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ON THE TOPOLOGY OF THE SPACE OF
NEGATIVELY CURVED METRICS

F. Thomas Farrell & Pedro Ontaneda

Abstract

We show that the space of negatively curved metrics of a closed
negatively curved Riemannian n-manifold, n ≥ 10, is highly non-
connected.

0. Introduction

Let M be a closed smooth manifold. We denote by MET (M) the
space of all smooth Riemannian metrics onM and we considerMET (M)
with the smooth topology. Note that the space MET (M) is con-
tractible. A subspace of metrics whose sectional curvatures lie in some
interval (closed, open, semi-open) will be denoted by placing a super-
script on MET (M). For example, MET sec<ǫ(M) denotes the sub-
space of MET (M) of all Riemannian metrics on M that have all sec-
tional curvatures less that ǫ. Thus saying that all sectional curva-
tures of a Riemannian metric g lie in the interval [a, b] is equivalent
to saying that g ∈ MET a≤ sec≤ b(M). Note that if I ⊂ J , then
MET sec∈I(M) ⊂ MET sec∈J(M). Note also that MET sec=−1(M) is
the space of hyperbolic metrics Hyp (M) on M .

A natural question about a closed negatively curved manifold M is
the following: Is the space MET sec<0(M) of negatively curved met-
rics on M path connected? This problem has been around for some
time and has been posed several times in the literature; see for in-
stance K. Burns and A. Katok ([2], Question 7.1). In dimension two,
Hamilton’s Ricci flow [12] shows that Hyp (M2) is a deformation re-
tract of MET sec<0(M2). But Hyp (M2) fibers over the Teichmüller
space T (M2) ∼= R

6µ−6 (µ is the genus of M2), with contractible fiber
D = R

+ × DIFF0(M
2) [5], where DIFF0(M

2) denotes the group of
self-diffeomorphisms of M2 which are homotopic to the identity. There-
fore Hyp (M2) and MET sec<0(M2) are contractible.
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In this paper we prove that, for n ≥ 10, MET sec<0(Mn) is never
path-connected; in fact, it has infinitely many path-components. More-
over we show that all the groups π2p−4(MET sec<0(Mn)) are non-trivial
for every prime number p > 2 and such that p < n+5

6 . (In fact,
these groups contain the infinite sum (Zp)

∞ of Zp = Z/pZ’s, and
hence they are not finitely generated. Also, the restriction on n =
dimM can be improved to p ≤ n−2

4 . See Remark 1 below.) We also

show that π1(MET sec<0(Mn)) contains the infinite sum (Z2)
∞ when

n ≥ 14. These results about πk are true for each path component of
MET sec<0(Mn), i.e., relative to any base point. Before we state our
Main Theorem, we need some definitions.

Denote by DIFF (M) the group of all smooth self-diffeomorphisms
ofM . We have that DIFF (M) acts on MET (M) pulling-back metrics:
φg = (φ−1)∗g = φ∗g, for g ∈ MET (M) and φ ∈ DIFF (M), that is, φg
is the metric such that φ : (M,g) → (M,φ g) is an isometry. Note that
DIFF (M) leaves invariant all spaces MET sec∈I(M), for any I ⊂ R.
For any metric g on M , we denote by DIFF (M) g the orbit of g by the
action of DIFF (M). We have a map Λg : DIFF (M) → MET (M),
given by Λg(φ) = φ∗g. Then the image of Λg is the orbit DIFF (M) g

of g. And Λg of course naturally factors through MET sec∈I(M), if

g ∈ MET sec∈I(M). Note that if dimM ≥ 3 and g ∈ MET sec=−1(M),
then the statement of Mostow’s rigidity theorem is equivalent to saying
that the map Λg : DIFF (M) → MET sec=−1(M) = Hyp (M) is a sur-
jection. Here is the statement of our main result.

Main Theorem. Let M be a closed smooth n-manifold and let g be a
negatively curved Riemannian metric on M . Then we have the follow-
ing:

i. The map π0(Λg) : π0(DIFF (M) ) → π0(MET sec<0(M) ) is not
constant, provided n ≥ 10.

ii. The homomorphism π1(Λg) : π1(DIFF (M) ) → π1(MET sec<0(M) )
is non-zero, provided n ≥ 14.

iii. For k = 2p − 4, p prime integer and 1 < k ≤ n−8
3 , the homomor-

phism πk(Λg) : πk(DIFF (M) ) → πk(MET sec<0(M) ) is non-
zero. (See Remark 1 below.)

Addendum to the Main Theorem. We have that the image of
π0(Λg) is infinite and in cases (ii) and (iii) mentioned in the Main
Theorem, the image of πk(Λg) is not finitely generated. In fact we have:

i. For n ≥ 10, π0(DIFF (M) ) contains (Z2)
∞, and π0(Λg)|(Z2)∞ is

one-to-one.
ii. For n ≥ 14, the image of π1(Λg) contains (Z2)

∞.
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iii. For k = 2p − 4, p prime integer and 1 < k ≤ n−8
3 , the image of

πk(Λg) contains (Zp)
∞. See Remark 1 below.

For a < b < 0 the map Λg factors through the inclusion map

MET a≤ sec≤ b(M) →֒ MET sec<0(M) provided g ∈ MET a≤ sec≤ b(M).
Therefore we have:

Corollary 1. Let M be a closed smooth n-manifold, n ≥ 10. Let
a < b < 0 and assume that MET a≤ sec≤ b(M) is not empty. Then
the inclusion map MET a≤ sec≤ b(M) →֒ MET sec<0(M) is not null-
homotopic. Indeed, the induced maps, at the k-homotopy level, are not
constant for k = 0, and non-zero for the cases (ii) and (iii) mentioned
in the Main Theorem. Furthermore, the image of these maps satisfy a
statement analogous to the one in the addendum to the Main Theorem.

If a = b = −1 we have:

Corollary 2. LetM be a closed hyperbolic n-manifold, n ≥ 10. Then
the inclusion map Hyp (M) →֒ MET sec<0(M) is not null-homotopic.
Indeed, the induced maps, at the k-homotopy level, are not constant for
k = 0, and non-zero for the cases (ii) and (iii) mentioned in the Main
Theorem. Furthermore, the image of these maps satisfy a statement
analogous to the one in the addendum to the Main Theorem.

Hence, taking k = 0 (i.e., p = 2) in Corollary 2, we get that for any
closed hyperbolic manifold (Mn, g), n ≥ 10, there is a hyperbolic metric
g′ on M such that g and g′ cannot be joined by a path of negatively
curved metrics.

Also, taking a = −1 − ǫ, b = −1 (0 ≤ ǫ) in Corollary 1, we
have that the space MET −1−ǫ≤ sec≤−1(Mn) of ǫ-pinched negatively
curved Riemannian metrics on M has infinitely many path compo-
nents, provided it is not empty and n ≥ 10. And the homotopy groups
πk(MET −1−ǫ≤ sec≤−1(M)) are non-zero for the cases (ii) and (iii) men-
tioned in the Main Theorem. Moreover, these groups are not finitely
generated.

Remark 1. The restriction on n = dimM given in the Main The-
orem, its addendum and its corollaries are certainly not optimal. In
particular, in (iii) it can be improved to 1 < k < n−10

2 by using Igusa’s
“Surjective Stability Theorem” ([16], p. 7).

As before, let DIFF0(M) be the subgroup of DIFF (M) of all self-
diffeomorphisms that are homotopic to the identity. If M is closed and
negatively curved, the action of DIFF0(M) on MET sec<0(M) is free
and in [7] we called the quotient T ∞(M) = MET sec<0(M)/DIFF0(M)
the Teichmüller space of negatively curved metrics on M . We have a
fibration

DIFF0(M) −→ MET sec<0(M) −→ T ∞(M).
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In [7], by using diffeomorphisms that are supported on a ball, we proved
that there are closed hyperbolic manifolds for which some of the connect-
ing homomorphisms πk(T

∞(M)) → πk−1(DIFF0(M)) are non-zero. In
this paper, we use diffeomorphisms supported on a tubular neighbor-
hood of a closed geodesic to show that the homomorphism induced by
the inclusion of the fiber, πk(DIFF0(M)) → πk(MET sec<0(M)), is
non-zero for many values of k. For other related results, see [8] and [9].

Another interesting application of the Main Theorem shows that the
answer to the following natural question is negative:

Question. Let E → B be a fiber bundle whose fibers are diffeomor-
phic to a closed negatively curved manifold Mn. Is it always possible
to equip its fibers with negatively curved Riemannian metrics (varying
continuously from fiber to fiber)?

The negative answer is gotten by setting B = S
k+1, where k is as in

the Main Theorem case (iii) (or k = 0, 1, cases (i) and (ii)), and the
bundle E → S

k+1 is obtained by the standard clutching construction
using an element α ∈ πk(DIFF (M)) such that πk(Λg)(α) 6= 0, for every
negatively curved Riemannian metric g on M . Using our method for
proving the Main Theorem (in particular Theorem 1 below), one sees
that such elements α, which are independent of g, exist in all cases (i),
(ii), (iii).

The Main Theorem follows from Theorems 1 and 2 below. Before we
state these results, we need some definitions and constructions. For a
manifold N let P (N) be the space of topological pseudo-isotopies of N ,
that is, the space of all homeomorphisms N × I → N × I, I = [0, 1],
that are the identity on (N × {0}) ∪ (∂N × I). We consider P (N)
with the compact-open topology. Also, P diff (N) is the space of all
smooth pseudo-isotopies on N , with the smooth topology. Note that
P diff (N) is a subset of P (N). The map of spaces P diff (N) → P (N)
is continuous and will be denoted by ιN , or simply by ι. The space of
all self-diffeomorphisms of N will be denoted by DIFF (N), considered
with the smooth topology. Also DIFF (N, ∂) denotes the subspace of
DIFF (N) of all self-diffeomorphism of N which are the identity on ∂N .

Remark 2. We will assume that the elements in DIFF (N, ∂) are
the identity near ∂N .

Note that DIFF (N×I, ∂ ) is the subspace of P diff (N) of all smooth
pseudo-isotopies whose restriction to N × {1} is the identity. The re-
striction of ιN to DIFF (N × I, ∂) will also be denoted by ιN . The
map ιN : DIFF (N × I, ∂ ) → P (N) is one of the ingredients in the
statement Theorem 1.
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We will also need the following construction. Let M be a nega-
tively curved n-manifold. Let α : S1 → M be an embedding. Some-
times we will denote the image α(S1) just by α. We assume that the
normal bundle of α is orientable, and hence trivial. Let V : S

1 →
TM× . . .×TM be an orthonormal trivialization of this bundle: V (z) =
(v1(z), . . . , vn−1(z)) is an orthonormal base of the orthogonal comple-
ment of α(z)′ in TzM . Also, let r > 0 be such that 2r is less than the
width of the normal geodesic tubular neighborhood of α. Using V and
the exponential map of geodesics orthogonal to α, we identify the normal
geodesic tubular neighborhood of width 2r minus α, with S

1 × S
n−2 ×

(0, 2r]. Define Φ = ΦM (α, V, r) : DIFF (S1×S
n−2× I, ∂) → DIFF (M)

in the following way. For ϕ ∈ DIFF (S1×S
n−2×I, ∂) let Φ(ϕ) :M →M

be the identity outside S
1 × S

n−2 × [r, 2r] ⊂ M , and Φ(ϕ) = λ−1ϕλ,
where λ(z, u, t) = (z, u, t−r

r ), for (z, u, t) ∈ S
1 × S

n−2 × [r, 2r]. Note
that the dependence of Φ(α, V, r) on α and V is essential, while its
dependence on r is almost irrelevant.

