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DEFORMING SYMPLECTOMORPHISMS
OF COMPLEX PROJECTIVE SPACES
BY THE MEAN CURVATURE FLOW

IvaNA MEDOS & Mu-Tao WANG

Abstract

We apply the mean curvature flow to deform symplectomor-
phisms of CP". In particular, we prove that, for each dimension
n, there exists a constant A, explicitly computable, such that any
A-pinched symplectomorphism of CP" is symplectically isotopic
to a biholomorphic isometry.

1. Introduction

It was proposed in [14] to use the mean curvature flow to study
the structure of the symplectomorphism group of a symplectic mani-
fold (M,w). Consider the graph of a symplectomorphism f: M — M
as an embedded submanifold ¥ = {(x, f(z)) | z € M} of the product
manifold M x M. 3 can be viewed as a Lagrangian submanifold with
respect to the symplectic structure 7jw — m5w on M x M where 7; is
the projection from M x M to the ith factor, i = 1,2. Suppose that M
is endowed with a compatible Kéahler metric such that w is the Kéhler
form. The volume of ¥ with respect to the product metric naturally
defines a function on the symplectomorphism group of M which is sym-
metric with respect to the inverse operation f — f~!. This provides a
variational approach to study the topology of this infinite-dimensional
group. The critical point of the volume function corresponds to minimal
Lagrangian submanifolds, and the mean curvature flow is the negative
gradient flow. By Smoczyk [10], it is known that being Lagrangian
is preserved by the mean curvature flow when M is equipped with a
Kahler-Einstein metric. Therefore, if ¥ remains graphical along the
mean curvature flow, the flow in turn gives a symplectic isotopy of f.

In this article, we apply this idea to the complex projective space CP™
with the Fubini-Study metric and prove that a pinched symplectomor-
phism (see Definition 1) is symplectically isotopic to a biholomorphic
isometry along the mean curvature flow.
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Denote by g and w the Fubini-Study metric and the associated Kahler
form on CP", respectively. Recall that a diffeomorphism f of CP" is a
symplectomorphism if f*w = w.

Definition 1. Let A be a constant > 1. A symplectomorphism [ of
CP" is said to be A-pinched if

1 .
(1.1) I <9< Ay
The precise statement of the pinching theorem is the following.

Theorem 1. For each positive integer n there exists a constant A(n) >
1, such that if f : CP™ — CP" is a A-pinched symplectomorphism for
some 1 < A < A(n), then:

1) The mean curvature flow ¥; of the graph of f in CP™ x CP" exists
smoothly for all t > 0.

2) ¥ is the graph of a symplectomorphism f; for each t > 0.

3)fi converges smoothly to a biholomorphic isometry of CP™ as t —
0.

The mean curvature flow forms a smooth one-parameter family of
symplectomorphisms or a symplectic isotopy. Therefore the following
holds.

Corollary 1. For each positive integer n, there exists a constant
A(n), such that if f is a A-pinched symplectomorphism of CP™ for some
1 < A < A(n), then f is symplectically isotopic to a biholomorphic
1sometry.

This theorem generalizes a previous theorem of the second author for
Riemann surfaces in which no pinching condition is required.

Theorem 2. [12, 16] Let (X!, g1,w1) and (X2, go,ws) be two diffeo-
morphic compact Riemann surfaces with Riemannian metrics g1 and g
of the same constant curvature c. Suppose X is the graph of a sym-
plectomorphism f : X' — £2 and 4 is the mean curvature flow in the
product space X' x X2 with initial surface Xo = X. Then ¥, remains
the graph of a symplectomorphism f; along the mean curvature flow.
The flow exists smoothly for all time, and ¥; converges smoothly to a
minimal Lagrangian submanifold as t — oo.

In Theorem 2, the long-time existence for any ¢ and the smooth con-
vergence for ¢ > 0 were proved in [12]. The smooth convergence for
¢ < 0 was established in Theorem 1.1 of [16]. Using a different method,
Smoczyk [11] proved the theorem when ¢ < 0 assuming an angle con-
dition. The existence of the limiting minimal Lagrangian surface was
proved earlier using variational method by Schoen [7] (see also [5]).
In this case the symplectomorphism is indeed an area-preserving map.
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The boundary value problem for minimal area-preserving maps has been
studied by Wolfson [18] and Brendle [1].

A theorem of Smale states that the isometry group SO(3) of 52 is a
continuous deformation retract of the oriented diffeomorphism group of
52 = CP!, and Theorem 2 gives a new proof of this theorem. The defor-
mation retract provided by the mean curvature flow is indeed smooth.
We are informed by Prof. McDuff that it was proved by Gromov [2] that
the biholomorphic isometry group of CP? is a deformation retract of its
symplectomorphism group. It seems that no similar result is known for
CP™ when n > 2.

The proof is divided into several steps:

Step 1. We make several observations about singular values and sin-
gular vectors of symplectomorphisms. We also discuss the geometric
properties of graphs of symplectomorphisms of Kéahler-Einstein mani-
folds, as well as the setup of our problem. (See §2.)

Step 2. We claim that ¥; remains the graph of a symplectomorphism
ft as long as the flow exists smoothly. We study the evolution of the
Jacobian of the projection map 71 : ¥y — M (denoted by *2) and prove
that positivity is preserved by the maximum principle. This justifies the
claim by the implicit function theorem. (See §3.1 and §3.2.)

Step 3. We apply the blow up analysis to bound the second funda-
mental form of 3; for each ¢t > 0, and show that there is no finite time
singularity. (See §3.3.)

Step 4. We study the long-time behavior of the evolution and use a
comparison principle to show that the pinching condition is improved
(by the curvature property of CP™) and that the pull-back metric f*g
is approaching g as t — oo.

Step 5. We prove that the second fundamental form of 3J; is uniformly
bounded in t as t — oo. This gives the smooth convergence in the
theorem.

Step 4 and 5 are done in §3.4.
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2. Preliminaries

2.1. Singular values of symplectic linear maps between vec-
tor spaces. Let (V,g) and (V,§) be 2n-dimensional real inner-product
spaces, with almost complex structures J and J, respectively, compat-
ible with the corresponding inner products. Then w(-,-) = g(J-,+) and
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& = §(J-,-) are symplectic forms on V and V. Recall that a linear map
L: (V,w) — (V,®) is said to be symplectic if

(2.1) w(u,v) = @0(L(u), L(v))

for any u,v € V. In this context, the condition is equivalent to

(2.2) L*JL = J,

where L* : V — V is the adjoint operator of L with respect to the inner
products on V and V.

For such L, we define E : V — V to be the map E = L[L*L]"2
Since L is an isomorphism, L*L is a positive definite self-adjoint auto-
morphism of V' and the square root of L*L is well-defined.

Lemma 1. E is an isometry which intertwines with J and J, i.e.,
JE = EJ.
In other words, E is a symplectic isometry.

