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EXPLICIT BIRATIONAL GEOMETRY OF 3-FOLDS

OF GENERAL TYPE, II

Jungkai A. Chen & Meng Chen

Abstract

Let V be a complex nonsingular projective 3-fold of general
type. We shall give a detailed classification up to baskets of sin-
gularities on a minimal model of V . We show that the m-canonical
map of V is birational for all m ≥ 73 and that the canonical vol-
ume Vol(V ) ≥ 1

2660 . When χ(OV ) ≤ 1, our result is Vol(V ) ≥ 1
420 ,

which is optimal. Other effective results are also included in the
paper.

1. Introduction

Let Y be a nonsingular projective variety of dimension n. It is said
to be of general type if the pluricanonical map ϕm corresponding to
the linear system |mKY | is birational into a projective space for m ≫ 0.
Thus it is natural and important to find a constant c(n), depending only
on dimension, so that ϕm is birational onto its image for all m ≥ c(n)
and for all Y with dimY = n.

It was classically known that, when dimY = 1, |mKY | gives an em-
bedding of Y into a projective space for m ≥ 3. When dimY = 2,
Kodaira-Bombieri’s theorem [2] implies that |mKY | gives a birational
map onto the image for m ≥ 5. A recent result of Hacon and McKernan
[10], Takayama [23], and Tsuji [25] shows the existence of c(n), which
is however non-explicit.

This is the continuation of our previous paper [4]. The aim of this
paper is to prove a practical constant c(3), which is not too far from
being sharp. Other effective results are included in this paper as well.

Recall that we have proved the following result in [4].

Theorem 1. ([4, Theorem 1.1]) Let V be a nonsingular projective
3-fold of general type. Then:

(1) P12 > 0;
(2) Pm0

≥ 2 for some positive integer m0 ≤ 24.

Our main theorems of this paper are as follows.
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Theorem 1.1. Let V be a nonsingular projective 3-fold of general
type. Then:

(1) Pm > 0 for all m ≥ 27.
(2) P24 ≥ 2 and Pm0

≥ 2 for some positive integer m0 ≤ 18.
(3) ϕm is birational for all m ≥ 73, and in case χ(OX) ≤ 1, ϕm is

birational for all m ≥ 40.

Here is our result on the volume.

Theorem 1.2. Let V be a non-singular projective 3-fold of general
type. Then:

(1) Vol(V ) ≥ 1
2660 . Furthermore, Vol(V ) = 1

2660 if and only if P2 = 0

and either χ(OV ) = 3, B(X) = {9× 1
2(1,−1, 1),

2× 1
7(1,−1, 3), 1

19 (1,−1, 7), 3× 1
3(1,−1, 1), 1

10 (1,−1, 3), 1
4(1,−1, 1),

1
5(1,−1, 1)} or χ(OV ) = 2, B(X) = {2×1

2(1,−1, 1), 2×1
7 (1,−1, 3),

2× 1
5(1,−1, 2), 1

19(1,−1, 7), 1
4 (1,−1, 1)} where B(X) is the basket

of singularities on a minimal model X of V .
(2) In case χ(OV ) ≤ 1, Vol(V ) ≥ 1

420 , which is an optimal lower

bound. Furthermore, Vol(V ) = 1
420 if and only if the basket of

singularities on any minimal model X of V is

{3×
1

2
(1,−1, 1),

1

7
(1,−1, 3),

1

5
(1,−1, 2),

1

4
(1,−1, 1),

1

6
(1,−1, 1)}.

Theorem 1.2 (2) is optimal due to the following example:

Example 1.3. ([12, page 151, no. 23] ) The canonical hypersur-
face X46 ⊂ P(4, 5, 6, 7, 23) has 7 terminal quotient singularities and
the canonical volume K3

X46
= 1

420 . One knows χ(OX46
) = 1 since

pg(X46) = q(X46) = h2(OX46
) = 0. Furthermore, it is known that

ϕm is birational for all m ≥ 27, but ϕ26 is not birational.

We now briefly sketch the main idea of this article. A general ap-
proach to study pluricanonical maps in higher dimensions is by utiliz-
ing vanishing theorems. The difficulty is usually reduced to bound from
below the canonical volume

Vol(Y ) := lim sup
{m∈Z+}

{
n!

mn
dimCH0(Y,OY (mKY ))}.

The volume is an integer when dimY ≤ 2, and hence a naive lower
bound 1 is obtained. However, it’s a rational number in dimension three
or higher. This is an essential difficulty of high-dimensional birational
geometry.

Another technical approach is the induction approach initiated by
Kollár [15], who proved that ϕ11m0+5 is birational provided Pm0

≥ 2
for 3-folds of general type. Kollár’s method has been generalized in
several directions by Chen [7], Chen-Hacon [3], Chen-Zuo [8], Chen-
Chen [5], and so on. Therefore, it remains to consider 3-folds with
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small plurigenera. One notices that the plurigenus Pm(Y ) is nothing
but the Euler characteristic χ(X,mKX) of its minimal model X thanks
to the vanishing theorem, and moreover if the minimal model is non-
singular or Gorenstein, then χ(OY ) < 0. One obtains P2 ≥ 4 easily by
the Riemann-Roch formula.

