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CLOSED MAGNETIC GEODESICS ON S
2

Matthias Schneider

Abstract

We give existence results for simple closed curves with pre-
scribed geodesic curvature on S2, which correspond to periodic
orbits of a charge in a magnetic field.

1. Introduction

The trajectory of a charged particle on an orientable Riemannian
surface (N, g) in a magnetic field given by the magnetic field form Ω =
k dA, where k : N → R is the magnitude of the magnetic field and dA
is the area form on N , corresponds to a curve γ on N that solves

Dt,gγ̇ = k(γ)Jg(γ)γ̇(1.1)

where Dt,g is the covariant derivative with respect to g, and Jg(x) is
the rotation by π/2 in TxN measured with g and the orientation chosen
on N . A curve γ in N that solves (1.1) will be called a (k-)magnetic
geodesic. We refer to [4, 12, 6] for the Hamiltonian description of the
motion of a charge in a magnetic field. Taking the scalar product of
(1.1) with γ̇, we see that if γ is a magnetic geodesic, then (γ, γ̇) lies on
the energy level Ec := {(x, V ) ∈ TN : |V |g = c}.

The geodesic curvature kg(γ, t) of an immersed curve γ at t is defined
by

kg(γ, t) := |γ̇(t)|−2
g

〈(
Dt,gγ̇

)
(t), Ng(γ(t))

〉

g
,

where Ng(γ(t)) denotes the unit normal of γ at t given by

Ng(γ(t)) := |γ̇(t)|−1
g Jg(γ(t))γ̇(t).

By (1.1), a nonconstant curve γ on Ec is a k-magnetic geodesic if and
only if its geodesic curvature kg(γ, t) is given by k(γ(t))/c. We will take
advantage of the latter description and consider the equation

Dt,gγ̇ = |γ̇|gk(γ)Jg(γ)γ̇.(1.2)

We call equation (1.2) the prescribed geodesic curvature equation, as its
solutions γ are constant speed curves with geodesic curvature kg(γ, t)
given by k(γ(t)). For fixed k and c > 0 the equations (1.1) and (1.2) are
equivalent in the following sense: If γ is a nonconstant solution of (1.2)
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with k replaced by k/c, then the curve t 7→ γ(ct/|γ̇|g) is a k-magnetic
geodesic on Ec and a k-magnetic geodesic on Ec solves (1.2) with k
replaced by k/c. We emphasize that unless k ≡ 0, the solutions of (1.1)
lying in different Ec are not reparametrizations of each other.

We study the existence of closed curves with prescribed geodesic cur-
vature or equivalently the existence of periodic magnetic geodesics on
prescribed energy levels Ec.

There are different approaches to this problem: the Morse-Novikov
theory for (possibly multivalued) variational functionals (see [30, 24,
29]), the theory of dynamical systems using methods from symplectic
geometry (see [15, 14, 11, 4, 12, 13, 26]), and Aubry-Mather’s theory
(see [6]).

We suggest a new approach: instead of looking for critical points
of the (possibly multivalued) action functional, we consider solutions
to (1.2) as zeros of the vector field Xk,g defined on the Sobolev space
H2,2(S1, N) as follows: For γ ∈ H2,2(S1, N) we letXk,g(γ) be the unique
weak solution of

(
−D2

t,g + 1
)
Xk,g(γ) = −Dt,gγ̇ + |γ̇|gk(γ)Jg(γ)γ̇(1.3)

in TγH
2,2(S1, N). The uniqueness implies that any zero of Xk,g is a

weak solution of (1.2) which is a classical solution in C2(S1, N) applying
standard regularity theory. The vector field Xk,g as well as the set of
solutions to (1.2) is invariant under a circle action: For θ ∈ S1 = R/Z
and γ ∈ H2,2(S1, N) we define θ ∗ γ ∈ H2,2(S1, N) by

θ ∗ γ(t) = γ(t+ θ).

Moreover, for V ∈ TγH
2,2(S1, N) we let

θ ∗ V := V (·+ θ) ∈ Tθ∗γH
2,2(S1, N).

ThenXk,g(θ∗γ) = θ∗Xk,g(γ) for any γ ∈ H2,2(S1, N) and θ ∈ S1. Thus,
any zero gives rise to an S1-orbit of zeros and we say that two solutions
γ1 and γ2 of (1.2) are (geometrically) distinct, if S1 ∗ γ1 6= S1 ∗ γ2.

We will apply this approach to the case N = S2, equipped with a
smooth metric g, and k a positive smooth function on S2. We shall
prove

Theorem 1.1. Let g be a smooth metric and k a positive smooth
function on S2. Suppose that one of the following three assumptions is
satisfied:

4 inf(k) ≥
(
inj(g)

)−1(
2π + (supK−

g )vol(S2, g)
)
,(1.4)

Kg > 0 and 2 inf(k) ≥ sup(Kg)
1
2 ,(1.5)

sup(Kg) < 4 inf(Kg),(1.6)
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where Kg denotes the Gauss curvature, K−
g := −min(Kg, 0), and inj(g)

denotes the injectivity radius of (S2, g). Then there are at least two
simple solutions of (1.2) in C2(S1, S2).

Concerning the existence of closed k-magnetic geodesics for a positive
smooth function k on (S2, g), the following is known (see [11, 12]):

(i) if c > 0 is sufficiently small, then Ec contains two simple closed
magnetic geodesics;

(ii) if g is sufficiently close to the round metric g0 and k is sufficiently
close to a positive constant, then there is a closed magnetic geo-
desic in every energy level Ec;

(iii) if c > 0 is sufficiently large, then Ec contains a closed magnetic
geodesic.

Using the equivalence between (1.1) and (1.2), we obtain from Theorem
1.1

Corollary 1.2. Let g be a smooth metric, k a positive smooth func-
tion on S2, and c > 0. Suppose that one of the following three assump-
tions is satisfied:

c ≤ 4
(
inf(k)

)(
inj(g)

)(
2π + (supK−

g )vol(S2, g)
)−1

,(1.7)

Kg > 0 and c ≤ 2 inf(k)
(
sup(Kg)

)− 1
2 ,(1.8)

sup(Kg) < 4 inf(Kg).

Then Ec contains at least two simple closed magnetic geodesics.

Condition (1.7) should be compared to the existence results in (i)
and gives bounds on the required smallness of c in terms of geometric
quantities. To show that (1.7) is useful despite the implicit definition
of inj(g), we apply an estimate of inj(g) in [18] and obtain (1.8) as a
special case. The pinching condition (1.6) extends the existence result
in (ii) and shows, for instance, that on the round sphere there are two
simple closed curves of prescribed geodesic curvature k for any posi-
tive function k, which gives a partial solution to a problem posed by
Arnold in [5, 1994-35,1996-18] concerning the existence of closed mag-
netic geodesics on S2 on every energy level Ec.

By the famous Lusternik-Schnirelmann theorem, there are at least
three simple closed geodesics on every Riemannian two sphere (S2, g).
As a by-product of our analysis we show that, in general, even if k
is very close to 0, there are no more than two simple closed magnetic
geodesics on S2 in E1 (see also [14, sec. 7]).

Theorem 1.3. Let g0 be the round metric on S2. For any positive
constant k0 > 0 there is a smooth function k on S2, which can be chosen
arbitrarily close to k0, such that there are exactly two simple solutions
of (1.2).
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The proof of our existence results is organized as follows. After setting
up notation in Section 2 and introducing the classes of maps and spaces
needed for our analysis, we define in Section 3 a S1-equivariant Poincaré-
Hopf index or S1-degree,

χS1(X,M) ∈ Z,

where M is an S1-invariant subset of prime curves in H2,2(S1, S2) and
X belongs to a class of S1-invariant vector fields. The index χS1(X,M)
is related to the extension of the Leray-Schauder degree to intrinsic
nonlinear problems in [32, 9] and is used combined with the a priori
estimates in Section 6 to count simple periodic solutions of (1.2). We
remark that the standard degree χ(X,M), which does not take the S1

invariance into account, vanishes as it detects only fixed points under
the S1-action, i.e. constant solutions. Equivariant degree theories have
been defined and applied to differential equations by many authors; we
refer to [16, 10, 8, 17, 7] and the references therein. However, we do
not see how to apply these results directly to (1.2).

The vector field Xk,g corresponding to the prescribed geodesic curva-
ture problem falls into the class of vector fields, where our S1-degree is
defined. In Section 4 we show that the S1-degree of an isolated zero orbit
of Xk,g is given by −i(P, θ), where i(P, θ) denotes the fixed point in-
dex of the Poincaré map of the corresponding magnetic geodesic. Since
the Poincaré map is area preserving, we obtain from [27, 23] that the
S1-degree of an isolated zero orbit is bounded below by −1.

Section 5 is devoted to the computation of χS1(Xk0,g0 ,M), where k0
is a positive constant, g0 is the round metric of S2, and M is the set of
simple regular curves inH2,2(S1, S2). We call equation (1.2) with k ≡ k0
and g = g0 the unperturbed problem, which is analyzed in detail. The
set of simple solutions to the unperturbed problem is given by circles
of latitude of radius (1 + k20)

−1/2 with respect to an arbitrarily chosen
north pole. To compute the S1-degree we slightly perturb the constant
function k0 and end up with exactly two nondegenerate solutions of
degree −1. This implies that χS1(Xk0,g0 ,M) = −2.

Section 6 contains the a priori estimates showing that the set of sim-
ple solutions to (1.2) is compact in M under each of the assumptions
(1.4)–(1.6). Together with the perturbative analysis in Section 5, this
yields the proof of Theorem 1.3 and allows us to construct an admissible
homotopy of vector fields between Xk0,g0 and Xk,g whenever k and g
satisfy the assumptions of Theorem 1.1. The homotopy invariance of
the S1-equivariant Poincaré-Hopf index then shows

χS1(Xk,g,M) = χS1(Xk0,g0 ,M) = −2.

Since the S1-degree of an isolated zero orbit is always larger than −1,
there are at least two simple solutions of (1.2). The existence result is
given in Section 7.
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2. Preliminaries

Let S2 = ∂B1(0) ⊂ R
3 be the standard round sphere with induced

metric g0 and orientation such that the rotation Jg0(y) is given for y ∈
S2 by

Jg0(y)(v) := y × v for all v ∈ TyS
2,

where × denotes the cross product in R
3. If we equip S2 with a general

Riemannian metric g, then the rotation by π/2 measured with g is given
by

Jg(y)v =
(
G(y)

)−1
Jg0(y)

(
G(y)

)
v ∀v ∈ TyS2,

where G(y) denotes a positive symmetric map G(y) ∈ L(TyS2) satisfy-
ing

〈v,w〉TyS2,g = 〈G(y)v,G(y)w〉TyS2,g0 ∀v,w ∈ TyS
2.

We consider for m ∈ N0 the set of Sobolev functions

Hm,2(S1, S2) := {γ ∈ Hm,2(S1,R3) : γ(t) ∈ ∂B1(0) for a.e. t ∈ S1}.

For m ≥ 1 the set Hm,2(S1, S2) is a sub-manifold of the Hilbert space
Hm,2(S1,R3) and is contained in Cm−1(S1,R3). Hence, if m ≥ 1 then
γ ∈ Hm,2(S1, S2) satisfies γ(t) ∈ ∂B1(0) for all t ∈ S1. In this case the
tangent space TγH

m,2(S1, S2) of Hm,2(S1, S2) at γ ∈ Hm,2(S1, S2) is
given by

TγH
m,2(S1, S2) := {V ∈ Hm,2(S1,R3) : V (t) ∈ Tγ(t)S

2 for all t ∈ S1}.

For m = 0 the set H0,2(S1, S2) = L2(S1, S2) fails to be a manifold. In
this case we define for γ ∈ H1,2(S1, S2) the space TγL

2(S1, S2) by

TγL
2(S1, S2) := {V ∈ L2(S1,R3) : V (t) ∈ Tγ(t)S

2 for a.e. t ∈ S1}.

A metric g on S2 induces a metric on Hm,2(S1, S2) for m ≥ 1 by setting
for γ ∈ Hm,2(S1, S2) and V, W ∈ TγH

m,2(S1, S2)

〈W,V 〉TγHm,2(S1,S2),g :=

∫

S1

〈(
(−1)x

m
2
y(Dt,g)

m + 1
)
V (t),

(
(−1)x

m
2
y(Dt,g)

m + 1
)
W (t)

〉

γ(t),g
dt,

where xm/2y denotes the largest integer that does not exceed m/2.
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Let X be a differentiable vector field on H2,2(S1, S2). Then the co-
variant (Frechet) derivative DgX,

DgX : TH2,2(S1, S2)) → TH2,2(S1, S2),

of the vector field X with respect to the metric induced by g is defined
as follows: For γ ∈ H2,2(S1, S2) and V ∈ TγH

2,2(S1, S2) we consider a
C1-curve

(−ε, ε) ∋ s 7→ γs ∈ H2,2(S1, S2)

satisfying

γ0 = γ and
d

ds
γs|s=0 = V,

and define

DgX|γ [V ](t) := Ds,g

(

X
(
γs(t)

))

|s=0.

For the vector field theory on infinite dimensional manifolds, it is con-
venient to work with Rothe maps instead of compact perturbations of
the identity, because the class of Rothe maps is open in the space of lin-
ear continuous maps. We recall the definition and properties of Rothe
maps given in [32] for the sake of the reader’s convenience. For a Ba-
nach space E, we denote by GL(E) the set of invertible maps in L(E),
and by S(E) the set

S(E) = {T ∈ GL(E) : (tT + (1− t)I) ∈ GL(E) for all t ∈ [0, 1]}.
Then the set of Rothe maps R(E) is defined by

R(E) := {A ∈ L(E) : A = T + C, T ∈ S(E) and C compact}.
The set R(E) is open in L(E) and consists of Fredholm operators of
index 0. Moreover, GR(E) := R(E) ∩ GL(E) has two components,
GR±(E), with I ∈ GR+(E). For A ∈ GR(E) we let

sgnA =

{

+1 if A ∈ GR+(E),

−1 if A ∈ GR−(E).

If A = I+C ∈ GL(E), where C is compact, then A ∈ GR(E) and sgnA
is given by the usual Leray-Schauder degree of A.

Since g and k are smooth, Xk,g is a smooth vector field (see [31, sec.