Proof. E is an isometry since

§(Bu, Bv) = §(L[L*L]" 2u, LIL*L]"2v) = g(L*L[L* L] u, [L* L] 7v)
= g([L*L]2u, [L*L] " 2v)
= g([L*L) "2 [L*L]2u, v)
= g(u,v)

for any u,v € V. Let P = [L*L]E, so that E=LP~'. —JP~'J and P
are both positive definite (—JP~1J = J~1P~1J is positive definite since
P~!is and since .J is an orthogonal operator), and, by the symplectic
condition (2.2), their squares are equal:

(—=JP7 D) = gL\ (L)'
=-L*JJL
= P2
It follows that —JP~'J = P. By using the symplectic condition
L*JL = J and the fact that P = L*LP~!, we obtain the desired result:
—JP'J=P=—JP 'J=L"LP!
= —(L*)'gp~lg=LpP™!
= —JLP™'J=LpP™!
= —JEJ =E.

Finally, the last equality implies E*JE = J, so E is in fact a sym-
plectic isometry (condition (2.2)). q.e.d.
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Let (v1,...,v2,) be a basis of V' that diagonalizes L*L. L*L is the
positive definite matrix

Ao 0
0 A3
L'L = :
)‘%n—l
0 e 003,
with respect to this basis, for some A\; > 0,i=1,...,2n.
Then, by construction, L(v;) = A\;E(v;); in other words,
A0 L 0
0 Ao
L= :
A2n—1

0 ce. 0 Aon

with respect to the bases (v1,...,vs,) and (E(v1),. .., E(va,)), and thus
A\; are the singular values of L.

Lemma 2. Let \; be the singular values of L and let v; be the asso-
ciated singular vectors, i.e., L(v;) = NiE(v;). Then

(AiAj — 1)g(Jv;,v;) = 0.
Proof. By the symplectic condition (2.1) and Lemma 1,
g(Jvi,v;) =G(JL(v;), L(v;)) = M\jg(JE(v;), E(v;))
= AN G(E(Jvi), E(vy))

= A\iXjg(Jvs, v;). q.e.d.

Lemma 3. If « is a singular value of L, then so is é Moreover, if

V(a) denotes the subspace of singular vectors corresponding to a singu-
lar value o, then

dim V(o) =dim V (é) ,

and J restricts to an isomorphism between V(o)) and V (é)

Proof. The first statement is a consequence of Lemma 2. Indeed,
let (vy,...,v9;,) be the basis described in the lemma. Then for each
i€ {l,...,2n} there exists some j € {1,...,2n} such that g(Jv;,vj) # 0
since Jv; is a nonzero vector. Then, by the lemma, it follows that
Aidj = 1.

The second statement is trivial if & = 1. Assume that a # 1, and let
dimV(a) =k, dimV (é) = [. By renumbering indexes, we may assume
that vq,...,v; span V(a) (so that Ay = ... = Ay = a). We claim that
Jui, ..., Ju, belong to V (é) Fix any 1 < i < k and consider Jv;. Let
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V' be the orthogonal complement of V(1) such that V = V() & V.
Take any v, € V'’ for 1 < m < 2n, and thus we have Lv,, = A\pvm
for A\, # é Lemma 2 implies g(Jv;, vy,) = 0 for any such v,,, and
therefore Ju; is in the orthogonal complement of V', or V(é) for each
i =1,...,k. Moreover, Juq,...,Jvg are linearly independent because
v1,...,0; are. It follows that & < [. The same argument applies to
Vv (é), and it follows that k& > [.

We conclude that £ = [ and that J restricts to an isomorphism from
V(a) toV (é) q.e.d.

Remark 1. The preceding lemma implies that V splits into a direct
sum of singular subspaces of the following form.:

k k
1 ! 1\
23) V=V aV(m) eV <a—> ®...oV(w)aV <a—> :
1 s
where s is the total number of distinct singular values of L greater than
1, «; are distinct singular values of L greater than 1,1 =1,...,s, and
the superscripts represent dimension, ko > 0 and k; > 0 forj =1,...,s.

Proposition 1. Let L : (V,w) — (V,&) be a symplectic linear map,
where V. and V are real vector spaces of dimension 2n equipped with
almost complex structures J and J and inner products g and § com-
patible with the respective complex structures, and where w = g(J-,-),

@ = g(J-,-). Then there exists an orthonormal basis of V with respect
to which

0 -1 0
1 0 0
(2.4) J= -
0 0 -1
0 1 0
and
oo 0
0 M
(2.5) L*L =
)‘%n—l
0 o0 A,
where )\22'_1)\22' = 1, fO’/“’i = 1, ey

Proof. Lemma 3 and (2.3) imply that it is sufficient to find a basis
satisfying (2.4) of the subspaces V(a) & V(L) for each singular value
a # 1, as well as of V(1) if 1 is a singular value of L.

Assume that there is a singular value a # 1, and let £ = dim V().
We choose an arbitrary basis u1, ..., uy of this space. Then Juyq, ..., Jug
is a basis of V(=). Putting these bases together provides a basis of

1
o
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V(a) @ V(1) satisfying (2.4). Moreover, since ui,...,uy are singular
vectors of L with singular value «, and Juq, ..., Juy are singular values
of L with singular value é, it follows that (w1, Juq,ug, Jus,. .., ug, Jug)

is the desired basis.
If a singular value is equal to 1 (i.e., if kg > 0 in (2.3)), any basis of
V(1) satisfying (2.4) suffices. q.e.d.

Since the image of an orthonormal basis under an isometry is also an
orthonormal basis, we obtain the following corollary.

Corollary 2. Let E : V — V be the isometry E = L[L*L]_%. If
(a1,...,a9,) s a basis of V' satisfying the properties of Proposition 1,
and if (@y,...,aon) is the orthonormal basis (E(ay),...,E(a)) of V,
then we have the following:

(a)

0 —1 0
1 0 0
j= y
0 0 -1
0 1 0
with respect to (ay,...,a2,).

(b) L is diagonalized with respect to these bases, with diagonal values
ordered in pairs whose product is 1:

A 0 L. 0
0 Ao
L= :
A2n—1
0 0 Aon

with )\Qi_l)\gi = 1, fOT’ 1= 1, R (%

Proof. Part (a) follows from Proposition 1 and Lemma 1. Part (b)
follows from the fact that L(a;) = A E(a;). q.e.d.

2.2. Geometry of graphs of symplectomorphisms. Let 3 be the
graph of a symplectomorphism f : (M,w) — (M,&) between Kéhler-
Einstein manifolds (M, g,w) and (M, §,&) of real dimension 2n and of
the same scalar curvature. The product space (M x M,G =g g) is thus
a Kahler-Einstein manifold. We consider the evolution of ¥ € M x M
under the mean curvature flow. If J and J are almost complex structures
of M and M, respectively, then J = J @(—j ) defines an almost complex
structure on M x M parallel with respect to G. Let ¥, be the mean
curvature flow of ¥ in M x M.