Reid introduced the notion of baskets of singularities which are local
deformation of singularities into cyclic quotients and derived a singular
Riemann-Roch formula for threefolds with at worst canonical singular-
ities. Roughly speaking, the “singular” Riemann-Roch formula com-
putes the Euler characteristic χ(Y,mKY ) by the usual Riemann-Roch
terms and the contribution from singularities which is computed by
baskets. The key new ingredient is our systematical study of baskets of
singularities in [4]. Our method provides a concrete way to determine
an approximation of a basket with given leading Euler characteristics
χ(KY ), χ(2KY ), · · · , etc. As a consequence, we are able to prove the
finiteness of baskets with small leading Euler characteristics. It is even
possible to give explicit classification up to baskets, which is exactly
what we have done in this paper.

The article is organized as follows. In Section 2, we summarize some
results on the geometry of |mK|, which substantially extend the above
mentioned technique. Combining with the technique on baskets of sin-
gularities developed in [4], we will give a successful classification in case
χ(O) = 1 in Section 3. In Section 4, we classify baskets such that
Pm ≤ 1 for all 1 < m ≤ 12 and χ(O) > 1. We get 63 classes of baskets
of 3-folds in Table C. All these classification allows us to find a practical
number n1 > 0 such that Pn1

≥ 2. Therefore, we are able to prove our
main theorems.

Throughout, we will frequently use those definitions, equalities, and
inequalities about formal baskets in our previous paper (see [4, Sections
3 and 4]). We prefer to use “≡” to denote numerical equivalence, while
“∼” represents linear equivalence. Roundup operator “⌈∗⌉” is defined
to be “−⌊−∗⌋”, where rounddown “⌊∗⌋” means taking the integral part.

We are very grateful to an anonymous referee whose keen suggestion
makes this paper be much better organized.

Acknowledgments. The first author was partially supported by TIMS,
NCTS/TPE and National Science Council of Taiwan. The second au-
thor was supported by National Outstanding Young Scientist Founda-
tion (#10625103) and NNSFC Key project (#10731030).

2. Technical preparation

In this section, we set up some notions and principles evolved in our
detailed study. We shall prove some general results on pluricanonical
birationality and the lower bound of canonical volume. Though the
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method has already appeared in several previous works, the way of
applying it is resultful to the effect that we are able to treat various
situations while proving our main theorems.

2.1. Reduction to problems on minimal 3-folds. Let V be a
non-singular projective 3-fold of general type. By the 3-dimensional
Minimal Model Program (see, for instance, [14, 16, 20]), V has a min-
imal model X (with KX nef and admitting Q-factorial terminal sin-
gularities). Denote by KX a canonical divisor of X. A basic fact is
that Vol(V ) = K3

X > 0. From the view point of birational geometry, it
suffices to prove main theorem for minimal 3-folds X.

Definition 2.2. (1) The number ρi = ρi(X) denotes the minimal
positive integer such that Pm(X) > i for all m ≥ ρi, where i = 0, 1.

(2) The number µi = µi(X) denotes the minimal positive integer with
Pµi

= Pµi
(X) > i where i = 0, 1, 2.

(3) Denote by B(X) the basket of singularities on X (according to
Reid [21]), and by r(X) the Cartier index of X.

By our definition, we see ρ0 ≤ ρ1 and µ0 ≤ µ1 ≤ ρ1. The existence
of ρ1 can be guaranteed by Theorem 1.

Now suppose we have Pm0
≥ 2 for certain positive integer m0. We

may study the geometry of the rational map ϕm0
:= Φ|m0KX |.

2.3. Set up for ϕm0
. We study the m0-canonical map of X:

ϕm0
: X 99K PPm0

−1,

which is a rational map. First of all we fix an effective Weil divisor
Km0

∼ m0KX . By Hironaka’s big theorem, we can take successive
blow-ups π : X ′ → X such that:

(i) X ′ is smooth;
(ii) the movable part of |m0KX′ | is base point free;
(iii) the support of the union of π∗(Km0

) and the exceptional divisors
is of simple normal crossings.

Set gm0
:= ϕm0

◦ π. Then gm0
is a morphism by assumption. Let

X ′ f
−→ Γ

s
−→ W ′ be the Stein factorization of gm0

with W ′ the image
of X ′ through gm0

. In summary, we have the following commutative
diagram:

X

X ′

W ′

Γ-

? ?

@
@
@
@
@R

- - - - - - - - - - --

f

sπ

ϕm0

gm0
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Recall that

π∗(KX) := KX′ −
1

r(X)
Eπ

with Eπ effective since X is terminal. So we always have

⌈mπ∗(KX)⌉ := ⌈mKX′ −
m

r(X)
Eπ⌉ ≤ mKX′

for any integer m > 0. Denote by Mm0
the movable part of |m0KX′ |.