6]) on the set H2,2
reg(S1, S2) of regular curves,

H2,2
reg(S

1, S2) := {γ ∈ H2,2(S1, S2) : γ̇(t) 6= 0 for all t ∈ S1}.
To compute DgXk,g|γ(V ) we observe

Ds,g

(
−D2

t,g + 1)Xk,g(γs)
)
= Ds,g

(
−Dt,g γ̇s + |γ̇s|gk(γs)Jg(γs)γ̇s

)

= −D2
t,g

dγs
ds

−Rg

(dγs
ds

, γ̇s
)
γ̇s +Ds,g

(
|γ̇s|gk(γs)Jg(γs)γ̇s

)
.
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Evaluating at s = 0, we obtain

Ds,g

(
(−D2

t,g + 1)Xk,g(γs)
)
|s=0

= −D2
t,gV −Rg

(
V, γ̇

)
γ̇ + |γ̇|−1

g 〈Dt,gV, γ̇〉gk(γ)Jg(γ)γ̇
+ |γ̇|g

(
k′(γ)V

)
Jg(γ)γ̇ + |γ̇|gk(γ)

(
DgJg|γV

)
γ̇

+ |γ̇|gk(γ)Jg(γ)Dt,gV.(2.1)

Moreover, we have

Ds,g

(
(−D2

t,g + 1)Xk,g(γs)
)
|s=0

= −Ds,gD
2
t,gXk,g(γs)|s=0 +Ds,gXk,g(γs)|s=0

=
(
−D2

t,g + 1)DgXk,g|γ(V )−Dt,g

(

Rg

(
V, γ̇

)
Xk,g(γ)

)

−Rg

(
V, γ̇

)
Dt,gXk,g(γ).(2.2)

Equating (2.1) and (2.2) at a critical point γ of Xk,g leads to
(
−D2

t,g + 1
)
DgXk,g|γ(V )

= −D2
t,gV −Rg

(
V, γ̇

)
γ̇ + |γ̇|−1

g 〈Dt,gV, γ̇〉gk(γ)Jg(γ)γ̇
+ |γ̇|g

(
k′(γ)V

)
Jg(γ)γ̇ + |γ̇|gk(γ)

(
DgJg|γV

)
γ̇

+ |γ̇|gk(γ)Jg(γ)Dt,gV.(2.3)

We note that (see also [32, thm. 6.1])
(
−D2

t,g + 1
)
DgXk,g|γ(V ) = (−D2

t,g + 1)V + T (V ),

where T is a linear map from TγH
2,2(S1, S2) to TγL

2(S1, S2) that de-
pends only on V and its first derivatives and is therefore compact. Tak-
ing the inverse (−D2

t,g + 1)−1, we deduce that DgXk,g|γ is the form
identity + compact and thus a Rothe map.

Form ≥ 1 the exponential map Expg : TH
m,2(S1, S2) → Hm,2(S1, S2)

is defined for γ ∈ Hm,2(S1, S2) and V ∈ TγH
m,2(S1, S2) by

Expγ,g(V )(t) := Expγ(t),g(V (t)),

where Expz,g denotes the exponential map on (S2, g) at z ∈ S2. Due to
its pointwise definition,

θ ∗Expγ,g(V )(t) = Expθ∗γ,g(θ ∗ V )(t).

3. The S1-Poincaré-Hopf index

For γ ∈ H2,2(S1, S2) we define the form ωg(γ) ∈ (TγH
2,2(S1, S2))∗

by

ωg(γ)(V ) : =

∫ 1

0
〈γ̇(t),

(
− (Dt,g)

2 + 1
)
V (t)〉γ(t),g dt

= 〈γ̇, V 〉TγH1,2(S1,S2),g.
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Approximating γ̇ by vector fields contained in TγH
2,2(S1, S2), it is easy

to see that ωg(γ) 6= 0, if γ 6= const. If γ ∈ H3,2(S1, S2), then ωg(γ)
extends to a linear form in (TγL

2(S1, S2))∗ by

ωg(γ)(V ) := 〈
(
− (Dt,g)

2 + 1
)
γ̇, V 〉TγL2(S1,S2),g.

From Riesz’ representation theorem there is Wg(γ) ∈ TγH
2,2(S1, S2)

such that

ωg(γ)(V ) = 〈V,Wg(γ)〉TγH2,2(S1,S2),g ∀V ∈ TγH
2,2(S1, S2),

and

〈Wg(γ)〉⊥ = 〈γ̇〉⊥,H1,2 ∩ TγH2,2(S1, S2).(3.1)

Hence

Wg(γ) = (−(Dt,g)
2 + 1)−1γ̇

and Wg is a C2 vector field on H2,2(S1, S2).
The form ωg(γ) and the vector Wg(γ) are equivariant under the S1-

action in the sense that for all θ ∈ S1 and V ∈ TγH
2,2(S1, S2) we have

wθ∗γ,g(θ ∗ V ) = ωg(γ)(V ) and Wθ∗γ,g = θ ∗Wg(γ).

Using the vector field Wg, we define a vector bundle SH2,2(S1, S2) by

SH2,2(S1, S2) := {(γ, V ) ∈ TH2,2(S1, S2) : γ 6= const, V ∈ 〈Wg(γ)〉⊥}.

Note that SH2,2(S1, S2) is S1-invariant, as

(γ, V ) ∈ SH2,2(S1, S2) =⇒ (θ ∗ γ, θ ∗ V ) ∈ SH2,2(S1, S2) ∀θ ∈ S1.

For γ ∈ H2,2(S1, S2) \ {const} we consider the map

ψγ,g : TγH
2,2(S1, S2)× TγH

2,2(S1, S2) → SH2,2(S1, S2)

defined by

ψγ,g(V,U) :=
(

Expγ,gV, Proj〈Wg(Expγ,gV )〉⊥
(
DExpγ,g|V U

))

.(3.2)

The differential of ψγ,g at (0, 0) is given by

Dψγ,g|(0,0)(V,U) = (V,U − ‖Wg(γ)‖−2〈U,Wg(γ)〉TγH2,2(S1,S2),gWg(γ)).

Consequently, there is δ = δ(γ, g) > 0 such that ψγ,g restricted to

Bδ(0)×Bδ(0) ∩ 〈Wg(γ)〉⊥ ⊂ TγH
2,2(S1, S2)× TγH

2,2(S1, S2)

is a chart for the manifold SH2,2(S1, S2) at (γ, 0). The construction is
S1-equivariant, for

ψθ∗γ,g(θ ∗ V, θ ∗ U) = θ ∗ ψγ,g(V,U) ∀θ ∈ S1
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and we may choose δ(γ, g) = δ(θ ∗ γ, g) for all θ ∈ S1. Shrinking δ(γ, g)
we may assume, as Expγ,g is also a chart forH

k,2(S1, S2) with 1 ≤ k ≤ 4
and by (3.1),

TExpγ,g(V )H
1,2(S1, S2) = 〈DtExpγ,g(V )〉 ⊕DExpγ,g|V (〈γ̇〉⊥,H1,2

),

(3.3)

TExpγ,g(V )H
2,2(S1, S2) = 〈Wg(Expγ,g(V ))〉 ⊕DExpγ,g|V (〈Wg(γ)〉⊥),

(3.4)

Proj〈Wg(Expγ,g(V )〉⊥ ◦DExpγ,g|V : 〈Wg(γ)〉⊥
∼=−→ 〈Wg(Expγ,g(V )〉⊥,

(3.5)

and the norm of the projections corresponding to the decompositions in
(3.3) and (3.4) as well as the norm of the map in (3.5) and its inverse
are uniformly bounded with respect to V .

The S1-action is only continuous but not differentiable onH2,2(S1, S2)
as, for instance, the candidate for the differential of the map θ → θ∗γ at
θ = 0, γ̇, is in general only in TγH

1,2(S1, S2). We prove the existence of
a slice of the S1-action (see [19, lem. 2.2.8] and the references therein)
at a curve γ with higher regularity and obtain additional differentiability
of the slice map.

Lemma 3.1 (Slice lemma). Let γ ∈ H3,2(S1, S2) be a prime curve,
i.e. a curve with trivial isotropy group {θ ∈ S1 : θ ∗ γ = γ}. Then there
is an open neighborhood U of 0 in TγH

2,2(S1, S2), such that the map

Σγ,g : S
1 × U ∩ 〈Wg(γ)〉⊥ → H2,2(S1, S2),

defined by

Σγ,g(θ, V ) := θ ∗ Expγ,g(V ),

is a homeomorphism onto its range, which is open in H2,2(S1, S2).
Moreover, the inverse (Σγ,g)

−1 satisfies

ProjS1 ◦ (Σγ,g)
−1 ∈ C2

(

Σγ,g

(
S1 × U ∩ 〈Wg(γ)〉⊥

)
, S1

)

.

Proof. Fix a prime curve γ ∈ H3,2(S1, S2). We consider for δ0 > 0
the map

Fγ,g : Bδ0(0) ×Bδ0(0) ⊂ R/Z× TγH
2,2(S1, S2) → R

defined by

Fγ,g(θ, V ) := ωg(γ)
(

Exp−1
γ,g

(
θ ∗ Expγ,g(V )

))

.

Note that, as S1 acts continuously on H2,2(S1, S2) and Expγ,g is a
local diffeomorphism, after shrinking δ0 > 0 the map Fγ,g is well de-
fined. Expγ,g is a smooth map, such that for fixed θ the map V 7→
Fγ,g(θ, V ) is also smooth. Moreover, since Expγ,g(V ) is in H2,2(S1, S2)
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and DExpγ,g|V maps L2 vector fields along γ into L2 vector fields along
Expγ,g(V ), the map

θ 7→ Exp−1
γ,g

(
θ ∗ Expγ,g(V )

)

is C2 from Bδ0(0) ⊂ R/Z to TγL
2(S1, S2), the space of L2 vector fields

along γ. For γ ∈ H3,2(S1, S2) the form ωg(γ) is in (TγL
2(S1, S2))∗.

Thus, θ 7→ Fγ,g(θ, V ) is C2 as well as Fγ,g. Fix V ∈ TγH
2,2(S1, S2).

Since

DθFγ,g|(0,0) = ωg(γ)(γ̇), 6= 0,

by the implicit function theorem and after shrinking δ0 > 0 we get a
unique C2-map

σγ,g : Bδ0(0) ⊂ TγH
2,2(S1, S2) → Bδ0(0) ⊂ R/Z

such that

Fγ,g(σγ,g(V ), V ) ≡ 0 in Bδ0(0) ⊂ TγH
2,2(S1, S2).

Hence, we may define locally around γ

Vγ,g(α) : = Exp−1
γ,g(σγ,g(Exp

−1
γ,g(α)) ∗ α) ∈ 〈Wg(γ)〉⊥.

Using the uniqueness of σγ,g and the fact that γ is prime, it is standard
to see that Σγ,g is injective and that the inverse is given locally around
θ0 ∗ γ for fixed θ0 ∈ S1 by

Σ−1
γ,g = (θ0, 0) + (−σγ,g ◦Exp−1

γ,g ◦ (−θ0∗), Vγ,g ◦ (−θ0∗)).
This finishes the proof. q.e.d.

We will compute the Poincaré-Hopf index for the following class of vec-
tor fields.

Definition 3.2. Let M be an open S1-invariant subset of prime
curves in H2,2(S1, S2). A C2 vector field X on M is called (M,g, S1)-
admissible, if

(1) X is S1-equivariant, i.e. X(θ∗γ) = θ∗X(γ) for all (θ, γ) ∈ S1×M .
(2) X is proper in M , i.e. the set {γ ∈M : X(γ) = 0} is compact.
(3) X is orthogonal to Wg, i.e. wg(γ)(X(γ)) = 0 for all γ ∈M .
(4) X is a Rothe field, i.e. if X(S1 ∗ γ) = 0 then

DgX|γ ∈ R(TγH
2,2(S1, S2)) and Proj〈Wg(γ)〉⊥ ◦DgX|γ ∈ R(〈Wg(γ)〉⊥).

(5) X is elliptic, i.e. there is ε > 0 such that for all finite sets of
charts

{(Expγi,g, B2δi(0)) : γi ∈ H4,2(S1, S2) for 1 ≤ i ≤ n},
and finite sets

{Wi ∈ TγiH
4,2(S1, S2) : ‖Wi‖Tγi

H4,2(S1,S2) < ε for 1 ≤ i ≤ n},
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there holds: If α ∈ n∩
i=1

Expγi,g(Bδi(0)) ⊂ H2,2(S1, S2) satisfies

X(α) =
n∑

i=1

Proj〈Wg(α)〉⊥ ◦DExpγi,g|Exp−1
γi,g

(α)(Wi)

then α is in H4,2(S1, S2).

Property (4) does not depend on the particular element γ of the
critical orbit S1 ∗ γ, because from θ ∗X(γ) = X(θ ∗ γ) we get

DgX|γ = (−θ∗) ◦DgX|θ∗γ ◦ (θ∗),(3.6)

and Rothe maps are invariant under conjugacy. Concerning the reg-
ularity property (5), taking Wi = 0, we deduce that if X(γ) = 0
then γ ∈ H4,2(S1, S2). Furthermore, if γ ∈ H4,2(S1, S2) then the map
θ 7→ θ ∗ γ is C2 from S1 to H2,2(S1, S2). Hence, if X(γ) = 0 then

0 = Dθ(X(θ ∗ γ))|θ=0 = DgX|γ(γ̇),(3.7)

such that the kernel of DgX|γ at a critical orbit S1 ∗ γ is nontrivial.
The parameter ε > 0 ensures that (5) remains stable under small per-
turbations used in the Sard-Smale lemma below. If X is a vector field
orthogonal to Wg and X(γ) = 0, then

0 = D
(
〈X(α),Wg(α)〉TαH2,2(S1,S2),g

)
|γ = 〈DgX|γ ,Wg(γ)〉TγH2,2(S1,S2),g

where the various curvature terms and terms containing derivatives of
Wg vanish as X(γ) = 0. Thus, X(γ) = 0 implies

DgX|γ : TγH
2,2(S1, S2) → 〈Wg(γ)〉⊥,(3.8)

and the projection Proj〈Wg(γ)〉⊥ in (4) is unnecessary.

Lemma 3.3. The vector field Xk,g defined in (1.3) is S1-equivariant,
orthogonal to Wg, elliptic, and a C2-Rothe field with respect to the set

H2,2
reg(S1, S2) of regular curves.

Proof. From Section 1 and Section 2, the vector field Xk,g is S1-
equivariant and a C2-Rothe field. Furthermore, we obtain for α ∈
H2,2(S1, S2)

〈Xk,g(α),Wg(α)〉TαH2,2(S1,S2),g =

∫

S1

〈α̇(t), (−D2
t,g + 1)Xk,g(α)(t)〉g dt

=

∫

S1

〈α̇(t),−Dtα̇(t) + |α̇(t)|gk(α(t))Jg(α(t))α̇(t)〉g dt

= −
∫

S1

〈α̇(t),Dtα̇(t)〉g dt = −
∫

S1

1

2

d

dt
〈α̇, α̇〉g dt = 0.

To show that Xk,g is elliptic, we fix

{(γi,Wi) ∈ TH4,2(S1, S2) : Wi ∈ Bδi(0), 1 ≤ i ≤ n},
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where (Expγi,g, B2δi(0)) is a chart around γi, and α ∈ n∩
i=1

Expγi,g(Bδi(0))

satisfying

Xk,g(α) =

n∑

i=1

Proj〈Wg(α)〉⊥ ◦DExpγi,g|Exp−1
γi,g

(α)(Wi).

Then

Dt,gα̇− |α̇|gk(α)Jg(α)α̇

= (−D2
t,g + 1)

n∑

i=1

Proj〈Wg(α)〉⊥ ◦DExpγi,g|Exp−1
γi,g

(α)(Wi).

