this end we note that from the definition of W, we have

R x T (o H**(S", %) = R x Wy, (¢4(5))) " 91 @ ((0,¢5(s)))

ct(s)

and denote by Proj; the projection onto R x (W, (cy(s))) %) with
respect to this decomposition. There holds

c(s) = Proj; (c(s)) + A(s)(0, ¢4 (s)).
We take § € C1([0,1],R) such that €'(s) = —A(s) and define &(s) :=
0(s) * c(s). Then
&(s) = (cl(s),0(s) % (¢ (5) = A()éx(5)) )
€ R x 0(s) = <Wgct(s)(cv(3))>l’gct(s) =R x <Wgct(s)(5“/(3))>l’gct(s)-

Thus, replacing ¢ with ¢, we may assume (3.18) holds.
Consider for s € [0,1] the family of operators

Fy:RX (Wg%(s) (C’Y(S)»J"gct(s‘) — R x (Wgct<s)(cv(3))>L’gct(s)
defined by
Fy(r,V) = ((¢(s), (1. V) e, (o m22(51,52)s Dy, () Xe(s) (T V) -
Since
kernel(Dy, ) X)) VR x (W, (e (s)) 90 = (¢(s),
Dy X o(s) (R X (W, ) (e (8)))H900) = (W, (5 (5)))H9e00e),

each Fj is an isomorphism. Moreover, the Rothe property of X implies
that each Fy is a Rothe map, because Fs is obtained from DX|.)
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through a change in finite dimensions. Consequently, sgn(Fy) is well
defined and by its homotopy invariance independent of s € [0, 1].~ If
¢;(s) # 0, we have again by the homotopy invariance sgn(Fs) = sgn(Fj),
where

F(r,V) := Fy(r,V + (C;(S))_lTC{y(s)).

We have

P= <(CQ(S))_1||C'(S)H2 (C%(S)ﬁ) N <(CQ(S))_1H6/(S)H2 0 ) _
0 DVX]C(S) 0 D,YX\C(S)

Hence, for all s € [0, 1] such that ¢;(s) # 0, there holds

(3.19) sgn(F,) = sgn(F,) = sgn(cg(s))sgn(nyXus)).

Let S*aq,..., St *ay, be the critical orbits of Xo and S 3,..., S«
Bk, be the critical orbits of X;. The critical orbits of Xy and X; are
boundary points of X~1(0). From (3.19) we get
e sgnDXglo, = —sgnDXola;, if S« a; and S! * a; are boundary
orbits of the same component of X ~1(0),
e sgnDX1|g, = —sgnDX|g;, if St % B; and S x B; are boundary
orbits of the same component of X ~1(0),
e sgnDXola, = sgnDXy|g,, if Stxa; and S1xB; are boundary orbits
of the same component of X ~1(0).
Putting the above facts together, we see that

Xs1 (X07 M) = XSl(le M)
q.e.d.

4. The Degree of an Isolated Critical Orbit

Let v € H*2(S', S?) be a prime, regular curve such that S! * v is an
isolated critical orbit of X}, ;. Then the curve

() = (315 )
is a closed k-magnetic geodesic with minimal period w := ||, such that
t — (u(t), 1(t)) lies in the bundle

Ey = {(2,V)eTS*: V|, =1}.

We fix a transversal section ¥ in Ej at the point 6 := (7(0),w™14(0))
and denote by P : By N ¥ — By N X the corresponding Poincaré map,
where Bj, By are open neighborhoods of € (see [1, chap. 7-8]).

In this section we shall show

Lemma 4.1. Under the above assumptions, 0 is an isolated fized
point of P and there holds

degoe, 51 (Xig, 8" %) = —i(P,0) > —1,
where i(P,0) denotes the index of the isolated fixed point 6.
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We consider the linearizations of equation (1.1) and (1.2) given by
0= —D2,V — Ry(V, )i + k(1)Jy (1) Dy gV
(4.1) + (k/(u)V) Jg(w)fe+ k(p) (Dng’uV)ﬂ
and
0=—D},V — Rg(V.4)7 + [71gk(7)Jg(7) DegV
+ g (K (V) Tg() + gk () (Dg Jg|4 V)7
+ 1315 (DrgVi4) gk () T (1)
(4.2) =D}, V+T(V,D4V),

where T'(V, D, ,V') abbreviates all terms containing V' or D;,V. For
(1, Va) € T7(0)52 X T,Y(O)S2 we denote by ®(-, (V1,V2)), respectively
U(-, (V1,V2)), the solution to (4.1), respectively (4.2), with initial values

V(0) = Vi and Dy 4V (0) = Va.
Then
dP|9 = ProjTgZ 0 ((I)(wv ')7 Dt,g<1>(w7 )) |T927

where Projr,y, is the projection onto Ty with kernel given by

((11(0), Dy, gf1(0))", (0, 1(0)) ™).

Lemma 4.2. Suppose 0 is a nondegenerate fixed point of P, i.e. the
linearized Poincaré map dP|g : TyX — TyX has no eigenvalues equal to
one. Then S' %~ is a nondegenerate critical orbit of Xk,g and

degloc751(Xk7g,Sl *y) = —sgn( det(dP|g — I))

Proof. Since index and nondegeneracy do not depend on the transver-
sal section, we may assume Typ> = T,,22, where we write for ¢ € R
T,% = {(V1,Va)" € Typ(T'S?) 2 T,0)S® x Ty0)S? :
(V1, Va)T is orthogonal to (%(0), gDy ,4(0))" and (0,4(0))"}
with respect to the componentwise scalar product.

From (1.2) and the symmetries of the curvature tensor and J, we
obtain, for any solution V to (4.1) or (4.2),

d

E<Dt,gv( ) ( )> <Dtg ( ) ( )>g + <Dt,gV(t)aDt797(t)>g

= (Y1 (N (DgTgly) V(#)7(1), 7(t))g
0,

(4.3)
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because for a variation (s,t) — I'(s,t) of v with 9sI'(0,-) =V we find

_ %(Jg(l“(s,t))atf(s,t),@F(S,t»g’s:o

= ((DgJglynyV (£))7(2), ¥(t))g
+ <Jg(’Y(t))V(t)="Y(t)>g + <Jg(’Y(t));Y(t)v V(t)>g
=0

0

Up to scaling with w in ¢, equations (4.1) and (4.2) only differ by
’;}";1<Dt,gv7;Y>gk(’Y)Jg(’Y)"Y~
Since (D¢ 4U, )4 is constant, we get for Va orthogonal to 4(0)
U(tw™, (Vi,wla)) = @(t, (V1,a)).

Consequently,

dP|g = Projp, 50 A o (U(1,+), DigU(1,+)) 0 Aulr,s
where Ay, Projr,s; € £(T,(0)S? x Ty 0)S?) are given by

Au(V1, Vo) i= (V1,w2),

proins (1) = (1) - (1) (eri0) s (A0).