One has

m0π
∗(KX) = Mm0

+ E′
m0

for an effective Q-divisor E′
m0

. In total, since

h0(X ′, ⌊m0π
∗(KX)⌋) = h0(X ′, ⌈m0π

∗(KX)⌉) = Pm0
(X ′) = Pm0

(X),

one has

m0KX′ = Mm0
+ (E′

m0
+

m0

r(X)
Eπ)

where E′
m0

+ m0

r(X)Eπ is exactly the fixed part of |m0KX′ |.

If dim(Γ) ≥ 2, a general member S of |Mm0
| is a nonsingular pro-

jective surface of general type by Bertini’s theorem and by the easy
addition formula for Kodaira dimension.

If dim(Γ) = 1, a general fiber S of f is an irreducible smooth pro-
jective surface of general type, still by the easy addition formula for
Kodaira dimension. We may write

Mm0
=

am0∑

i=1

Si ≡ am0
S

where Si are smooth fibers of f for all i and am0
≥ min{2Pm0

−2, Pm0
+

g(Γ)− 1}, by considering the degree of the divisor f∗(M0) on Γ.

Definition 2.4. We call S (in 2.3) a generic irreducible element of
the linear system |Mm0

|. Denote by σ : S −→ S0 the blow-down onto
the smooth minimal model S0. By abuse of concepts, we define a generic
irreducible element of an arbitrary movable linear system on any pro-
jective variety in a similar way.

Definition 2.5. (1) Define the positive integer p = p(m0) as follows:

p =

{
1 if dim(Γ) ≥ 2,

am0
if dim(Γ) = 1.

(2) To simplify our statements, we say that the fibration f is of type
III (resp. II, I) if dimΓ = 3 (resp. 2, 1). According to our needs, we
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would like to divide type I into subclasses:

f is of type





Iq if g(Γ) > 0,

I3 if g(Γ) = 0, Pm0
≥ 3,

Ip if g(Γ) = 0, pg(S) > 0,

In if g(Γ) = 0, pg(S) = 0.

2.6. Invariants of the fibration. Let V be a smooth projective
3-fold and f : V −→ Γ a fibration onto a nonsingular curve Γ. Leray
spectral sequence tells that

Ep,q
2 := Hp(Γ, Rqf∗ωV ) =⇒ En := Hn(V, ωV ).

By Serre duality and [15, Corollary 3.2, Proposition 7.6], one has the
torsion-freeness of the sheaves Rif∗ωV and the following formulae:

h2(OV ) = h1(Γ, f∗ωV ) + h0(Γ, R1f∗ωV ),

q(V ) := h1(OV ) = g(Γ) + h1(Γ, R1f∗ωV ).

2.7. Birationality principles. Let Y be a nonsingular projective
variety on which there are two divisors D and M . Assume that |M |

is base point free. Take the Stein factorization of Φ|M |: Y
f

−→ W −→

Ph0(Y,M)−1 where f is a fibration onto a normal variety W . Then the
rational map Φ|D+M | is birational onto its image if one of the following
conditions is satisfied:

(i) ([24, Lemma 2]) dimΦ|M |(Y ) ≥ 2, |D| 6= ∅ and Φ|D+M ||S is bira-
tional for a general member S of |M |.

(ii) ([6, §2.1]) dimΦ|M |(Y ) = 1, Φ|D+M | can separate different general
fibers of f and Φ|D+M ||F is birational for a general fiber F of f .

Remark 2.8. For the condition 2.7(ii), one knows that Φ|D+M | can
separate different general fibers of f whenever dimΦ|M |(Y ) = 1, W is
a rational curve and D is an effective divisor. (In fact, since |M | can
separate different fibers of f , so can |D +M |.)

2.9. Assumptions. Let m be a positive integer. Let |G| be a base
point free linear system on S. Denote by C a generic irreducible element
of |G|. Assume:

(1) The linear system |mKX′ | distinguishes different generic irreducible
elements of |Mm0

| (namely, Φ|mKX′ |(S
′) 6= Φ|mKX′ |(S

′′) for two

different generic irreducible elements S′, S′′ of |Mm0
|).

(2) The linear system |mKX′ ||S on S (as a sub-linear system of
|mKX′ |S|) distinguishes different generic irreducible elements of
|G|. (Or sufficiently, the complete linear system

|KS + ⌈(m− 1)π∗(KX)− S −
1

p
E′

m0
⌉|S |
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distinguishes different generic irreducible elements of |G|.)

2.10. A lower bound of K3. We keep the same notation as above.
Since π∗KX is nef and big, there is a rational number β > 0 such that
π∗(KX)|S −βC is numerically equivalent to an effective Q-divisor on S.