We fix 1 ≤ i ≤ n and get

D2
t,gProj〈Wg(α)〉⊥ ◦DExpγi,g|Exp−1

γi,g
(α)(Wi)

= D2
t,g

(
DExpγi,g|Exp−1

γi,g
(α)(Wi)

)

− 〈DExpγi,g|Exp−1
γi,g

(α)(Wi),Wg(α)〉D2
t,gWg(α),

as well as

D2
t,g

(
DExpγi,g|Exp−1

γi,g
(α)(Wi)

)
(t)

= D2Expγi(t),g|Exp−1
γi,g

(α)(t)D
2
t,gExp

−1
γi,g(α)(t)(Wi(t)) +R1,i(t)

= D2Expγi(t),g|Exp−1
γi,g

(α)(t)D(Expγi(t),g)
−1|α(t)Dt,gα̇(t)(Wi(t))

+R2,i(t),

where R1,i and R2,i consist of lower order terms containing only deriva-
tives of α up to order 1 and derivatives of γi andWi up to order 2. Thus
α is a solution of

(1−A(t))Dt,gα̇ = |α̇|gk(α)Jg(α)α̇ +R(t)

−
n∑

i=1

〈DExpγi,g|Exp−1
γi,g

(α)(Wi),Wg(α)〉(−D2
t,g + 1)Wg(α),(3.9)

where R contains only derivatives of α up to order 1 and derivatives of
γi and Wi up to order 2, and A(t) ∈ L(Tα(t)S2) is given by

V 7→
n∑

i=1

D2Expγi(t),g|Exp−1
γi,g

(α)(t)(D(Expγi(t),g)
−1|α(t)V )(Wi(t)).

Since H2,2-bounds yield L∞-bounds, choosing max ‖Wi‖ small enough
independently of {γi} and α, we may assume ‖A(t)‖ < 1

2 and A is of

class H2,2 with respect to t. Since γi and Wi are in H4,2 and (−D2
t,g +

1)Wg(α) = α̇, the right hand side of (3.9) is in H1,2. By standard
regularity results, α is in H3,2, such that the right hand side of (3.9) is
in H2,2, which yields α ∈ H4,2. Consequently, Xk,g is elliptic. q.e.d.
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Definition 3.4. Let M be an open S1-invariant subset of prime
curves in H2,2(S1, S2), S1 ∗ γ ⊂ M , and X an (M,g, S1)-admissible
vector field on M .

The orbit S1 ∗ γ is called a critical orbit of X, if X(γ) = 0.
The orbit S1∗γ is called a nondegenerate critical orbit of X, if X(γ) =

0 and

DgX|γ : 〈Wg(γ)〉⊥ −→ 〈Wg(γ)〉⊥(3.10)

is an isomorphism.
If S1 ∗ γ is critical, then using the chart ψγ,g given in (3.2) we de-

fine, after possibly shrinking δ > 0, a map Xγ ∈ C2(Bδ(0) ∩ 〈Wg(γ)〉⊥,
〈Wg(γ)〉⊥) by

Xγ(V ) := Proj2 ◦ ψ−1
γ,g

(
Expγ,g(V ),X(Expγ,g(V ))

)
,(3.11)

where Proj2 denotes the projection on the second component.
The orbit S1 ∗ γ is called an isolated critical orbit of X, if X(γ) = 0

and V = 0 is an isolated zero of Xγ .

The nondegeneracy of a critical orbit does not depend on the choice
of γ in S1 ∗ γ.

Lemma 3.5. Under the assumptions of Definition 3.4, a tangent
vector V ∈ Bδ(0) ∩ 〈Wg(γ)〉⊥ is a (nondegenerate) zero of Xγ if and
only if S1 ∗ Expγ,g(V ) is a (nondegenerate) critical orbit of X.

Proof. From the fact that X(Expγ,g(V )) ⊥Wg(Expγ,g(V )), we get

Xγ(V ) = 0 ⇐⇒ X(Expγ,g(V )) = 0.

Moreover, if Xγ(V ) = 0, then

DXγ |V = Proj2 ◦Dψ−1
γ,g|(Expγ,g(V ),0)

◦
(
DExpγ,g|V ,DgX|Expγ,g(V ) ◦DExpγ,g|V

)

= A−1 ◦DgX|Expγ,g(V ) ◦DExpγ,g|V ,
where A : 〈Wg(γ)〉⊥ → 〈Wg(Expγ,g(V )〉⊥ is given by

A := Proj〈Wg(Expγ,g(V )〉⊥ ◦DExpγ,g|V .
By (3.5) the map A is an isomorphism. Consequently, the map DXγ |V
is invertible, if and only if

DgX|Expγ,g(V ) ◦DExpγ,g|V : 〈Wg(Expγ,g(V )〉⊥
∼=−→ 〈Wg(Expγ,g(V ))〉⊥

(3.12)

is an isomorphism. The injectivity in (3.12), (3.3), and (3.7) implies that
the kernel of the map DgX|Expγ,g(V ) is one dimensional and given by
〈DtExpγ,g(V )〉. As DgX|Expγ,g(V ) is a Rothe map and thus a Fredholm
operator of index 0, we deduce that (3.12) implies the nondegeneracy
of Expγ,g(V ). If (3.10) holds with γ replaced by Expγ,g(V ), then the
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kernel of DgX|Expγ,g(V ) is one dimensional, and from (3.3) we infer that
(3.12) holds, which finishes the proof. q.e.d.

Definition 3.6. Let gt for t ∈ [0, 1] be a family of smooth metrics on
S2, which induces a corresponding family of metrics on H2,2(S1, S2),
still denoted by gt. Let M be an open S1-invariant subset of prime
curves in H2,2(S1, S2) and X0, X1 two vector-fields on M such that Xi

is (M,gi, S
1)-admissible for i = 0, 1. A C2 family of vector-fields X(t, ·)

on M for t ∈ [0, 1] is called an (M,gt, S
1)-homotopy between X0 and

X1, if

• X(0, ·) = X0 and X(1, ·) = X1,
• {(t, γ) ∈ [0, 1] ×M : X(t, γ) = 0} is compact,
• Xt := X(t, ·) is (M,gt, S

1)-admissible for all t ∈ [0, 1].

We write (M,g, S1)-homotopy, if the family of metrics gt is constant.

If X is an (M,gt, S
1)-homotopy, then differentiating

〈X(t, γ),Wgt(γ)〉TγH2,2(S1,S2),gt ≡ 0

we see as in (3.8) for (t0, γ0) ∈ X−1(0),

DgX|t0,γ0 : R× Tγ0H
2,2(S1, S2) → 〈Wgt0

(γ0)〉⊥,gt0 .(3.13)

Moreover, analogous to (3.11), there is δ > 0 such that

Xt0,γ0 ∈ C2(Bδ(t0)×Bδ(0) ∩ 〈Wgt0
(γ0)〉⊥,gt0 , 〈Wgt0

(γ0)〉⊥,gt0 ),

where

Xt0,γ0(t, V ) := Proj3 ◦ ψ−1
γ0,t0

(
t, Expγ0,gt0 (V ),X(t, Expγ0 ,gt0 (V ))

)
,

and ψγ0,t0 is a chart around (t0, γ0, 0) of the bundle

S[0,1]H
2,2(S1, S2) := {(t, γ, V ) ∈ [0, 1] × TH2,2(S1, S2) : γ 6= const

and V ∈ 〈Wgt(γ)〉⊥,gt},
defined in a neighborhood of (t0, 0, 0) in

[0, 1] × Tγ0H
2,2(S1, S2)× 〈Wgt0

(γ0)〉⊥,gt0

by

ψγ,t0(t, V, U) :=
(
t, Expγ,gt0V, Proj〈Wgt (Expγ,gt0

V )〉⊥,gt (DExpγ,gt0 |V U)
)
.

(3.14)

Definition 3.7. Let X be an (M,gt, S
1)-homotopy and (t0, S

1∗γ0) ∈
[0, 1] ×M . The orbit (t0, S

1 ∗ γ0) is called a nondegenerate zero of X,
if X(t0, γ0) = 0 and

DgX|(t0 ,γ0) : R× 〈Wgt0
(γ0)〉⊥,gt0 → 〈Wgt0

(γ0)〉⊥,gt0(3.15)

is surjective.

Analogously to Lemma 3.5, we obtain for a homotopy X.
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Lemma 3.8. Under the assumptions of Definition 3.7, the tuple
(t, V ) in Bδ(t0) × Bδ(0) ∩ 〈Wgt0

(γ)〉⊥,gt0 is a (nondegenerate) zero of

Xt0,γ0 if and only if the orbit (t, S1 ∗Expγ0,gt0 (V )) is a (nondegenerate)
zero of X.

We give an S1 equivariant version of the Sard-Smale lemma [28, 25].

Lemma 3.9. Let M be an open S1-invariant subset of prime curves
in H2,2(S1, S2) and X an (M,g, S1)-admissible vector field on M . Let
U be an open neighborhood of the zeros of X. Then there exists a
(M,g, S1)-admissible vector field Y such that Y has only finitely many
isolated, nondegenerate zeros, Y equals X outside U , and there is an
(M,g, S1)-homotopy connecting X and Y .

Proof. As X is proper and X−1(0) ⊂ H4,2(S1, S2) using Lemma 3.1
we may cover X−1(0) with finitely many open sets

X−1(0) ⊂
n
∪
i=1

S1 ∗ Expγi,g
(
Bδi(0) ∩ 〈Wg(γi)〉⊥

)
,

n
∪
i=1

S1 ∗Expγi,g
(
B3δi(0) ∩ 〈Wg(γi)〉⊥

)
⊂ U ,

where δi > 0, the slice Σγi,g is defined in S1×B3δi(0), and X
γi is defined

in B3δi(0) ∩ 〈Wg(γi)〉⊥ for i = 1, . . . , n.

Then DXγi |0 is in R(〈Wg(γi)〉⊥), which is open in L(〈Wg(γi)〉⊥).
Thus DXγi |V remains a Rothe map for V close to 0 and consequently
a Fredholm operator of index 0. As Fredholm maps are locally proper,
we may assume for all 1 ≤ i ≤ n that the map Xγi is proper and Rothe
on B2δi(0) ∩ 〈Wg(γi)〉⊥, i.e.

DXγi |V ∈ R(〈Wg(γi)〉⊥) ∀V ∈ B2δi(0) ∩ 〈Wg(γi)〉⊥,
B2δi(0) ∩ 〈Wg(γi)〉⊥ ∩ (Xγi)−1(K) is compact

for all compact sets K ⊂ 〈Wg(γi)〉⊥.
To construct Y , we proceed step by step and construct Yj such that

(i) Yj equals X outside ∪j−1
i=1S

1 ∗Expγi,g(B2δi(0) ∩ 〈Wg(γi)〉⊥),
(ii) Y −1

j (0) is a subset of

n
∪
i=1

S1 ∗ Expγi,g(Bδi(0) ∩ 〈Wg(γi)〉⊥),

(iii) the critical orbits of Yj in

j
∪
i=1

S1 ∗ Expγi,g(Bδi(0) ∩ 〈Wg(γi)〉⊥),

are isolated and nondegenerate.

Since eachXγi is proper, ‖X(·)‖ is bounded below by a positive constant
in

∪n
i=1S

1 ∗ Expγi,g(B2δi(0) \
n
∪
i=1

S1 ∗Expγi,g(Bδi(0).
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Consequently, (ii) remains valid for all small perturbations of X.
We start with Y0 := X. In the jth step we consider Y

γj
j−1. By the

Sard-Smale lemma there is Vj ∈ 〈Wg(γj)〉⊥∩TγjH4,2(S1, S2) arbitrarily

close to zero, such that Y
γj
j−1+Vj has only nondegenerate zeros in Bδi(0)∩

〈Wg(γj)〉⊥.
Since γj ∈ H4,2(S1, S2), the map θ 7→ θ∗γj is in C2(S1,H2,2(S1, S2))

and S1 ∗ γj is a C2 sub-manifold of H2,2(S1, S2). Shrinking δj > 0,
we may assume the distance function dg(·, S1 ∗ γj) in the Riemannian
manifold H2,2(S1, S2) satisfies

dg(·, S1 ∗ γj)2 ∈ C2(S1 ∗ Expγj ,g(B2δj (0) ∩ 〈Wg(γj)〉⊥),R),

and there are εj,1, εj,2 > 0 such that the set

{γ ∈ S1 ∗ Expγj ,g(B2δj (0) ∩ 〈Wg(γj)〉⊥) : εj,1 ≤ dg(γ, S
1 ∗ γj) ≤ εj,2}

is contained in

S1 ∗ Expγj ,g
(
(B2δj (0) \Bδj (0)) ∩ 〈Wg(γj)〉⊥

)
.

We take a cut-off function η ∈ C∞
c (R, [0, 1]) such that η ≡ 1 in [0, εj,1]

and η(x) = 0 for x ≥ εj,2. Using Lemma 3.1, we define

θj ∈ C2(S1 ∗ Expγj ,g(B2δj (0) ∩ 〈Wg(γj)〉⊥), S1)

by θj := ProjS1 ◦ (Σγj ,g)
−1 and the vector field Yj on M by

Yj(γ) := Yj−1(γ),

if γ 6∈ S1 ∗ Expγj ,g(B2δj (0) ∩ 〈Wg(γj)〉⊥) and

Yj(γ) := Yj−1(γ)+η
(
dg(γ, S

1 ∗ γj)
)

Proj2 ◦ ψθj(γ)∗γj ,g

(
Exp−1

θj(γ)∗γj ,g
(γ), θj(γ) ∗ Vj

)
,

if γ ∈ S1 ∗ Expγj ,g(B2δj (0) ∩ 〈Wg(γj)〉⊥).
Note that the map θ 7→ (θ ∗ γj, θ ∗ Vj) is in C2(S1, TH2,2(S1, S2)) as

(γj , Vj) ∈ TH4,2(S1, S2). It is easy to see that Yj is an S1 equivariant
C2 vector field, which is orthogonal to Wg by construction. If ‖Vj‖
is small enough, then (i)–(iii) continue to hold for Yj as well as the
Rothe property, because Rothe maps and nondegenerate critical orbits
are stable under small perturbations. Moreover, cos(t)2Yj−1+ sin(t)2Yj
is proper for any t ∈ [0, π/2], because cos(t)2Yj−1+sin(t)2Yj equals Yj−1

outside S1 ∗Expγj ,g(B2δj (0) ∩ 〈Wg(γj)〉⊥), which is proper, and the ze-

ros of cos(t)2Yj−1 + sin(t)2Yj inside S1 ∗ Expγj ,g(B2δj (0) ∩ 〈Wg(γj)〉⊥)
are contained in the compact set S1 ∗ Expγj ,g((Y

γj
j−1)

−1([0, 1]Vj)). If

Yj−1 is elliptic with constant εj−1 > 0, then taking ‖Vj‖ small enough,
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cos(t)2Yj−1 + sin(t)2Yj remains elliptic with constant εj = εj−1/2, be-
cause Yj(γ) and Yj−1(γ) differ only by

λProj〈Wg(γ)〉⊥ ◦DExpθj(γ)∗γj ,g|Exp−1
θj(γ)∗γj ,g

(γ)(θj(γ) ∗ Vj),

where λ ∈ [0, 1] and θj(γ) ∗ γj and θj(γ) ∗ Vj are in H4,2.
For j = n we arrive at the desired vector-field Y . q.e.d.