\% \% 3 w_lDtg' 0
2 2 H <ng(220)> ny o7(0)

We note that A, : TpX = T1% and Projg,y; o At = Ao Proj%lz.
Hence, we may replace in the following dP|s by dP|, : T'¥ — T2

dP|, == Projg sz o (U(L,), Dy yU(L,")) |15

To show that S! x v is a nondegenerate critical orbit, we fix V €
(Wy(v))* such that DXy 4],(V) = 0. There are A1, Ay € R such that

(12) = (ot = (o) =22 () <7

Using the fact that V', 4, and t% solve (4.2), we get

peits (it i) = (1)

Since dP|, has no eigenvalues equal to one, (W7, Ws) equals (0,0) and
V = My + Aot¥. From the periodicity of V' we obtain Ay = 0, and
the fact that V € (W,(y))* gives Ay = 0. Consequently, S! v is a
nondegenerate critical orbit of X, .

We consider X € £(T,H?*?(S',5%) x R) defined by

X(V,0) := (DX gly (V) + 0Wy(7),6 — (V. Wy (7)),),



CLOSED MAGNETIC GEODESICS ON §2 365

where ¢ > 0 will be chosen later. Then X is of the form identity +
compact. 1f X (Vy,d0) = 0, then &y = 0, since DXy, 4|, (Vp) is orthogonal
to Wy(v). From e > 0 we get Vo € (W,(y))* and finally V5 = 0. Thus,
X is invertible. With respect to the decomposition

T H**(S1,8%) x R = (Wy(y)) " x {0} & (Wy(7)) x {0}{0} x R

we have
. DXjgly * 0
X = 0 0o 11,
0 — 1
such that

deg(Xv (07 0)) = deg(DXk,g|“/|(Wg(~/))J- ) 0) = degloc,S1 (X]%gv St /7)7

where deg denotes the usual Leray-Schauder degree.
Using the ideas in [20, chap. 3|, we define a homotopy

$:[0,1] x T, H**(S*,5%) x R — T, H*?*(S*, 5%) x R,
by
P(s, (V,0)) =

(V +5(=D7, + 1)THT(V, Dy gV) = V) + s6Wy(7)

+(1-8)(-Df,+1)7"
(P20 (V(0), Dy V(0)),8) = UG (V(0), D V(0)),5)),

1
3= [ DR, (1= OV U (V) DV 0)).0)) ).
0
where (—D7,+1)~" maps T}, L*(S', §?) to T, H**(S", $?) and the func-
tion U(-, (V1,V2),0) denotes the solution to
= D,V +T(V,DigV) +67,

0
with initial values V' (0) = V; and Dy 4V (0) = Va.
Fix (s0, Vo, d0) € [0,1] x T, H*?(S', 5%) x R such that

®(s0, (Vo,d0)) = (0,0).
Then V; is a periodic solution of
0=—D7 Vo + Vo + sT(Vo, Dy Vo) — sVo + 564 + (1 — s0)
(44)  (DEUC(V(0), DigV(0)),0) = U( (V(0), Deg V(0)),9)).

Since U(-, (Vo(0), Dy 4V5(0)),60) is a solution to (4.4) with the same
initial values, we see that

‘/E) = U(, (‘/()(O)th,g‘/O(O))v 50)
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In this case ®(sg, (Vh,00)) = (0,0) is equivalent to

(DX gly (Vo) + 60Wy(7), 0 — £(Vo, Wy(7))g) = (0,0),
which shows that Vj = 0 and §; = 0. Consequently,
deg(X,, (0,0)) = deg(®(1,),(0,0)) = deg(®(0,), (0,0)).
We choose E; = (E;,6;) € T,H*?(S',8%) x R for 1 <i < 5 such that
{(E:(0), Dy 4 E;(0),6;)" : 1 <i <5}

is an orthonormal basis of T’y(O)S2 X Ty 0) S? x R with respect to the
componentwise scalar product. Since ®(0, (V,d)) = (V,9) for all
(V,8) € Wy := {(V,0) € T,H**(S',S*) xR: V(0) =0 = D;,V(0)},
there holds for Wy := (E;: 1 <i <5)
deg(q)(()) ')7 (07 0)) = deg(PW1 © q)(oy ')|W170)7
where Py, : T, H*?(S',5%) x R — W] is given by
5
Py, (V,6) :=>_ ({V(0), Ei(0)) + (Dt gV (0), Dy g E5(0)) + 66;) E:;.
i=1

Note that Py, is the projection onto W; with kernel Wj.

We define Evg : T, H*?(5',5%) x R — Ty 0)S? x T,,0)5? x R by

Euvy(V,68) := (V(0), D4V (0),6).
Then Ewvglw, is an isomorphism and we have
deg(Pwl ° (I)(()? ')’WNO) = deg(EUO o Py, o (I)(Ov ) ° (EU0’W1)_170)’
We note that for a function U,
(_Dt%g + 1)_1((_Dt279 + 1)U) =U+Q,
where @ solves (—D?, +1)Q = 0 with boundary conditions
Q0) — Q) =U(1) - U(0),
Dy4Q(0) = Dy gQ(1) = Dy gU(1) — DygU(0).

We let By and B be the smooth parallel vector fields along ~ such that
{B1(0), B2(0)} is a basis of T.,)S?. Then the set Ag of functions Q
with (=D7, +1)Q = 0 is given by

2 2
Ag = {¢* ZAiBi(t) +e7t ZMBi(t) DAL, Ao, i, po € RY.
=1 =1

We define Lo, Ly : A() — T7(0)52 X T7(0)52 by

LO(Q) = (Q(O) - Q(1)7 Dt,gQ(O) - Dt,gQ(l))a
Ll (Q) = (Q(0)7 Dt,gQ(O)) .
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It is easy to see that Ly and L are isomorphisms. We have
Evg o Py, 0 ®(0,-) o (Evolwy )t (Va, Vi, 8)

(1 ort U(1,(V1,V2),0) = U(0, (V1,V2),6)
1270\ Dy U1, (Vi V2),8) = Dy U (0, (Vi, V2),6) )

0 — 5/01(—Dt2,g + 1)(U('7 (V17V2)75)>7>-

The map LioL, ! may be computed explicitly solving a system of linear
equations. Using the fact that the parallel transport is an isometry, it
is easy to see that det(L; o Lgl) > (. Thus we may replace L o LO_1 by
id without changing the degree. Hence we need to compute the degree
of Y € L(T,Y(O)SQ X T—y(O) S? x R) given by

. U(lv(V17V2)75
Y120 = (00004 Vi

)
)
1
s- [ =0, 4 0 (Ut 04, 1.0)).
To compute deg(Y,0), we decompose TAY(O)S2 X T (0 52 x R into
712 x {0} @ ((7(0), D1,47(0),0)) @ ((0,5(0),0)) @ ((0,0,1)),

where the decomposition is orthogonal with respect to the component-
wise scalar product We have

- U(Ov VI,V2)75) )

(
— Dy ,U(0, (Vi V2), 6)

Y (5(0), Dm = (0,0, —¢ll41l31.2)
Y (0 = (4(0), De,g#(0), —([Vt¥] 72 + [[VEDrglI72))-
We obtain analogously to (4.3)

L (DU, (0,0),1), (1)) = (1), 40 > O
(Y(0,0,1),(0,5(0),0))y = (DiyU (1, (0,0), 1),5(0)} > 0.
Choosing € > 0 small enough we find
(Y(0,0,1),(0,0,1))y =1—0(¢e) > 0.
Moreover, again using (4.3), we get for all (V4,V5) € 1%
Y (Vi, V2,0), (0,4(0), 0))y = 0.