We further define the following quantities:

ξ := (π∗(KX) · C)X′ ;

α := (m− 1−
m0

p
−

1

β
)ξ;

α0 := ⌈α⌉.

One has

K3 ≥
p

m0
π∗(KX)2 · S ≥

pβ

m0
(π∗(KX) · C) =

pβ

m0
ξ. (2.1)

So it is essential to estimate the rational number ξ := (π∗(KX) ·C)X′

in order to obtain the lower bound of K3. We recall the following:

Theorem 2.11. ([8, Theorem 3.1]) Keep the notation as above. The
inequality

ξ ≥
deg(KC) + α0

m
holds if one of the following conditions is satisfied:

(i) α > 1;
(ii) α > 0 and C is an even divisor, i.e., C ∼ 2H for a divisor H on

S.

Furthermore, under Assumptions 2.9(1) and 2.9(2), the map ϕm :=
Φ|mKX′ | is birational onto its image if one of the following conditions is
satisfied:

(i) α > 2;
(ii) α ≥ 2 and C is not a hyper-elliptic curve on S.

Remark 2.12. In particular, the inequality ξ ≥ deg(KC)+α0

m in The-
orem 2.11 implies

ξ ≥
deg(KC)

1 + m0

p + 1
β

(2.2)

since, whenever m is big enough so that α > 1,

mξ ≥ deg(KC) + α0 ≥ deg(KC) + (m− 1−
m0

p
−

1

β
)ξ.

As long as we have fixed a linear system |G| on S, we are able to
prove the effective non-vanishing of plurigenera as follows.

Proposition 2.13. Assume Pm0
≥ 2 for some positive integer m0.

Then Pm(X) > 1 for all integers m > 1 + m0

p + 1
β . In particular,

ρ0 ≤ ρ1 ≤ ⌊2 + m0

p + 1
β ⌋.
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Proof. Assume m > 1 + m0

p + 1
β . Keep the same notation as in 2.3.

Put

Lm := (m− 1)π∗(KX)−
1

p
E′

m0
.

Then we have |KX′ + ⌈Lm⌉| ⊂ |mKX′ |. Noting that

Lm − S ≡ (m− 1−
m0

p
)π∗(KX)|S

is nef and big, the Kawamata-Viehweg vanishing theorem ([13, 26])
yields the surjective map

H0(X ′,KX′ + ⌈Lm⌉) → H0(S, (KX′ + ⌈Lm⌉)|S). (2.3)

Since S is a generic irreducible element of a free linear system, one has
⌈∗⌉|S ≥ ⌈∗|S⌉ for any divisor ∗ on X ′. It follows that

(KX′ + ⌈Lm⌉)|S ≥ KX′ |S + ⌈Lm|S⌉ ∼ KS + ⌈(Lm − S)|S⌉. (2.4)

Note that there is an effective Q-divisor Ĥ on S such that 1
βπ

∗(KX)|S ≡

C + Ĥ. We consider

Dm := (Lm − S)|S − Ĥ

on S. Then, by assumption, the divisor Dm − C ≡ (m − 1 − m0

p −
1
β )π

∗(KX)|S is nef and big. Thus the Kawamata-Viehweg vanishing

theorem again gives the surjective map

H0(S,KS + ⌈Dm⌉) −→ H0(C,KC +D), (2.5)

where D := ⌈Dm − C⌉|C is a divisor on C. Because C is a generic
irreducible element of a free linear system, we have D ≥ ⌈(Dm − C)|C⌉.
A simple calculation gives

deg(D) ≥ (Dm − C) · C = (m− 1−
m0

p
−

1

β
)ξ = α > 0.

Noting that g(C) ≥ 2 since S is of general type, Riemann-Roch formula
on C gives h0(C,KC +D) ≥ 2. Finally, surjective maps (2.3), (2.5) and
inequality (2.4) imply the statement. q.e.d.

We need the following lemma while studying type Ip, In, and I3 cases.

Lemma 2.14. Let S be a non-singular projective surface of general
type. Denote by σ : S −→ S0 the blow-down onto its minimal model S0.
Let Q be a Q-divisor on S. Then h0(S,KS + ⌈Q⌉) ≥ 2 under one of the
following conditions:

(i) pg(S) > 0, Q ≡ σ∗(KS0
) +Q1 for some nef and big Q-divisor Q1

on S;
(ii) pg(S) = 0, Q ≡ 2σ∗(KS0

)+Q2 for some nef and big Q-divisor Q2

on S.
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Proof. First of all, h0(S, 2KS) = h0(S, 2KS0
) > 0 by the Riemann-

Roch theorem on S, which is a surface of general type. Fix an effective
divisor R0 ∼ lσ∗(KS0

), where l = 1, 2 in cases (i) and (ii), respectively.
Then R0 is nef and big and R0 is 1-connected by [17, Lemma 2.6]. The
Kawamata-Viehweg vanishing theorem says H1(S,KS + ⌈Q⌉−R0) = 0,
which gives the surjective map

H0(S,KS + ⌈Q⌉) −→ H0(R0,KR0
+GR0

)

where GR0
:= (⌈Q⌉−R0)|R0

with deg(GR0
) ≥ (Q−R0)R0 = Ql ·R0 > 0.