Essentially the same arguments lead to the following lemma.

Lemma 3.10. Let M be an open S1-invariant subset of prime curves
in H2,2(S1, S2), gt for t ∈ [0, 1] a smooth family of metrics on S2,
and X an (M,gt, S

1)-homotopy between two vector-fields X0 and X1

on M , which have only finitely many critical orbits in M that are all
nondegenerate. Let U be an open neighborhood of the zeros of X. Then
there exists an (M,gt, S

1)-homotopy Y and ε > 0 such that Yt(γ) =
Xt(γ) for

(t, γ) ∈ ([0, ε] ∪ [1− ε, 1]) ×M ∪ ([0, 1] ×M) \ U ,
and

DY |t,γ : R× 〈Wgt(γ)〉⊥,gt → 〈Wgt(γ)〉⊥,gt

is surjective for all zeros (t, γ) of Y .

For the rest of this section we let M be an open S1-invariant subset
of prime curves in H2,2(S1, S2) and X an (M,g, S1)-admissible vector
field on M . We shall define the S1-equivariant Poincaré-Hopf index
χS1(X,M) of the vector-field X with respect to the set M . We begin
with the definition of the local degree of an isolated, nondegenerate
critical orbit of X.

We fix a nondegenerate critical orbit S1 ∗ γ0 of X in M . As X is
(M,g, S1)-admissible, DX|γ0 ∈ GR(〈Wg(γ0)〉⊥) and we define the local
degree of X at S1 ∗ γ0 by

degloc,S1(X,S1 ∗ γ0) := sgnDgX|γ0 .
From (3.6) the local degree does not depend on the choice of γ0 in S

1∗γ0.
Definition 3.11 (S1-degree). Let X be (M,g, S1)-admissible. From

Lemma 3.9 there is a vector field Y , which is (M,g, S1)-homotopic to
X, with only finitely many critical orbits that are all nondegenerate.
The S1-equivariant Poincaré-Hopf index (or S1-degree) of X in M is
defined by

χS1(X,M) :=
∑

{S1∗γ⊂M : Y (S1∗γ)=0}

degloc,S1(Y, S1 ∗ γ).

If S1 ∗ γ0 is an isolated critical orbit of X, we define the local S1-degree
of X in S1 ∗ γ0 by

degloc,S1(X,S1 ∗ γ0) := χS1(X,S1 ∗Bδ(γ0)),



360 M. SCHNEIDER

where we choose δ > 0 such that S1 ∗ γ0 is the unique critical orbit of
X in the geodesic ball Bδ(S

1 ∗ γ).

To show that the definition does not depend on the particular choice
of Y or δ, and that the S1-degree does not change under homotopies in
the class of (M,g, S1)-admissible vector-fields, we prove

Lemma 3.12. Let gt for t ∈ [0, 1] be a continuous family of metrics
on H2,2(S1, S2). Suppose X is an (M,gt, S

1)-homotopy between X0 and
X1, such that the zeros of X0 and X1 are isolated and nondegenerate.
Then

χS1(X0,M) = χS1(X1,M).

Proof. By Lemma 3.10 we may assume that the homotopy X is non-
degenerate, i.e. DXt,γ is surjective whenever X(t, S1 ∗ γ) = 0.

Fix (t0, γ0) ∈ X−1(0). From the implicit function theorem, Lemma
3.1, and Lemma 3.8 there is a regular C1 curve c = (ct, cγ) ∈ C1(I,R×
M) with I = (−1, 1) for t0 ∈ (0, 1) and I = [0, 1) for t0 ∈ {0, 1}, such
that X(c(s)) ≡ 0, c(0) = (t0, γ0), and the map

S1 × I ∋ (θ, s) 7→ (ct(s), θ ∗ cγ(s)) = θ ∗ c(s)

parametrizes the zero set X−1(0) locally around (t0, γ0), where we define
the action of S1 on tuples (t, γ) by θ ∗ (t, γ) := (t, θ ∗ γ).

The ellipticity of Xt shows that cγ(s) ∈ H4,2(S1, S2); thus ċγ(s) is in
Tcγ(s)H

2,2(S1, S2) and from (3.1) we deduce that

ċγ(s) is transversal to 〈Wgct(s)
(cγ(s))〉⊥,gct(s) .

Since 0 6= c′(0) ∈ R× 〈Wgt0
(γ0)〉⊥,gt0 , we see from the construction of c

that we may assume for all s ∈ I,

c′(s) is transversal to
(
0, ċγ(s)

)
.(3.16)

By the S1-equivariance of X, (3.16), and the fact that Dgct(s)
X|ct(s),cγ(s)

is a Fredholm operator of index 1 with image 〈Wgct(s)
(cγ(s))〉⊥,gct(s) of

codimension 1, we find

kernel Dgct(s)
X|ct(s),cγ(s) = 〈c′(s), (0, ċγ (s))〉.(3.17)

Fix (c1, I1) and (c2, I2) such that S1 ∗ c1(s1) = S1 ∗ c2(s2) for some
s1 ∈ I1 and s2 ∈ I2. Then from the uniqueness part in the construction
of c2 we get θ2 ∈ S1 such that θ2 ∗ c2(s2) = c1(s1). From its con-
struction, θ2 ∗ c′2(s2) is contained in the kernel of DX|c1(s1) spanned by
〈c′1(s1), (0, (ċ1)γ(s1))〉. Since c′1(s1) and θ2 ∗ c′2(s2) are both transversal
to (0, (ċ1)γ(s1)), there is 0 6= λ1 ∈ R and λ2 ∈ R such that

θ2 ∗ c′2(s2) = λ1c
′
1(s1) + λ2(0, (ċ1)γ(s1)).
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We choose a function θ2 ∈ C1(I,R/Z) satisfying θ2(s2) = θ2 and
θ′2(s2) = −λ2, define c̄2 ∈ C1(I,M) by c̄2(s) := θ2(s) ∗ c2(s), and get

c̄′2(s2) = θ2 ∗ c′2(s2) + (0, θ2 ∗ (ċ2)γ(s2))θ′2(s2) = λ1c
′
1(s1).

With an additional change in the s parameter, we may easily arrive
at c̄′2(s2) = c′1(s1) in such a way that the map (θ, s) 7→ θ ∗ c̄2(s)
still parametrizes S1 ∗ c2(I2). This gives a recipe how to obtain from
two overlapping local parametrizations (c1, I1) and (c2, I2) of X

−1(0) a
parametrization of the union S1 ∗ c1(I1) ∪ S1 ∗ c2(I2). As in the classi-
fication of one dimensional manifolds [21], we deduce that X−1(0) is a
two dimensional manifold with components diffeomorphic to S1×S1 or
S1 × [0, 1].

Let P be a component of X−1(0) with boundary, i.e., of the type
S1 × [0, 1], such that a parametrization of P is given by

(θ, s) ∈ S1 × [0, 1] 7→ θ ∗ c(s),
where c ∈ C1([0, 1], [0, 1] ×M). First we change c to arrive at

c′(s) ∈ R× 〈Wgct(s)
(cγ(s))〉⊥,gct(s) ⊂ R× Tcγ(s)H

2,2(S1, S2).(3.18)

To this end we note that from the definition of Wg we have

R× Tcγ(s)H
2,2(S1, S2) = R× 〈Wgct(s)

(cγ(s))〉⊥,gct(s) ⊕ 〈(0, ċγ(s))〉

and denote by Proj1 the projection onto R×〈Wgct(s)
(cγ(s))〉⊥,gct(s) with

respect to this decomposition. There holds

c′(s) = Proj1(c
′(s)) + λ(s)(0, ċγ (s)).

We take θ ∈ C1([0, 1],R) such that θ′(s) = −λ(s) and define c̄(s) :=
θ(s) ∗ c(s). Then

c̄′(s) =
(

c′t(s), θ(s) ∗
(
c′γ(s)− λ(s)ċγ(s)

))

∈ R× θ(s) ∗ 〈Wgct(s)
(cγ(s))〉⊥,gct(s) = R× 〈Wgct(s)

(c̄γ(s))〉⊥,gct(s) .

Thus, replacing c with c̄, we may assume (3.18) holds.
Consider for s ∈ [0, 1] the family of operators

Fs : R× 〈Wgct(s)
(cγ(s))〉⊥,gct(s) → R× 〈Wgct(s)

(cγ(s))〉⊥,gct(s)

defined by

Fs(τ, V ) :=
(
〈c′(s), (τ, V )〉R×Tcγ (s)H2,2(S1,S2),Dgct(s)

X|c(s)(τ, V )
)
.

Since

kernel(Dgct(s)
X|c(s)) ∩ R× 〈Wgct(s)

(cγ(s))〉⊥,gct(s) = 〈c′(s)〉,
DgX|c(s)(R × 〈Wgct(s)

(cγ(s))〉⊥,gct(s)) = 〈Wgct(s)
(cγ(s))〉⊥,gct(s) ,

each Fs is an isomorphism. Moreover, the Rothe property of X implies
that each Fs is a Rothe map, because Fs is obtained from DX|c(s)
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through a change in finite dimensions. Consequently, sgn(Fs) is well
defined and by its homotopy invariance independent of s ∈ [0, 1]. If

c′t(s) 6= 0, we have again by the homotopy invariance sgn(Fs) = sgn(F̃s),
where

F̃s(τ, V ) := Fs

(
τ, V + (c′t(s))

−1τc′γ(s)
)
.

We have

F̃s =

(
(c′t(s))

−1‖c′(s)‖2 〈c′γ(s), ·〉
0 DγX|c(s)

)

∼
(
(c′t(s))

−1‖c′(s)‖2 0
0 DγX|c(s)

)

.

Hence, for all s ∈ [0, 1] such that c′t(s) 6= 0, there holds

sgn(Fs) = sgn(F̃s) = sgn(c′t(s))sgn(DγX|c(s)).(3.19)

Let S1 ∗α1, . . . , S
1 ∗αk0 be the critical orbits of X0 and S1 ∗β1, . . . , S1 ∗

βk1 be the critical orbits of X1. The critical orbits of X0 and X1 are
boundary points of X−1(0). From (3.19) we get

• sgnDX0|αi
= −sgnDX0|αj

, if S1 ∗ αi and S1 ∗ αj are boundary

orbits of the same component of X−1(0),
• sgnDX1|βi

= −sgnDX1|βj
, if S1 ∗ βi and S1 ∗ βj are boundary

orbits of the same component of X−1(0),
• sgnDX0|αi

= sgnDX1|βj
, if S1∗αi and S

1∗βj are boundary orbits

of the same component of X−1(0).

Putting the above facts together, we see that

χS1(X0,M) = χS1(X1,M).

q.e.d.

4. The Degree of an Isolated Critical Orbit

Let γ ∈ H2,2(S1, S2) be a prime, regular curve such that S1 ∗ γ is an
isolated critical orbit of Xk,g. Then the curve

µ(t) := γ
(
t|γ̇|−1

g

)

is a closed k-magnetic geodesic with minimal period ω := |γ̇|g such that
t 7→ (µ(t), µ̇(t)) lies in the bundle

E1 := {(x, V ) ∈ TS2 : |V |g = 1}.
We fix a transversal section Σ in E1 at the point θ := (γ(0), ω−1γ̇(0))
and denote by P : B1 ∩ Σ → B2 ∩ Σ the corresponding Poincaré map,
where B1, B2 are open neighborhoods of θ (see [1, chap. 7–8]).

In this section we shall show

Lemma 4.1. Under the above assumptions, θ is an isolated fixed
point of P and there holds

degloc,S1(Xk,g, S
1 ∗ γ) = −i(P, θ) ≥ −1,

where i(P, θ) denotes the index of the isolated fixed point θ.
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We consider the linearizations of equation (1.1) and (1.2) given by

0 = −D2
t,gV −Rg

(
V, µ̇

)
µ̇+ k(µ)Jg(µ)Dt,gV

+
(
k′(µ)V

)
Jg(µ)µ̇+ k(µ)

(
DgJg|µV

)
µ̇(4.1)

and

0 = −D2
t,gV −Rg

(
V, γ̇

)
γ̇ + |γ̇|gk(γ)Jg(γ)Dt,gV

+ |γ̇|g
(
k′(γ)V

)
Jg(γ)γ̇ + |γ̇|gk(γ)

(
DgJg|γV

)
γ̇

+ |γ̇|−1
g 〈Dt,gV, γ̇〉gk(γ)Jg(γ)γ̇

= −D2
t,gV + T (V,Dt,gV ),(4.2)

where T (V,Dt,gV ) abbreviates all terms containing V or Dt,gV . For
(V1, V2) ∈ Tγ(0)S

2 × Tγ(0)S
2 we denote by Φ(·, (V1, V2)), respectively

U(·, (V1, V2)), the solution to (4.1), respectively (4.2), with initial values

V (0) = V1 and Dt,gV (0) = V2.

Then

dP |θ = ProjTθΣ
◦
(
Φ(ω, ·),Dt,gΦ(ω, ·)

)
|TθΣ,

where ProjTθΣ
is the projection onto TθΣ with kernel given by

〈(µ̇(0),Dt,g µ̇(0))
T , (0, µ̇(0))T 〉.

Lemma 4.2. Suppose θ is a nondegenerate fixed point of P , i.e. the
linearized Poincaré map dP |θ : TθΣ → TθΣ has no eigenvalues equal to
one. Then S1 ∗ γ is a nondegenerate critical orbit of Xk,g and

degloc,S1(Xk,g, S
1 ∗ γ) = −sgn

(
det(dP |θ − I)

)
.

Proof. Since index and nondegeneracy do not depend on the transver-
sal section, we may assume TθΣ = TωΣ, where we write for q ∈ R

TqΣ := {(V1, V2)T ∈ Tθ(TS2) ∼= Tγ(0)S
2 × Tγ(0)S

2 :

(V1, V2)
T is orthogonal to (γ̇(0), qDt,g γ̇(0))

T and (0, γ̇(0))T }

with respect to the componentwise scalar product.
From (1.2) and the symmetries of the curvature tensor and Jg we

obtain, for any solution V to (4.1) or (4.2),

d

dt
〈Dt,gV (t), γ̇(t)〉g = 〈D2

t,gV (t), γ̇(t)〉g + 〈Dt,gV (t),Dt,g γ̇(t)〉g
= 〈|γ̇|gk(γ)(DgJg|γ(t)V (t))γ̇(t), γ̇(t)〉g
= 0,(4.3)
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because for a variation (s, t) 7→ Γ(s, t) of γ with ∂sΓ(0, ·) = V we find

0 =
d

ds
〈Jg(Γ(s, t))∂tΓ(s, t), ∂tΓ(s, t)〉g|s=0

= 〈(DgJg|γ(t)V (t))γ̇(t), γ̇(t)〉g
+ 〈Jg(γ(t))V (t), γ̇(t)〉g + 〈Jg(γ(t))γ̇(t), V (t)〉g

︸ ︷︷ ︸

=0

Up to scaling with ω in t, equations (4.1) and (4.2) only differ by

|γ̇|−1
g 〈Dt,gV, γ̇〉gk(γ)Jg(γ)γ̇.