We denote by g the negatively curved metric on M . Hence we have
the diagram

DIFF ( (S1 × S
n−2)× I, ∂ )

Φ
→ DIFF (M)

Λg
→ MET sec<0(M)

ι ↓

P (S1 × S
n−2)

where ι = ιS1×Sn−2 and Φ = ΦM(α, V, r).

Theorem 1. Let M be a closed n-manifold with a negatively curved
metric g. Let α, V , r, and Φ = Φ(α, V, r) be as above, and assume
that α is not null-homotopic. Then Ker (πk(ΛgΦ) ) ⊂ Ker (πk(ι) ), for
k < n − 5. Here πk(ΛgΦ) and πk(ι) are the homomorphisms at the
k-homotopy group level induced by ΛgΦ and ι = ιS1×Sn−2, respectively.

Remark. In the statement of Theorem 1 above, by Ker (π0(ΛgΦ) )

(for k = 0) we mean the set (π0(ΛgΦ ))−1 ([g]), where [g] ∈ π0(MET sec<0

(M)) is the connected component of the metric g.

Hence to deduce the Main Theorem from Theorem 1 we need to
know that πk(ιS1×Sn−2) is a non-zero homomorphism. Furthermore,
to prove the addendum to the Main Theorem we have to show that
πk(DIFF (S

1×S
n−2×I, ∂)) contains an infinite sum of Zp’s (resp. Z2’s)

where k = 2p − 4, p prime (resp. k = 1) and πk(ιS1×Sn−2) restricted to
this sum is one-to-one.

Theorem 2. Let p be a prime integer such that max {9, 6p−5} < n.
Then for k = 2p− 4 we have that πk(DIFF (S

1× S
n−2× I, ∂)) contains
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a subgroup isomorphic to (Zp)
∞ and the restriction of πk(ιS1×Sn−2) to

this subgroup is one-to-one.

Addendum to Theorem 2. Assume n ≥ 14. Then π1(DIFF (S
1×

S
n−2×I, ∂)) contains a subgroup isomorphic to (Z2)

∞ and the restriction
of π1(ιS1×Sn−2) to this subgroup is one-to-one.

The paper is structured as follows. In Section 1 we give some lemmas,
including some fibered versions of the Whitney embedding Theorem. In
Section 2 we give (recall) some facts about simply connected negatively
curved manifolds and their natural extensions to a special class of non-
simply connected ones. The results and facts in Sections 1 and 2 are
used in the proof of Theorem 1, which is given in Section 3. Finally,
Theorem 2 is proved in Section 4.

Before we finish this introduction, we sketch an argument that, we
hope, motivates our proof of Theorem 1. To avoid complications, let’s
just consider the case k = 0. In this situation we want to show the
following:
Let θ ∈ DIFF (S1 × S

n−2 × I, ∂) ⊂ P (S1 × S
n−2), and write ϕ = Φ(θ) :

M → M . Suppose that θ cannot be joined by a path to the identity in
P (S1 × S

n−2). Then g cannot be joined to φ∗g by a path of negatively
curved metrics.

Here is an argument that we could tentatively use to prove the state-
ment above. Suppose that there is a smooth path gu, u ∈ [0, 1], of
negatively curved metrics on M , with g0 = g and g1 = ϕ∗g. We will
use gu to show that θ can be joined to the identity in P (S1×S

n−2). We
assume that α is an embedded closed geodesic inM . Let Q be the cover
of M corresponding to the infinite cyclic group generated by α. Each
gu lifts to a gu on Q (we use the same letter). Then α lifts isometrically
to (Q, g) and we can identify Q with S

1×R
n−1 such that α corresponds

S
1 = S

1 × {0} and such that each {z} × Rv, v ∈ S
n−2 ⊂ R

n−1, corre-
sponds to a g geodesic ray emanating perpendicularly from α. For each
u, the complete negatively curved manifold (Q, gu) contains exactly one
closed geodesic αu, and αu is freely homotopic to α. Let us assume that
αu = α, for all u ∈ [0, 1]. Moreover, let us assume that gu coincides
with g in the normal tubular neighborhood W of length one of α. Note
that Q \ intW can be identified with (S1 × S

n−2) × [1,∞). Using ge-
odesic rays emanating perpendicularly from α, we can define a path of
diffeomorphisms fu : (S1 × S

n−2) × [1,∞) → (S1 × S
n−2) × [1,∞) by

fu = [exp]−1 ◦ expu, where expu denotes the normal (to α) exponential
map with respect to gu, and exp = exp0. Using “the space at infinity”
∂∞Q of Q (see Section 2), we can extend fu to (S1 × S

n−2) × [1,∞],
which we identify with (S1 × S

n−2)× [0, 1]. Finally, it is proved that f1
can be joined to θ in P (S1 × S

n−2) (see Claim 6 in Section 3). This is
enough because f0 is the identity.
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Along the “sketch of the proof” above we have of course made several
unproven claims (that will be proven later); and we have also made a
few assumptions: (1) α is an embedded closed geodesic, (2) αu = α for
all u, (3) gu coincides with g in a neighborhood of g. Item (1) can be
obtained “after a deformation” in Q. Item (2) can also be obtained after
a deformation in Q using the results of Section 2. We do not know how
to obtain (3) after a deformation (and this might even be impossible to
do), so we have to use some approximation methods based on Lemma
1.6 which implies that we can take a very thin normal neighborhood
W of α such that all normal (to α) gu geodesics rays will intersect ∂W
transversally in one point.
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1. Preliminaries

For smooth manifolds A, B, with A compact, C∞(A,B), DIFF (A),
Emb (A,B), denote the space of smooth maps, smooth self-diffeomor-
phisms, and smooth embeddings of A into B, respectively. We consider
these spaces with the smooth topology. The l-disc will be denoted by
D
l. We choose u0 = (1, 0, . . . , 0) as the base point of Sl ⊂ D

l+1 . For a
map f : A×B → C, we denote by fa the map given by fa(b) = f(a, b).
A map f : Dl×A→ B is radial near ∂ if fu = ftu for all u ∈ ∂Dl = S

l−1

and t ∈ [1/2, 1]. Note that any map f : Dl × A → B is homotopic rel
∂Dl × A to a map that is radial near ∂. The next lemma is a special
case of a parametrized version of Whitney’s embedding theorem.

Lemma 1.1. Let Pm and Dk+1 be compact smooth manifolds and let
T be a closed smooth submanifold of P . Let Q be an open subset of Rn

and let H ′ : D×P → Q be a smooth map such that (1) H ′
u|T : T → Q is

an embedding for all u ∈ D and (2) H ′
u is an embedding for all u ∈ ∂D.

Assume that that k + 2m + 1 < n. Then H ′ is homotopy equivalent to
a smooth map H̄ : D × P → Q such that:

1. H̄u : P → Q is an embedding, for all u ∈ D.
2. H̄|D×T = H ′|D×T .
3. H̄|∂D×P = H ′|∂D×P .
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Proof. It is not difficult to construct a smooth map g : P → R
q, for

some q, such that (i) g : P \ T → R
q \ {0} is a smooth embedding,

(ii) g(T ) = {0} ∈ R
q, and (iii) Dp g (v) 6= 0, for every p ∈ T and v ∈

TpP \TpT . Let ̟ : D → [0, 1] be a smooth map such that ̟−1(0) = ∂D.
Define G = H ′ × g : D × P → Q × R

q, G(u, p) = (H ′(u, p),̟(u)g(p)).
Then, for each u ∈ D, Gu : P → Q × R

q is an embedding. Moreover,
G|D×T = H ′

D×T , where we consider Q = Q × {0} ⊂ Q × R
q. Also,

G|∂D×P = H ′|∂D×P . Note that G is homotopic to H ′ because g is
homotopically trivial. Now, as in the proof of Whitney’s theorem, we
want to reduce the dimension q to q − 1. So assume q > 0. Given
w ∈ S

n+q−1 ⊂ R
n+q = R

n × R
q, w /∈ R

n × R
q−1 = R

n+q−1, denote
by Lw : Rn+q → R

n+q−1 the linear projection “in the w-direction.” As
in the proof of Whitney’s theorem, using the dimension restriction and
Sard’s theorem, we can find a “good” w:

Claim. There is a w such that Lw|Gu(P ) : Gu(P ) → R
n+q−1 is an

embedding, for all u ∈ D.
For this consider the following:

r : D × ( (P × P ) \∆(P ) ) → R
n+q, r(u, p, q) = Gu(p)−Gu(q)

|Gu(p)−Gu(q)|

s : D × SP → R
n+q, s(u, v) =

Dp(Gu)(v)
|Dp(Gu)(v)|

, v ∈ TpP.

Here ∆(P ) = {(p, p) : p ∈ P} and SP is the sphere bundle of P (with
respect to any metric). Since (k + 1) + 2m < n and q > 0, by Sard’s
theorem the images of r and s have measure zero in S

n+q−1. This proves
the claim.

Also, since D and P are compact, we can choose w close enough to
(0,. . . ,0,1) such that Lw(G(D × P ) ) ⊂ Q × R

q−1. Define G1 = LwG.
In the same way, we define G2 : D × P → Q × R

q−2, and so on. Our
desired map H̄ is H̄ = Gq. This proves the lemma. q.e.d.

In what follows of this section we consider Q = S
1×R

n−1 = (S1×R)×
R
n−2 ⊂ R

2×R
n−2, where the inclusion S

1×R →֒ R
2 is given by (z, s) 7→

esz. That is, we identify S
1×R with the open set R2\{0}, and hence we

identify Q = S
1×R

n−1 with (R2\{0})×R
n−2 = R

n\ ( {0}×R
n−2 ). Also,

identify S
1 with S

1×{0} ⊂ Q and denote by h0 : S
1 → S

1×R
n−1 = Q the

inclusion. For t > 0 denote by κt : R
2×R

n−2 → R
2×R

n−2 the map given
by κt(a, b) = (ta, b). Note that κt restricts to Q = (R2 \ {0}) × R

n−2.

Lemma 1.2. Let h, h′ : Dk+1 × S
1 → Q be continuous maps such

that hu, h
′
u are homotopic, for all u ∈ S

k. That is, there is H ′ : Sk ×
S
1× I → Q such that H ′(u, z, 0) = h(u, z), H ′(u, z, 1) = h′(u, z), for all

(u, z) ∈ S
k×S

1. For k = 0 also assume that the loop h(t, 1)∗H ′(1, 1, t)∗
[h′(t, 1)]−1 ∗ [H ′(−1, 1, t)]−1 is null-homotopic. Then H ′ extends to H ′ :
D
k+1 × S

1 × I → Q such that H ′
u is a homotopy from hu to h′u, that is,
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1. H ′
u|S1×{0} = hu, for u ∈ D

k+1,

2. H ′
u|S1×{1} = h′u, for u ∈ D

k+1.