Let Q be the volume form of M extended to M x M naturally (more
precisely, let 2 be the pull-back of the volume form of M under the
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projection 1 : M x M — M). Denote by %€ the Hodge star of the
restriction of Q to ;. At any point ¢ € ¥4, *Q(q) = Q(eq,...,em,)
for any oriented orthonormal basis of T;,¥. *{) is the Jacobian of the
projection 7 from X onto M. We shall show that %2 remains positive
along the mean curvature flow. By the implicit function theorem, this
implies that > is a graph over M.

We apply the result in the previous section to choose a basis that
simplifies the evolution equation of x{). Suppose g € ¥; is of the form
q= (p, f(p)) for p € M and f(p) € M, and let (ay, ..., as,) be the basis
of T, M satisfying the properties listed in Proposition 1, for L = Df,, :
oM — Tf(p)M , with the inner products understood to be the metrics
gon M at p and §on M at f(p). Thus we have

(2.6) ai,ap = Jay, -+ ,a2p—1,02, = Jag,—1

on T,M. Define £ : T,M — Tf(p)M to be the isometry F = Df,

[Df;Dfp]_% for p € M. Let us also choose a basis of Tf(p)M to be
(a1,...,a9,) = (E(ay),...,E(az,)), as per Corollary 2.
Then
1
e = ai, D fpla;
(ERTIACAIE \Dfp(az-)P( p(a:))

2.7
(2.7) _ ;(ai,/\iE(ai))

A1+ 22

and
1 ~
anti = Jip, )¢ = —===(Jpti, =Jpp) AiE(a:))
\/ 1+ A
(2.8) 1
= ——(Jpai, —\iE(Jpa;))
\/ 1+ A2

for i = 1,...,2n form an orthonormal basis of T,(M x M). By con-
struction, eq,..., e, span T, %, and €241, ..., e4n span N 3. In terms

of this basis at each point ¢ € 3¢,

Q= Q(ey,...,ea) =

The second fundamental form of ¥; is, at each point ¢ € ¥;, character-
ized by coefficients

(2.9) hiji = GV Me;, Tey).

Note that h;j;, are completely symmetric with respect to i, j, and k.
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Before we prove Theorem 1, we remark that the long-time existence of
the flow can be proved under more relaxed ambient curvature conditions,
but the convergence of the flow does require the more refined properties
of the curvature of CP".

3. Proof of Theorem 1

3.1. Evolution of %) along the mean curvature flow. In the rest
of the article we prove Theorem 1. We use the following convention
for indexes: for any index ¢ between 1 and 2n , i’ denotes the index
i+ (=1)"*1. For example, I’ = 2 and 2’ = 1. Unless otherwise is
mentioned, all summation indexes range from 1 to 2n.

Proposition 2. Let X be the graph of a symplectomorphism f :
(M,w) — (M,&) between Kihler-Einstein manifolds (M, g,w) and
(M,f],d)) of real dimension 2n and of the same scalar curvature. Sup-
pose the mean curvature flow 3y with Yo = 3 exists smoothly on [0,t+¢)
for some € > 0 and that each X; is the graph of a symplectomorphism
fe: (M,w) = (M,&). At each point ¢ = (p, fi(p)) € By, ¥ satisfies the
following equation:

%*Q =AxQ + xQ
22 5 =
Aiy by - ikik — A Likik) |
Q( ]k)+z(1+>\%)(1+)\2)(3kk wRikik)
i,k 4
where
(3.1)

Z]k Z hUk 2 Z Z H—j)\ A i zkhj’jk - hi’jkhj’ik)v

1,5,k 1<J

Rzykl = R(alaaj7ak7al) and lekl = R(E(al) E(CL]) E(ak) E(al)) are,
respectively, the coefficients of the curvature tensors R and R of M and
M with respect to the chosen bases of TpyM and Ty, )M that diagonalize

(Dfe)p : TyM — Tft(p)M, as per Proposition 1 and Corollary 2.

Proof. The evolution equation of *{2 under mean curvature flow is,
by Proposition 3.1 of [13],
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d
0= A*Q+*Q(Zh3jk)
3,5,k
—22ZQ(el,...,jep,...,jeq,...,egn)hpikhqjk
D,q,k 1<j (@) (4)

- Z Q(Cl, v 7\76])7 o 762n)R(\7€p7 €k, Ck, ei)a
()

Dk,

where R is the curvature tensor of M x M.
We recall that €2 is a 2n form. The notation Q(ey,...,Jep,...,Teq,
(@) (4)
...,€2,) means that we replace Je, in the ith position and Je, in the
jth position and similarly in the rest of the article.

We denote
A= *Q(Z h?jk) -2 Z Z Qer,....Tep, ..., Te€q, -, em)hpithgjk
1,5,k p,q,k 1<J () (4)
and
(3.2) B=— Z Qer,...,Tep, ..., eam)R(Tep, e, ek, €;).
p,k,i (%)

Since €2 only picks up the m; projection part, and

(3.3) m(Jey) = ———Ja,

by (2.7), A is equal to

QO h) —2(:) > > \\?E

2 2
1+ A2)(1+ A2)

L+ A2)(1+A2)

Omega(ay,...,Jap,...,Jag, ..., a)hpikhgjk-
(4) ()

Recall the formula Ja, = (—1)P*1a, from (1). Fixing i < j, the term

1,3,k p,q,k 1<j

Qar,....Jap,...,Jag, ..., a)
(4) (4)
is equal to
(—1)p+1(—1)q+1§2(a1, sy Qpy e, Agly e ,agn)
(4) (4)
= (=1)"™ (8pirbqjr — Opjrqir),
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as only those terms with p = ¢ and ¢ = j' or p = j' and ¢ = ¢’ survive.
On the other hand, we have

(1+2X2)
Therefore,
ZZ\/1+)\2 1+A?)Q(a o Jag.. as)hohe
gk i< \/1+)\2)(1+)\2) Toeves (i)p,..., (j)q,..., on) Pt
_ZZ)\/\ =1 (havihgigie — hajihya),

k i<j

and this shows that A = (xQ)Q(\;, hijk)-
On the other hand, switching the last two arguments e; and e; in

(3.2), using (3.3) again, and applying the skew-symmetry of curvature
tensor, we derive

B = Z Qey ..., jgp, e R(Tep, e, €, ex)

p,kyi

(a1 ..., Jap, ... a9,)R(Tep, en, i ex)
107]“1/14—/\2 (@)
_*QZZ )\Rjez’aekyelvek)

where we use Ja, = (—1)P*1a, and \/7”((11:;‘2) = )\; in the last equality.