Since 〈Dt,gU, γ̇〉g is constant, we get for V2 orthogonal to γ̇(0)

U
(
tω−1, (V1, ωV2)

)
= Φ

(
t, (V1, V2)

)
.

Consequently,

dP |θ = ProjTωΣ ◦ A−1
ω ◦

(
U(1, ·),Dt,gU(1, ·)

)
◦ Aω|TωΣ

where Aω, ProjTθΣ
∈ L(Tγ(0)S

2 × Tγ(0)S
2) are given by

Aω(V1, V2) := (V1, ωV2),

ProjTθΣ

(
V1
V2

)

:=

(
V1
V2

)

−

〈
(
V1
V2

)

,

(
γ̇(0)

ωDt,gγ̇(0)

)
〉

g

∥
∥

(
γ̇(0)

Dt,gγ̇(0)

)
∥
∥2

g

(
γ̇(0)

ω−1Dt,gγ̇(0)

)

.

We note that Aω : TθΣ
∼=−→ T1Σ and ProjTθΣ

◦ A−1
ω = A−1

ω ◦ Proj⊥T1Σ.
Hence, we may replace in the following dP |θ by dP |γ : T1Σ → T1Σ

dP |γ := Proj⊥T1Σ ◦
(
U(1, ·),Dt,gU(1, ·)

)
|T1Σ.

To show that S1 ∗ γ is a nondegenerate critical orbit, we fix V ∈
〈Wg(γ)〉⊥ such that DXk,g|γ(V ) = 0. There are λ1, λ2 ∈ R such that

(
W1

W2

)

:=

(
V (0)

Dt,gV (0)

)

+ λ1

(
γ̇(0)

Dt,gγ̇(0)

)

+ λ2

(
0

γ̇(0)

)

∈ T1Σ.

Using the fact that V , γ̇, and tγ̇ solve (4.2), we get

Proj⊥T1Σ

(
U(1, (W1,W2))

Dt,gU(1, (W1,W2))

)

=

(
W1

W2

)

.

Since dP |γ has no eigenvalues equal to one, (W1,W2) equals (0, 0) and
V = λ1γ̇ + λ2tγ̇. From the periodicity of V we obtain λ2 = 0, and
the fact that V ∈ 〈Wg(γ)〉⊥ gives λ1 = 0. Consequently, S1 ∗ γ is a
nondegenerate critical orbit of Xk,g.

We consider X̃ ∈ L(TγH
2,2(S1, S2)× R) defined by

X̃(V, δ) :=
(
DXk,g|γ(V ) + δWg(γ), δ − ε〈V,Wg(γ)〉g

)
,
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where ε > 0 will be chosen later. Then X̃ is of the form identity +
compact. If X̃(V0, δ0) = 0, then δ0 = 0, since DXk,g|γ(V0) is orthogonal
to Wg(γ). From ε > 0 we get V0 ∈ 〈Wg(γ)〉⊥ and finally V0 = 0. Thus,

X̃ is invertible. With respect to the decomposition

TγH
2,2(S1, S2)× R = 〈Wg(γ)〉⊥ × {0} ⊕ 〈Wg(γ)〉 × {0}{0} × R

we have

X̃ =





DXk,g|γ ∗ 0
0 0 1
0 −ε 1



 ,

such that

deg(X̃, (0, 0)) = deg(DXk,g|γ |〈Wg(γ)〉⊥ , 0) = degloc,S1(Xk,g, S
1 ∗ γ),

where deg denotes the usual Leray-Schauder degree.
Using the ideas in [20, chap. 3], we define a homotopy

Φ : [0, 1] × TγH
2,2(S1, S2)× R → TγH

2,2(S1, S2)× R,

by

Φ(s, (V, δ)) :=
(

V + s(−D2
t,g + 1)−1

(
T (V,Dt,gV )− V

)
+ sδWg(γ)

+ (1− s)(−D2
t,g + 1)−1

(

D2
t,gU(·, (V (0),Dt,gV (0)), δ) − U(·, (V (0),Dt,gV (0)), δ)

)

,

δ − ε

∫ 1

0
(−D2

t,g + 1)
(

(1− s)V + sU(·, (V (0),Dt,gV (0)), δ)
)

γ̇

)

,

where (−D2
t,g+1)−1 maps TγL

2(S1, S2) to TγH
2,2(S1, S2) and the func-

tion U(·, (V1, V2), δ) denotes the solution to

0 = −D2
t,gV + T (V,Dt,gV ) + δγ̇,

with initial values V (0) = V1 and Dt,gV (0) = V2.
Fix (s0, V0, δ0) ∈ [0, 1] × TγH

2,2(S1, S2)× R such that

Φ(s0, (V0, δ0)) = (0, 0).

Then V0 is a periodic solution of

0 = −D2
t,gV0 + V0 + sT (V0,Dt,gV0)− sV0 + sδγ̇ + (1− s0)

(

D2
t,gU(·, (V (0),Dt,gV (0)), δ) − U(·, (V (0),Dt,gV (0)), δ)

)

.(4.4)

Since U(·, (V0(0),Dt,gV0(0)), δ0) is a solution to (4.4) with the same
initial values, we see that

V0 = U(·, (V0(0),Dt,gV0(0)), δ0).
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In this case Φ(s0, (V0, δ0)) = (0, 0) is equivalent to
(
DXk,g|γ(V0) + δ0Wg(γ), δ0 − ε〈V0,Wg(γ)〉g

)
= (0, 0),

which shows that V0 = 0 and δ0 = 0. Consequently,

deg(X̃, (0, 0)) = deg(Φ(1, ·), (0, 0)) = deg(Φ(0, ·), (0, 0)).
We choose Ẽi = (Ei, δi) ∈ TγH

2,2(S1, S2)×R for 1 ≤ i ≤ 5 such that

{(Ei(0),Dt,gEi(0), δi)
T : 1 ≤ i ≤ 5}

is an orthonormal basis of Tγ(0)S
2 × Tγ(0)S

2 × R with respect to the
componentwise scalar product. Since Φ(0, (V, δ)) = (V, δ) for all

(V, δ) ∈W0 := {(V, 0) ∈ TγH
2,2(S1, S2)× R : V (0) = 0 = Dt,gV (0)},

there holds for W1 := 〈Ẽi : 1 ≤ i ≤ 5〉
deg(Φ(0, ·), (0, 0)) = deg(PW1 ◦ Φ(0, ·)|W1 , 0),

where PW1 : TγH
2,2(S1, S2)× R →W1 is given by

PW1(V, δ) :=

5∑

i=1

(
〈V (0), Ei(0)〉 + 〈Dt,gV (0),Dt,gEi(0)〉 + δδi

)
Ẽi.

Note that PW1 is the projection onto W1 with kernel W0.
We define Ev0 : TγH

2,2(S1, S2)× R → Tγ(0)S
2 × Tγ(0)S

2 × R by

Ev0(V, δ) :=
(
V (0),Dt,gV (0), δ

)
.

Then Ev0|W1 is an isomorphism and we have

deg(PW1 ◦Φ(0, ·)|W1 , 0) = deg(Ev0 ◦ PW1 ◦ Φ(0, ·) ◦ (Ev0|W1)
−1, 0).

We note that for a function U ,

(−D2
t,g + 1)−1

(
(−D2

t,g + 1)U
)
= U +Q,

where Q solves (−D2
t,g + 1)Q = 0 with boundary conditions

Q(0) −Q(1) = U(1)− U(0),

Dt,gQ(0)−Dt,gQ(1) = Dt,gU(1) −Dt,gU(0).

We let B1 and B2 be the smooth parallel vector fields along γ such that
{B1(0), B2(0)} is a basis of Tγ(0)S

2. Then the set Λ0 of functions Q

with (−D2
t,g + 1)Q = 0 is given by

Λ0 := {et
2∑

i=1

λiBi(t) + e−t
2∑

i=1

µiBi(t) : λ1, λ2, µ1, µ2 ∈ R}.

We define L0, L1 : Λ0 → Tγ(0)S
2 × Tγ(0)S

2 by

L0(Q) :=
(
Q(0)−Q(1),Dt,gQ(0)−Dt,gQ(1)

)
,

L1(Q) :=
(
Q(0),Dt,gQ(0)

)
.
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It is easy to see that L0 and L1 are isomorphisms. We have

Ev0 ◦ PW1 ◦ Φ(0, ·) ◦ (Ev0|W1)
−1(V1, V2, δ)

=

(

L1 ◦ L−1
0

(
U(1, (V1, V2), δ) − U(0, (V1, V2), δ)

Dt,gU(1, (V1, V2), δ) −Dt,gU(0, (V1, V2), δ)

)

,

δ − ε

∫ 1

0
(−D2

t,g + 1)
(

U(·, (V1, V2), δ)
)

γ̇

)

.

The map L1 ◦L−1
0 may be computed explicitly solving a system of linear

equations. Using the fact that the parallel transport is an isometry, it
is easy to see that det(L1 ◦L−1

0 ) > 0. Thus we may replace L1 ◦L−1
0 by

id without changing the degree. Hence we need to compute the degree
of Y ∈ L(Tγ(0)S

2 × Tγ(0)S
2 × R) given by

Y (V1, V2, δ) :=

((
U(1, (V1, V2), δ) − U(0, (V1, V2), δ)

Dt,gU(1, (V1, V2), δ) −Dt,gU(0, (V1, V2), δ)

)

,

δ − ε

∫ 1

0
(−D2

t,g + 1)
(

U(·, (V1, V2), δ)
)

γ̇

)

.

To compute deg(Y, 0), we decompose Tγ(0)S
2 × Tγ(0)S

2 × R into

T1Σ× {0} ⊕
〈
(γ̇(0),Dt,g γ̇(0), 0)

〉
⊕

〈
(0, γ̇(0), 0)

〉
⊕

〈
(0, 0, 1)

〉
,

where the decomposition is orthogonal with respect to the component-
wise scalar product. We have

Y (γ̇(0),Dt,g γ̇(0), 0) =
(
0, 0,−ε‖γ̇‖2H1,2

)
,

Y (0, γ̇(0), 0) =
(
γ̇(0),Dt,g γ̇(0),−ε(‖

√
tγ̇‖2L2 + ‖

√
tDt,g γ̇‖2L2)

)
.

We obtain analogously to (4.3)

d

dt
〈Dt,gU(t, (0, 0), 1), γ̇(t)〉g = 〈γ̇(t), γ̇(t)〉g > 0,

〈Y (0, 0, 1), (0, γ̇(0), 0)〉g = 〈Dt,gU(1, (0, 0), 1), γ̇(0)〉g > 0.

Choosing ε > 0 small enough we find

〈Y (0, 0, 1), (0, 0, 1)〉g = 1−O(ε) > 0.

Moreover, again using (4.3), we get for all (V1, V2) ∈ T1Σ

〈Y (V1, V2, 0), (0, γ̇(0), 0)〉g = 0.

Consequently, we obtain with respect to the above decomposition

deg(Y, 0) = sgn det







P |γ − id 0 0 ∗
∗ 0 1 ∗
0 0 0 +
∗ − − +







= −sgn det(P |γ − id),

which proves the claim. q.e.d.
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Proof of Lemma 4.1. The fact that θ is an isolated fixed point is obvious
from the properties of the Poincaré map P (see [1, thm. 7.1.2]).

We may choose δ > 0 such that S1 ∗ γ is the unique critical orbit of
Xk,g in the geodesic ball Bδ(S

1 ∗ γ), θ is the unique fixed point of P in
the geodesic ball Bδ(θ), i(P, θ) = i(P,Bδ(θ)), and

degS1(Xk,g, Bδ(S
1 ∗ γ)) = degS1,loc(Xk,g, S

1 ∗ γ).
From the homotopy invariance and a Kupka-Smale theorem for mag-
netic flows in [22], we may assume by Lemma 4.2 that the critical orbits
of Xk,g in Bδ(S

1 ∗ γ) and the fixed points of P in Bδ(θ) are nondegen-
erate. Again using Lemma 4.2, we find

degS1(Xk,g, Bδ(S
1 ∗ γ)) = −i(P,Bδ(θ)).

Finally, since we may assume that the Poincaré map is area preserving
(see [1, thm. 8.1.3]), we obtain from [27, 23]

i(P, θ) ≤ 1.

This yields the claim. q.e.d.

5. The Unperturbed Problem

Let S2 = ∂B1(0) ⊂ R
3 be the standard round sphere with induced

metric g0. Then the prescribed geodesic curvature equation with k ≡ k0
on (S2, g0) is given by

Projγ⊥ γ̈ = |γ̇|k0γ × γ̇,(5.1)

where γ ∈ H2,2(S1, S2), γ̇ and γ̈ are the usual derivatives of γ considered
as a curve in R

3, and |γ̇| is the Euclidean norm of γ̇ in R
3.

To compute the S1-degree of the unperturbed equation (5.1), we pro-
ceed in three steps.
Step 1: We compute explicitly the set Z of simple solutions inH2,2(S1, S2)
to (5.1) and show that Z is a finite dimensional, nondegenerate mani-
fold, in the sense that we have for all α ∈ Z

TαZ = kernel(Dg0Xk0,g0 |α),
TαH

2,2(S1, S2) = TαZ ⊕R(Dg0Xk0,g0 |α).
Step 2: We perform a finite dimensional reduction of a slightly perturbed
problem: We consider for k1 ∈ C2(S2,R), which will be chosen later,
and ε ∈ R, which is assumed to be very small, the perturbed vector field
Xg0,ε defined by

Xg0,ε(γ) := (−D2
t,g0 + 1)−1

(
−Dt,g0 γ̇ + |γ̇|g0(k0 + εk1(γ))γ × γ̇

)

= Xk0,g0(γ) + εK1(γ),

where the vector field K1 is given by

K1(γ) := (−D2
t,g0 + 1)−1|γ̇|g0

(
k1(γ)γ × γ̇

)
.
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We show that if α0 ∈ Z is a nondegenerate zero of the vector field
α 7→ P1(α) ◦K1(α) on Z, where P1(α) is a projection onto TαZ defined
below, then there is a unique nondegenerate critical orbit S1 ∗ γ(ε) for
any 0 < ε << 1 such that γ(ε) converges to α0 as ε→ 0+ and

degloc,S1(Xg0,ε, S
1 ∗ γ(ε)) = − degloc(P1(·) ◦K1(·), α0).

Step 3: We choose

k1(x) := 〈x, e3〉 for x ∈ S2 = ∂B1(0) ⊂ R
3,

where {e1, e2, e3} denotes the standard basis of R3, and show that P1(·)◦
K1(·) has exactly two nondegenerate zeros of degree +1. This yields the
formula χS1(Xk0,g0 ,M) = −2, where M is the subset of H2,2(S1, S2)
consisting of simple and regular curves.

5.1. The simple solutions of (5.1). Differentiating twice the identity
|γ|2 = 1, we find 〈γ̈, γ〉+ |γ̇|2 ≡ 0 and (5.1) is equivalent to

γ̈ = |γ̇|k0γ × γ̇ − |γ̇|2γ.(5.2)

In order to solve the ordinary differential (5.2), we fix initial conditions

γ(0) = γ0 ∈ S2 and γ̇(0) = ṽ0 ∈ Tγ0S2.