Proof. First define H ′ = h on D
k+1 × S

1 × {0} and H ′ = h′ on
D
k+1 × S

1 × {1}. Note that H ′ is defined on ∂ (Dk+1 × {1} × I). Since
Q is aspherical, we can extend H ′ to D

k+1 × {1} × I (for k = 0 use the
assumption given in the statement of the lemma). H ′ is now defined on
A = ∂(Dk+4×S

1× I) ∪ D
k+1×{1}× I. Since Dk+1×S

1× I is obtained
from A by attaching a (k + 3)-cell and Q is aspherical, we can extend
H ′ to D

k+1 × S
1 × I. This proves the lemma. q.e.d.

Lemma 1.3. Let h : Dk+1×S
1 → Q be a smooth map which is radial

near ∂. Assume that hu ∈ Emb (S1, Q) for all u ∈ D
k+1 and hu = h0,

for all u ∈ S
k. (Here h0 = hu0 .) For k = 0 assume that the loop

h(u, 1) is homotopically trivial. If k+5 < n then there is a smooth map

Ĥ : Dk+1 × S
1 × I → Q such that:

1. Ĥu|S1×{0} = hu, for u ∈ D
k+1.

2. Ĥu|S1×{1} = h0, for u ∈ D
k+1.

3. Ĥu is a smooth isotopy from hu to h0.
4. (Ĥu)t = h0, for all u ∈ S

k and t ∈ I. Here (Ĥu)t(z) = Ĥ(u, z, t).

Proof. During this proof some isotopies and functions have to be
smoothed near endpoints and boundaries. We do not do this to avoid
unnecessary technicalities.

Let D = D
k+1
1/2 be the closed (k+1)-disc of radius 1/2. Since h(Dk+1×

S
1) ⊂ Q = R

n \ ( {0} × R
n−2 ), we have that h(Dk+1 × S

1) does not
intersect {0} × R

n−2. Therefore the distance d from h(Dk+1 × S
1) to

{0} ×R
n−2 is positive. Let c < 1 be such that c < d.

Definition of (Ĥu)t for t ∈ [1/2, 1]. In this case define for u ∈ S
k,

(Ĥsu)t = κλh0, where (1) λ = 1 − 4(1 − t)(1 − s) + 4(1 − t)(1 − s)c if
s ∈ [1/2, 1] and (2) λ = (2t− 1) + (2− 2t)c s ∈ [0, 1/2].

Definition of (Ĥsu)t for t ∈ [0, 1/2] and s ∈ [1/2, 1]. Define for

u ∈ S
k, s ∈ [1/2, 1]: (Ĥsu)t = κλ, where λ = 1 − 4t(1 − s) + 4t(1 − s)c,

for t ∈ [0, 1/2].

Definition of (Ĥsu)t for t ∈ [0, 1/2] and s ∈ [0, 1/2]. Note thatD =

{su : u ∈ S
k, s ∈ [0, 1/2]}. We now want to define Ĥ onD×S

1×[0, 1/2].
To do this first apply Lemma 1.2 to h and D×S

1×I, with h′u = κch0 for

all u ∈ D, H ′(u, z, t) = Ĥ(u, z, t/2), for (u, z, t) ∈ ∂D × S
1 × I. Hence

H ′ extends to D × S
1 × I. Now apply Lemma 1.1, taking P = S

1 × I,
T = S

1 × {0, 1}. To apply this lemma, note that H ′
u|S1×{0,1} is an

embedding, for all u ∈ D, because H ′
u|S1×{0} = hu, H

′
u|S1×{1} = κch0

are embeddings and the images of hu and κch0 are disjoint (by the
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choice of c). Let then H̄ be the map given by Lemma 1.1. Finally,

define Ĥ(u, z, t) = H̄(u, z, 2t). This proves the lemma. q.e.d.

Extending the isotopies Ĥu between hu and h′u given in the lemma
above, to compactly supported ambient isotopies we obtain as a corol-
lary the following lemma.

Lemma 1.4. Let h : D
k+1 × S

1 → Q be a smooth map which is
radial near ∂. Assume hu ∈ Emb(S1, Q) for all u ∈ D

k+1 and that
hu = h0 ∈ Emb (S1, Q) for all u ∈ S

k, and k + 5 < n. (Here h0 = hu0 .)
Identify S

1 with S
1 × {0} ⊂ Q. For k = 0 assume that the loop h(u, 1)

is null-homotopic. Then there is a smooth map H : Dk+1 ×Q× I → Q
such that:

1. Hu|S1×{0} = hu, for u ∈ D
k+1.

2. Hu|S1×{1} = h0, for u ∈ D
k+1.

3. Hu is an ambient isotopy from hu to h0, that is (Hu)t : Q→ Q is a
diffeomorphism for all u ∈ D

k+1, t ∈ I and (Hu)1 = 1Q. Also, Hu

is supported on a compact subset K ⊂ Q, where K is independent
of u ∈ D

k+1.
4. (Hu)t = 1Q, for all u ∈ S

k and t ∈ I.

We will also need the result stated in Lemma 1.6 below. First we
prove a simplified version of it. The k-sphere of radius δ, {v ∈ R

k+1 :
|v| = δ}, will be denoted by S

k(δ).

Lemma 1.5. Let X be a compact space and f : X → DIFF (Rl) be
continuous and write fx : Rl → R

l for the image of x in DIFF (Rl).
Assume fx(0) = 0 ∈ R

l, for all x ∈ X. Then there is a δ0 > 0 such that,

for every x ∈ X and δ ≤ δ0, the map S
l−1(δ) → S

l−1 given by v 7→ fx(v)
|fx(v)|

is a diffeomorphism. Moreover, the map X → DIFF (Sl−1(δ), Sl−1),

given by x 7→ (v 7→ fx(v)
|fx(v)|

), is continuous.

Proof. First note that for all x ∈ X and δ > 0, the maps in DIFF

(Sl−1(δ), Sl−1) given by (v 7→ fx(v)
|fx(v)|

) all have degree 1 or −1. For

v ∈ R
l\{0}, denote by Lx(v) the image of the tangent space Tv(S

l−1(|v|))
by the derivative of fx : Rl → R

l. It is enough to prove that there is
δ0 > 0 such that fx(v) /∈ Lx(v), for all x ∈ X and v ∈ R

l satisfying

0 < |v| ≤ δ0 (because then the maps (v 7→ fx(v)
|fx(v)|

) would be immersions

of degree 1 (or −1), and hence diffeomorphisms).
Suppose this does not happen. Then there is a sequence of points

(xm, vm) ∈ X × R
l \ {0} with

a. vm → 0,
b. fxm(vm) ∈ Lxm(vm).

Write wm = vm
|vm| ∈ S

l−1, rm = |vm|, fm = fxm , and Dm = Dvmfm. We

can assume that xm → x ∈ X, and that wm → w ∈ S
l−1. It follows that
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there is an um ∈ Tvm(S
l−1(rm)), |um| = 1, such that Dm. um is parallel

to fm(vm). Note that 〈um, vm〉 = 0 and Dm(um) 6= 0. By changing

the sign of um, we can assume that Dm(um)
|Dm(um)| =

fm(vm)
|fm(vm)| . Also, we can

suppose that um → u ∈ S
l−1.

Claim. We have that fm(vm)
|fm(vm)| →

D0fx(w)
|D0fx(w)| , as m→ ∞.

Proof of the claim. Since f is continuous, all second-order partial
derivatives of the coordinate functions of the fx at v, with, say, |v| ≤ 1,
are bounded by some constant. Hence there is a constant C > 0 such
that |fm(vm)−D0fm(vm)| = |fm(vm)− fm(0)−D0fm(vm)| ≤ C |vm|2,

for sufficiently large m. It follows that fm(vm)
|vm| → limm→∞

D0fm(vm)
|vm| =

D0fx(w) 6= 0. This implies that |fm(vm)|
|vm| → |D0fx(w)| 6= 0, and thus

|vm|
|fm(vm)| → 1

|D0fx(w)| . Therefore limm→∞
fm(vm)
|fm(vm)|) = limm→∞

fm(vm)
|vm|

|vm|
|fm(vm)| = D0fx(w)

1
|D0fx(w)| . This proves the claim.

But Dm(um)
|Dm(um)| → D0fx(u)

|D0fx(u)|
; therefore D0fx(u)

|D0fx(u)|
= D0fx(w)

|D0fx(w)| . This is a

contradiction since D0fx is an isomorphism and u,w ∈ S
l−1 are linearly

independent (because 〈u,w〉 = limm〈um,
vm
|vm|〉 = 0). This proves the

lemma. q.e.d.

Lemma 1.6. Let X be a compact space, N a closed smooth manifold,
and f : X → DIFF (N × R

l) be continuous and write fx = (f1x , f
2
x) :

N × R
l → N × R

l for the image of x in DIFF (N × R
l). Assume

fx(z, 0) = (z, 0), for all x ∈ X and z ∈ N , that is, fx|N = 1N , where
we identify N with N × {0}. Then there is a δ0 > 0 such that, for
every x ∈ X, the map N × S

l−1(δ) → N × S
l−1 given by (z, v) 7→

(f1x(z, v),
f2
x(z,v)

|f2
x(z,v)|

) is a diffeomorphism for all δ ≤ δ0. Moreover, the

map X → DIFF (N × S
l−1(δ), N × S

l−1), given by x 7→ ( (z, v) 7→

(f1x(z, v),
f2
x(z,v)

|f2
x(z,v)|

) ), is continuous.

Proof. The proof is similar to the proof of the lemma above. Here
are the details. Let d = dimN and consider N with some Riemannian
metric. For (z, v) ∈ N × R

l \ {0}, denote by Lx(z, v) the image of the
tangent space T(z,v)(N×S

l−1(|v|)) by the derivative of fx. As before it is

enough to prove that there is δ0 > 0 such that (0, f2x(z, v)) /∈ Lx(z, v) ⊂
(TzN)×R

l = T(z,v)(N×R
l), for all x ∈ X and (z, v) ∈ N×R

l satisfying
0 < |v| ≤ δ0. Before we prove this we have a claim.

Claim 1. We have:

1. D(z,0)f
1
x(y, 0) = y, for all z ∈ N and y ∈ TzN .

2. D(z,0)f
2
x(y, u) = 0 implies that u = 0.

Proof of Claim 1. Since fx|N = 1N we have that D(z,0)fx(y, 0) =

(y, 0), for all y ∈ TzN . Hence (1) holds. Suppose D(z,0)f
2
x(y, u) = 0.
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Write y′ = D(z,0)f
1
x(y, u). ThenD(z,u)fx(y, u) = (y′, 0) = D(z,0)fx(y

′, 0).
But D(z,0)fx is an isomorphism and therefore (y, u) = (y′, 0). This
proves the claim.

Suppose now that (2) does not happen. Then there is a sequence of
points (xm, zm, vm) ∈ X ×N × R

l \ {0} with

a. vm → 0,
b. (0, f2xm

(zm, vm)) ∈ Lxm(zm, vm).