Consequently, we obtain with respect to the above decomposition

Ply—id 0 0 x

* 0 1 =

deg(Y,0) = sgndet 0 0 0 +
£ = = +

= —sgndet(P|, —id),

which proves the claim. q.e.d.
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Proof of Lemma 4.1. The fact that 6 is an isolated fixed point is obvious
from the properties of the Poincaré map P (see [1, thm. 7.1.2]).

We may choose § > 0 such that S' x v is the unique critical orbit of
Xk g in the geodesic ball Bs(S* ), 6 is the unique fixed point of P in
the geodesic ball Bs(#), i(P,6) = i(P, Bs(0)), and

deg51 (Xk’g, 35(51 * ’y)) = degSl,loc(Xk,gv Sl * ’y).
From the homotopy invariance and a Kupka-Smale theorem for mag-
netic flows in [22], we may assume by Lemma 4.2 that the critical orbits
of Xy 4 in Bs(S! *~) and the fixed points of P in Bs(#) are nondegen-
erate. Again using Lemma 4.2, we find
deggi (Xkg, Bs(S* 7)) = —i(P, Bs(9)).
Finally, since we may assume that the Poincaré map is area preserving
(see [1, thm. 8.1.3]), we obtain from [27, 23|
i(P,0) < 1.

This yields the claim. q.e.d.

5. The Unperturbed Problem

Let S? = 9B;1(0) C R? be the standard round sphere with induced
metric gg. Then the prescribed geodesic curvature equation with k = kg
on (52, go) is given by
(5.1) Proj, 5 = ilkoy x 4,

where v € H>2(S', 8?), 4 and # are the usual derivatives of y considered
as a curve in R3, and || is the Euclidean norm of % in R3.

To compute the S'-degree of the unperturbed equation (5.1), we pro-
ceed in three steps.
Step 1: We compute explicitly the set Z of simple solutions in H>2(S*, 5?)
to (5.1) and show that Z is a finite dimensional, nondegenerate mani-
fold, in the sense that we have for all a« € Z

ToZ = kernel(Dgy Xj g0la);
To H*?(S',8%) = Ty Z @ R(Dyy Xy g0la)-
Step 2: We perform a finite dimensional reduction of a slightly perturbed
problem: We consider for k; € C2?(S2%,R), which will be chosen later,
and ¢ € R, which is assumed to be very small, the perturbed vector field
Xy, defined by
Xgo,a(’}/) = (_Dz?,go + 1)_1( - Dt,go;}’ + ’;Y‘go(ko + Ekl(’Y))’Y X 7)
= Xko,go (V) +K1(7),

where the vector field K is given by
K1(7) = (=D g, + 1) lgo (k1 ()7 x %)
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We show that if oy € Z is a nondegenerate zero of the vector field
a+— Pj(a)o Kq(a) on Z, where Pj(«) is a projection onto T, Z defined
below, then there is a unique nondegenerate critical orbit S* % y(¢) for
any 0 < e << 1 such that vy(g) converges to o as € — 01 and

d‘egloc,s1 (Xgo,€7 Sl * 7(6)) = - degloc(Pl(') © Kl(')7 Oé()).
Step 3: We choose
ki(z) == (x,e3) for x € S% = 0B, (0) C R,

where {e1, e2, e3} denotes the standard basis of R?, and show that P;(-)o
K (-) has exactly two nondegenerate zeros of degree +1. This yields the
formula xg1(Xky gos M) = —2, where M is the subset of H?%(S1,S?)
consisting of simple and regular curves.

5.1. The simple solutions of (5.1). Differentiating twice the identity

|72 =1, we find (§,7) + |¥|> = 0 and (5.1) is equivalent to

(52) 7 = Flkoy x 7 = 13*7.

In order to solve the ordinary differential (5.2), we fix initial conditions
Y(0) = v € S? and 4(0) = T € Ty, S>.

If o9 = 0, then ~ is given by the constant curve v = 5. We may assume
in the sequel

A= |’L~)0| > 0.
If ko # 0, then there is a unique r = r(kg) € (—1,1) \ {0} such that
V1—1r2

r

ko =

For kg = 0, the case of geodesics, we may take r = £1.
For A > 0 and a positive oriented orthonormal system {vg, v1,w}, we
define the function a € C*(R, S?) by

alt, \,vo,v1,w) == V1 — 12w+ rcos(Ar—1t)vy + rsin(Ar1t)vp.

A direct calculation shows that a(-, A\, vg, v1,w) solves (5.2). Moreover,
if we take for given (79, ?) the positive oriented orthonormal system
(vo, v1,w) defined by

v == A", vy :=ry0 + V1 — r2(vy X Y0), w = (v1 X vg)
and A > 0 as above, then a(-, A\, vg, v1,w) satisfies the initial conditions
OZ(O, >\7 Vo, V1, ?,U) = 70, OZ(O, A) V0, V1, ’lU) = 1p.

Since we are only interested in solutions in H22(S!, 5%), we get an extra
condition on A, i.e. the 1-periodicity leads to

N\ € 2nlr.
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Hence the simple solutions in H?2(S', $2) of (5.1) are given by
Z = {a(-,2n|r],vo,v1,w) : {vg,v1,w} is a
positive orthonormal system in R3}.