If ṽ0 = 0, then γ is given by the constant curve γ ≡ γ0. We may assume
in the sequel

λ := |ṽ0| > 0.

If k0 6= 0, then there is a unique r = r(k0) ∈ (−1, 1) \ {0} such that

k0 =

√
1− r2

r
.

For k0 = 0, the case of geodesics, we may take r = ±1.
For λ > 0 and a positive oriented orthonormal system {v0, v1, w}, we

define the function α ∈ C∞(R, S2) by

α(t, λ, v0, v1, w) :=
√

1− r2w + r cos(λr−1t)v1 + r sin(λr−1t)v0.

A direct calculation shows that α(·, λ, v0, v1, w) solves (5.2). Moreover,
if we take for given (γ0, ṽ0) the positive oriented orthonormal system
(v0, v1, w) defined by

v0 := λ−1ṽ0, v1 := rγ0 +
√

1− r2(v0 × γ0), w := (v1 × v0)

and λ > 0 as above, then α(·, λ, v0, v1, w) satisfies the initial conditions

α(0, λ, v0, v1, w) = γ0, α̇(0, λ, v0, v1, w) = ṽ0.

Since we are only interested in solutions in H2,2(S1, S2), we get an extra
condition on λ, i.e. the 1-periodicity leads to

λ ∈ 2πZr.
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Hence the simple solutions in H2,2(S1, S2) of (5.1) are given by

Z := {α(·, 2π|r|, v0, v1, w) : {v0, v1, w} is a

positive orthonormal system in R
3}.

S0(3) acts on solutions: if γ solves (5.1), so does A◦γ for any A ∈ SO(3).
We have

A ◦ α(·, 2π|r|, v0, v1, w) = α(·, 2π|r|, A(v0), A(v1), A(w)),

and the set of solutions is parametrized by SO(3). It is easy to see that

α(·, 2π|r|, v0, v1, w) = θ ∗ α(·, 2π|r|, v′0, v′1, w′)

for some θ ∈ S1 if and only if w = w′. Consequently, the set of critical
orbits is parametrized by w ∈ S2. In the sequel we fix k0 > 0 and r > 0.

To compute the kernel of Dg0Xk0,g0 |α at α = α(·, 2πr, v0 , v1, w) for
some fixed system (v0, v1, w), we note that for V ∈ TαH

2,2(S1, S2)

Rg0(V, α̇)α̇ = V |α̇|2 − 〈V, α̇〉α̇

and hence by (2.3)

Dg0Xk0,g0 |α(V ) = (−D2
g0,t + 1)−1

(
−D2

t,g0V − V |α̇|2 + 〈V, α̇〉α̇
+ |α̇|−1〈Dt,g0V, α̇〉k0(α× α̇) + |α̇|k0(α×Dt,g0V )

)
.(5.3)

Due to the geometric origin of equation (5.1) we deduce that

W1(t, v0, v1, w) := α̇ = 2πr(− sin(2πt)v1 + cos(2πt)v0),

W1(0, v0, v1, w) = 2πrv0, Dt,g0W1(0, v0, v1, w) = −4π2r3k0(k0v1 − w),

W0(t, v0, v1, w) := tα̇,

W0(0, v0, v1, w) = 0, Dt,g0W0(0, v0, v1, w) = 2πrv0,

solve the equation

0 =−D2
t,g0W −W |α̇|2 + 〈W, α̇〉α̇

+ |α̇|−1〈Dt,g0W, α̇〉k0(α× α̇) + |α̇|k0(α×Dt,g0W ).(5.4)

The vector-field W1 corresponds to invariance with respect to the S1-
action, θ 7→ α(· + θ), and W0 stems from the change of parameter
s 7→ α(·s). The SO(3) invariance leads to two additional vector-fields
in the kernel of Dg0Xk0,g0 |α, i.e. we let

w1,s := cos(s)w + sin(s)v1, v0 = v0,

v1,s = v0 × w1,s = cos(s)v1 − sin(s)w,

w2,s := cos(s)w + sin(s)v0, v1 = v1,

v0,s = w2,s × v1 = cos(s)v0 − sin(s)w
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and get

W2(t, v0, v1, w) :=
d

ds

(
α(·, 2πr, v0, v1,s, w1,s)

∣
∣
s=0

= rk0v1 − r cos(2πt)w,

W2(0, v0, v1, w) =
√

1− r2v1 − rw, Dt,g0W2(0, v0, v1, w) = 0,

W3(t, v0, v1, w) :=
d

ds

(
α(·, 2πr, v0,s, v1, w2,s)

∣
∣
s=0

= rk0v0 − r sin(2πt)w,

W3(0, v0, v1, w) = rk0v0, Dt,g0W3(0, v0, v1, w) = 2πr3(k0v0 − w).

(5.5)

We will omit the dependence of Wi on (v0, v1, w), if there is no possi-
bility of confusion. Since the initial values of W0, . . . ,W3 are linearly

independent in
(
Tα(0)S

2
)2
, any solution of (5.4) is a linear combination

of W0, . . . ,W3. As only W1, . . . ,W3 are periodic, we obtain

kernel(Dg0Xk0,g0 |α) = 〈W1, W2, W3〉 = TαZ.(5.6)

To find the image of Dg0Xk0,g0 |α we note that the moving frame {α̇, α×
α̇} is an orthogonal system in TαS

2 for any t ∈ S1. Thus any V ∈
TαH

2,2(S1, S2) may be written as

V = λ1α̇+ λ2(α× α̇)

for some functions λ1, λ2 ∈ H2,2(S1,R). Using the fact that

Dt,g0α̇ = |α̇|k0(α× α̇) and Dt,g0(α× α̇) = −|α̇|k0α̇,

we may express Dt,g0V and (Dt,g0)
2V in terms of λ1 and λ2. This leads

to

Dg0Xk0,g0 |α(V ) = (−D2
t,g0 + 1)−1

(
(−λ′′1 + 2π

√

1− r2λ′2)α̇

+ (−λ′′2 − (2π)2λ2)(α × α̇)
)
.(5.7)

Concerning W1, . . . ,W3 and Wg we find

W1(t) = α̇(t),

W2(t) = − 1

2πr

(√

1− r2 sin(2πt)α̇(t) + cos(2πt)(α × α̇)
)
,

W3(t) = − 1

2πr

(
−

√

1− r2 cos(2πt)α̇(t) + sin(2πt)(α × α̇)
)
,

Wg0(α) = (1 + |α̇|2k20)−1α̇ = (1 + |α̇|2k20)−1W1(α).(5.8)

Lemma 5.1. For any solution α of the unperturbed problem, there
holds

{0} = 〈W1(α),W2(α),W3(α)〉 ∩R
(
Dg0Xk0,g0 |α

)
,

〈W1(α)〉⊥ = 〈W2(α),W3(α)〉 ⊕R
(
Dg0Xk0,g0 |α

)
.
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Proof. We omit the dependence of Wi on α. For λ1, λ2 ∈ H2,2(S1,R)
we have

(−D2
t,g0 + 1)

(
λ1α̇+ λ2(α× α̇)

)

=
(
− λ′′1 + 4π

√

1− r2λ′2 + (4π2(1− r2) + 1)λ1
)
α̇

+
(
− λ′′2 − 4π

√

1− r2λ′1 + (4π2(1− r2) + 1)λ2
)
α× α̇.

Hence we get by direct calculations

(−D2
t,g0 + 1)(W1) = (4π2(1 + r2 + 1)α̇,

(−D2
t,g0 + 1)(−2πrW2) =

√

1− r2(−4π2r2 + 1) sin(2πt)α̇

+ (4π2r2 + 1) cos(2πt)(α × α̇),(5.9)

(−D2
t,g0 + 1)(−2πrW3) = −

√

1− r2(−4π2r2 + 1) cos(2πt)α̇

+ (4π2r2 + 1) sin(2πt)(α × α̇).(5.10)

Consequently, by (3.8) and (5.8) the vectorW1 is orthogonal to 〈W2,W3〉
and to R

(
Dg0Xk0,g0|α

)
in TαH

2,2(S1, S2). As in L2(S1,R)

λ′′2 + (2π)2λ2 ⊥L2 〈cos(2πt), sin(2πt)〉, 〈λ′′1 , λ′2〉 ⊥L2 const,

we get

{0} = (−D2
t,g0 + 1)

(
〈W1,W2,W3〉

)

∩ (−D2
t,g0 + 1)Dg0Xk0,g0 |α(TαH2,2(S1, S2))

and the claim follows, for Dg0Xk0,g0 |α is a Fredholm operator of index
0. q.e.d.

To analyze the image of Dg0Xk0,g0 we see for α ∈ Z

R(Dg0Xk0,g0 |α) =
{
(−D2

t,g0 + 1)−1
(
(−λ′′1 + 2π

√

1− r2λ′2)α̇

− (λ′′2 + (2π)2λ2)(α × α̇)
)
: λ1, λ2 ∈ H2,2(S1,R)

}

=
{
(−D2

t,g0 + 1)−1
(
λ1α̇+ λ2(α× α̇)

)
: λ1,2 in

L2(S1,R), λ1 ⊥L2 1, λ2 ⊥L2 〈cos(2πt), sin(2πt)〉
}

= 〈(α × α̇)〉 ⊕ E+,(5.11)

where E+ is given by

E+ =
{
(−D2

t,g0 + 1)−1
(
λ1α̇+ λ2(α × α̇)

)
:

λ1, λ2 ∈ L2(S1,R), λ1 ⊥L2 1, λ2 ⊥L2 〈1, cos(2πt), sin(2πt)〉
}
.

We have for V = λ1α̇+ λ2(α× α̇) in TαH
2,2(S1, S2)

Dg0Xk0,g0 |α(V ) ∈ E+ ⇐⇒ λ2 ⊥L2 1 ⇐⇒ V ⊥L2 (α× α̇).
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We fix V = (−D2
t,g0 + 1)−1(λ1α̇+ λ2(α× α̇)) ∈ E+. Then

∫

S1

V (α× α̇) =

∫

S1

(−D2
t,g0 + 1)−1(λ1α̇+ λ2(α× α̇))(α× α̇)

=

∫

S1

(λ1α̇+ λ2(α× α̇))(−D2
t,g0 + 1)−1(α× α̇)

= (4π2(1− r2) + 1)−1

∫

S1

(λ1α̇+ λ2(α× α̇))(α× α̇) = 0.

Consequently, Dg0Xk0,g0|α(E+) = E+.
Since E+ is L2-orthogonal to α× α̇ and α̇, we may write

V = (ν1 + f1)α̇+ (ν2 + f2)(α× α̇),

with ν1,2 ⊥L2 〈1, sin(2π·), cos(2π·)〉 and f1,2 ∈ 〈sin(2π·), cos(2π·)〉. Then
〈(−D2

t,g0 + 1)Dg0Xk0,g0 |α(V ), V 〉L2

=

∫

S1

(ν ′1)
2 − 2π

√

1− r2ν ′1ν2 + (ν ′2)
2 − 4π2(ν2)

2

+ (f ′1)
2 − 2π

√

1− r2f ′1f2.(5.12)

For ν2 ⊥ 〈1, cos(2π·), sin(2π·)〉 we have
∫

S1

(ν ′2)
2 − 4π2(ν2)

2 ≥
∫

S1

16π2(ν2)
2,

hence
∫

S1

(ν ′1)
2 − 2π

√

1− r2ν ′1ν2 + (ν ′2)
2 − 4π2(ν2)

2 ≥ 3

4
(ν ′1)

2 + 12π2(ν2)
2.

Concerning the remaining term in (5.12), we note that as (−D2
t,g0 + 1)

maps
{
λ1α̇+ λ2(α× α̇) : λ1, λ2 ∈ 〈sin(2π·), cos(2π·)〉

}

into itself and V ∈ E+, there holds

f1α̇+ f2(α× α̇) ∈ (−D2
t,g0 + 1)−1

〈(
cos(2π·)α̇

)
,
(
sin(2π·)α̇

)〉
.

Hence, by explicit computations there are x, y ∈ R satisfying

f1(t) = x cos(2πt) + y sin(2πt),

f2(t) =
8π2

√
1− r2

4π2(2− r2) + 1

(
y cos(2πt) − x sin(2πt)

)
.

This gives
∫

S1

(f ′1)
2 − 2π

√

1 + r2f ′1f2 =
2π2(1 + 4π2r2)

4π2(2− r2) + 1
(x2 + y2).

This shows that

〈(−D2
t,g0 + 1)Dg0Xk0,g0 |α(V ), V 〉L2 > 0 for all V ∈ E+ \ {0},
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and the homotopy

[0, 1] ∋ s 7→ (1− s)
(
Dg0Xk0,g0|α

)
|E+ + s id|E+

is admissible. We use the decomposition in (5.11) and

Dg0Xk0,g0 |α(α× α̇) = − 4π2

4π2(1− r2) + 1
(α× α̇)

to see that

sgn
(
Dg0Xk0,g0 |α

)
|R(Dg0Xk0,g0

|α) = −1.(5.13)

5.2. The finite dimensional reduction. We fix α0 ∈ Z and a para-
metrization ϕ of Z, which maps an open neighborhood of 0 in Tα0Z
into Z, such that

ϕ(0) = α0 and Dϕ|0 = id.

As Z consists of smooth functions, Z is a sub-manifold of Hm,2(S1, S2)
for 1 ≤ m <∞. We define Φ from an open neighborhood U of 0 in

Tα0H
2,2(S1, S2) = 〈W1(α0),W2(α0),W3(α0)〉 ⊕R(DXg0,0|α0)

to H2,2(S1, S2) by

Φ(W,U) := Expα0,g0

(
Exp−1

α0,g0(ϕ(W )) + U
)
.

Then (Φ,U) is a chart of H2,2(S1, S2) around α0 such that U is an open
neighborhood of 0 in Tα0H

2,2(S1, S2), and

Φ(0) = α0, DΦ|0 = id,

Φ−1
(
Z ∩ Φ(U)

)
= U ∩ 〈W1(α0),W2(α0),W3(α0)〉.

From the properties of Expα0,g0 the map Φ is a chart of Hk,2(S1, S2)
around α0 for any 1 ≤ k ≤ 4. Shrinking U we may assume that (3.3)–
(3.5) continue to hold with Expγ,g replaced by Φ, i.e.

TΦ(V )H
1,2(S1, S2) = 〈 d

dt
Φ(V )〉 ⊕DΦ|V (〈α̇0〉⊥,H1,2

),(5.14)

TΦ(V )H
2,2(S1, S2) = 〈Wg0(Φ(V ))〉 ⊕DΦ|V (〈Wg0(α0)〉⊥),(5.15)

Proj〈Wg0 (Φ(V )〉⊥ ◦DΦ|V : 〈Wg0(α0)〉⊥
∼=−→ 〈Wg0(Φ(V )〉⊥,(5.16)

and the norm of the projections in (5.14) and (5.15) as well as the norm
of the map in (5.16) and its inverse are uniformly bounded with respect
to V . For α0 ∈ Z, the vectors W1(α0) andWg0(α0) are collinear and we
use 〈W1(α0)〉 instead of 〈Wg0(α0)〉 in the analysis of the unperturbed
problem below.