Write wm = vm
|vm| ∈ S

l−1, rm = |vm|, fm = fxm, and Di
m = Dvmf

i
m,

i = 1, 2. We can assume that xm → x ∈ X, zm → z and wm →
w ∈ S

l−1. It follows that there is a (sm, um) ∈ T(zm,vm)(N × S
l−1(rm)),

|sm|2+ |um|2 = 1, such that (i) D1
m(sm, um) = 0, and (ii) D2

m(sm, um) is
parallel to f2m(zm, vm). We have that 〈um, vm〉 = 0. Since Dm = Dvmfm
is an isomorphism, by (i), D2

m(sm, um) 6= 0. By changing the sign of

(sm, um) we can assume that D2
m(sm,um)

|D2
m(sm,um)|

= f2
m(zm,vm)

|f2
m(zm,vm)|

. Also, we can

suppose that um → u ∈ R
l and sm → s ∈ TzN .

Claim 2. We have that f2
m(zm,vm)

|f2
m(zm,vm)| →

D(z,0)f
2
x(0,w)

|D(z,0)f2
x(0,w)| , as m→ ∞.

Proof of Claim 2. Since f2 is continuous, all second-order partial
derivatives of the coordinate functions of the f2x at v, with, say, |v| ≤ 1,
are bounded by some constant. Hence there is a constant C > 0
such that |f2m(zm, vm)−D(zm,0)f

2
m(0, vm)| = |f2m(zm, vm)− f2m(zm, 0)−

D(zm,0)f
2
m(0, vm)| ≤ C |(0, vm)|2 = |vm|2, for sufficiently large m. It fol-

lows that f2
m(zm,vm)
|(0,vm)| → limm→∞

D(zm,0)f
2
m(0,vm)

|(0,vm)| = D(z,0)f
2
x(0, w). Note

that, by Claim 1 and w 6= 0, D(z,0)f
2
x(0, w) 6= 0. This implies that

|f2
m(zm,vm)|
|(0,vm)| → |D(z,0)f

2
x(0, w)| 6= 0, and thus |(0,vm)|

|f2
m(zm,vm)| →

1
|D(z,0)f2

x(0,w)| .

Therefore limm→∞
f2
m(zm,vm)

|f2
m(zm,vm)|

= limm→∞
f2
m(zm,vm)
|(0,vm)|

|(0,vm)|
|f2

m(zm,vm)|
= D(z,0)f

2
x

(0, w) 1
|D(z,0)f2

x(0,w)|
. This proves the claim.

But D2
m(sm,um)

|D2
m(sm,um)|

→
D(z,0)f

2
x(s,u)

|D(z,0)f2
x(s,u)|

; therefore
D(z,0)f

2
x(s,u)

|D(z,0)f2
x(s,u)|

=
D(z,0)f

2
x(0,w)

|D(z,0)f2
x(0,w)|

.

Consequently, D(z,0)f
2
x(s, u) = D(z,0)f

2
x(0, w

′), where w′ = λw, for some

λ > 0. Hence D(z,0)f
2
x(s, u−w′) = 0, and by Claim 1, u = w′ = λw is a

contradiction because |w| = 1 and 〈u,w〉 = 0. This proves the lemma.
q.e.d.

2. Space at infinity of some complete
negatively curved manifolds

Let (X1, d1) and (X2, d2) be two metric spaces. A map f : X1 → X2

is a quasi-isometric embedding if there are ǫ ≥ 0 and λ ≥ 1 such that
1
λ d1(x, y) − ǫ ≤ d2(f(x), f(y)) ≤ λd1(x, y) + ǫ, for all x, y ∈ X1. A
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quasi-isometric embedding f is called a quasi-isometry if there is a con-
stant K ≥ 0 such that every point in X2 lies in the K-neighborhood of
the image of f . A quasi-geodesic in a metric space (X, d ) is a quasi-
isometric embedding β : I → X, where the interval I ⊂ R is considered
with the canonical metric dR(t, s) = |t − s|. If I = [a,∞), β is called a
quasi-geodesic ray. If we want to specify the constants λ and ǫ in the
definitions above, we will use the prefix (λ, ǫ). It is a simple exercise to
prove that the composition of a (λ, ǫ)-quasi-isomeric embedding with a
(λ′, ǫ′)-quasi-isomeric embedding is a (λλ′, λ′ǫ + ǫ′)-quasi-isomeric em-
bedding. Also, if f : X1 → X2 is a quasi-isometry and the Hausdorff
distance between some subsets A,B ⊂ X1 is finite, then the Hausdorff
distance between f(A) and f(B) is also finite. In this paper a unit
speed geodesic will always mean an isometric embedding with domain
some interval I ⊂ R. Also, a geodesic will mean a function t 7→ α(ρt),
where α is a unit speed geodesic and ρ > 0. Then every geodesic is a
quasi-geodesic with ǫ = 0, that is, a (λ, 0)-quasi-geodesic, for some λ.

Lemma 2.1. Let g, g′ be two complete Riemannian metrics on the
manifold Q. Suppose there are constants a, b > 0 such that a2 ≤
g′(v, v) ≤ b2 for every v ∈ TQ with g(v, v) = 1. Then the identity
(Q, g) → (Q, g′) is a (λ, 0)-quasi-isometry, where λ = max{1

a , b}.

Proof. The condition above implies a2 g(v, v) ≤ g′(v, v) ≤ b2 g(v, v),
which in turn implies 1

b2 g
′(v, v) ≤ g(v, v) ≤ 1

a2 g
′(v, v), for all v ∈ Q.

Let d, d′ be the intrinsic metrics on Q defined by g, g′, respectively. Let
x, y ∈ Q and β : [0, 1] → Q be a path whose endpoints are x, y and

such that d(x, y) = lengthg(β) =
∫ 1
0

√

g(β′(t), β′(t)) dt. Then d′(x, y) ≤

lengthg′(β) =
∫ 1
0

√

g′(β′(t), β′(t)) dt ≤ b
∫ 1
0

√

g(β′(t), β′(t)) dt = b d(x, y).

In the same way we prove d ≤ 1
a d

′. Then the identity 1Q is a quasi-

isometry with ǫ = 0 and λ = max{1
a , b}. This proves the lemma.

q.e.d.

In what remains of this section (Q, g) will denote a complete Rie-
mannian manifold with sectional curvatures in the interval [c1, c2], c1 <
c2 < 0, and S ⊂ Q a closed totally geodesic submanifold of Q, such that
the map π1(S) → π1(Q) is an isomorphism. Write Γ = π1(S) = π1(Q).
Also, d will denote the intrinsic metric on Q induced by g. Note that S
is convex in Q, and hence d|S is also the intrinsic metric on S induced

by g|S . We can assume that the universal cover S̃ of S is contained in

the universal cover Q̃ of Q. We will consider Q̃ with the lifted metric
g̃ and the induced distance will be denoted by d̃. The group Γ acts by
isometries on Q̃ such that Γ(S) = S and Q = Q̃/Γ, S = S̃/Γ. The

covering projection will be denoted by p : Q̃→ Q̃/Γ = Q. Let R be the
normal bundle of S, that is, for z ∈ S, Rz = {v ∈ TzQ : g(v, u) = 0,
for all u ∈ TzS} ⊂ TzQ. Write π(v) = z if v ∈ Rz, that is, π : R → S
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is the bundle projection. The unit sphere bundle and unit disc bundle
of R will be denoted by N and W , respectively. Note that the normal
bundle, normal sphere bundle and the normal disc bundle of S̃ in Q̃ are
the liftings R̃, Ñ , and W̃ of R, N , and W , respectively. For v ∈ TqQ

or v ∈ TqQ̃, v 6= 0, the map t 7→ expq(tv), t ≥ 0, will be denoted by cv
and its image will be denoted by the same symbol. Since Q̃ is simply
connected, cv is a geodesic ray, for every v ∈ Ñ . We have the following
well-known facts.

1. For any closed convex set C ⊂ Q̃, and a geodesic c, the function
t 7→ d̃ ( c(t) , C ) is convex. This implies 2 below.

2. Let c be a geodesic ray beginning at some z ∈ S̃. Then either
c ⊂ S̃ or d̃ ( c(t) , S̃ ) → ∞, as t→ ∞.

3. For every v ∈ R, v 6= 0, cv is a geodesic ray. Moreover, for non-zero
vectors v1, v2 ∈ T , with π(v1) 6= π(v2), we have that the function
t 7→ d ( cv1(t) , cv2 ) tends to ∞ as t→ ∞.

4. The exponential map E : R → Q, E(v) = expπ(v)(v), is a dif-
feomorphism. We can define then the submersion proj : Q → S,
proj(q) = z, if exp(v) = q, for some v ∈ Tz. Define η : Q→ [0,∞)
by η(q) = |v |. Then we have η(q) = d ( q , S ). Also, the exponen-

tial map Ẽ : T̃ → Q̃, Ẽ(v) = expπ(v)(v), is a diffeomorphism and

Ẽ is a lifting of E.
5. Since S is compact, there is a function ̺ : [0,∞) → [0,∞) with

the following three properties: (1) for q1, q2 ∈ Q we have

̺(a) d ( proj(q1) , proj(q2) ) ≤ d ( q1 , q2, )

where a = min{η(q1), η(q2)}; (2) ̺(0) = 1; (3) ̺ is an increasing
function which tends to ∞ as t→ ∞.

6. Recall that we are assuming that all sectional curvatures of Q̃
are less than c2 < 0. Given λ ≥ 1, ǫ ≥ 0, there is a number
K = K(λ, ǫ, c2) such that the following happens. For every (λ, ǫ)-

quasi-geodesic c in Q̃ there is a unit speed geodesic β with the
same endpoints as c, whose Hausdorff distance from c is less or
equal K. Note K depends on λ, ǫ, c2, but not on the particular
manifold Q̃ (see, for instance, [1], p. 401; see also Proposition 1.2
on p. 399 of [1]).

Recall that the space at infinity ∂∞Q̃ of Q̃ can be defined as {quasi−

geodesic rays in Q̃}/ ∼ where the relation ∼ is given by β1 ∼ β2 if their
Hausdorff distance is finite. We say that a quasi-geodesic β converges
to p ∈ ∂∞Q̃ if β ∈ p. Fact 6 implies that we can define ∂∞Q̃ also
by { geodesics rays in Q̃ }/ ∼. We consider ∂∞Q̃ with the usual cone

topology (see [1], p. 263). Recall that, for any q ∈ Q̃, the map {v ∈

TqQ̃ : |v| = 1} → ∂∞Q̃ given by v 7→ [cv] is a homeomorphism. Let
ς : [0, 1) → [0,∞) be a homeomorphism that is the identity near 0. We
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also have that (Q̃) = Q̃ ∪ ∂∞Q̃ can be given a topology such that the

map {v ∈ TqQ̃ : |v| ≤ 1} → ∂∞Q̃ given by v 7→ expq(ς(|v|)
v
|v| ), for

|v| < 1 and v 7→ [cv ] for v = 1, is a homeomorphism. We have some
more facts or comments.

7. Given q ∈ Q̃ and p ∈ ∂∞Q̃, there is a unique unit speed geodesic
ray β beginning at q and converging to p.

8. Since S̃ is convex in Q̃, every geodesic ray in S̃ is a geodesic ray
in Q̃. Therefore ∂∞S̃ ⊂ ∂∞Q̃. For a quasi-geodesic ray β we
have [β] ∈ ∂∞Q̃ \ ∂∞S̃ if and only if β diverges from S̃, that is,

d̃ (β(t) , S̃ ) → ∞, as t→ ∞.