Denote by R and R the curvature tensors of M and M, respectively.
We compute by Lemma 1, (2.7), and (2.8),

R(Teir,exeirex) = R(mi(Tei), mi(ex), mi(e:i), mi(er))
+ R(ma(Ter), maler), ma(e;), ma(ex))

B 1
(L4 A2/ (122 1+ A2)

[R(Jair, ax, ai, ax) — XAy R(J Eay), E(ar), B(a;), E(ar))]
1

(L4 A2,/ (1 +22)(1+A2)
[R(Jai, ax, a;, a) = \ER(E(Jai), Eax), E(a;), E(ay))]
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(14 224/ (1+22)(1+22)
[(_1)iR(ai7 Ak, Qi a"k) - (_1)i)‘iR(E(ai)7 E(ak)7 E(ai)7 E(ak))]
= (' (Ririr, — M\ Rigir)

(14 A2/ (L4 A2)(1+22)
_ GRY
R HITESY)

(Rikit — A2 Rinir)-
q.e.d.

_ The ambient curvature term B can be further simplified when M =
M = CP".

Corollary 3. Under the same assumption as in Proposition 2, if in
addition M and M are both CP™ with the Fubini-Study metric, then

) (1- 37
— x Q=A% Q+*Q | Q(N\;, hiji) + Z 1+ 22)2
3

dt k odd
Proof. On CP" with the Fubini-Study metric (-, -), the sectional cur-
vature is (see for example [4])
(X AY|P+3(JX,Y)?)
[XPIYP = (X,Y)?
Therefore, with respect to the chosen orthonormal bases of T, M and
T f(x)M the sectional curvatures K and K of M and M are

K(X,Y) =

1
K(aj,ay) =1 and K(a,,as) = 1 for all other r,s, and

- ~ 1
K(E(a;),E(ay)) =1 and K(E(a,), E(as)) = 1 for all other r, s.
Therefore,
1
Rikik = K(ai, ar) = 1(1 + 30k )

and

1
Rigir, = K(E(a;), E(ay)) = 4(1 + 30ikr)
for any i, k with i # k.
Plugging these into the expression for B, we obtain

) M1 —)2)
5=7 Z};; (1+A2)(1+ A2) (1 30 )

Aw (1= A2) *Q = 1—\2 Y
— %0 k oae k ?
- Z 1+>\2 >\k+>\k’) * 4 zk:l—l-/\i i;éEk:k’ Ai + Ay
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by dividing it into two summands with i = ¥ and ¢ = k’. Using Mg\ =

1 and E g M—n—l we derive
Ai —l— Ai + Ay ’
itk k! i odd £k,k'

1— )2 (n—1) 1— )2
= *0 k Q k.
B *;(14_)\%)2—1_ 4 * Zk:l_‘_/\%

The second term vanishes as sums with odd k and even k cancel with
each other. Finally, we arrive at

B=x QZ = 927(1_A%)2
1+A2 (14 A2)2

k odd

q.e.d.
In this case B > 0, with equality holding if and only if all the singu-
lar values of f are equal (and thus necessarily equal to 1). Moreover,
1-X%
EH_)\Q;Q < 1,50 B<n(xQ) < 5.
We notice that Q(\;, hiji) is a quadratic form in h;j;, which can be
rewritten as

(3-4)

/\thuk Z hzgk 22 Z Mkh "'k T m’k)

1,5,k k 7 odd

_9 Z Z (Ai = M) (Aj — Ajr)hirighijrje

k i odd<j odd

k iodd<j odd

+ XA ) hijihjrirg]-
Lemma 4. When each A\; =1,
QU(1,...,1),hiji) > (3 — \/B)thkw
thﬂf”2 thzz+zhlj] + Z hl]k

1#£j 1<j<k

where

Proof. See Appendix. g.e.d.

Proposition 3. Let Q(\;, hjr1) be the quadratic form defined in Propo-
sition 2. In each dimension n, there exist Ag > 1 such that Q(X\;, hjx)
is non-negative whenever ALO <\ <Ag fori=1,...,2n. Moreover, for
any 1 < Ay < Ag, there exists a 6 > 0 such that

Qs hjr) > 6 ) by
i7j7k

whenever A% <N <Ay fori=1,...,2n.
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Proof. Since %Zm’,k h?jk < ||hijxl)? < Dk h?jk’ by Lemma 4,

3—Vb
Q((lv"' 71)7hijk) > 6\/_Zh22]k

Z"j7k
Since being a positive definite matrix is an open condition, there is an
open neighborhood U of (A1,...,A2,) = (1,---,1) such that (A1,..., A2p)
€ U implies Q(\;, hiji) is positive definite. Let d5 be the smallest eigen-

value of Q at X = (A1,...,A2,). Note that dy is a continuous function
in X and set
- 1

oa = min{dy [ A = (A1,..., A2,) and N <N <Afori=1,...,2n}.

Ag defined by
Ao =sup{A|A >1 and dp > 0}

has the desired property. g.e.d.

Remark 2. Ag is computable in each dimension n. In particular,
Ag =00 whenn =1, and Ag = %\/10 + % 15 when n = 2. This can be

checked by dividing Q into smaller quadratic forms and computing the
eigenvalues as in the Appendix.

Corollary 4. Under the same assumption as in Proposition 2, sup-
pose in addition that M and M are both CP"™ with the Fubini-Study
metric. There exist constants Ag > 1, depending only on n, such that
for any A1, 1 < Ay < Ag there exists a 6 > 0 with

(3.5) AN P /ARG gl Ut
| at - Cara LX)

whenever A% < \; < Ay for everyi. Here |II| is the norm of the second
fundamental form of ¥;.

We recall that the norm of the second fundamental form is

1| = Z G*FGI G (T (w;, wy), T (wg, w;))
i,5,k,l

= [Y GRartar e (VI My, Tw,)GVA M wy, Tw,)
1,9k, l,r,s

with respect to an arbitrary basis wi, . .., wa, of T;3 with G;; = G(w;, w;)
and GY = (Gij)_l. By (2.9),

11| = Zh?jk
i?j7k

Proof. The result follows from Corollary 3 and Proposition 3. q.e.d.

for the chosen basis (2.7).
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3.2. Preservation of graphical and pinching conditions. Short-
time existence of the mean curvature flow in question is guaranteed by
general theory of quasilinear parabolic PDE. In order to establish long-
time existence and convergence, we shall show that when an appropriate
pinching holds initially, then f remains Ag-pinched along the flow, Q)
satisfies the differential inequality (3.5) along the flow, and min*(2 is

p3
non-decreasing in time. First we make several preliminary observations.
We consider 1 , for A\; > 0, i\ = 1, where ¢/ =i+ (—1)"*L,
[T+
i
i=1,...,2n (in other words, Aog_1 Ao =1 for k=1,...,n). It can be
rewritten as

1 B 1
[I(t+22) [T i+ )
i i odd
This expression always has an upper bound: A\ Ay = 1 implies that
Ai + Ay > 2. Therefore,
1 1
. S
(3.6) <o

[Ta+x)
with equality if and only if A; = 1 for all 4.
If \;’s are bounded, ———L—— also has a positive lower bound.
[Ta+x)

(2

Lemma 5. If% <\ <A for all i, where A > 1, then
1

el =
2n - N
[Ta+x)
i
_ 1 _ _ 1
where € = on W > 0.
Proof. The function x + % is increasing when x > 1. Therefore if
% < \; < A for all 4, then
1
A+ <A+ e

It follows that

1 1 1
— el <
< on

S [T+

)

where € = =5 — .
2 (A5
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On the other hand, a positive lower bound on 1 implies
[T+
i
a bound on each \;.
Lemma 6. Ifzin —e<—L  where0<e< 2%, then
2
[Ta+x)
i
1
N <N <A
1 1 \2
foralli=1,...,2n, where A = 2 + ( = ) —1>1.
W—E W—E
Proof. 1If
1 1
gn €= -
[Tt +3) (N + )
p i odd
then
27’L
[T+ ) < =5
i odd
and
2TL
)\i + )\z’ S
J#i,j odd
for each i.
Since Aj + Ajs > 2 for each j, the inequality implies
1
A+ Ay <2 12n .
o €
Since M\ Ay = 1, it follows that
1
N <N <A
1 1 \2
where A = 2~ + (ﬁ"_ > —1. q.e.d.