The 1-connectedness of R0 allows us to utilize the Riemann-Roch (see
[1], Chapter II) as in the usual way. Note that S is of general type. So
K2

S0
> 0 and deg(KR0

) = 2pa(R0) − 2 = (KS + R0)R0 ≥ 2. By the
Riemann-Roch theorem on the 1-connected curve R0, we have

h0(R0,KR0
+GR0

) ≥ deg(KR0
+GR0

) + 1− pa(R0) ≥ pa(R0) ≥ 2.

Hence h0(S,KS + ⌈Q⌉) ≥ 2. q.e.d.

Proposition 2.15. Assume Pm0
≥ 2 for some positive integer m0.

Then Pm ≥ 2 for m ≥ h(m0) under one of the following situations:

(i) h(m0) = 2m0 + 3 when f is of type Ip;
(ii) h(m0) = 3m0 + 4 when f is of type In;
(iii) h(m0) = ⌊3m0

2 ⌋+ 4 when f is of type I3.

In particular, ρ0 ≤ ρ1 ≤ 2m0 + 3, 3m0 + 4, ⌊3m0

2 ⌋+ 4, respectively.

Proof. Keep the same notation as in 2.3. When f is of type I, we have
p = am0

. By [8, Lemma 3.3], there is a sequence of rational numbers

{β̂n} with β̂n 7→ p
m0+p ≥ 1

m0+1 such that

π∗(KX)|S − β̂nσ
∗(KS0

) ≡ Hn

for an effective Q-divisors Hn.
We consider

D′
m := (Lm − S)|S − (m− 1−

m0

p
)Hn ≡ (m− 1−

m0

p
)β̂nσ

∗(KS0
).

If, form > 0, h0(S,KS+⌈D′
m⌉) ≥ 2, then h0(S,KS+⌈(Lm − S)|S⌉) ≥

2. It follows then that Pm ≥ 2 by surjective map (2.3) and inequality
(2.4). We can choose h(m0) according to the type of f .

When f is of type Ip, we can pick a big number n so that β̂n ≥ 1
m0+1−

δ for some 0 < δ ≪ 1. For m ≥ 2m0 + 3, we see (m − 1 − m0

p )β̂n > 1.

By Lemma 2.14 and since pg(S) > 0, we know h0(S,KS + ⌈D′
m⌉) ≥ 2.

Thus we may take h(m0) = 2m0 + 3.

When f is of type In, we still take a big number n so that β̂n ≥ 1
m0+1−

δ for some 0 < δ ≪ 1. But, form ≥ 3m0+4, we have (m−1−m0

p )β̂n > 2.

By Lemma 2.14 again, we see h0(S,KS+⌈D′
m⌉) ≥ 2. Thus we may take

h(m0) = 3m0 + 4.



246 J.A. CHEN & M. CHEN

Finally, when f is of type I3, we have p ≥ 2. One may take a big
number n so that β̂n ≥ 2

m0+2−δ for some 0 < δ ≪ 1. For m ≥ ⌊3m0

2 ⌋+4,

we have (m−1−m0

p )β̂n > 2. Lemma 2.14 implies h0(S,KS+⌈D′
m⌉) ≥ 2.

Thus we may take h(m0) = ⌊3m0

2 ⌋+4. This completes the proof. q.e.d.

Lemma 2.16. Assume Pm0
(X) ≥ 2 for some positive integer m0.

Keep the same notation as in 2.3. Then, for m ≥ ρ0+m0, Assumptions
2.9 (1) is satisfied if f is of type III, II, I3, Ip, or In.

Proof. Let t > 0 be an integer. We consider the linear system |KX′ +
⌈tπ∗(KX)⌉+Mm0

| ⊂ |(m0 + t+1)KX′ |. Since KX′ + ⌈tπ∗(KX)⌉ ≥ (t+
1)π∗(KX), we see that KX′+⌈tπ∗(KX)⌉ is effective whenever t+1 ≥ ρ0.

When f is of type I3, Ip or In, we necessarily have g(Γ) = 0. Thus, by
[24, Lemma 2] and Remark 2.8, the linear system |KX′ + ⌈tπ∗(KX)⌉+
Mm0

| can separate different generic irreducible elements S of |Mm0
|.

q.e.d.

Lemma 2.17. Let T be a non-singular projective surface of general
type on which there is a base point free linear system |G|. Let Q be an
arbitrary Q-divisor on T . Then the linear system |KT + ⌈Q⌉ + G| can
distinguish different generic irreducible elements of |G| under one of the
following conditions:

(i) KT + ⌈Q⌉ is effective and |G| is not composed with an irrational
pencil of curves;

(ii) Q is nef and big and |G| is composed with an irreducible pencil of
curves.