9. For every p ∈ ∂∞Q̃ \ ∂∞S̃ there is a unique v ∈ Ñ such that cv
converges to p. Moreover, the map Ã : Ñ → ∂∞Q̃ \ ∂∞S̃, given

by Ã(v) = [cv] is a homeomorphism. Furthermore, we can extend

Ã to a homeomorphism W̃ → (Q̃) \ ∂∞S̃ by defining Ã(v) =

Ẽ(ς(|v|) v
|v| ) = expq(ς(|v|)

v
|v| ), for |v| < 1, v ∈ W̃q (recall that ς is

the identity near zero).

Lemma 2.2. Let β : [a,∞) → Q̃. The following are equivalent.

(i) β is a quasi-geodesic ray and diverges from S̃.

(ii) pβ is a quasi-geodesic ray, where p : Q̃ → Q is the covering pro-
jection.

Proof. First note that if a path α(t), t ≥ a, satisfies the (λ, ǫ)-quasi-
geodesic ray condition, for t ≥ a′ ≥ a, then α(t) satisfies the (λ, ǫ′)-
quasi-geodesic ray condition, for all t ≥ a, where ǫ′ = ǫ+diameter
(α([a, a′])).

(i) implies (ii). Let β satisfy (i). Then there are λ ≥ 1, ǫ ≥ 0 such

that 1
λ |t − t′| − ǫ ≤ d̃(β(t), β(t′)) ≤ λ|t − t′| + ǫ, for every t, t′ ≥ a.

Fix t, t′ ≥ a and let α be the unit speed geodesic segment joining β(t)
to β(t′). Then pα joins pβ(t) to pβ(t′). Therefore d(pβ(t), pβ(t′)) ≤
lengthg(pα) = lengthg̃(α) = d(β(t), β(t′)) ≤ λ|t − t′| + ǫ. We proved
that d(pβ(t), pβ(t′)) ≤ λ|t− t′|+ ǫ.

We show the other inequality. By item 6, β is at finite Hausdorff
distance (say, K ≥ 0) from a geodesic ray α. Since β (hence α) gets far

away from S̃, it converges to a point at infinity in ∂∞Q̃\∂∞S̃. Therefore

we can assume that α(t) = cṽ(t) = expz̃(tṽ) for some ṽ ∈ R̃z̃, with

|ṽ| = 1. It follows that pβ is at Hausdorff distance K ′ = K + d(β(a), S̃)
from cv , where v ∈ Rz is the image of ṽ by the derivative Dp(z̃), and
z = p(z̃). Note that cv is a geodesic ray in Q (see item 3). Let U denote

the K neighborhood of cv in Q and Ũ the K neighborhood of cṽ in Q̃.
We claim that p : Ũ → U satisfies: d(p(x), p(y)) ≥ d̃(x, y) − 4K, for

x, y ∈ Ũ . To prove this let t, t′ ≥ 0 such that d(x, c(t)) = d(x, cv) ≤

K and d(y, cṽ(t
′)) = d(y, cṽ) ≤ K. We have d̃(x, y) ≤ d̃(x, cṽ(t)) +
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d̃(cṽ(t), cṽ(t
′)) + d̃(cṽ(t

′), y) ≤ 2K + |t − t′| = 2K + d(cv(t), cv(t
′)) ≤

2K+ d(cv(t), p(x))+ d(p(x), p(y))+ d(p(y), cv (t
′)) ≤ 4K+ d(p(x), p(y)).

This proves our claim. Consequently, d(pβ(t), pβ(t′)) ≥ d̃(β(t), β(t′))−
4K ≥ 1

λ |t− t′| − (ǫ+ 4K).
(ii) implies (i). Let β satisfy (ii). Since pβ is a proper map, its

distance to S must tend to infinity. Hence the distance of β to S̃ also
tends to infinity.

Let pβ satisfy 1
λ |t − t′| − ǫ ≤ d(pβ(t), pβ(t′)) ≤ λ|t − t′| + ǫ, for

some λ ≥ 1, ǫ ≥ 0. Fix t, t′ ≥ a and let α be the unit speed geodesic
segment joining β(t) to β(t′). Then pα joins pβ(t) to pβ(t′). Therefore

d̃(β(t), β(t′)) = lengthg̃(α) = lengthg(pα) ≥ d(pβ(t), pβ(t′)) ≥ 1
λ |t −

t′| − ǫ. It follows that 1
λ |t− t′| − ǫ ≤ d̃(β(t), β(t′)).

We prove the other inequality. Since S is compact and by item 5, the
radius of injectivity of a point in Q tends to infinity as the points get far
from S. Hence there is a′ ≥ a such that for every t ≥ a′, the ball of radius
e = λ+ ǫ centered at β(t) is convex. Let t′ > t > a′ and n be an integer
such that n < t′ − t ≤ n + 1. Let αk, k = 1, . . . , n, be the unit speed
geodesic segment from pβ(t+k−1) to pβ(t+k), and αn+1 the unit speed
geodesic segment from pβ(t + n) to pβ(t′). Note that lengthg(αk) =
d(pβ(t + k − 1), pβ(t + k)) ≤ λ + ǫ = e. Therefore pβ|[t+k−1,t+k] is
homotopic, rel endpoints, to αk (analogously for αn+1). Let α be the
concatenation α1 ∗ . . . ∗ αn+1. Then α is homotopic, rel endpoints, to
pβ|[t,t′]. Note that the length of α is ≤ (n + 1)e. Let α̃ be the lifting
of α beginning at β(a′). Then α̃ is homotopic, rel endpoints, to β|[t,t′].

Hence d̃(β(t), β(t′)) ≤ length(α̃) ≤ (n+1)e = ne+ e < e(t′− t)+ e. We

showed that 1
λ |t− t′| − ǫ ≤ d̃(β(t), β(t′)) < (λ+ ǫ)|t′ − t|+ (λ+ ǫ). This

proves the lemma. q.e.d.

Let Q1, Q2 be two complete simply connected negatively curved man-
ifolds. If β is a quasi-geodesic inQ1 and f : Q1 → Q2 is a quasi-isometry,
then f(β) is also a quasi-geodesic. Also, if two subsets of Q1 have finite
Hausdorff distance, their images under f will have finite Hausdorff dis-
tance as well. Therefore f induces a map f∞ : ∂∞Q1 → ∂∞Q2. Hence
f extends to f̄ : Q1 → Q2 by f̄ |∂∞Q1 = f∞ and f̄ |Q1 = f . We have:

10. For every quasi-isometry f : Q1 → Q2, f∞ : ∂∞Q1 → ∂∞Q2 is a
homeomorphism. In addition, if f is a homeomorphism, then f̄ is
a homeomorphism.

11. Let g′ be another complete Riemannian metric on Q̃ whose sec-
tional curvatures are also ≤ c2 < 0, and is such that there are
constants a, b > 0 with a2 ≤ g′(v, v) ≤ b2 for every v ∈ TQ̃ with

g̃(v, v) = 1, and such that S̃ is also a convex subset of (Q̃, g′). Then

∂∞Q̃ is the same if defined using g̃ or g′. Moreover item 9 above
also holds for (Q̃, g′) (with respect to all proper concepts defined

using g′ instead of g̃). This is because the identity (Q̃, g̃) → (Q̃, g′)
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induces the homeomorphism ∂∞Q̃ → ∂∞Q̃ that preserves ∂∞S̃
(see Lemma 2.1 and item 10).

Since Γ acts by isometries on Q̃, we have that Γ acts on ∂∞Q̃ (see

item 10). Also, since Γ preserves S̃, Γ also preserves ∂∞S̃. Hence Γ acts

on ∂∞Q̃ \ ∂∞S̃. Since S is closed, we have:

12. For every γ ∈ Γ, γ : ∂∞Q̃ \ ∂∞S̃ → ∂∞Q̃ \ ∂∞S̃ has no fixed

points. Therefore the action of Γ on (Q̃) \ ∂∞S̃ is free. Moreover,

the action of Γ on (Q̃) \ ∂∞S̃ is properly discontinuous.

We now define the space at infinity ∂∞Q of Q as {quasi-geodesic rays
in Q}/ ∼. As before, the relation ∼ is given by β1 ∼ β2 if their Haus-
dorff distance is finite. We can define a topology on ∂∞Q in the same
way as for ∂∞Q̃, but we can take advantage of the already-defined topol-
ogy of ∂∞Q̃.

Lemma 2.3. There is a one-to-one correspondence between ∂∞Q and
(

∂∞Q̃ \ ∂∞S̃
)

/Γ.

Proof. By path lifting and Lemma 2.2 there is a one-to-one corre-
spondence between the sets { quasi-geodesic rays in Q} and { quasi-

geodesic rays in Q̃ that diverge from S̃} /Γ. Then the correspondence

[β] 7→ p (β), for quasi-geodesic rays in Q̃ that diverge from S̃, is one-to-
one (see item 8). This proves the lemma. q.e.d.

We define then the topology of ∂∞Q such that the one-to-one corre-
spondence mentioned in the proof of the lemma is a homeomorphism.

Also, we define the topology on Q = Q∪∂∞Q such that
(

(Q̃) \ ∂∞S̃
)

/

Γ → Q is a homeomorphism. It is straightforward to verify that Q and
∂∞Q are subspaces of Q (see also item 12). The next lemma is a version
of item 9 for Q.

Lemma 2.4. For every p ∈ ∂∞Q there is a unique v ∈ N such that
cv converges to p. (Recall that N is the unit sphere bundle of the normal
bundle S.) Moreover, the map A : N → ∂∞Q, given by A(v) = [cv], is a
homeomorphism. Furthermore, we can extend A to a homeomorphism
W → ∂∞Q by defining A(v) = E((ς(|v|) v

|v| )), for |v| < 1. (Recall ς is

the identity near 0.) Also, Ã is a lifting of A.

Proof. The first statement follows from items 4 and 5. Define A(v) =

pÃ(ṽ), where Dp(ṽ) = v. Items 9 and 12 imply the lemma. See also
item 4. q.e.d.

We will write η([cv ]) = ∞ and E(∞v) = [cv ], for v ∈ N (see item 4).

Lemma 2.5. Let v ∈ N and qn = E(tnvn), tn ∈ [0,∞], vn ∈ R and
|vn| bounded away from both 0 and +∞. Then qn → [cv ] (in ∂∞Q) if
and only if tn → ∞ and vn → v.
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Proof. It follows from Lemma 2.4. q.e.d.

We also have a version of item 11 for Q.

Lemma 2.6. Let g′ be another complete Riemannian metric on Q
whose sectional curvatures are also ≤ c2 < 0, and such that there are
constants a, b > 0 with a2 ≤ g′(v, v) ≤ b2 for every v ∈ TQ with
g(v, v) = 1, and such that S is also a convex subset of (Q, g′). Then
∂∞Q is the same if defined using g or g′. Moreover Lemmas 2.4 and 2.5
above also hold for (Q, g′) (with respect to all proper concepts defined
using g′ instead of g).