As in (3.2), we get a chart Ψ for the bundle SH2,2(S1, S2) around
(α0, 0),

Ψ : U × U ∩ 〈W1(α0)〉⊥ → SH2,2(S1, S2),

Ψ(V,U) :=
(
Φ(V ), P roj〈Wg0 (Φ(V ))〉⊥ ◦DΦ|V (U)

)
.
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Analogous to (3.11), we define

XΦ
g0,ε : U ∩ 〈W1(α0)〉⊥ → 〈W1(α0)〉⊥

by

XΦ
g0,ε(V ) := Proj2 ◦Ψ−1

(
Φ(V ),Xg0,ε(Φ(V ))

)
.

Replacing Expγ,g by Φ, it is easy to see that Lemma 3.5 carries over to
XΦ

g0,ε, i.e.

V ∈ U ∩ 〈W1(α0)〉⊥ is a (nondegenerate) zero of XΦ
g0,ε if and only if

S1 ∗ Φ(V ) is a (nondegenerate) critical orbit of Xg0,ε,(5.17)

and if XΦ
g0,ε(V ) = 0, then after shrinking U ,

DXΦ
g0,ε|V = A−1

V ◦DXg0,ε|Φ(V ) ◦DΦ|V ,(5.18)

where the isomorphism AV : 〈W1(α0)〉⊥ → 〈Wg0(Φ(V ))〉⊥ is given by

AV = Proj〈Wg0 (Φ(V ))〉⊥ ◦DΦ|V .

From Lemma 5.1 we may assume

U ∩ 〈W1(α0)〉⊥ = U1 × U2,

where U1 and U2 are open neighborhoods of 0 in 〈W2(α0),W3(α0)〉 and
R
(
Dg0Xk0,g0 |α0

)
. We denote for α ∈ Z by P2(α) the projection onto

R(DXg0,0|α) with respect to the decomposition

〈W1(α)〉⊥ = 〈W2(α),W3(α)〉 ⊕R
(
Dg0Xk0,g0 |α

)
,

and by P1(α) the projection onto 〈W2(α),W3(α)〉. Moreover, for W ∈
U1, we define for i = 1, 2

PΦ
i (W ) := (AW )−1 ◦ Pi(Φ(W )) ◦ AW .

The projections PΦ
1 (W ) and PΦ

2 (W ) correspond to the decomposition

〈W1(α0)〉⊥ = 〈W2(α0),W3(α0)〉 ⊕R
(
Dg0X

Φ
g0,0|W

)
,(5.19)

as we have for W ∈ U1

DXΦ
g0,0|W = A−1

W ◦DXg0,0|Φ(W ) ◦ AW .

Lemma 5.2. For α0 ∈ Z after possibly shrinking U , there are ε0 > 0
and

U ∈ C2([−ε0, ε0]× U1, 〈W1(α0)〉⊥),
R ∈ C2([−ε0, ε0]× U1, 〈W2(α0),W2(α0)〉),
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such that for all (ε,W ) ∈ [−ε0, ε0]× U1

R(ε,W ) = XΦ
g0,ε(W + U(ε,W )),

0 = PΦ
1 (W ) ◦ U(ε,W ),

O(ε)ε→0 = ‖U(ε,W )‖ + ‖DWU(ε,W )‖ + ‖R(ε,W )‖+ ‖DWR(ε,W )‖,
R(ε,W ) = εPΦ

1 (W ) ◦KΦ
1 (W ) + o(ε)ε→0,

U(ε,W ) = −ε(DXΦ
g0,0|W )−1 ◦ PΦ

2 (W ) ◦KΦ
1 (W ) + o(ε)ε→0.

Moreover, U(ε,W ) and R(ε,W ) are unique in the following sense: If
(ε,W,U,R) in [−ε0, ε0]× U1 × U ∩ 〈W1(α0)〉⊥ × U1 satisfies

XΦ
g0,ε(W + U) = R and PΦ

1 (W )
(
U
)
= 0,

then U = U(ε,W ) and R = R(ε,W ).

Proof. We define a C2-function H

H : R× U1 × U ∩ 〈W1(α0)〉⊥ × 〈W2(α0),W3(α0)〉
→ 〈W1(α0)〉⊥ × 〈W2(α0),W3(α0)〉,

by

H(ε,W,U,R) :=
(
XΦ

g0,ε(W + U)−R,PΦ
1 (W )(U)

)
.

We have in L(〈W1(α0)〉⊥ × 〈W2(α0),W3(α0)〉)

D(U,R)H|(0,W,0,0) =

(
DXΦ

g0,0|W −id
PΦ
1 (W ) 0

)

,

where we used the fact that XΦ
g0,0(W ) = 0 and (5.18). From (5.6)

and Lemma 5.1 we see that D(U,R)H|(0,0,0,0) is an isomorphism. By
the implicit function theorem, after possibly shrinking U , we get ε0 >
0 and unique functions U = U(ε,W ) and R = R(ε,W ) such that
H(ε,W,U(ε,W ), R(ε,W )) = 0 for all (ε,W ) ∈ [−ε0, ε0] × U1, and
D(U,R)H|ε,W,U,R is uniformly invertible for (ε,W,U,R) ∈ [−ε0, ε0]×U1×
U2. This yields the existence and uniqueness part of the claim.

The uniqueness implies U(0,W ) = 0 and R(0,W ) = 0 for allW ∈ U1.
As U and R are differentiable, we find U(ε,W ) = O(ε) and R(ε,W ) =
O(ε) as ε → 0. Moreover, taking the derivative with respect to W , we
see

0 = DWH|(0,W,0,0) +D(U,R)H|(0,W,0,0)

(
DWU(0,W ),DWR(0,W )

)T
.

Since H(0,W, 0, 0) ≡ 0, we have DWH|(0,W,0,0) = 0, which implies

(DWU(0,W ),DWR(0,W )) = (0, 0),

because D(U,R)H|(0,W,0,0) is invertible. This gives the desired estimate
for DWU and DWR.
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Moreover, taking the derivative with respect to ε at (0,W, 0, 0), we
see as above

0 = DεH|(0,W,0,0) +D(U,R)H|(0,W,0,0)

(
DεU(0,W ),DεR(0,W )

)T

= (KΦ
1 (W ), 0) +

(
DXΦ

g0,0|W −id
PΦ
1 (W ) 0

)(
DεU(0,W )
DεR(0,W )

)

.

Consequently,

DεR(0,W ) = PΦ
1 (W ) ◦KΦ

1 (W ),

DεU(0,W ) = −(DXΦ
g0,0|W )−1 ◦ PΦ

2 (W ) ◦KΦ
1 (W ).

This yields the claim. q.e.d.

Lemma 5.3. Under the assumptions of Lemma 5.2, we have as ε→ 0

XΦ
g0,ε(W + U(ε,W )) = εPΦ

1 (W ) ◦KΦ
1 (W ) +O(ε2)ε→0,

where KΦ
1 is the vector-field K1 in the coordinates Φ, i.e.

KΦ
1 = XΦ

g0,1 −XΦ
g0,0.

Proof. Since U(ε,W ) = O(ε), we find

XΦ
g0,ε(W + U(ε,W ))

= PΦ
1 (W ) ◦XΦ

g0,ε(W + U(ε,W ))

= PΦ
1 (W ) ◦XΦ

g0,0(W + U(ε,W )) + εPΦ
1 (W ) ◦KΦ

1 (W + U(ε,W ))

= PΦ
1 (W ) ◦DXΦ

g0,0|WU(ε,W ) + εPΦ
1 (W ) ◦KΦ

1 (W ) +O(ε2)

= εPΦ
1 (W ) ◦KΦ

1 (W ) +O(ε2)ε→0.

q.e.d.

Lemma 5.4. Under the assumptions of Lemma 5.2, suppose 0 is a
nondegenerate zero of the vector-field PΦ

1 (·) ◦KΦ
1 (·) on U1, in the sense

that PΦ
1 (0) ◦KΦ

1 (0) = 0 and

DW (PΦ
1 (·) ◦KΦ

1 (·))|0 ∈ L(〈W2(α0),W3(α0)〉)
is an isomorphism. Then, after possibly shrinking ε0 and U , for any
0 < |ε| ≤ ε0 there is a unique W (ε) ∈ U1 such that

XΦ
g0,ε(W (ε) + U(ε,W (ε))) = 0,

W (ε) → 0 as ε→ 0.

Moreover, V (ε) := W (ε) + U(ε,W (ε)) is the only zero of XΦ
g0,ε in U ∩

〈W1(α0)〉⊥ and is nondegenerate with

sgn(DXΦ
g0,ε|V (ε)) = −det(DW (PΦ

1 (·) ◦KΦ
1 (·))|0).
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Proof. Using Lemma 5.2 and the estimates for U and DWU , we find

DW

(

XΦ
g0,ε(·+ U(ε, ·))

)

|W

= DW

(

PΦ
1 (·) ◦XΦ

g0,ε(·+ U(ε, ·))
)

= (DWP
Φ
1 |W ) ◦XΦ

g0,ε(W + U(ε,W ))

+ PΦ
1 (W ) ◦DXΦ

g0,ε|W+U(ε,W ) ◦ (Id+DWU |(ε,W ))

= (DWP
Φ
1 |W ) ◦

(

εKΦ
1 (W ) +DXΦ

g0,ε|WU(ε,W ) +O(ε2)
)

+ PΦ
1 (W ) ◦

(
εDKΦ

1 |W +D2XΦ
g0,0|WU(ε,W ) +O(ε2)

)
.(5.20)

Differentiating the identity for fixed ε

PΦ
1 (W ) ◦DXΦ

g0,0|WU(ε,W ) ≡ 0

with respect to W we obtain

0 = (DWP
Φ
1 |W ) ◦DXΦ

g0,0|WU(ε,W )

+ PΦ
1 (W ) ◦

(

D2XΦ
g0,0|WU(ε,W ) +DXΦ

g0,0|W ◦DWU |(ε,W )

)

.(5.21)

Since PΦ
1 (W ) ◦DXΦ

g0,0
|W ≡ 0, combining (5.20) and (5.21) leads to

DW

(

XΦ
g0,ε(·+ U(ε, ·))

)

|W = εDW

(
PΦ
1 (·) ◦KΦ

1 (·)
)
|W +O(ε2).(5.22)

We define F : [−ε0, ε0]× U1 → 〈W2(α0),W3(α0)〉 by

F (ε,W ) := ε−1PΦ
1 (W ) ◦XΦ

g0,ε(W + U(ε,W )).

Note that by Lemma 5.3 the function F extends continuously to ε = 0.
By (5.22) we have

DWF |(ε,W ) = DW

(
PΦ
1 (·) ◦KΦ

1 (·)
)
|W +O(ε),

and F is in C1 with DWF |(0,0) invertible. Consequently, by the implicit

function theorem after shrinking ε0 and U , there is a unique C1-function
W =W (ε) such that F (ε,W (ε)) ≡ 0 and for ε 6= 0

XΦ
g0,ε(W (ε) + U(ε,W (ε))) ≡ 0.

Shrinking U , we may assume that any V ∈ U ∩ 〈W1(α0)〉⊥ admits a
unique decomposition V = WV + UV , where UV = PΦ

2 (WV )V . From
the construction in Lemma 5.2 and the analysis above, we see that for
(ε, V ) ∈ [−ε0, ε0] \ {0} × U ∩ 〈W1(α0)〉⊥

XΦ
g0,ε(V ) = 0 ⇐⇒ XΦ

g0,ε(WV + UV ) = 0

⇐⇒ UV = U(ε,WV ) and X
Φ
g0,ε(WV + U(ε,WV )) = 0

⇐⇒ V =W (ε) + U(ε,W (ε)).
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We use the decomposition in (5.19) to compute the local degree of XΦ
g0,ε

in V (ε) :=W (ε) + U(ε,W (ε)) as ε→ 0. As U(ε,W ) = O(ε) we find

DXΦ
g0,ε|V (ε) = DXΦ

g0,0|W (ε) +D2XΦ
g0,0|W (ε)U(ε,W (ε))

+ εDKΦ
1 |W (ε) +O(ε2).(5.23)

Differentiating for fixed W̃ ∈ 〈W2(α0),W3(α0)〉 the identity

DXΦ
g0,0|W W̃ ≡ 0,

we obtain D2XΦ
g0,0|W W̃ ≡ 0 and thus by (5.23)

DXΦ
g0,ε|V (ε)W̃ =

(
εDKΦ

1 |W (ε) +O(ε2)
)
W̃ .

For Ũ ∈ R
(
Dg0X

Φ
g0,0

|W
)
we get from (5.23)

DXΦ
g0,ε|V (ε)Ũ =

(
DXΦ

g0,0|W (ε) +O(ε)
)
Ũ .

Consequently, with respect to the decomposition in (5.19),

DXΦ
g0,ε|V (ε) =

(
εPΦ

1 (W (ε)) ◦DKΦ
1 |W (ε) 0

0 DXΦ
g0,0|W (ε)

)

+

(
O(ε2) O(ε)
O(ε) O(ε)

)

.

This shows that shrinking ε0 > 0, we may assume that V (ε) is a non-
degenerate zero of XΦ

g0,ε for all 0 < |ε| ≤ ε0 and by (5.13)

sgn(DXΦ
g0,ε|V (ε)) = det

(
D(PΦ

1 (·) ◦KΦ
1 (·))|0

)
sgn(DXΦ

g0,0|W (ε))

= − det
(
D(PΦ

1 (·) ◦KΦ
1 (·))|0

)
.

This finishes the proof. q.e.d.

We consider P1(·) ◦K1(·) as a vector field on Z. If α0 ∈ Z is a zero of
P1(·) ◦K1(·), then we obtain due to the S1 invariance that S1 ∗ α0 ⊂ Z
is a zero orbit and

W1(α0) ∈ kernel(DZ(P1(·) ◦K1(·))|α0),

R(DZ(P1(·) ◦K1(·))|α0) ⊥W1(α0),

where DZ denotes the covariant derivative on Z. In the sequel we will
therefore consider DZ(P1(·) ◦K1(·))|α0 as a map

DZ(P1(·) ◦K1(·))|α0 : 〈W2(α0),W3(α0)〉 → 〈W2(α0),W3(α0)〉.

Lemma 5.5. Under the assumptions of Lemma 5.2, suppose α0 is a
nondegenerate zero of the vector field P1(·) ◦ K1(·) on Z, in the sense
that P1(α0) ◦K1(α0) = 0 and

DZ(P1(·) ◦K1(·))|α0 ∈ L(〈W2(α0),W3(α0)〉)
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is an isomorphism. Then for any 0 < ε < ε0, there is γ(ε) ∈ Φ(U)
satisfying

Xg0,ε(γ(ε)) = 0 and γ(ε) → α0 as ε→ 0.

Moreover, S1 ∗ γ(ε) is the unique critical orbit of Xg0,ε in Φ(U) and is
nondegenerate with

degloc,S1(Xg0,ε, S
1 ∗ γ(ε)) = − det(DZ(P1(·) ◦K1(·))|α0).