After these algebraic preliminaries, we return to the mean curvature
flow. Recall that f is A-pinched in the sense of Definition 1 if % <N <A
at each point p € M in which );’s are the singular values of Df, as in
section 2.2.

Proposition 4. Let ¥; be the mean curvature flow of the graph X
of a symplectomorphism f : M — M where M = M = CP™ with the
Fubini-Study metric. Suppose Xy exists smoothly on [0,T) for some
T > 0. Let *Q be the Jacobian of the projection w1 : ¥y — M. Let Ag
be the constants characterized by Proposition 3.
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If %€) has the initial lower bound

1
— —e < xQ)
27L

for e = 2n <1 for some 1 < A" < Aq, then n%in xC) is non-

_ A’+— :
decreasing as a functzon in t. In particular, ¥ is the graph of a sym-
plectomorphism fi : M — M.

Proof. Suppose 1n1t1ally = — € < x() for € = 2% <1 — #) We
A/

o AN+ . .
compute that -2— = 2A . Thus, by Lemma 6, f is A’-pinched.

n

That in turn implies that *Q initially satisfies inequality (3.5), and in
particular,

(3.7) (d A>*Q>*QZ (1= )"
: P 2
dt k odd 1+ /\
Thus *Q > 5 — € for some [0,7") with T" < T.
Suppose at T’ *) = 2n — e for the first time after ¢ = 0. But in [0,7"),
we have *{2 > 2n — ¢, and thus f is A’-pinched and inequality (3.7) is

satisfied again. Since the right-hand side of (3.7) is strictly positive

unless *Q2 = 2%7 miny, *2 is non-decreasing in time by the maximum

principle. q.e.d.

Corollary 5. Under the same assumption as in Proposition 4, if the
initial symplectomorphism f is Ai-pinched, for

1 2
1 1 n 1 1 n
n[3 (o )] M (s )] e

then each f; is Ag-pinched along the mean curvature flow.

Proof. The proof consists of only algebraic manipulation and there
is no need to apply the maximum principle again. We need a simple

algebraic formula which can be easily verified: for z > 1,y > 1,
-1
(3'8) T+ $2—1:yifandonlyif;p:%

By the definition of Aq,

(3.9) 1<A1 j;) <1<A0+Aio>>i,

which is less than % (Ao + ALO) because Ag + ALO > 2. Since Ag > 1 and
A1 > 1, it follows that A1 < Ag.
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Now suppose f is initially Aj-pinched; then by Lemma 5, Q) has
initial lower bound

1

2—n —e< *Q)
for

1 1
(3.10) €=— —

Then, by Proposition 4, the lower bound of *{) remains true along the
flow. Lemma 6 then implies that f is A’-pinched along the flow for

1 1\?
(3.11) N=-2—+ <1W )—L

o €
We claim that with the given A; and € given by (3.10), A’ is exactly Ay.
In fact, from (3.11) and (3.8), we obtain

1

5w 1 1
(A2,
()

1 n
On the other hand, from (3.10) we solve 2— = (% (Al + A%)) =

on

% <A0 + A%) by (3.9). Therefore f is Ag pinched along the flow. q.e.d.

We believed that the constant Ay can be further improved by consid-
ering the evolution equation of A; directly. In this article, we find that
the evolution equation of *{2 is sufficient to yield the desired constant,
albeit not an optimal one.

In Theorem 1, if we choose a A that is slightly less than A; in Corol-
lary 5, then f; will Aj pinched along the flow for some Aj < Ap, and
thus by Corollary 4 we have (3.5) all the way along the flow. We shall
see that this is enough for the long-time existence and convergence.

3.3. Long-time existence of the mean curvature flow. We assume
M = M = CP". To prove long-time existence of the flow, we follow the
method in [13]. We isometrically embed M x M into RY. The mean
curvature flow equation in terms of the coordinate function F(x,t) € RY
is

dﬂ ty=H=H+V,
—_— €T = =
dt ) Y
where H € T(M x M)/TY; is the mean curvature vector of ¥; in
M, H € TRY/TY; is the mean curvature vector of ¥; in RY, and
V== .11, (e, eq) where {eq}4—1..2, is an orthonormal basis of
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T%. In the following calculation, the index a is summed from 1 to 2n:

M XM (o MxM MxM b
H=mys"(Ve, Ve =V eq — Ve,

Note that V is bounded since both M and M are compact.
Following [13], we assume that there is a singularity at space time

point (yo,t0) € RY x R. Consider the backward heat kernel of Huisken
Pyosto 3t (Y0, t0):

ot 18) = = exp (S0
Yolo R BT Y (b — )™ Ato—t) )

Let du; denote the volume form of ¥;. By Huisken’s monotonicity

formula [3], tlir? Pyo.todfte exists.
—to

Lemma 7. The limit thn? (1 — *Q) pyo 1o dpe exists and
—to

d
g /(1 ) pyeredi < C — 5/*Q\fn2py0,t0dut

for some constant C' > 0.

Proof. By [15],
d - _A L G s S e 4
dtpyo’to = Pyoto — Pyosto Aty — 1)2 to —t 2(tg — t)

where '+ € TRY /T%; is the orthogonal component of F' € TRY.
By [13],

d o
S = —|H2dps = —H - (H + V)dp.
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Combining these results, we obtain

d
at /(1 — #8) pyo 1o diit

< [1a0 = 42) = 52 QP o

’FJ_P FJ- . ﬁ FJ_ . V
/(1 *Q) |:Apyg,to + Pyosto <4(t0 _ t)2 t to—t + 2(t0 - t)

- / (1= Q) - (B + V)|pgo o

— (180 = iy — (1= ) )i~ 5 [ 4Py

- /(1 - *Q)pyo,to

|F+? Ft-H Ft.Vv
+ +
4(tg—1)2  to—t  2(to—t)

>+yﬁy2+ﬁ.v}dut

2 Ft v
= _5/*Q|H| Pyo.to e — /(1 — %2 pyo o m +H + 5 dpu
174 2
+/(1 B *Q)pyo,to D) dpu.

Since V is bounded, and since [(1—x8)py, 1,dpr < fp(ymto)dut < 00,
it follows that
d

dat (1- *Q)pyoiod/‘t <C- 5/*Q|H|2pyo7tod:ut

for some constant C. Now F(t) = [(1 — %Q)py, +,dp is non-negative
and F'(t) < C, or F(t) — Ct is non-increasing in t € [0,¢). From this
it follows that the limit as t — tg exists. q.e.d.