Proof. It follows from item 11 and Lemma 2.5. Note that the liftings
g̃, g̃′ of g and g′ satisfy a2 ≤ g̃′(v, v) ≤ b2 for every v ∈ TQ̃ with
g̃(v, v) = 1. This proves the lemma. q.e.d.

3. Proof of Theorem 1

Let the metric g and the closed simple curve α be as in the statement
of Theorem 1. Write N = S

1 × S
n−2 and ΣM = ΛgΦ

M , where Λg :
DIFF (M) → MET sec<0(M) and ΦM = ΦM (α, V, r) : DIFF (S1 ×
S
n−2×I, ∂) → DIFF (M) are the maps defined in the Introduction. The

base point of the k-sphere Sk will always be the point u0 = (1, 0, . . . , 0).
Let θ : Sk → DIFF (N × I, ∂), θ(u0) = 1N×I , represent an element in
πk(DIFF (N × I, ∂) ).

We will prove that if πk(Σ
M )([θ]) is zero, then πk(ιN )([θ]) is also zero.

Equivalently, if ΣM θ extends to the (k + 1)-disc D
k+1, then ιNθ also

extends to D
k+1. So, suppose that ΣM θ : Sk → MET sec<0(M) extends

to a map σ′ : Dk+1 → MET sec<0(M). We can assume that this map is
smooth.

Remark. Originally σ′ may not be smooth, but it is homotopic
to a smooth map. By “σ′ is smooth” we mean that the map D

k+1 ×
(TM ⊕ TM) → R, given by (u, v1, v2) 7→ σ′(u)x(v1, v2), v1, v2 ∈ TxM ,
is smooth. To homotope a given σ′ to a smooth one σ′′, we can use
classical averaging techniques: just define σx(u)

′′(v1, v2) =
∫

Rk+1 η(u −
w)σ′(w)x(v1, v2) dw, which is smooth. Here, (1) η is a smooth ǫ-bump
function, i.e.,

∫

Rk+1 η = 1 and η(w) = 0, for |w| ≥ ǫ and, (2) we are

extending σ′ (originally defined on D
k+1) to all Rn, radially. Since σ′ is

continuous, the second-order derivatives of σ′x(u) and σ′x(u
′) are close

for u close to u′. Therefore the second-order derivatives of σ′x(u) are
close to the second-order derivatives of σ′′x(u). Hence, if ǫ is sufficiently
small, we will also have σ′′(u) ∈ MET sec<0(M).

Also, by deforming σ′, we can assume that it is radial near ∂ Dk+1.
Thus σ′(u), u ∈ D

k+1, is a negatively curved metric on M . Also,
σ′(u) = ΣM θ(u), for u ∈ S

k, and σ′(u0) = g. Since σ′ is continu-
ous, there is a constant c2 < 0 such that all sectional curvatures of the
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Riemannian manifolds (M,σ′(u)), u ∈ D
k+1, are less or equal c2. Write

ϕu = ΦM(θ(u)), u ∈ S
k. Hence we have that σ′(u) = (ϕu)∗σ

′(u0) =
(ϕu)∗g, for u ∈ S

k. Note that ϕu is, by definition, the identity outside
the closed normal geodesic tubular neighborhood U of width 2r of α.
Also, ϕu is the identity on the closed normal geodesic tubular neighbor-
hood of width r of α. Note that ϕu : M → M induces the identity at
the π1-level and hence ϕu is freely homotopic to 1M .

Since σ′ is continuous and D
k+1 is compact, we can find constants

a, b > 0 such that a2 ≤ σ′(u)(v, v) ≤ b2 for every v ∈ TM with g(v, v) =
1, u ∈ D

k+1.
Let Q be the covering space of M with respect to the infinite cyclic

subgroup of π1(M,α(1)) generated by α. Denote by σ(u) the pull-back
on Q of the metric σ′(u) on M . For the lifting of g on Q we use the
same letter g. Note that α lifts to Q and we denote this lifting also
by α. Let φu : Q → Q be diffeomorphism which is the unique lifting
of ϕu to Q with the property that φu|α is the identity. We have some
comments.

(i) σ(u) = (φu)∗σ(u0) = (φu)∗g, for u ∈ S
k.

(ii) The tubular neighborhood U lifts to a countable number of com-
ponents, with exactly one being diffeomorphic to U . We call this
lifting also by U . All other components U1, U2, . . . are diffeomor-
phic to D

n−1×R. Note that φu is the identity outside the union of
⋃

Ui and U and inside the closed normal geodesic tubular neigh-
borhood of width r of α.

(iii) Since ϕu : M →M induces the identity at the π1-level, and S
k is

compact, there is a constant C such that dσ(u′)( p , φu(p) ) < C, for

any u, u′ ∈ S
k, where dσ(u′) denotes the distance in the Riemannian

manifold (Q,σ(u′)).
(iv) (φu)|U =

[

ΦQ(α, V ′, r)θ(u)
]

|U , for u ∈ S
k. Here V ′ is the lifting

of V .
(v) We have that a2 ≤ σ(u)(v, v) ≤ b2 for every v ∈ TQ with g(v, v) =

1, u ∈ D
k+1. It follows that a2

b2
≤ σ(u)(v, v) ≤ b2

a2
for every v ∈ TQ

with σ(u′)(v, v) = 1, u, u′ ∈ D
k+1.

(vi) All sectional curvatures of the Riemannian manifolds (Q,σ(u)),
u ∈ D

k+1, are less or equal c2.

Since (M,σ′(u)) is a closed negatively curved manifold, it contains
exactly one immersed closed geodesic which is freely homotopic to α ⊂
M . Therefore (Q,σ(u)) contains exactly one embedded closed geodesic
αu which is freely homotopic to α ⊂ Q. Note that αu is unique up to
affine reparametrizations. Also, αu depends continuously on u (see [2]
and [17]). Write α0 = αu0 and note that αu = φu(α0), for all u ∈ S

k.
Since n ≥ 5, we can find a compactly supported smooth isotopy

s : Q × I → Q with s0 = 1Q and s1(α0) = α. Using s, we get a
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homotopy (st)
−1φust between φu and ψu = (s1)

−1φus1. Therefore we
can assume that for u ∈ S

k we have σ(u) = (ψu)∗g. Note that (ii)
above still holds with U ′ = (s1)

−1U , U ′
i = (s1)

−1Ui instead of U , Ui,
respectively. Note that U ′

i coincides with Ui outside a compact set. Also,
since s is compactly supported, (iii) holds too. For (iv), we assume that
U ′ is the closed normal geodesic tubular neighborhood of width 2r of
α0 and s1 sends any geodesic of length 2r beginning orthogonally at α0

isometrically to geodesic of length 2r beginning orthogonally at α (we
may have to consider a much smaller r > 0 here). Note that (v) and
(vi) still hold. The following version of (iv) is true:

(iv’) (ψu)|U ′ =
[

ΦQ(α0, V
′′, r)θ(u)

]

|U ′ , for u ∈ S
k. Here V ′′ = (s−1

1 )∗V
′.

Now, by [6, Prop. 5.5] αu depends smoothly on u ∈ D
k+1. Hence we

have a smooth map h : Dk+1 × S
1 → Q, given by hu = αu. Note that h

is radial near ∂. We have the following facts:

1. We can identify S
1 with its image α0 and, using the exponential

map orthogonal to S
1, with respect to g = σ(u0) and the trivializa-

tion V ′′, we can identify Q to S
1 ×R

n−1. With this identification
V ′′ becomes just the canonical base E = {e1, . . . , en−1} and (iv’)
above has now the following form: (ψu)|U ′ =

[

ΦQ(α0, E, r)θ(u)
]

|U ′ ,

for u ∈ S
k.

2. Because of the argument above (using the homotopy s), we cannot
guarantee that all metrics σ(u) are lifted metrics from M , but we

do have that all liftings of the σ(u) to the universal cover Q̃ = M̃
are all quasi-isometric.

The next claim says that we can assume all hu = αu : S1 → Q to be
equal to α0.

Claim 1. We can modify σ (hence also αu and h) on int (Dk+1) such
that:

a. The liftings of the metrics σ(u) to the universal cover Q̃ = M̃ are
all quasi-isometric.

b. αu = α0, for all u ∈ D
k+1.

Proof of Claim 1. Let H be as in Lemma 1.4. Then the required
new metrics are just [(Hu)1]

∗σ(u), that is, the pull-backs of σ(u) by the
inverse of the diffeomorphism given by the isotopy Hu at time t = 0.
Note that the metrics do not change outside a compact set of Q. Just
one more detail. In order to be able to apply Lemma 1.4 for k = 0,
we have to know that the loop β : D1 → Q given by β(u) = h(u, 1)
is homotopy trivial. But if this is not the case, let l be such that β is
homotopic (rel base point) to α−l

0 . Then just replace h by hϑ, where

ϑ : D1×S
1 → D

1×S
1, ϑ(u, z) = (u, eπl(u+1)i z). Note that hu and (hϑ)u
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represent the same geodesic, but with different basepoint. This proves
Claim 1.

Hence, from now on, we assume that all αu are equal to α0 : S
1 → Q.

Note that the new metrics σ(u), u ∈ int (Dk+1), are not necessarily
pull-back from metrics in M . Recall that we are identifying Q with
S
1 × R

n−1, and the rays {z} × R
+v, v ∈ S

n−2, are geodesics (with
respect to g = σ(u0)) emanating from z ∈ S1 ⊂ Q and normal to S1.
Denote by Wδ = S

1 ×D
n−1(δ) the closed normal tubular neighborhood

of S1 in Q of width δ > 0, with respect to the metric σ(u0). Note that
∂Wδ = S

1 × S
n−2(δ).

For each u ∈ D
k+1 and z ∈ S

1, let T u(z) be the orthogonal comple-
ment of the tangent space TzS

1 ⊂ TzQ with respect to the σ(u) metric
and denote by expuz : T u(z) → Q the normal exponential map, also
with respect to the σ(u) metric. Note that the map expu : T u → Q
is a diffeomorphism, where T u is the bundle over S

1 whose fibers are
T u(z), z ∈ S

1. We will denote by Nu the sphere bundle of T u. The
orthogonal projection (with respect to the σ(u0) metric) of the tangent
vectors (z, e1), . . . , (z, en−1) ∈ TzQ = {z}×R

n−1 (here e1 = (1, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0), . . .) into T u(z) gives a base of T u(z). Applying the
Gram-Schimidt orthogonalization process, we obtain an orthonormal
base v1u(z), . . . , v

n−1
u (z) of T u(z). Clearly, these bases are continuous

in z, and hence they provide a trivialization of the normal bundle T u.
We denote by χu : T u → S

1 × R
n−1 the bundle trivializations given

by χu(v
i
u(z)) = (z, ei). Note that these trivializations are continuous in

u ∈ D
k+1.

For every (u, z, v) ∈ D
k+1 × S

1 × (Rn−1 \ {0}), define τu(z, v) =
(z′, v′), where χu ◦ (expu)−1(z, v) = (z′, w) and v′ = w

|w| . Then τu :

S
1 × (Rn−1 \ {0}) → S

1 × S
n−2 is a smooth map. The restriction of τu

to any ∂Wδ ⊂ S
1 × R

n−1 will be denoted also by τu. From now on we
assume δ < r.