S0(3) acts on solutions: if 7 solves (5.1), so does Ao~y for any A € SO(3).
We have

Ao af-2r|r|,vo,v1,w) = af-, 27|r|, A(vg), A(v1), A(w)),
and the set of solutions is parametrized by SO(3). It is easy to see that
a(s, 27|, vo, v, w) = 0 * a(-, 27|r|, vy, vi, w')

for some § € S' if and only if w = w’. Consequently, the set of critical

orbits is parametrized by w € S2. In the sequel we fix kg > 0 and r > 0.
To compute the kernel of Dy, Xk, gola at a = a(:, 277, vg,v1,w) for

some fixed system (vg, vy, w), we note that for V € T, H>2(S!, 5%)

Ry (V,é)a = V]a|? — (V,d)a
and hence by (2.3)
Dygy Xiogola(V) = (=D, + 1) (= D7, V = V]a* + (V,d)a
(5:3) + 167Dy g, V. ) ko x &) + |l ko (e x Dy g, V).
Due to the geometric origin of equation (5.1) we deduce that

Wi (t,vo, v1,w) := & = 277 (— sin(27t)vy + cos(2nt)vy),

W1(0,vg, v1,w) = 2mrvg, Dy goWi(0,vp,v1,w) = — 47?3 kg (kovy — w),
WO(t7U07U17 ) = tOé
Wo(0,v0,v1,w) = 0, Dy g, Wo(0,v0,v1,w) = 27,

solve the equation
0=— D}, W —W|a]® + (W, d)d

(5.4) + |&| TN Dy go W, ) ko (v x &) + |&|ko(a x Dy goW).
The vector-field W, corresponds to invariance with respect to the S'-
action, 6 — a(- + 0), and Wy stems from the change of parameter
s — a(-s). The SO(3) invariance leads to two additional vector-fields
in the kernel of Dy Xy gola, i-e. we let

w5 := cos(s)w + sin(s)vy, vy = vy,

V1,5 = Vg X wi,s = cos(s)v; — sin(s)w,
wa s := cos(s)w + sin(s)vy, v1 = v1,

V0,5 = Wa s X V1 = cos(s)vg — sin(s)w
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and get

Py— d J—
Wa(t,vg, v1,w) = E(a(-, 27, vo,vl,s,st)L:O = rkovy — rcos(2mt)w
W5 (0, vg,v1,w) = V1 —r2v; —rw, Dy g, Wa(0, vo,v1,w) =0,

5.9
W3(0,vg, v, w) = rkovo, Dy,g,W3(0,v0,v1,w) = 2113 (kgug — w).

d
Ws(t, v, v1,w) := d—(a(-, 27r, vo,s,ful,wls)h_o = rkovg — rsin(2nt)w
S -
)

—~

We will omit the dependence of W; on (vg,v1,w), if there is no possi-
bility of confusion. Since the initial values of Wy,..., W3 are linearly
independent in (7, (0) 52)2, any solution of (5.4) is a linear combination
of Wy, ..., Ws3. As only Wy, ..., Ws are periodic, we obtain

(56) kernel(DgOkagO\a) = <W1, Wg, W3> = TaZ.

To find the image of Dy X, g0|a We note that the moving frame {d, a x

&} is an orthogonal system in 7,52 for any t € S'. Thus any V €
T,H*?(S1, 5?) may be written as

V =MNa&+ )\2(0[ X d)
for some functions A;, Ay € H?2(S R). Using the fact that
Dy 4,6 = |&lko(or X &) and Dy g (e X &) = —|c&|koc,

we may express Dy o,V and (Dt7g0)2V in terms of A\ and Ay. This leads
to

DgoXko,go|a(V) = (—Df’go + 1)_ ( 1 + 271 — 7”2)\/

(5.7) LN = (202 (a x ).

Concerning Wi, ..., Wy and W, we find
Wi(t) = a(t),
Wa(t) = —%(m Sin(2mt)&(t) + cos(2nt) (@ X &),
Wi(t) = —%( VT eos(2nt)a(t) + sin(2nt) (o x &),

(5.8) Wyo(a) = (1+]a*kg) " a = (1+[af*k5) ™ Wi(a).

Lemma 5.1. For any solution a of the unperturbed problem, there
holds

{0} = (Wi(a), Wa(a), Ws(a)) N R(DgoXig,gola),
(Wi(a))t = (Wa(a), Ws(a)) & R(Dgg Xrg.goa)-
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Proof. We omit the dependence of W; on a. For A1, Ao € H>?(S1,R)
we have

(=D7 40 + 1) (Mé + Az x &)
= (= M 471 — 2 + (4r2(1 —12) + A1)
+ (=N - 47TMX 21— + DAo)a x d.
Hence we get by direct calculations

(—D7,, + 1) (W) = (4n*(1 +r* + 1)d,

(— Dt2go 1)(=21rWa) = V1 — r2(—4n?r? 4 1) sin(27t) &
(5.9) + (4721 + 1) cos(27t) (e X &),

(—ngo + 1)(=2rW3) = —\/1 — r2(—4n*r? 4 1) cos(2nt)
(5.10) + (4% + 1) sin(27t) (o X &).

Consequently, by (3.8) and (5.8) the vector Wy is orthogonal to (Wa, W3)
and to R(DgyXpg,g0la) in ToH>2(S*,5?%). As in L*(S',R)

D+ (2m)2 Ny Lp2 (cos(2nt),sin(27t)), (N[, \5) L 2 const,
we get
{0} = (=D, + 1) ((Wr, Wy, W3))
N (=D7 3 + 1) Dy X gola(To H*>(S, 5%))

and the claim follows, for Dg, X, 40| is a Fredholm operator of index
0. q.e.d.

To analyze the image of Dy Xy, 4, We see for a € Z

R(DgyXrogola) = {(=D7 4, + 1) ((=A] + 20/ 1 = r2X5)é
— (N5 4+ (2m)%X)(a x &) + Ap, A2 € H¥?(S'R)}

{ Dt 90 + 1 ()\1@ + )\2(04 X a)) : )\172 in

L2(SYR), Ay L2 1, Ay Lpe (cos(2t), sin(27t)) }

(5.11) = ((a x &) & By,

where E is given by

Ey ={(-D}, + 1) (Md+ Aa(a x &)) :
A, A2 € L2(SYR), Ay L2 1, Mg Ly (1, cos(2mt), sin(2mt)) }.
We have for V = A& + Aa(a x &) in T, H*2(S*, S?)

Dgo Xipgola(V) EEf = Ay L2 1=V L2 (a x a&).
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We fix V = (=D2,, + 1) (Md + Xa(a x &) € E;. Then
/51 Viax ) = /51(—Dt2,g0 1) O+ dalar x @) (e x &)
_ /Sl()\ld + dala x @) (=D2y + 1) a x )

=41 -r)+ 17! / (M 4 Aa(a x &))(a x &) = 0.
S1
Consequently, Dg, Xp, g0la(E+) = E4.
Since F is L?-orthogonal to a x ¢ and ¢, we may write
V=(v1+ fi)a+ (v2 + f2)(a x @),
with vy 9 L2 (1,sin(2n-), cos(27)) and fi 2 € (sin(27-), cos(27-)). Then
<( Dtgo+1)Dg Xkogo‘ ( ) >L2

= [ W)? =27V 1 — r20jvy + (V)2 — 4 (12)?

Sl
(5.12) + (D)2 =201 —r2f] fo.