For v > 1, the parabolic dilation D, at (yo,to) is defined by
Dy, : RN x [0,t9) = RY x [=1t,0),
(yat) = (V(y - y0)7 V2(t - tO))

Let S € RN x [0,ty) be the total space of the mean curvature flow,
and let S, = D,(S) € RN x [-1%,0). If s denotes the new time
parameter, then ¢ =ty + 5.

Let du% be the induced volume form on ¥ by FY = vFi, . The
image of FY is the s-slice of S,, denoted XY.

Remark 3. Note that
/(1 = #80) pyo todpir = /(1 — *(2)po,odis

because *€) and py, 1,dp are invariant under parabolic dilation.
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Lemma 8. For any 7 > 0,

-1
lim / /*Q|H]2p0,0d,ugds = 0.
v—oo | _1_,

Proof. From Remark 3,

d , 1d
T /(1 =¥ Dpoodps = 5o /(1 — #82) pyo o dpie.-

Then by Lemma 7,
d , _C 9
s /(1 — Q) poodpy < 2 ﬁ/*Q‘II’2py07todﬂt

for some constant C. But V% [ QUL pyy todpe = [ *QUIT|2 po odp since
the norm of the second fundamental form scales like the inverse of the
distance, so

d C
P /(1 —*Q)poodpy < 5 — 5/*Q|H|2,00,odu5-

Integrating this inequality with respect to s from —1 — 7 to —1, we
obtain

-1
5/ /* QI po pdpfds < — /(1 — Q) po,odp” 4 +/
—1-7

Y C
(1 = *W)po,odp”y - + .

By Remark 3 and the fact that tli_gl / (1—=%Q2) pyo 1o dpee exists (Lemma
0

7), the right-hand side of the inequality above approaches zero as
v — 0. q.e.d.

We take a sequence v; — oo. Then for a fixed T,

-1
| [ samipanas < oo
—1-7

where C(j) — 0.

Choose 7; — 0 such that %J]) — 0, and s; € [-1 — 75, —1] so that
v; _ C(j
(3.12) / QI po0dpt] < #
j

Observe that

" 1 —|Fy7 2
po.o(Fs] s 85) = ————5v; €xp — |-
7T (dm(—s5)?) 4(—s;)

When j is large enough, we may assume that 7; < 1, and thus that
sj € [-2,—1]. For a ball centered at 0 of radius R > 0, Br(0) € R,
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we have

oo > [, alpa

Esg OBR(O)
for a constant C’ > 0, since s; are bounded and since \FSVJJ | < R on
252 N Bg(0).

Then by inequality (3.12) and the fact that *Q has a positive lower
bound, we conclude the following result.

Lemma 9. For any compact set K C RV,
[, R =0
BINK
J
as j — oo.

Then, as shown in [13], it follows that

. -1
Hm - pyo godpie < 1

Finally, White’s theorem [17] implies that (yo,tp) is a regular point
whenever

Lm [ py,todps < 1+ ¢,

t—to

contradicting the initial assumption that (yg, o) is a singular point.

3.4. Convergence to a biholomorphic isometry. In the preceding
sections we have shown that the mean curvature flow X; of the graph of
symplectomorphism f : CP" — CP" exists smoothly for all ¢ > 0, and
that Y; is a graph of symplectomorphisms for each ¢ under the pinching
condition. We conclude the proof of Theorem 1 by showing that ¥
converges to the graph of a biholomorphic isometry.

By Proposition 2,

d
— — A xQ=x0
dt
along the mean curvature flow, where () > 0 whenever ALO <\ < Ay
We use this result to derive the evolution equation of In *{2, which we

(1A

i, b A VA
QWi hiw) + D (T

k odd

1
then apply to show that lim %xQ = —.
t—oo n

Proposition 5. Under the same assumption as in Proposition 2, at
each point q € ¥y, InxQ satisfies the following equation:

% In*Q =AIn*Q + Q(\;, hjkr)

A _
- Ririr — M Rigir),
+§k:;(l+)‘z)()‘i+)‘i’)( wik — A Rieie)
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where R;jp; and Rijkl are the coefficients of the curvature tensors of M
and M with respect to the chosen bases (2.7) and (2.8), i =i+ (—1)"+1,
and

2

D (A = ARt

i odd

(3.13) Qi hjr) = Qi hjr) + Y
p

with Q(Ni, hjki) given by Proposition 2 and equation (3.4).
Proof. We compute

SQA(+Q) — |V # Q)2

4 In Q) = 1d * () and A(In Q) = ()2

dt Q) dt
By Proposition 2, it follows that

d al
<£ _ A> In*Q = Q(\;, hjp) + ZZ (L+22)(\i + A\)

k itk

|V * Q|2
(+€2)

(Rikik — \iRix) +

We compute

(B = D Qer,..., (VM T ey, e3)
= ZQ(el, e <V££XM€i,j€p>j€p,...,€2n)

= Z Q(el, e ,jep, e ,egn)hpik.
D,

As the simplification of the expression A in the proof of Proposition
2, we obtain

i i odd
It follows that

* 2 2

k Liodd

and thus

d » o
<dt > n+Q = Q(N;, hjki) Zk:; (T4+ A0 (N + i)

(Rikir, — A\ Rigi),
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2

where Q(X;, hjr) = Q(Ni, hjt) +Z Z (N — /\i’)hii’k] is a new qua-
% Liodd

dratic form in h;;,, with coefficients depending on the singular values
of f. q.e.d.

Corollary 6. Under the same assumption as in Proposition 2, sup-
pose in addition that M and M are both CP"™ with the Fubini-Study
metric; then

(1= )

d —
— InxQ =Aln*Q + Q(\i, hije) + D A2
k

dt k odd
Proof. This is a direct consequence of Proposition 5 and Corollary 3.
q.e.d.

Remark 4. Q is a positive definite quadratic form of hiji. whenever
Q is, and in fact it allows for an improvement of the pinching constant.

1
We use the evolution equation of In ) to show that lim xQ = —.

t—00 an
Fix a k and notice that
(1 - )\i)z ()\k — )\k/)z r—4

(1 —l—)\z)z a ()\k +)\k’)2 oz

where z = (A + Ap)?.
Since A\pApr = 1, it follows that A\p + A > 2, and thus z > 4.