Proof. Statement (i) follows from [24, Lemma 2] and Remark 2.8.
For statement (ii), we pick up a generic irreducible element C of |G|.

Then G ≡ sC where s ≥ 2 and C2 = 0. Let C ′ be another generic
irreducible element. The Kawamata-Viehweg vanishing theorem gives
the surjective map

H0(T,KT + ⌈Q⌉+G) −→ H0(C,KC +D)⊕H0(C ′,KC′ +D′)

where D := (⌈Q⌉+G−C)|C and D′ := (⌈Q⌉+G−C ′)|C′ with deg(D) >
0, deg(D′) > 0. Since T is of general type, both C and C ′ are curves
of genus ≥ 2. Thus h0(C,KC + D) = h0(C ′,KC′ + D′) > 1. Thus
|KT + ⌈Q⌉+G| can distinguish C and C ′. q.e.d.

Lemma 2.18. Assume Pm0
(X) ≥ 2 for some positive integer m0.

Keep the same notation as in 2.3. Take G := S|S for a generic irre-
ducible element S of |Mm0

|. Then Assumptions 2.9 (2) is satisfied under
one of the following situations:

(i) f is of type III and m ≥ ρ0 +m0.
(ii) f is of type II and m ≥ max{ρ0 +m0, 2m0 + 2}.
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Proof. Since

KS + ⌈(m− 1)π∗(KX)− S − 1
pE

′
m0

⌉|S
≥ KS + (m− 1)π∗(KX)|S − (S + E′

m0
)|S

= KS + (m−m0 − 1)π∗(KX)|S
≥ (m−m0)π

∗(KX)|S +G

and

KS + (m−m0 − 1)π∗(KX)|S
≥ KS + (m− 2m0 − 1)π∗(KX)|S +G,

Lemma 2.17 implies that |KS + ⌈(m− 1)π∗(KX)− S − 1
pE

′
m0

⌉|S | can

distinguish different generic irreducible elements of |G| respectively.
Note that, if f is of type III, |G| is not composed with a pencil of
curves. We are done. q.e.d.

Under the condition Pm0
≥ 2, we study the pluricanonical map ϕm

according to the type of f .

2.19. Type III.
When f is of type III, we have p = 1 by definition. In this case,

S ∼ Mm0
and |S| gives a generically finite morphism. We take G := S|S .

Then |G| is base point free and ϕ|G| gives a generically finite map. So a
generic irreducible element C ∼ G is a smooth curve.

If ϕ|G| gives a birational map, then dimϕ|G|(C) = 1 for a general

member C. The Riemann-Roch and Clifford’s theorem on C says C2 =
G · C ≥ 2. If ϕ|G| gives a generically finite map of degree ≥ 2, since

h0(S,G) ≥ h0(X ′, S)−1 ≥ 3, one gets C2 ≥ 2(h0(S,G)−2) ≥ 2. Either
way, we have C2 ≥ 2. So deg(KC) = (KS + C) · C > 2C2 ≥ 4. We see
deg(KC) ≥ 6 since it is a even number.

One may take β = 1
m0

since m0π
∗(KX)|S ≥ C.

Now inequality (2.2) gives ξ ≥ 6
2m0+1 . Take m = 3m0 + 2. Then

α = (m − 2m0 − 1)ξ > 3. So, by Theorem 2.11, ξ ≥ 10
3m0+2 . It follows

from inequality (2.1) that K3 ≥ 10
(3m0+2)m2

0

.

We now consider the non-vanishing of plurigenera. By Proposition
2.13, we have Pm ≥ 2 for all m > 2m0 + 1. Now, if m = 2m0 +
1, the surjective map (2.3) and inequality (2.4) lead us to compute
h0(S,KS + ⌈m0π

∗KX |S⌉). Let L be a generic irreducible element in
|S|S |. Then L is effective and nef. Since h2(KS + L) = 0, one has
h0(S,KS+L) ≥ χ(S,KS+L) = 1

2(KS ·L+L2)+χ(OS) ≥ 2 by Riemann-
Roch theorem. Hence P2m0+1 ≥ 2. Also, P2m0

≥ Pm0
≥ 2. Therefore,

we have Pm > 1 for all m ≥ 2m0. In particular, ρ0 ≤ ρ1 ≤ 2m0.
By Lemmas 2.16 and 2.18, Assumptions 2.9(1) and 2.9(2) are satisfied

if m ≥ 3m0. Now α = (m− 2m0− 1)ξ ≥ (m− 2m0− 1) 10
3m0+2 . One sees
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that α > 2 if m > 13m0+7
5 . Hence ϕm is birational if

m > max{3m0 − 1,
13m0 + 7

5
}.

We conclude the following:

Theorem 2.20. Assume Pm0
(X) ≥ 2 for some positive integer m0.