Claim 2 There is δ > 0 such that the map τu : ∂Wδ → S
1 × S

n−2 is
a diffeomorphism.

Proof of Claim 2. Just apply Lemma 1.6 to the map χu ◦ (expu)−1.
This proves Claim 2.

Note that τu depends continuously on u. Note also that Claim 2
implies that every normal geodesic (with respect to any metric σ(u))
emanating from α0 intersects ∂Wδ transversally in a unique point. De-
note by ρu : ∂Wδ → (0,∞) the smooth map given by τu(z, v) = |w|,
where we are using the notation before the statement of Claim 2.

To simplify our notation we take δ = 1 and write W = W1. Thus
∂W = N = S

1 × S
n−2 and we write N × [1,∞) = Q \ intW . Now,
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for each u ∈ D
k+1 we define a self-diffeomorphism fu ∈ DIFF (N ×

[1,∞), N × {1}) by

fu((z, v), t) = expuz′( [χu]
−1( z′, ρu(z, v) tv

′ ) )

where τu(z, v) = (z′, v′). It is not difficult to show that fu((z, v), 1) =
((z, v), 1) and that fu is continuous in u ∈ D

K+1.
Here is an alternative interpretation of fu. For (u, z, v) ∈ D

k+1 ×
S
1 × T u(z), denote by cu(z,v) : [0,∞) → Q the σ(u) geodesic ray given

by cu(z,v)(t) = expuz (tv). Then fu sends cu0

(z,v) to c
u
(z′,s), where exp

u
z′(s) =

(z, v) ∈ Q. Explicitly, we have fu( c
u0

(z,v)(t) ) = cu(z′,s)(|s|t), for t ≥ 1.

Using Claim 2, it is not difficult to prove that fu(N × [1,∞) ) = N ×
[1,∞) and that fu is a diffeomorphism.

We denote by ∂∞Q the space at infinity of Q with respect to the
σ(u0) metric. Recall that the elements of ∂∞Q are equivalence classes
[β] of σ(u0) quasi-geodesic rays β : [a,∞) → Q = S

1 × R
n−1 (see

Section 2). Note that, since all metrics σ(u) are quasi-isometric, a
σ(u) quasi-geodesic ray is a σ(u′) quasi-geodesic ray, for any u, u′ ∈
D
k+1. Hence ∂∞Q is independent of the metric σ(u) used (see (v) and

Lemma 2.6). Still, the choice of a u ∈ D
k+1 gives canonical elements

in each equivalence class in ∂∞Q: just choose the unique unit speed
σ(u) geodesic ray that “converges” (that is,“belongs”) to the class, and
that emanates σ(u)-orthogonally from S

1 ⊂ Q. If we choose the σ(u0)
metric, this set of geodesic rays is in one-to-one correspondence with
N = S

1 × S
n−2 ⊂ Q. We identify N × {∞} with ∂∞Q by ((z, v),∞) 7→

[cu0

(z,v)]. Hence we can write now (Q \ intW ) ∪ ∂∞Q = (N × [1,∞) ) ∪

∂∞Q = N × [1,∞] (see Lemma 2.5).
We now extend each fu to a map fu : N × [1,∞] → N × [1,∞]

in the following way. For ((z, v),∞) = [cu0

(z,v)], define fu( [c
u0

(z,v) ] ) =

[ fu( c
u0

(z,v) ) ]. Recall that, as we mentioned before, we have fu( c
u0

(z,v)(t) ) =

cu(z′,s)(|s|t), for exp
u
z′(s) = (z, v) ∈ Q, t ≥ 1. That is, fu( c

u0

(z,v) ) is a

σ(u) geodesic ray, and hence it is a σ(u0) quasi-geodesic ray. Therefore
[ fu( c

u0

(z,v) ) ] is a well-defined element in ∂∞.

We will write exp = expu0 . Also, as in Section 2, we will write
exp (∞v) = [cv ], for v ∈ N .

Claim 3. fu : N × [1,∞] → N × [1,∞] is a homeomorphism.

Proof of Claim 3. Note that fu is already continuous (even differ-
entiable) on Q. We have to prove that fu is continuous on points in
∂∞Q. Let qn = exp(tnvn) → [cv ], v, vn ∈ N , tn ∈ [0,∞]. Then, by
Lemma 2.5, vn → v and tn → ∞. Let u ∈ D

k+1 and write f = fu.
We have to prove that q′n = f(qn) converges to f([cv]) = [f(cv)]. Write
wn = (expu)−1(vn). Then wn → w = (expu)−1(v) 6= 0. Note that
f([cv]) = [f(cv)] = [cuw], where c

u
w is the σ(u) geodesic ray t 7→ expu(tw).
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Note also that, by definition, f(qn) = expu(tnwn). The claim follows
now from Lemmas 2.5 and 2.6.

Claim 4. fu is continuous in u ∈ D
k+1.

Proof of Claim 4. Note that we know that u 7→ fu|Q is continuous.
Let qn = exp(tnvn) → [cv], v, vn ∈ N , tn ∈ [0,∞]. Then, by Lemma 2.5,
vn → v and tn → ∞. Let also u, un ∈ D

k+1 with un → u. To simplify
our notation we assume that u = u0 (the proof for a general u is obtained
by properly writing the superscript u on some symbols; see also Lemma
2.6). Hence, by the previous identifications, expu0 = exp : T = Q → Q
is just the identity and fu0 is also the identity . Write fn = fun and
wn = (expun)−1(vn). Then wn → (expu0)−1(v) = v. We have to prove
that q′n = fn(qn) = expun(tnwn) = cun

wn
(tn) converges to f([cv]) = [cv].

Note that cun
wn

(1) = expun(wn) = vn → v. To prove that q′n → [cv] we

will work in Q̃ instead of Q. Therefore we “lift” everything to Q̃ and we
express this by writing the superscript tilde over each symbol. Hence
we have ṽ, w̃n ∈ Ñ , u, un ∈ D

k+1, tn > 0 satisfying

1. w̃n → ṽ and cun

w̃n
(1) = expun(w̃n) → ṽ,

2. un → u0, hence σ̃(un) → σ̃(u0) = g̃.

We have then that cṽ is a g̃ geodesic ray and the cun

w̃n
are σ̃(u) geodesic

rays. Write cn = cun

w̃n
and q̃′n = cn(tn). We have to prove that q̃′n → [cṽ].

Since un → u0, the maps expun → exp = 1Q̃ (in the compact-open

topology). Therefore

(*) for any r, δ > 0 there is n0 such that d̃(cn(t), cṽ(t)) < δ, for t ≤ r,
and n ≥ n0.

Since cṽ is a unit speed geodesic (i.e., a (1,0)-quasi-geodesic ray), by
(1) and (2), for large n we have that cn = cun

w̃n
is a σ̃(u) (2, 0)-quasi-

geodesic ray. By (v) above and Lemma 2.1 the identity (Q̃, σ̃(u)) →

(Q̃, g̃) is a (λ, 0)-quasi isometry, where λ = max{a2

b2
, b

2

a2
}. Therefore, we

have that cn is a g̃ (2λ, 0)-quasi-geodesic ray. Let K = K(2λ, 0, c2) be
as in item 6 of Section 2, and c2 is as in (vi) above. Then there is a unit
speed g̃ geodesic ray βn(t), t ∈ [1, an], that is at K Hausdorff distance
from cn, t ∈ [1, tn], and has the same endpoints: βn(1) = cn(1) → ṽ and
βn(an) = cn(tn) = q̃′n. Note that an → ∞ because tn → ∞. We have
that (*) above (take δ = 1 in (*)) implies that

(**) given an r > 0 there is a n0 such that d̃(cṽ(t), βn) ≤ C = K + 1,
for t ≤ r and n ≥ n0.

Since Q̃ is complete and simply connected, we can extend each βn to
a geodesic ray βn : [1,∞] → Q̃. Then [βn] ∈ ∂∞Q̃. Let β

′
n(t), t ∈ [1,∞]

be the unit speed g̃ geodesic ray with β′n(1) = ṽ, β′n(∞) = βn(∞).
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Therefore d̃(βn(t), β
′
n(t)) ≤ d̃(βn(1), β

′
n(1)) = d̃(cn(1), ṽ) → 0. We can

assume then that d̃(βn(t), β
′
n(t)) ≤ 1, for all n and t ≥ 1. Hence, a

version of (**) holds with β′n instead of βn and C + 1 instead of C.
This new version of (**) implies that [β′n] → [cṽ], and this together with
condition (1) implies β′n(t) → cṽ(t), for every t ∈ [1,∞]. Since [β′n] →

[cṽ] and an → ∞, we have that β′n(an) → [cṽ ]. But d̃(q̃′n, β
′
n(an)) =

d̃(βn(an), β
′
n(an)) ≤ 1; therefore q̃′n → [cṽ]. This proves the claim.

Claim 5. For all u ∈ S
k we have fu|Q\W = (ψu)|Q\W and (fu)|∂∞ =

1∂∞ .

Proof of Claim 5. Let u ∈ S
k. Since σ(u) = g on W , then T u =

T u0 = S
1 × R

n−1 and expuz (v) = (z, v) for all z ∈ S
1 and |v| ≤ 1. It

follows that fu( cu0(z, v)(t) ) = cu(z, v)(t), for t ≥ 1. On the other hand,
since σ(u) = (φu)∗σ(u0) we have that ψ : (Q,σ(u0)) → (Q,σ(u)) is
an isometry. Hence ψu(cu0(z, v)(t)), t ≥ 0, is a σ(u) geodesic. Since
ψu is the identity in W ⊂ U ′, we have ψu(z) = z and (ψu)∗v = v.
Therefore ψu( cu0(z, v)(t) ), t ≥ 0 is the σ(u) geodesic that begins at
z with direction v. Thus ψu(cu0(z, v)(t)) = cu(z, v)(t), for t ≥ 0.
Consequently, fu( cu0(z, v)(t) ) = ψu( cu0(z, v)(t )), t ≥ 1. This proves
fu|Q\W = (ψu)|Q\W because every point in Q \ W belongs to some
σ(u0) geodesic cu0(z, v)(t). Now, since ψu is at bounded distance from
the identity (recall that (iii) above holds for ψ), then fu( cu0(z, v) ) is at
bounded distance from cu0(z, v), and thus they define the same point
in ∂∞. Therefore fu( [cu0(z, v) ] ) = [ cu0(z, v) ) ]. Hence (fu)|∂∞ = 1∂∞ .
This proves the claim.

By means of an orientation-preserving homeomorphism [1,∞] →
[0, 1], we can identify [1,∞] with [0, 1]. It follows from Claim 3 that
we can consider fu ∈ P (N). And we obtain, by Claim 4, a continuous
map f : Dk+1 → P (N). We choose this identification map to be linear
when restricted to the interval [r, 2r] with image the interval [13 ,

2
3 ]. The

next claim proves Theorem 1.

Claim 6. f |Sk is homotopic to ιNθ.