2
Moreover, the pinching condition implies that x < (Ao + Aio) .

We claim A )
T Zc<—ln:1:—ln2>
T 2
_ 8
fOI' C = m{y

To see this, let f(z) = =2, g(z) = ¢(3Inz — In2) and notice that
f(4) = g(4) = 0. We compute
oy r—ae+4 4 oy C
flay =272 L and ) =
Thus,
!/
@ _ w8

g (x) T2 c e
The last inequality follows from the choice of ¢ and the fact that x

(0 + L) Now since f(4) = g(4) and f/(x) > ¢(x) for 4 <

2
(Ao + ALO) , it follows that f(x) > g(z).
Substituting back, we obtain
(A — Aw)?

m 2 C(ln(Ak + Ak/) — IHZ) s
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and thus
(1—A3)? Ak — Ar)? 1
— = -——— = >c|—In ——— —nln?2
kzod:d (1422 kEOd:d Ak + Ap)? kl;Ji:d A+ A

1
= —c(ln+Q—In— ).
C<H* n2n>

Therefore under the pinching condition,

d 1 1
— — — > — —
<dt A> <ln x*(Q —In 2n> > —c <ln *QQ —In 2n> .

The pinching condition holds along the mean curvature flow, so this
holds for all times. By the comparison principle for parabolic equations,
lim minln*Q — In — = 0, and thus lim min*{) = —. This in turn
t—oo 3¢ 2n t—oo X n
implies, by Lemma 6, that \; = 1 as t — oo for all 1.

For the rest of the proof, we modify the method from [13] to show
the second fundamental form is uniformly bounded in time. Let € > 0
and let n. = xQ — 2% + €. Note that H%:in 7Ne is non-decreasing and that

t

Ne — € when t — co. Let T, > 0 be a time such that n¢|7. > 0 (so that
for all t > Te: ne > 0).
Now for all p € M and all t > T,

d
Ene = AT}E + *Q(Q + B)
> Ane + 6 x Q|II?
5
= An. + n—ne s QIIIJ2.

On the other hand, from [13], |II|? satisfies the following equation
along the mean curvature flow:

d
2T = AT = 2| VI + [(V5,)R(T ep € €5, k)

+ (V%R)(jep, ek €is ek) pij
— 2R(el, €, €5, ek)hplkhpij -+ 4R(Jep, Jeq, €5, ek,‘)hqikhpij
— 2R (e, ek, i, ex) hpijhpij + R(T ep, ek, T eq, ek) hgijhpij

+ Z (Z hpitPrmk — hpmihrir)® + Z (Z hpijlpmic)?.

p77‘7i7m k i7j7m7k p

Since M x M is a symmetric space, the curvature tensor R of M x M
is parallel, and thus |IT|? satisfies

%\H\? < A2 = 2|VIT]? + K4 |TT)* + Ko|TTf?

for positive constants K7 and K5 that depend only on n.
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Therefore,

d

Al ne ) < =0 ? [P (Are + 6+ Q) + 7 (AL - 2V 1T

+ KT 4 Ko|TI?) = —n 7 2An 1T 4 n7 AL

— 7Y VI + 72 (e Ky — 6 % Q)| + 57 Ko |11

= AP = 2073 Ve PIT? 4 5 AT = 257 VI
+ 0 (e Ky — 6« QI + 57 Kol AP = A(n. ) II

— 20|V ()PP + n P AT — 2071 VI

+ 02Ky — 6% QI 4 7 TGP = A(n7HII?)
—2V(n ") - V(%) = 20e|V (D) P|TT* — 20t | VI

+ 02 (e — 8+ QI + 7 KT

We apply the relation that
=2V(nY) - V(IP) = 20|V (97 )PP = =20V (1) - V(n HIT),
Therefore the function 1 = n=!|II|? satisfies

d
T S AV =20Vt Vgt (neEy = 6% Q)07 + Kot
<AY =2V - VY + (K — 6Co)? + Koy,
where Cy = ném x(), since mln x() is non-decreasing and 7. < €. € can be

chosen small enough so that eK1 — dCy < 0. Then by the comparison
principle for parabolic PDE, ¢ < y(¢) for all t > T., where y(t) is the
solution of the ODE

d
Ey = —(500 — EKl)y2 + Koy
satisfying the initial condition y(T¢) = max . y(t) can be solved ex-
Te
plicitly:
K
NELS B if maxy = ——2 ,
oty = | Y =56 - o
KoKe 2 otherwise,

(0Co—eKa)KeF2t—17

K
where K is a constant satisfying K > 0 if maxy > 2 and

27 0Cy — 6K1’
K
0Cy — eKy'

1% < ney(t) < ey(t)

K <0if nzlaxdj < Thus,

for all t > T,.
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Sending t — oo and € — 0, we conclude that max ITII|*> = 0 as t — .
t

Finally, the induced metric and the volume functional both have analytic
dependence on F, so by Simon’s theorem [8] the flow converges to a
unique limit at infinity.

Since A\; — 1 for all ¢ as t — oo, the limit map is an isometry. Denote
it by fo. Being symplectic is a closed property, so f is symplectic.
Then at every p € M,

Dfsod = JDf.

The same is true for the inverse of f,,, and thus the map f, is biholo-
morphic.

4. Appendix

4.1. Proof of Lemma 4. We recall that h;;; is symmetric in all three
indexes, that all indexes range from 1 to 2n unless otherwise (such as
i odd) is mentioned, and that i = i + (—1)""!. The object of study is
the quadratic form @(hijk) given by

Z h?jk -2 Z Z (hiikhirire — hn,) + 42 Z

(4.1) irj,k k iodd k iodd<j odd
(hijrhyrir — higehjror) = A+ B+ C.

We shall use the full symmetry of h;;, to show that the smallest
eigenvalue of Q is positive. The quadratic form Q will be divided into
three summands such that the indexes of the first summand Q; only
involve i and 7' for odd #’s, the indexes of the second summand Qs only
involve 4,7, 7, j’ for odd i and odd j with i # j, the indexes of the third
summand Q3 involve 4,4’, j, 7/, k, k¥’ for odd 7, j, and k such that no two of
them are the same. This corresponds to a direct sum decomposition of
the space of h;;;, in which each of the summand is an invariant subspace
of the symmetry group. We state the result in two Lemmas and give
the proof of second Lemma first, which implies Lemma 4. In the rest of
the section, we verify the formulas in first Lemma.