If the induced map f is of type III. Then:

1) ρ0 ≤ ρ1 ≤ 2m0.
2) K3 ≥ 10

(3m0+2)m2
0

.

3) ϕm is birational if m > max{3m0 − 1, 13m0+7
5 }.

2.21. Type II.
When f is of type II, we see that S ∼ Mm0

. Take |G| := |S|S |, which
is, clearly, composed with a pencil of curves.

Since a generic irreducible element C of |G| is a smooth curve of
genus ≥ 2, we have deg(KC) ≥ 2. Furthermore, we have h0(S,G) ≥
h0(X ′, S)− 1 ≥ 2. So G ≡ ãC where ã ≥ h0(S,G)− 1 ≥ 1. This means
that m0π

∗(KX)|S ≥ S|S ≥num C. So we may take β = 1
m0

.

Now inequality (2.2) gives ξ ≥ 2
2m0+1 . Take m = 3m0 + 2. Then

α > 1. One gets ξ ≥ 4
3m0+2 by Theorem 2.11. So inequality (2.1)

implies K3 ≥ 4
(3m0+2)m2

0

.

Exactly the same proof as in Type III shows that ρ0 ≤ ρ1 ≤ 2m0.
By Lemmas 2.16 and 2.18, Assumptions 2.9(1) and 2.9(2) are satisfied

if m ≥ 3m0. Now α = (m − 2m0 − 1)ξ ≥ (m − 2m0 − 1) 4
3m0+2 . One

sees that α > 2 if m > 7m0+4
2 . Since 7m0+4

2 > 3m0, ϕm is birational if

m > 7m0+4
2 .

We conclude the following:

Theorem 2.22. Assume Pm0
(X) ≥ 2 for some positive integer m0.

If the induced map f is of type II, then:

1) ρ0 ≤ ρ1 ≤ 2m0.
2) K3 ≥ 4

(3m0+2)m2
0

.

3) ϕm is birational if m > 7m0+4
2 .

2.23. Type Iq.
Since g(Γ) > 0, one sees q(X) > 0 and hence X is irregular. This

case is particularly well-behaved. It’s known that ϕm is birational for
all m ≥ 7 (see [3]). Also K3

X ≥ 1
22 (see [5]).

2.24. Type Ip.
We have an induced fibration f : X ′ −→ Γ with g(Γ) = 0. By

definition, p = am0
≥ 1. By assumption, pg(S) > 0 for a general fiber

S of f . We take G := 2σ∗(KS0
). Then one knows that |G| is base point

free (see [9, Theorem 3.1]). Thus |G| is not composed with a pencil and
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a generic irreducible element C is smooth. By [8, Lemma 3.3], we can
find a sequence of rational numbers {βn} with βn 7→ p

m0+p such that

π∗(KX)|S−
βn

2 C ≡ Hn for effective Q-divisors Hn. We may assume that

β ≥ 1
2(m0+1) − δ for some 0 < δ ≪ 1.

Since C ∼ 2σ∗(KS0
),

deg(KC) = (KS +C) · C ≥ (π∗(KX)|S + C) · C > C2 ≥ 4.

Since deg(KC) is even, we see deg(KC) ≥ 6.
Now inequality (2.2) gives ξ ≥ 6

3m0+3 . Take m = 4m0 + 5. Then

α = (m− 1−m0 −
1
β )ξ > 2 and Theorem 2.11 gives ξ ≥ 9

4m0+5 . So, by

inequality (2.1), one gets K3 ≥ 9
2m0(m0+1)(4m0+5) .

Note that

KS + ⌈(m− 1)π∗(KX)− S − 1
pE

′
m0

⌉|S
≥ KS + ⌈(m−m0 − 1)π∗(KX)|S⌉
≥ KS + ⌈(m−m0 − 1)π∗(KX)|S − 3

βn
Hn⌉

= KS + ⌈Q1⌉+ σ∗(KS0
) +C

(2.6)

where Q1 := (m−m0−1)π∗(KX)|S−C−σ∗(KS0
)− 3

βn
Hn ≡ (m−m0−

1 − 3
βn

)π∗(KX)|S is nef and big whenever m ≥ 4m0 + 5. By Lemma

2.14(i), KS+⌈Q1⌉+σ∗(KS0
) is effective. Thus, according to [24, Lemma

2], Assumption 2.9 (2) is satisfied for m ≥ 4m0 + 5. Since Proposition
2.15 (ii) implies ρ0 ≤ 2m0 + 3, Lemma 2.16 (ii) tells that Assumption
2.9(1) is satisfied as long as m ≥ 3m0 + 3. Take m ≥ 4m0 + 5. Then
α ≥ (m− 3m0 − 3)ξ ≥ 2m0+4

m0+1 > 2. So Theorem 2.11 implies that ϕm is
birational for all m ≥ 4m0 + 5.

We thus summarize:

Theorem 2.25. Assume Pm0
(X) ≥ 2 for some positive integer m0.