For vy L (1, cos(27),sin(27-)) we have

/ (V§)2—4772(1/2)22/ 16772(112)2,
S St
hence

/Sl(ygf — 21V 1 — 2wy + (14)? — dm?(1)? > 2(1/{)2 + 1272 (1)
Concerning the remaining term in (5.12), we note that as (—Dgg0 +1)
maps

{Ad+ Ao x &) 0 A, Ag € (sin(27), cos(2m)) }
into itself and V € ., there holds
fia+ fola x &) € (_Df,go + 1)_1<(cos(27r-)d), (sin(2m)d)).
Hence, by explicit computations there are z,y € R satisfying
f1(t) = x cos(2nt) 4 y sin(2nt),
8m2y/1 — r2

fa(t) = P (y cos(2mt) — xsin(27t)).
This gives
1 4 2,.2
/ (f1)? =2V 1+ 02fifr = ( +r2ﬂ):_i( 2+ 7).

This shows that
(— Dt 50 T 1)D90Xk0,g0] (V), V)2 >0 for all V € EL \ {0},
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and the homotopy
[0,1] 2 s (1 — 5)(DgyXno,g0la) | B4 + 5 id| 5,
is admissible. We use the decomposition in (5.11) and
_ 472
472(1 —r2) 41

D gy Xg,golala x &) = (o x &)

to see that

(513) Sgn(DgoXk07gO|a)|R(DgOXkOng|a) = —1
5.2. The finite dimensional reduction. We fix oy € Z and a para-

metrization ¢ of Z, which maps an open neighborhood of 0 in 7,,,Z
into Z, such that

©(0) = ag and Dy|y = id.

As Z consists of smooth functions, Z is a sub-manifold of H™?2(S!, S?)
for 1 <m < co. We define @ from an open neighborhood U of 0 in

Too H*?(S,5%) = (Wi(ao), Wa(ao), Wa(a)) ® R(DXgy 0lag)
to H>2(S', S?) by
O(W,U) := Expay,go (Exp;ol’go(cp(W)) + U).

Then (®,U) is a chart of H*2(S!, 5?) around «y such that I/ is an open
neighborhood of 0 in T,, H*%(S!, S?), and

(I)(O) = Qp, D@D’Q = id,
N (ZNeU)) =UN (Wi(ag), Wa(ag), Wa(a)).

From the properties of Fxp,, 4, the map ® is a chart of H k2(51,52)
around o for any 1 < k < 4. Shrinking U we may assume that (3.3)—
(3.5) continue to hold with Exp, , replaced by @, i.e.

(B:14)  Tagn (1.5 = (GR(V)) @ DOy ((6o) ),
(5.15) T¢(V)H2,2(51752) — (W, (®(V))) & D@‘V(<Wg0(a0)>l),

(5.16) Projy, @)y: © DPlv : (Wyy(an))t = (W, (2(V))*,
and the norm of the projections in (5.14) and (5.15) as well as the norm
of the map in (5.16) and its inverse are uniformly bounded with respect
to V. For o € Z, the vectors Wi(ag) and Wy, (ag) are collinear and we
use (W1(ap)) instead of (W, (ap)) in the analysis of the unperturbed
problem below.

As in (3.2), we get a chart ¥ for the bundle SH*?(S!,5?) around
(Oé(), 0)7

U UxUN W)t — SH?2(S, 5?),

\I’(‘/, U) = (CI)(V)7PTOJ(WQO(<I>(V))>L OD‘I"V(U))
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Analogous to (3.11), we define
X® . uUn <W1(Oé())>J' — <W1(a0)>l

go,€

by
X2 (V)= Proja o U H(D(V), X4y -(B(V))).

g90,¢€

Replacing Exzp, 4 by ®, it is easy to see that Lemma 3.5 carries over to

(b .
Xgoer 1€

V el n (Wi(ap))* is a (nondegenerate) zero of X;I:)’6 if and only if
(5.17) S' % ®(V) is a (nondegenerate) critical orbit of Xy, .,
and if X;I;’E(V) = 0, then after shrinking i,
(5.18) DXy |v = Ay o DXy, claqy) o DDy,

where the isomorphism Ay : (W1 (ag))t — (W, (®(V)))* is given by
Ay = Projuy, @)+ © D|y.
From Lemma 5.1 we may assume
U N (W)™ =Us x U,

where U; and Uy are open neighborhoods of 0 in (Wa(ay), Ws(ay)) and
R(DgoXkongMO). We denote for @« € Z by P3(«) the projection onto
R(DXgy,0la) with respect to the decomposition

(Wi(a))™ = (Wa(a), Ws(a)) ® R(Dgy Xro,gola);

and by P;(«a) the projection onto (Wa(a), Ws(«r)). Moreover, for W €
Uy, we define for 1 = 1,2

PP(W) := (Aw) ™" o Bi(®(W)) o Ay
The projections P (W) and Py (W) correspond to the decomposition
(5.19) (Wi(ao))™ = (Wa(ao), Ws(ao)) ® R(Dgy X olw),

g0,

as we have for W € U,

DXy olw = Ay} o DXgq 0oy © Aw.

0

Lemma 5.2. For ag € Z after possibly shrinking U, there are g9 > 0
and

Ue 02([—60,60] x Ui, <W1(040)>J_)7
R e 02([—60,60] x Uy, <W2(040)7 W2(a0)>)7
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such that for all (e, W) € [—eq,e0] X Uy
R(e, W)= X7 (W +U(e,W)),
0=P2(W)oU(e, W),
O(€)eso = |U(e, W)|| + [DwU (e, W) + [R(e, W)|| + | Dw R(e, W),
R(e,W) = PP (W) o KT (W) + 0(2)es0,
Ue, W) = —e(DXg olw) ™" o PY(W) o K¥ (W) + 0(2)ems0.
Moreover, U(e, W) and R(e, W) are unique in the following sense: If
(e, W,U, R) in [—eg,e0] x Uy x U N (Wi(ap))t x Uy satisfies
Xy (W +U)=R and P*(W)(U) =0,
then U =U(e,W) and R = R(e,W).
Proof. We define a C?-function H
H:RxU xUNWi(ag))t x (Walag), Wa(ag))
— (Wi(ag))™ x (Wa(a), Wa(an)),

by

H(e,W,U,R) := (X7 .(W+U) — R, PP (W)(U)).

We have in £((W7(ag))* x (Wa(ag), Ws(ag)))

DX® |y —id
Dw,ryH |0,w,0,0) = ( Pfl’g(olﬁf) 0 > ,

where we used the fact that X;I:LO(W) = 0 and (5.18). From (5.6)
and Lemma 5.1 we see that Dy gyH|(0,0,0,0) is an isomorphism. By
the implicit function theorem, after possibly shrinking U/, we get ¢ >
0 and unique functions U = U(e,W) and R = R(e, W) such that
H(e,W,U(e,W),R(e,W)) = 0 for all (¢,WW) € [—eg,e0] X U1, and
D, g H|c,w,u,r is uniformly invertible for (¢, W,U, R) € [~eo, 0] x U X
Us. This yields the existence and uniqueness part of the claim.