Lemma 10. The three summands of Q in (4.1) can be rewritten in
the following way:
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A= Z hii +3 Z (R + hivis)

i odd
+3 ) (Bt h b3 Bl B A W B+ W)

jj ij'y’ V53 i'j'j J gl
1 odd<j odd

2 2 2 2
1 odd<j odd

1 odd<j odd<k odd
2
+ hi/j/ki)

B=-2 Z hiiihirir + 2 Z hZ,, —2 Z Pigir hiririr + 2 Z i,

i odd i odd i odd i odd
2 2
- 2 Z (h“]hzlzlj - h“/] + hiij/hi/i/j/ - hu/]/)
1 odd<j odd
2 2
-2 Z (hjjihj’j’i - hjj’z’ + hjji’hj’j’i’ — hjj’i’)7 and
1 odd<j odd
C=4 Z (hirgihjris — higibrirg + hirgirhgrige — hijirhrirg)
1 odd<j odd
+4 > (hargghyeg — hagihgrirg + hagjehgrig — agjrhgig)
1 odd<j odd

+4 Z (hjrribr i — Pjriharjes + i hi jir — i hijrar)
1 odd<j odd<k odd

+4 Z (hirkghari — hikghurirg + Riggrharigr — Rirgr i)
1 odd<j odd<k odd

+4 Z (hirjkhjrie — hijhgrike + P i hgrie — i i)
1 odd<j odd<k odd

Lemma 11. Q = Qi + Q2 + Q3 where Q1 is the sum over all odd
indexes i of

hisi + Bivivis + 5(hii + i) — 2higihiriri — 2hiiir hirivir,
Q2 is the sum over all indexes (i,7) with, i odd < j odd, of

3(h2 + h2, 4+ b+ h3 o+ h; + b2, + 2 4+ h)

57 ij'g’ i'j5 i’ jii 348 ji'i 3li4
2 2 2 2

= 2(hyjihgjii + hjjirhggr)
(hirjihgrii — higihgriri) 4 4(hirjithyrsir — higirhgriryr )
(

+4
+ 4(hirjjhjrij — hijjhjrig) + 4(ha g = Rijjihgge),
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and Qs is the sum over all indexes (4,7, k) with, i odd < j odd < k odd,
of

6(R3j1, + hijw + hijog, + hisnw + Wit + hi i + Wi, + B o)

+ Alhyiba i — it i+ hymirhig — Biirhir)

+ 4(hirkihrriy — higgharirg + i bgige — Biggrhgirgr)

+ 4(hirjrhjrie — hajihgrak + P i R — i hring).

In addition, the following inequalities hold:

QNI > Z (3 - \/5 hzzm + hz i+ h7,27,’z’ + hzzzz)
i odd
Q2 >2 Z (hfm + h22] g+ h22]J + i g h?ﬂ + hi i + hi“’
1 odd<j odd

2 2 2
+ hjw + Ry + iy + hij + hZ g /),

Q3 >4 Z (hijk + hijk’ + hij’k + h?j'k' + hz%jk
i 0dd<j odd<k odd
4 IR 1),
Thus,
Q(hmk) (3 \/_)thkH

where

Hhiij2 Zhlll—"_zhlj] + Z hz;k

i#£j 1<j<k

Proof. For each odd i, the expression in Q1 can be further divided
into two identical quadratic forms of two variables, each having small-
est eigenvalue 3 — v/5. For each index (i,j) with i odd < j odd, the
expression in Qs can be further divided into four identical quadratic
forms of three variables, each having smallest eigenvalue 2. For each
index (4,7, k) with ¢ odd < j odd < k odd, the expression in Q3 can be
further divided into two identical quadratic forms of four variables, each
having smallest eigenvalue 4. g.e.d.

First of all,
TERNED SR WRE) SUITD S
1<J 1<J 1<j<k

Write

Z hZJJ Z hZJJ Z h?JJ Z h?JJ '

1<J i odd <j i even <j odd i even <j even
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In the first summand, it is possible that 7 equals ¢’; thus,

4 3 th] Z hn’z’ + Z (hl2]j + hzg] ) Z hz2]]

1<j i odd 1 odd <j odd i odd <j odd
+ E hz%j’j”
i odd <j odd
Similarly,
2 : § : 2 : 2 2 2 : 2
4 4 h]zz hz X (h’]u + h] m) h]z’z’
1<j 1 odd i odd <j odd i odd <j odd
+ E h‘?/i/i/.
1 odd <j odd

On the other hand,

Z huk - Z huk Z hzyk

1<j<k i odd<j<k 1 even<j<k

ws) = 2 Mt D hpt D N

1 odd<k,i’ <k i odd<j<k,j#i’ i even<j odd<k

+ > .

i even<j even<k
The first term on the right-hand side of (4.5) equals
2 2
Z (hm ’4 + hu !5’ )
1 odd<j odd
The second term on the right-hand side of (4.5) equals
> W= D> hw+ X he
i odd<j<k,j#i 1 odd<j odd<k i odd<j even<k,j#i/

It is possible for k to equal to j’ in the first summand; thus, the second
term is

2 § : 2 2 2 2
1 odd<j odd i odd<j odd<k odd

The third term on the right-hand side of (4.5) equals
Z huk Z h?ﬂ Z (hQJk + hz Jk’)
1 even<j odd<k 4 odd<j odd 1 odd<j odd<k odd
The fourth term on the right-hand side of (4.5) equals

Yo he= Y. (it B,

i even<j even<k 1 odd<j odd<k odd
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Therefore,
2
> i
i<j<k
(4.6) i odd<j odd

2 2 2 2 2
i odd<j odd<k odd

2 2 2
+ hi’jk’ + hi’j’k‘ + h,l'/j/k.l).

Putting (4.3), (4.4), and (4.6) into (4.2), we obtain the expression for
A

We proceed to compute B and C' in the same manner:

B=-2 Z (hzmhllm — h?z’z) —2 Z (hiii’hi’i’i’ - h?z’z’)
i odd i odd
-2 Z (hiijhi’i’j — h?i/j + hz’z’j’hz”z”j’ - hzzi’j’)
1 odd,j odd,i#j

=2 Z higihiriri + 2 Z hZ, — 2 Z hiiir jringr + 2 Z hg

i odd i odd 7 odd 7 odd
2 2
-2 Z (hiijhi’i’j - hii’j + hiij’hi’i’j’ — hii’j’)
1 odd<j odd
2 2
1 odd<j odd

C=4 > (hjihju — hijihis) +4 Y
1 odd<j odd i odd<j odd
(hlljllh]/ii/ —_— hijllh]/illl)
4 Y (hagshyig = higihpeg) +4 Y
1 odd<j odd 1 odd<j odd
(hirjjrhyrijr — hijjrhyrirgr)

+4 )

1 odd<j odd

E (hirjihjrik — Pijihjrine 4 hijrrhrige — higrrhgrne ) |
k odd,k#i,j
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while

(1]

[5]

D

1 odd<j odd

S (hojehie — higrhgn + b — hijro i)
k odd,k+i,j

(hirjrhjri — hajrhjrik + R i hrinr — Rijrrhrags)

(]

k odd<? odd<j odd

(]

(hirjehjrie — Pl + R i hrin — Rijrrhjrigs)
i odd<k odd<j odd

(]

(hirjehjrie — bl + Ry i hrin — Rijrrhrags)
i odd<j odd<k odd

(]

(hjrkihwrji — Pjrila i + R b jir — Rgrirhagjrir)
i odd<j odd<k odd

(]

(hirkjhiriy — hikghgrirg + Bargrhirigr — Rigjrhierarjr)
i 0dd<j odd<k odd

E (hirjehjrin — hajphjrin + Ry i b — higrrhrgr).
i odd<j odd<k odd
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