Proof. We note that as P1(α0) ◦K1(α0) = 0

DZ(P1(·) ◦K1(·))|α0 = D(PΦ
1 (·) ◦KΦ

1 (·))|0.

Consequently, the assumptions of Lemma 5.4 are satisfied and we may
define for 0 < ε < ε0 the curve γ(ε) by

γ(ε) := Φ(V (ε)) ∈ H2,2(S1, S2).

From (5.17) we infer that γ(ε) is the unique zero of Xg0,ε in Φ(〈W1〉⊥ ∩
U) and S1 ∗ γ(ε) is a nondegenerate critical orbit. It is easy to see
that the existence of a slice in Lemma 3.1 remains valid if we replace
Expα0,g0 by Φ. Consequently, S1 ∗ γ(ε) is the unique critical orbit of

Xg0,ε in S1 ∗ Φ(〈W1〉⊥ ∩ U), which is an open neighborhood of S1 ∗ α0

in H2,2(S1, S2).
We fix 0 < ε < ε0 and consider for s ∈ [0, 1] the family of maps

Ys := A−1
V (ε) ◦DXg0,ε|γ(ε) ◦

(
(1− s) + sProj〈W1(γ(ε))〉⊥

)
DΦ|V (ε).

Since DXg0,ε|γ(ε) restricted to 〈W1(γ(ε))〉⊥ is of the form id− compact,
writing

DXg0,ε|γ(ε) = DXg0,ε|γ(ε) ◦ Proj〈W1(γ(ε))〉⊥ +DXg0,ε|γ(ε) ◦ Proj〈W1(γ(ε))〉,

we deduce that Ys = id − compact for all s ∈ [0, 1]. From Lemma 5.4
we have that Y0 is invertible and satisfies

Y0 = DXΦ
g0,ε|V (ε) and sgn(Y0) = − det(DZ(P1(·) ◦K1(·))|α0).

As DXΦ
g0,ε|V (ε) is invertible, the kernel of DXg0,ε|γ(ε) is given by 〈γ̇(ε)〉.

Since γ(ε) converges to α0 as ε→ 0 and α̇0 =W1(α0), we get

γ̇(ε) =W1(γ(ε)) + o(1)ε→0,

which implies together with (5.14) that 〈γ̇(ε)〉 is transversal to the image
of

(
(1− s) + sProj〈W1(γ(ε))〉⊥

)
◦DΦ|V (ε)
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for all s ∈ [0, 1]. Consequently, Ys remains invertible when s moves from
0 to 1. Due to the homotopy invariance, we finally obtain

sgn(Y0) = −sgn
(
det(DZ(P1(·) ◦K1(·))|α0)

)

= sgn(Y1) = sgn
(

A−1
V (ε) ◦DXg0,ε|γ(ε) ◦AV (ε)

)

= sgn(DXg0,ε|γ(ε)) = degloc,S1(Xg0,ε, S
1 ∗ γ(ε)).

This finishes the proof. q.e.d.

5.3. The S1-degree of (5.1). We define the function k1 by

k1(x) := 〈x, e3〉 for x ∈ S2 = ∂B1(0) ⊂ R
3.(5.24)

The corresponding vector-field K1 on H2,2(S1, S2) is given by

K1(α) = (−D2
t,g0 + 1)−1(|α̇|〈α, e3〉(α× α̇)).

We note that for α = α(·, 2πr, v0 , v1, w) ∈ Z we have

(−D2
t,g0 + 1)(2πr)−1K1(α)

=
(√

1− r2〈w, e3〉+ r cos(2π·)〈v1, e3〉+ r sin(2π·)〈v0, e3〉
)
(α× α̇)

=
−2πr2

4π2r2 + 1
(−D2

t,g0 + 1)
(
〈v1, e3〉W2(α) + 〈v0, e3〉W3(α)

)
+ h(α),

where (−D2
t,g0+1)−1h(α) is in the image of Dg0Xk0,g0 |α by (5.7)–(5.10).

Hence,

P1(α) ◦K1(α) =
−4π2r3

4π2r2 + 1
〈v1, e3〉W2(α) +

−4π2r3

4π2r2 + 1
〈v0, e3〉W3(α),

and there are exactly two critical orbits of P1(α) ◦K1(α) on Z given by

{α = α(·, 2πr, v0 , v1, w) ∈ Z : w = ±e3} = S1 ∗ α+ ∪ S1 ∗ α−,

where

α+ = α(·, 2πr, e1, e2, e3) and α− = α(·, 2πr,−e1, e2,−e3).
The curves α± correspond to two parallels with respect to the north
pole e3 and curvature k0. Using the formulas for W2 and W3 in (5.5),
we find with respect to the basis {W2(α±),W3(α±)}

D(P1(·) ◦K1(·))|α±
=

4π2r3

4π2r2 + 1

(
±1 0
0 ±1

)

.

Thus, we may apply Lemma 5.5 and get two critical orbits α±(ε) for
Xg0,ε converging to α± as ε→ 0.

Lemma 5.6. LetM be the subset of H2,2(S1, S2) consisting of simple
and regular curves. Then χS1(Xk0,g0 ,M) = −2.



382 M. SCHNEIDER

Proof. We choose k1 = 〈·, e3〉 as above. From Lemmas 5.2–5.4 there
are ε0 > 0 and an open neighborhood U of Z such that for all 0 < ε < ε0
the critical orbits of Xg0,ε in U are given exactly by S1 ∗α±(ε). Indeed,
suppose there are εn → 0+ and a sequence (αn) of zeros of Xg0,εn

converging to Z different from S1 ∗ α±(εn). Up to a subsequence

αn → α0 ∈ Z
as n→ ∞. For large n we use the chart Φ around α0 as in Lemma 5.2.
From the existence of a slice in Lemma 3.1 we get a sequence θn ∈ R/Z
converging to 0 such that

θn ∗ αn = Φ(Vn) for some Vn ∈ 〈W1(α0)〉⊥.
As in the proof of Lemma 5.4 we may decompose

Vn = Φ−1(θn ∗ αn) =Wn + Un,

where Wn ∈ 〈W2(α0),W3(α0)〉 and Un ∈ R(DXΦ
k0,g0

|Wn). From the

uniqueness part of Lemma 5.2, as Xg0,εn(Wn + Un) = 0, we get Un =
U(εn,Wn). By Lemma 5.3 we see that necessarily P1(α0) ◦K1(α0) = 0,
such that S1 ∗ α0 ∈ {S1 ∗α±}. From Lemma 5.5 we finally deduce that
S1 ∗ αn ∈ {S1 ∗ α±(εn)}, a contradiction.

From the definition of the S1-equivariant Poincaré-Hopf index and
the classification of the simple zeros of Xk0,g0 , there holds for small
ε > 0

χS1(Xk0,g0 ,M) = χS1(Xk0,g0 ,U) = χS1(Xg0,ε,U) = −2.

q.e.d.

6. A priori estimates

We fix a continuous family of metrics {gt : t ∈ [0, 1]} on S2 and a
continuous family of positive continuous function {kt : t ∈ [0, 1]} on S2.
We let Xt be the vector field on H2,2(S1, S2) defined by

Xt := Xkt,gt .

We denote by M ⊂ H2,2(S1, S2) the set

M := {γ ∈ H2,2(S1, S2) : γ is simple and regular}.
We shall give sufficient conditions assuring that the set

X−1(0) := {(γ, t) ∈M × [0, 1] : Xt(γ) = 0}

is compact inM×[0, 1]. Fix (γ, t) ∈ X−1(0). The Gauss-Bonnet formula
yields

∫

γ
kt ds+

∫

Ωγ

Kgt dgt = 2π,
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where Ωγ denotes the interior of γ with respect to the normal Ngt and
Kgt is the Gauss curvature of (S2, gt). To obtain a contradiction, as-
sume that there is (γn, tn) in X−1(0) such that L(γn) → 0 as n → ∞.
Then the left hand side in the Gauss-Bonnet formula, as kt and Kgt are
uniformly bounded, tends to 0, which is impossible. Consequently, the
length L(γ) of γ satisfies

c ≤ L(γ) ≤
(
inf{kt(x)}

)−1(
2π + sup

t∈[0,1]
{(supK−

gt)vol(S
2, gt)}

)
,(6.1)

for some positive constant c = c({kt}, {gt}) and K−
gt := −min(Kgt , 0).

Suppose (γn, tn) in X
−1(0) converges to (γ0, t0) in H

2,2(S1, S2), such
that

γ0 6∈M.

Then by (6.1) the curve γ0 is non-constant and regular, hence there is
s1 6= s2 in R/Z such that γ0(s1) = γ0(s2). As γn are simple curves,
parametrized proportional to arc-length, we see that γ̇0(s1) = ±γ̇0(s2).
If γ̇0(s1) = γ̇0(s2), then by the unique solvability of the initial value
problem

γ0(·+ (s1 − s2)) = γ0(·).
If γ̇0(s1) = −γ̇0(s2), then we write γ close to s1 and s2 as a graph over
the tangent direction γ̇0(s1) in normal coordinates Expγ0(s1). By the
maximum principle we find

γ0(s1 + t) = Expγ0(s1),g
(
tγ̇0(s1) + a(t)Ng(γ0(s1))

)
,

γ0(s2 + t) = Expγ0(s1),g
(
− tγ̇0(s1)− b(t)Ng(γ0(s1))

)
,

where a(t) and b(t) are positive for t 6= 0. Consequently, if γ̇0(s1) =
−γ̇0(s2), then γ0 touches itself at γ0(s1), locally separated by the geo-
desic through γ0(s1) with velocity γ̇0(s1). Thus, γ0 is anm-fold covering
for some m ∈ N of a curve α, which is almost simple in the sense that
α can only touch itself as described above. Using stereographic coordi-
nates S there is a point p0 close to the curve γ0, such that the winding
number of S(γ0) around S(p0) is ±m. Since γ0 is a limit of simple
curves, by the stability of the winding number, we deduce m = 1.

We denote by (Ω0, g) the interior of γ0 considered as a Riemannian
surface with boundary of positive geodesic curvature. Fix a touching
point γ0(s1) = γ0(s2). The point γ0(s1) = γ0(s2) corresponds to two dif-
ferent boundary points of Ω0. Denote by β the curve of minimal length
in Ω0 connecting the two boundary points. From a regularity result for
variational problems with constraints (see [2, 3]) the minimizer β is a
C1-curve. By the maximum principle, β cannot touch the boundary of
Ω0 and is therefore a C2 geodesic in the interior of Ω0. Moreover, as a
minimizer, β is stable, and going back to S2 the curve β is a geodesic
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loop which is stable with respect to variations with fixed end-points.
Thus

inj(gt0) ≤
1

2
L(β) <

1

4
L(γ0).(6.2)

This leads to

Lemma 6.1. X−1(0) is compact in M × [0, 1] under each of the
following assumptions:

inf
(t,x)∈[0,1]×S2

{kt} ≥ 1

4
sup
t∈[0,1]

((
inj(gt)

)−1(
2π + (supK−

gt)vol(S
2, gt)

))
,

(6.3)

Kgt > 0 ∀t ∈ [0, 1] and inf
(t,x)∈[0,1]×S2

{kt} ≥ 1

2
sup
t∈[0,1]

((
supKgt

) 1
2
)
,

(6.4)

Kgt > 0 ∀t ∈ [0, 1] and
(
supKgt

)
< 4

(
infKgt

)
for all t ∈ [0, 1],(6.5)

where inj(gt) denotes the injectivity radius of (S2, gt).

Proof. We first show that X−1(0) is closed under each of the above
assumptions. Suppose (γn, tn) ∈ X−1(0) converges to some (γ0, t0) in
H2,2(S1, S2). To obtain a contradiction, assume (γ0, t0) /∈ X−1(0), i.e.,
γ0 is not simple. Then by the above analysis γ0 touches itself at some
point γ0(s1) = γ0(s2) and there is a stable, nontrivial geodesic loop β,
which yields a bound from above on the injectivity radius in (6.2) by
the length of γ0. If γ0 is too short, this is impossible. The estimate on
the length of γ0 in (6.1) leads to the contradiction under the assumption
(6.3). If Kt0 > 0, then by [18, thm 2.6.9],

inj(gt0) ≥ π
(
supKt0

)− 1
2 ,(6.6)

and (6.4) is a special case of (6.3).
Moreover, by Bonnet-Meyer’s theorem, as β is a stable geodesic loop,

its length is bounded by

L(β) ≤ π
√

infKt0

,

which yields together with (6.6) the contradiction assuming (6.5).
To deduce the compactness of X−1(0), we fix a sequence (γn, tn)

in X−1(0). By (6.1) the length Lgtn (γn) is uniformly bounded. Since
each γn is parametrized proportional to arc-length, (|γ̇n|gtn ) is uniformly
bounded. Using the equation (1.2) and standard elliptic regularity, (γn)
is bounded in H4,2(S1, S2). Hence we may choose a subsequence, which
converges in H2,2(S1, S2) and by the first part of the proof in X−1(0)
under each of the above assumptions. This yields the claim. q.e.d.
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Proof of Theorem 1.3. We fix k0 > 0, let k1 ∈ C∞(S2,R) be given by
(5.24), and consider the metrics gt ≡ g0, the functions kt := k0 + tk1,
and the corresponding vector fields Xt := Xkt,g0 . The zeros of X0

in M are given by Z, the manifold of solutions to the unperturbed
problem. The compactness of X−1(0) implies that the zeros of Xt in
M converge to Z as t → 0. From the proof of Lemma 5.6 there are
exactly two critical orbits S1 ∗ α±(t) for |t| > 0 small enough close to
Z which are nondegenerate and converge to the orbits of the parallels
α(·, 2π|r|,±e1, e2,±e3) as t → 0. Consequently, there are exactly two
simple solutions of (1.2) with g = g0 and k = k0 + tk1 if |t| > 0 is small
enough. q.e.d.

7. Existence results

We give the proof of our main existence result.

Proof of Theorem 1.1. We consider the family of metrics {gt : t ∈ [0, 1]}
defined by

gt := (1− t)g0 + tg.

Since {gt} is a compact family of metrics, there is a constant k0 > 0
such that

k0 >
1

4
sup
t∈[0,1]

((
inj(gt)

)−1(
2π + (supK−

gt)vol(S
2, gt)

))
.

We denote by M the set of simple regular curves in H2,2(S1, S2). From
condition (6.3) in Lemma 6.1 the homotopy

[0, 1] ∋ t 7→ Xk0,gt

is (M,gt, S
1)-admissible, and hence from Lemma 3.12 and Lemma 5.6,

−2 = χS1(Xk0,g0 ,M) = χS1(Xk0,g,M).

We define the family of functions {kt : t ∈ [0, 1]} by

kt := (1− t)k0 + tk

and consider the homotopy

[0, 1] ∋ t 7→ Xkt,g.

Under each of the above assumptions, we may apply Lemma 6.1 to
deduce that the homotopy is (M,g, S1)-admissible, and thus

−2 = χS1(Xk0,g,M) = χS1(Xk,g,M).

Since the local degree of an isolated critical orbit is larger than −1 by
Lemma 4.1, there are at least two simple solutions to (1.2). q.e.d.
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