The uniqueness implies U(0, W) = 0 and R(0, W) = 0 for all W € U;.
As U and R are differentiable, we find U(e, W) = O(e) and R(e, W) =
O(e) as e — 0. Moreover, taking the derivative with respect to W, we
see

T
0 = Dw H|o,w,0,0) + Dw.r)Hl0,w,0,0) (PwU(0, W), Dy R(0,W))" .
Since H(0,W,0,0) = 0, we have Dw H | w,,0) = 0, which implies
(DwU(0,W), Dy R(0,W)) = (0,0),

because Dy, gy H |(0,w,0,0) is invertible. This gives the desired estimate
for Dy U and Dy R.
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Moreover, taking the derivative with respect to € at (0, W,0,0), we
see as above

0 = DH|(o,w,0,0) + D(w,r)H|0,w0,0) (DU (0, W), D- R(0, W))
P o
= (KP(W),0) + (DXQO""W Zd) (DEU(g’ %;) .

Consequently,
D-R(0,W) = PI"(W) o K" (W),
D.U(0,W) = —(DXg olw) ™" o P5'(W) o K} (W).

0

T

This yields the claim. q.e.d.
Lemma 5.3. Under the assumptions of Lemma 5.2, we have ase — 0

Xgoe(W +U(e,W)) = eP{’ (W) 0 KT (W) + O(%)e0,

9o,€

where K is the vector-field Ky in the coordinates ®, i.e.

K=Xx2, —Xx2,.

go,1 90,
Proof. Since U(e, W) = O(e), we find
@
X2 (W 4 U W)
— PROW) 0 X2 (W +U(e, W)

= PP(W)o Xy o(W+U(e,W)) +ePP(W) o K (W + U, W))

= PP(W)oDXJ olwU(e, W) +ePf (W) o K (W) + O(e?)
= ePP(W)o KE(W) + O(%) 0.
q.e.d.

Lemma 5.4. Under the assumptions of Lemma 5.2, suppose 0 is a
nondegenerate zero of the vector-field PR (-) o K (-) on Uy, in the sense
that P (0) o K(0) = 0 and

Dw (PP () o KT ()]0 € L({(Wa(ao), Wa(ao)))

is an isomorphism. Then, after possibly shrinking €y and U, for any
0 < |e| < eq there is a unique W (e) € Uy such that

Xgoe(W(e) +U(e, W(e))) =0,
Wi(e) — 0 ase— 0.

Moreover, V(e) :== W(e) + U(e, W (e)) is the only zero of X _ in U N
(Wi(ap))* and is nondegenerate with

sg(DX |v(e)) = —det(Dw (PP (-) o KT (-))o)-
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Proof. Using Lemma 5.2 and the estimates for U and Dy U, we find
Dy (Xgp o(-+ Ule) ) w
= Dw (PF() o Xgp (- + U(e,)
= (DwP?lw) o Xg (W +U(e, W)

90,€

+ PP(W)o DX lwivew) o (Id+ DwU|ew))

90,

= (DwPPw) o (KT (W) + DX lwU(=, W) + O(=?))

0
(5.20) + PP(W) o (eDKRlw + D2X2 olwU(e, W) + O(?)).
Differentiating the identity for fixed ¢
PP(W)o DX} olwU(e, W) =0

0

with respect to W we obtain

0= (DwPEw) o DX§’ olwU(e, W)

0

(5.21)  +PP(W)o (D2Xg olwU (e, W) + DX olw o DulUliew) ).

0

Since P (W) o DX;I:LO]W = 0, combining (5.20) and (5.21) leads to

g0,¢€

(5:22) Dw (X2 (- +U(=))lw = eDw (PE() 0 K () lw + O().
We define F' : [—eq,e0] X Uy — (Wa(ap), W3(ag)) by
F(e,W):=e 'PE(W)o X2 (W +U(e,W)).

go,€

Note that by Lemma 5.3 the function F' extends continuously to € = 0.
By (5.22) we have

DwF|.w)=Dw(PP(-) o KT (-)) lw + O(e),

and F is in C! with Dy F |(0,0) invertible. Consequently, by the implicit
function theorem after shrinking eg and U, there is a unique C'*-function
W = W (e) such that F(e,W(e)) =0 and for € # 0

XE (W) +U(e,W(e))) =0.

go,€

Shrinking U, we may assume that any V € U N (Wi(ag))* admits a
unique decomposition V' = Wy + Uy, where Uy = Py (Wy)V. From
the construction in Lemma 5.2 and the analysis above, we see that for
(e, V) € [=e0,20] \ {0} x U N (Wi (ag)) "

X;I;E(V) =0+ X;Ifm(Wv +Uy) =0
Uy =U(e,Wy) and X (Wy + U(, Wy)) =0

=V =W()+U(e, W(e)).
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We use the decomposition in (5.19) to compute the local degree of X ;I;ﬁ
inV(e)=W()+U(E,W(e)) ase — 0. As U(e, W) = O(e) we find
DXg, clvie) = DXy olw(e) + D*Xgo olwo)U(e, W(e))

(5.23) +eDKT |y + O(e?).

Differentiating for fixed W € (Wy (), W3(ap)) the identity
DXg olwW =0,

we obtain D2X§;70\WW = 0 and thus by (5.23)

DX} lveW = (eDKT|w + O(E*))W.

For U € R(Dg, X2 |w) we get from (5.23)

DX;I:)7E|V(€)U = (DX;I:)7O|W(E) + O(&))ﬁ

Consequently, with respect to the decomposition in (5.19),

PP(W(e)) o DK 0
DXY |y =("" He )
go,slV( ) < 0 DX;I())70|W(5)
N O(e?) O(e)
O(e) O(e))"

This shows that shrinking £y > 0, we may assume that V' (¢) is a non-
degenerate zero of X7 _ for all 0 < |¢| < &9 and by (5.13)
sgn(DXg, clv(e)) = det (D(PF(-) o KT (-)|o)sgn(DXg, olw(e))
— —det (D(PE() o KE())-
This finishes the proof. g.e.d.
We consider P;(-) o K(-) as a vector field on Z. If oy € Z is a zero of

Pyi(+) o K1(+), then we obtain due to the S! invariance that S' xag C Z
is a zero orbit and

Wl(()éo) € kernel(Dz(Pl(-) o Kl(‘))|ao),
R(Dz(Pi(:) © Ki1(:))lag) L Wi(ao),

where Dz denotes the covariant derivative on Z. In the sequel we will
therefore consider Dz (Py(-) 0 K1(+))|a, @s a map

Dz(Pi(-) o K1(-))lag : (Wa(ao), Wa(ap)) — (Wa(ao), Ws(ao))-

Lemma 5.5. Under the assumptions of Lemma 5.2, suppose ag is a
nondegenerate zero of the vector field Pi(-) o K1(-) on Z, in the sense
that Py(ap) o Ki(ag) =0 and

Dz(Pi(-) o K1(:))lag € L((W2(a), W3(a0)))
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is an isomorphism. Then for any 0 < & < gq, there is y(e) € ®(U)
satisfying

Xgo,e(v(€)) =0 and y(e) = ag as € — 0.