Proof of Claim 6. Let u ∈ Sk. Recall that ψu is the identity outside
the union of

⋃

U ′
i and U

′ and inside the closed normal geodesic tubular
neighborhood of width r of α0 = S

1 (see (iii) above). In particular, ψu

is the identity on W . From (iv’) (and (1)) above we have

(ψu)|U ′ =
[

ΦQ(α0, E, r)θ(u)
]

|U ′ , for u ∈ S
k.

Recall also that each U ′
i is diffeomorphic to D

n−1×R. Let ᾱ0 be the (not
necessarily embedded) closed g geodesic which is the image of α0 ⊂ Q
by the covering map Q → M . Note that Ui is the 2r normal geodesic
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tubular neighborhood of a lifting βi of α ⊂ M which is diffeomorphic
to R. Since α ⊂ M is freely homotopic to the closed geodesic ᾱ0 ⊂ M ,
we have that βi is at finite distance from some embedded geodesic line
which is a lifting of ᾱ0. Therefore the closure of Ui in Q∪ ∂∞ is formed
exactly by the two points at infinity determined by this geodesic line.
Consequently, the closure Ūi of each Ui is homeomorphic to D

n and
intersects ∂∞ in exactly two different points. Now, applying Alexander’s
trick to each ψ|Ūi

, we obtain an isotopy (rel U ′) that isotopes φu to a
map that is the identity outside U ′ \ int (W ), and coincides with ψu

on U ′, that is, coincides with ΦQ(α0, E[13 ,
2
3 ], r)θ(u) on U

′. (Note that

this isotopy can be defined because the diameters of the closed sets Ūi in
(Q\intW )∪∂∞ = N× [1,∞] converge to zero as i→ ∞.) Here we refer
to any metric compatible with the topology of N × [1,∞].) Therefore
ψu is canonically isotopic to a map ϑu that is the identity outside U ′

and on U ′ coincides with ΦQ(α0, E, r)θ(u). In fact, ϑu is the identity
outside N× [r, 2r] ⊂ U \W ⊂ N× [1,∞]. That is, for t ∈ [1, r]∪ [2r,∞],
ϑu((z, v), t) = ((z, v), t), (z, v) ∈ N .

On the other hand, we can deform θu to θ′u, where θ
′
u is the identity

on N × ( [0, 13 ]∪ [23 , 1] ) and θ
′
u((z, v), t) = θ′u((z, v), 3t− 1), for t ∈ [13 ,

2
3 ].

Finally, using the identification mentioned before this claim, we obtain
that θ′ = ϑ. This proves Claim 6 and Theorem 1.

4. Proof of Theorem 2

First, we recall some definitions and introduce some notation. For
a compact manifold M , the spaces of smooth and topological pseudo-
isotopies of M are denoted by P diff (M) and P (M), respectively. Both
P diff (M) and P (M) are groups with composition as the group opera-
tion. We have stabilization maps Σ : P (M) → P (M × I). The direct
limit of the sequence P (M) → P (M × I) → P (M × I2) → . . . is
called the space of stable topological pseudo-isotopies of M , and it is
denoted by P(M). We define Pdiff (M) in a similar way. The inclu-
sion P diff (M) → P (M) induces an inclusion Pdiff (M) → P(M). We
mention two important facts:

1. Pdiff (−), P(−) are homotopy functors.

2. The maps πk(P
diff (M)) → πk(P

diff (M)), πk(P (M)) → πk(P(M))
are isomorphisms for max{2k + 9, 3k + 7} ≤ dimM (see [16]).

Lemma 4.1. For every k and every compact smooth manifold M ,
the kernel and the cokernel of πk(P

diff (M)) → πk(P(M))) are finitely
generated.
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Proof. We have a long exact sequence (see [13], p.12): . . . → πk+1

(PS(M))) → πk(P
diff (M))) → πk(P(M))) → πk(PS(M)) → . . ., where

PS(M) = limnΩ
nP(SnM). An important fact here is that π∗(PS(M))

is a homology theory with coefficients in π∗−1(P
diff (∗)). Since these

groups are finitely generated (see [4]), the lemma follows. q.e.d.

Lemma 4.1 together with (2) imply:

Corollary 4.2. For every k and smooth manifold Mn the kernel and
the cokernel of πk(P

diff (M)) → πk(P (M))) are finitely generated for
max{2k + 9, 3k + 7} ≤ dimM .

Write ι′ : DIFF ((S1 × S
n−2) × I, ∂) → P diff (S1 × S

n−2). Since
ιS1×Sn−2 : DIFF ((S1×S

n−2)× I, ∂) → P (S1×S
n−2) factors through ι′,

Corollary 4.2 implies that to prove Theorem 2 it is enough to prove:

Theorem 4.3 Let p be a prime integer (p 6= 2) such that 6p−5 < n.
Then for k = 2p− 4 we have that πk(DIFF (S

1× S
n−2× I, ∂)) contains

(Zp)
∞ and πk(ι

′) restricted to (Zp)
∞ is one-to-one. When p = 2, n

needs to be ≥ 10. Also, if n ≥ 14, then π1(DIFF (S
1 × S

n−2 × I, ∂))
contains (Z2)

∞ and π1(ι
′) restricted to (Z2)

∞ is one-to-one.

We will need a little more structure. There is an involution “ − ”
defined on P diff (M) by turning a pseudo-isotopy upside down. For M
closed we can define this involution easily in the following way. Let
f ∈ P diff (M). Define f̄ = ( (f1)

−1 × 1I ) ◦ f̂ , where f̂ = r ◦ f ◦ r,
r(x, t) = (x, 1 − t), and (f1(x), 1) = f(x, 1). This involution homo-
topy anti-commutes with the stabilization map Σ; hence the involu-
tion can be extended to P(M). This involution induces an involution
− : πk(P(M)) → πk(P(M)) at the k-homotopy level. We define now a
map Ξ : P diff (M) → P diff (M) by Ξ(f) = f ◦ f̄ , and extend this map
to Pdiff (M). We have four comments:

i. For f ∈ P diff (M), Ξ(f)|M×{1} = 1M×{1}. Therefore Ξ(f) ∈

DIFF (M × I, ∂). Hence the map Ξ : P diff (M) → P diff (M)
factors through DIFF (M × I, ∂).

ii. Since P diff (M) is a topological group, for x ∈ πk(P
diff (M)) we

have that πk(Ξ)(x) = x+ x̄.
iii. The following diagram commutes

P diff (M) → P diff (M)
↓ ↓

Pdiff (M) → Pdiff (M)

where the horizontal lines are both either “− ” or Ξ. Hence we
have an analogous diagram at the homotopy group level.

iv. We mentioned in (1) that Pdiff (−) is a homotopy functor. But
the conjugation “−” defined on Pdiff (M) depends on M . In any
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event, we have that Pdiff (−) preserves the conjugation “−” up to
multiplication by ±1.

Note that (i) above implies that πk(Ξ) : πk(P
diff (S1 × S

n−2)) →
πk(P

diff (S1 × Sn−2)) factors through πk(DIFF ((S
1 × Sn−2) × I, ∂) ).

Therefore, to prove Theorem 4.3 it is enough to prove:

Proposition 4.4. For every k = 2p − 4, p prime integer (p 6= 2),
6p − 5 < n, we have that πk(P

diff (S1 × S
n−2)) contains (Zp)

∞. Also

π1(P
diff (S1×S

n−2)) contains (Z2)
∞, provided n ≥ 14, and π0(P

diff (S1×
S
n−2)) contains (Z2)

∞, provided ≥ 10. Moreover, in all cases above,
πk(Ξ) restricted these subgroups is one-to-one.

By (2) and (iii), to prove Proposition 4.4 it is enough to prove the
following stabilized version:

Proposition 4.5. For every k = 2p − 4, p prime integer (p 6= 2),
6p − 5 < n, we have that πk(P

diff (S1 × S
n−2)) contains (Zp)

∞. Also

π1(P
diff (S1×S

n−2)) contains (Z2)
∞, provided n ≥ 14, and π0(P

diff (S1×
S
n−2)) contains (Z2)

∞, provided ≥ 10. Moreover, in all cases above,
πk(Ξ) restricted these subgroups is one-to-one.

Since S
1 is a retract of S1 × S

n−2, (1) implies that πk(P
diff (S1)) is a

direct summand of πk(P
diff (S1×S

n−2)). Therefore, by (ii) and (iv), to
prove Proposition 4.5 it is enough to prove the following version for S1:

Proposition 4.6. For every k = 2p − 4, p prime integer, we have
that πk(P

diff (S1)) contains (Zp)
∞. Also π1(P

diff (S1)) contains (Z2)
∞.

Moreover, in these cases, the two group endomorphisms x 7→ x+ x̄ and
x 7→ x− x̄ are both one-to-one when restricted to these subgroups.

Proof. For a finite complex X, Waldhausen [19] proved that the ker-
nel of the split epimorphism

ζk : πk(A(X)) → πk−2(P
diff (X))

is finitely generated. Recall that the conjugation in Pdiff (X) is defined
by turning a pseudo-isotopy upside down. It is also possible to define
a conjugation “−” on A(X) such that ζk preserves conjugation up to
multiplication by ±1 (see [18]). The induced map at the k-homotopy
level will also be denoted by “−”.

We recall a result proved in [14]. For a space X, we have that
πk(A(X × S1)) naturally decomposes as a sum of four terms,

πk(A(X×S
1)) = πk(A(X))⊕πk−1(A(X))⊕πk(N−A(X))⊕πk(N+A(X)),

and the conjugation leaves invariant the first two terms and interchanges
the last two.

The following result is crucial to our argument:
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Theorem ( p -torsion of π2p−2A(S
1)). For every prime p the subgroup

of π2p−2(A(S
1)) consisting of all elements of order p is isomorphic to

(Zp)
∞.

A proof of this result was given by J. Grunewald, J. R. Klein, and T.
Macko in [11]. (It should be noted that in a personal communication
Tom Goodwillie had previously given us a sketch of a proof of this
theorem. We are grateful to him for this.)

Also, Igusa ([15], Part D, Theorem 2.1), building on work of Wald-
hausen [19], proved the following:

Addendum. π3A(S
1) contains (Z2)

∞.

Remark. The special case of the p-torsion Theorem above, when
p = 2, is also due to Igusa (see [15], Theorem 8.a.2).

Now, take X = ∗ in the decomposition formula above. Recall that
Dwyer showed that πk(A(∗)) is finitely generated for all k. Therefore the
theorem above implies that at least one of the summands πk(N−A(∗)),
πk(N+A(∗)) in the above formula contains (Zp)

∞, for k = 2p − 2, and
contains (Z2)

∞ when k = 3 by the addendum. Hence y 7→ y + ȳ and
y 7→ y − ȳ, y ∈ (Zp)

∞, are both one-to-one. Since ζk : πk(A(X)) →

πk−2(P
diff (X)) has finitely generated kernel, we can assume (by passing

to a subgroup of finite index) that y 7→ ζk(y + ȳ) and y 7→ ζk(y − ȳ),
y ∈ (Zp)

∞, are also one-to-one. It follows that x 7→ x+ x̄ and x 7→ x− x̄,
x ∈ ζk((Zp)

∞), are one-to-one. Finally, the same argument shows that
x 7→ x+ x̄ and x 7→ x− x̄, x ∈ ζ3((Z2)

∞), are one-to-one. q.e.d.
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