Moreover, S' x~(e) is the unique critical orbit of Xy, - in ®U) and is
nondegenerate with

degioe,s1 (Xgo,er ST () = — det(Dz(Pi(-) © Ki(-))ag)-
Proof. We note that as P;(ag) o K1(ag) =0
Dz(Pi(-) 0 Ki(-))lag = D(P(-) © KT (-))lo-

Consequently, the assumptions of Lemma 5.4 are satisfied and we may
define for 0 < € < g¢ the curve y(¢) by

v(e) == ®(V(e)) € H**(S1, S?).

From (5.17) we infer that () is the unique zero of Xy, - in ®((Wy)+ N
U) and S' x y(e) is a nondegenerate critical orbit. It is easy to see
that the existence of a slice in Lemma 3.1 remains valid if we replace
Expa,.g, by ®. Consequently, S L% ~(e) is the unique critical orbit of
Xgoe in ST+ ®((Wy)+ NU), which is an open neighborhood of St x ag
in H22(St,52).

We fix 0 < € < ¢ and consider for s € [0, 1] the family of maps

Y= Ay 0 DXgyelye) © (1= ) + sProjiw, (@t ) Dy (e

Since DX g, | () restricted to (Wi (y(g)))* is of the form id — compact,
writing
DXgo,a"y(e) = DXgo,a"y(e) o PI‘Oj(VV1 (y(e)))+ + DX9075‘,Y(5) o PI‘Oj<W1(,y(€))>,

we deduce that Yy = id — compact for all s € [0,1]. From Lemma 5.4
we have that Y is invertible and satisfies

Yo = DX, Jy(e) and sgn(¥o) = — det(Dz(Pi() o K1())lao):

0

As DX;I’ clv(e) is invertible, the kernel of DXy, .|+ is given by (¥(e)).

0
Since ~y(g) converges to ag as € — 0 and &g = Wi(ap), we get

J(e) = Wi(v(e)) + o(1)e-o0,

which implies together with (5.14) that (§(e)) is transversal to the image
of

((1 —s)+ SPI‘Oj<W1(,y(€))>L) o D(I)’V(e)
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for all s € [0, 1]. Consequently, Y; remains invertible when s moves from
0 to 1. Due to the homotopy invariance, we finally obtain

sgn(Yp) = —sgn(det(Dz(Pi(-) 0 Ki1(+))lao))
= sgn(Y7) = sgn <A‘_/%E) o DXgo,EH(e) o AV(€)>
= Sgn(DXgo,alv(a)) = degloe,sl (Xgo,av St x v(g))-
This finishes the proof. g.e.d.
5.3. The S'-degree of (5.1). We define the function k; by
(5.24) ki(z) == (z,e3) for z € §? = 9B, (0) C R,
The corresponding vector-field K7 on H22(S' S?) is given by
Ki(a) = (=D g, + 1) (|él(e, e3) (@ x &)).
We note that for a = a(-, 27r, v, v1, w) € Z we have
(—D7,, +1)(27r) " Ky (a)
= (\/ﬁ(w, es) + 7 cos(2m) (v, e3) + 7sin(2m-) (vg, e3) ) (o X )
_ —27r2
A2r2 + 1

where (—D7, +1)"'h(a) is in the image of Dg, Xy, gla by (5.7)-(5.10).
Hence,

(—ngo + 1)(<?}1, €3>W2(a) + <?)(), €3>W3(a)) + h(a),

— 4723 — 423
- T W. T
prercan EOALE Rmer g,

and there are exactly two critical orbits of P;(a) o K («) on Z given by

Pi(a) o Ki(a) (vo, e3)W3(a),

{a = a(-,2mr,vp,v1,w) € Z: w=*+e3} =S xay US xa_,
where
ay = af-,27r,e1,e9,e3) and a_ = «af-, 271, —eyq, e2, —e3).

The curves a4 correspond to two parallels with respect to the north
pole e3 and curvature ky. Using the formulas for Wy and W3 in (5.5),
we find with respect to the basis {Wa(ax), Ws(a+)}

4723 +1 O
D(Pi(-) o Ki(*))|ay = 22 + 1 < 0 :|:1> ’

Thus, we may apply Lemma 5.5 and get two critical orbits a4 (g) for
Xgo,e converging to o as € — 0.

Lemma 5.6. Let M be the subset of H>?(S', S?) consisting of simple
and regular curves. Then xg1(Xky g0, M) = —2.
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Proof. We choose k1 = (-, e3) as above. From Lemmas 5.2-5.4 there
are g > 0 and an open neighborhood U of Z such that for all 0 < & < gg
the critical orbits of Xy, - in U are given exactly by St * ay (). Indeed,
suppose there are &, — 07 and a sequence (o) of zeros of Xy .,
converging to Z different from S' * ai(e,,). Up to a subsequence

a, > o) €EZ

as n — oo. For large n we use the chart ® around g as in Lemma 5.2.
From the existence of a slice in Lemma 3.1 we get a sequence 0,, € R/Z
converging to 0 such that

O, % oy = ®(V,) for some V;, € (W7 (ap))*.
As in the proof of Lemma 5.4 we may decompose
Vi =@ Y0, x ) = W, + Uy,

where W,, € (Wa(a), Ws(ap)) and U, € R(DXI(cI:),go‘Wn)' From the
uniqueness part of Lemma 5.2, as Xy, ., (W, + U,) = 0, we get U,, =
Ul(en, Wy). By Lemma 5.3 we see that necessarily P;(ag) o K1(ag) =0,
such that S'* ag € {S' * a+}. From Lemma 5.5 we finally deduce that
St %, € {S' * ax(e,)}, a contradiction.

From the definition of the S'-equivariant Poincaré-Hopf index and
the classification of the simple zeros of Xy, 4, there holds for small
e>0

XSl(kagovM) = Xs1 (Xko,govu) = Xst (Xgo,avu) = —2.
q.e.d.

6. A priori estimates

We fix a continuous family of metrics {g; : ¢ € [0,1]} on S? and a
continuous family of positive continuous function {k; : ¢ € [0,1]} on S2.
We let X; be the vector field on H*2(S', S?) defined by

Xt = Xy g, -
We denote by M c H*2?(S', S?) the set
M := {y € H**(S",5?) : v is simple and regular}.
We shall give sufficient conditions assuring that the set
X7H0) == {(7,t) € M x [0,1] : X¢(y) = 0}
is compact in M x [0, 1]. Fix (v,t) € X~1(0). The Gauss-Bonnet formula

yields
/k’td8+/ thdgt:27r,
Y Qy
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where €1, denotes the interior of v with respect to the normal Ny, and
K,, is the Gauss curvature of (S2,¢g;). To obtain a contradiction, as-
sume that there is (v,,%,) in X ~1(0) such that L(v,) — 0 as n — oo.
Then the left hand side in the Gauss-Bonnet formula, as k; and K, are
uniformly bounded, tends to 0, which is impossible. Consequently, the
length L(vy) of ~ satisfies

(6.1) < L(v) < (inf{k(2)}) " (2n +t:1[épu{(sup K, )vol(S,g1)}),

for some positive constant ¢ = c({k:}, {g:}) and K, := —min(K,,,0).
Suppose (Y, tn) in X ~1(0) converges to (yo,tp) in H>2(S!, 52), such
that

Yo & M.

Then by (6.1) the curve 7y is non-constant and regular, hence there is
s1 # s in R/Z such that vp(s1) = vo(s2). As 7, are simple curves,
parametrized proportional to arc-length, we see that p(s1) = £90(s2).
If 40(s1) = Fo(s2), then by the unique solvability of the initial value
problem

Yo(- + (51— 52)) = 0()-

If 40(s1) = —A0(s2), then we write 7 close to s; and s, as a graph over
the tangent direction 4p(s1) in normal coordinates Ezp,y(s,)- By the
maximum principle we find

Yo(s1+t) = Expys,),4(t50(s1) + a(t)Ny(r0(s1))),
70(32 + t) = Exp’yo(sl),g( - t"}/()(81) - b(t)Ng(’YO(Sl))%

where a(t) and b(t) are positive for ¢ # 0. Consequently, if §o(s1) =
—40(s2), then 7 touches itself at v(s1), locally separated by the geo-
desic through vo(s1) with velocity 4o (s1). Thus, 7 is an m-fold covering
for some m € N of a curve «, which is almost simple in the sense that
a can only touch itself as described above. Using stereographic coordi-
nates S there is a point pg close to the curve =g, such that the winding
number of S(vp) around S(pg) is £m. Since 7y is a limit of simple
curves, by the stability of the winding number, we deduce m = 1.

We denote by (€, g) the interior of vy considered as a Riemannian
surface with boundary of positive geodesic curvature. Fix a touching
point vy (s1) = v0(s2). The point vo(s1) = Y0(s2) corresponds to two dif-
ferent boundary points of €)g. Denote by § the curve of minimal length
in ¢ connecting the two boundary points. From a regularity result for
variational problems with constraints (see [2, 3]) the minimizer 3 is a
C'-curve. By the maximum principle, 8 cannot touch the boundary of
Qo and is therefore a C? geodesic in the interior of §y. Moreover, as a
minimizer, 3 is stable, and going back to S? the curve § is a geodesic
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loop which is stable with respect to variations with fixed end-points.
Thus

(6.2) inj(g,) <

This leads to

L(B) < 3L00).

N =

Lemma 6.1. X~ (0) is compact in M x [0,1] under each of the
following assumptions:

(6.3)

. 1 . -1 — 2

f e} > = 2 K )vol (52, ,
ity R} 2 7 sup ((ind(an)) ™ (27 + (sup K3wol(5%, 1)
(6.4)

1 1
K, >0vte[0,1] and  inf  {k}>= K,)?),
g [0,1] an (t,x)el[IOl,l]xSZ{ +} 2t§}éﬁ]((sup 0)?)

(6.5) Ky >0Vte[0,1] and (sup Kg,) < 4(inf Ky,) for all t € [0,1],
where inj(g;) denotes the injectivity radius of (S2, g).

Proof. We first show that X ~!(0) is closed under each of the above
assumptions. Suppose (Yn,t,) € X 1(0) converges to some (vg,tg) in
H?2(S',S%). To obtain a contradiction, assume (yo,%p) ¢ X ~1(0), i.e.,
7o is not simple. Then by the above analysis g touches itself at some
point Yo(s1) = vo(s2) and there is a stable, nontrivial geodesic loop £,
which yields a bound from above on the injectivity radius in (6.2) by
the length of ~g. If g is too short, this is impossible. The estimate on
the length of 4o in (6.1) leads to the contradiction under the assumption
(6.3). If K, > 0, then by [18, thm 2.6.9],

D=

(6.6) inj(gy) > m(sup Ky ) "2,

and (6.4) is a special case of (6.3).
Moreover, by Bonnet-Meyer’s theorem, as 3 is a stable geodesic loop,
its length is bounded by

T
\/ inf Kto ’
which yields together with (6.6) the contradiction assuming (6.5).

To deduce the compactness of X~1(0), we fix a sequence (yy,t,)
in X~(0). By (6.1) the length Lg, (v,) is uniformly bounded. Since
each v, is parametrized proportional to arc-length, (|¥ylg,, ) is uniformly
bounded. Using the equation (1.2) and standard elliptic regularity, (vy)
is bounded in H*2(S*, $?). Hence we may choose a subsequence, which
converges in H?2(S',5?) and by the first part of the proof in X ~1(0)
under each of the above assumptions. This yields the claim. q.e.d.

L(B) <
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Proof of Theorem 1.3. We fix ky > 0, let ki € C*(S?%,R) be given by
(5.24), and consider the metrics g = go, the functions k; := ko + tkq,
and the corresponding vector fields X; := X, .. The zeros of Xj
in M are given by Z, the manifold of solutions to the unperturbed
problem. The compactness of X~1(0) implies that the zeros of X; in
M converge to Z as t — 0. From the proof of Lemma 5.6 there are
exactly two critical orbits S! * a(t) for |t| > 0 small enough close to
Z which are nondegenerate and converge to the orbits of the parallels
af(+, 2m|r|, +ey, es, tes) as t — 0. Consequently, there are exactly two
simple solutions of (1.2) with g = gg and k = ko + tk;y if [¢| > 0 is small
enough. q.e.d.

7. Existence results

We give the proof of our main existence result.

Proof of Theorem 1.1. We consider the family of metrics {g; : ¢t € [0,1]}
defined by

g = (L —t)go + tg.

Since {¢:} is a compact family of metrics, there is a constant kg > 0
such that

1 _
ko > 7.5up ((inj(gt)) 1(27T + (Sung_t)vol(S2,gt))).
te(0,1]

We denote by M the set of simple regular curves in H%2(S!, $?). From
condition (6.3) in Lemma 6.1 the homotopy

0,1] 2t — Xk,
is (M, g;, S')-admissible, and hence from Lemma 3.12 and Lemma 5.6,
=2 = X51(Xbo,g0: M) = X51(Xpgg, M)
We define the family of functions {k; : t € [0,1]} by
ki = (1 —t)ko + tk
and consider the homotopy
0,1] >t — Xp, 4.

Under each of the above assumptions, we may apply Lemma 6.1 to
deduce that the homotopy is (M, g, S')-admissible, and thus

-2 = XSl(Xko,ga M) = Xs1 (th, M)

Since the local degree of an isolated critical orbit is larger than —1 by
Lemma 4.1, there are at least two simple solutions to (1.2). q.e.d.
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