If the induced map f is of type Ip, then:

1) ρ0 ≤ ρ1 ≤ 2m0 + 3.
2) K3 ≥ 9

2m0(m0+1)(4m0+5) .

3) ϕm is birational if m ≥ 4m0 + 5.

2.26. Type In.
Similar to the type Ip case, we have p ≥ 1. We take |G| := |4σ∗(KS0

)|
which is base point free by a well-known result in [2]. Thus |G| is not
composed with a pencil and a generic irreducible element C is smooth.
Similarly, we can find a sequence of rational numbers {βn} with βn 7→

p
m0+p such that π∗(KX)|S − βn

4 C ≡ Hn for effective Q-divisors Hn. We

may assume that β ≥ 1
4(m0+1) − δ for some 0 < δ ≪ 1.

Since deg(KC) > 16σ∗(KS0
)2 ≥ 16 and deg(KC) is even, inequality

(2.2) gives ξ ≥ 18
5m0+5 . Take m = 6m0+6. Then α = (m−1−m0−

1
β )ξ =
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18
5 > 3 and Theorem 2.11 gives ξ ≥ 11

3m0+3 . So, by inequality (2.1), one

gets K3 ≥ 11
12m0(m0+1)2

.

By Proposition 2.15, we have Pm ≥ 2 for all m ≥ 3m0 + 4. Thus we
have the following:

Theorem 2.27. Assume Pm0
(X) ≥ 2 for some positive integer m0.

If the induced map f is of type In, then:

1) ρ0 ≤ ρ1 ≤ 3m0 + 4.
2) K3 ≥ 11

12m0(m0+1)2
.

3) ϕm is birational if m ≥ 5m0 + 6 (cf. [7, Theorem 0.1]).

2.28. Type I3.
We take G1 = 4σ∗(KS0

) so as to estimate K3
X . Then, as seen in

2.26, deg(KC) ≥ 18. Being in a better situation with p = am0
− 1 ≥

2, a better number β can be found. In fact, by [8, Lemma 3.3], one
may take a number sequence {βn} with βn 7→ p

4(m0+p) ≥ 1
2(m0+2) such

that π∗(KX)|S−βnC is numerically equivalent to an effective Q-divisor.
Namely, one may take a number β ≥ 1

2(m0+2) − δ for some 0 < δ ≪ 1.

Now inequality (2.2) gives ξ ≥ 18
1+

m0
2

+ 1

β

, i.e., ξ ≥ 36
5(m0+2) by taking the

limit. Hence inequality (2.1) implies K3 ≥ 36
5m0(m0+2)2

.

We take a different |G| on S to study the birationality. In fact, we
will take |G| to be the movable part of |2σ∗(KS0

)|. A different point
from previous ones is that |G| is not always base point free. But since
we have the induced fibration f : X ′ −→ Γ, we can consider the relative
bi-canonical map of f , namely, the rational map Ψ : X ′ 99K P over
Γ. First we can blow up the indeterminacy of Ψ on X ′. Then we can
assume, in the birational equivalence sense, that Ψ is a morphism over
B. By further modifying π, we can even finally assume that π dominates
Ψ. With this assumption (or by taking a sufficiently good π), we see
that |G| is base point free since |G| gives the bicanonical morphism for
each general fiber S of f .

By Proposition 2.15 and Lemma 2.16, Assumption 2.9(1) is satisfied
for m ≥ ⌊5m0

2 ⌋+ 4. Recall that we have p = am0
≥ 2.

Claim A. Assumption 2.9(2) is satisfied for m ≥ min{3m0 + 6, ρ0 +
2m0 + 2}.

In fact, the argument of 2.24 works here. A different place is that we
have a better bound for βn since p ≥ 2, but we only have deg(KC) ≥ 2.
By [8, Lemma 3.3], we can find a sequence of rational numbers {βn} with
βn 7→ p

2(m0+p) such that π∗(KX)|S − βn(2σ
∗(KS0

)) ≡ Hn for effective

Q-divisors Hn. We may assume that β ≥ 1
m0+2 − δ for some 0 < δ ≪ 1.
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Now the last three terms of inequality (2.6) can be replaced by

KS + ⌈(m−m0 − 1)π∗(KX)|S⌉
≥ KS + ⌈(m−m0 − 1)π∗(KX)|S − 2

βn
Hn⌉

= KS + ⌈Q2⌉+ 4σ∗(KS0
)

where Q2 := (m−m0 − 1)π∗(KX)|S − 4σ∗(KS0
)− 2

βn
Hn ≡ (m−m0 −

1 − 2
βn

)π∗(KX)|S is nef and big whenever m ≥ 3m0 + 6. According

to a theorem of Xiao [28], |G| is either not composed with a pencil or
composed with a rational pencil. Thus, according to [24, Lemma 2]
and Remark 2.8, Assumption 2.9(2) is satisfied for m ≥ 3m0 + 6. On
the other hand, we have an inclusion, OΓ(2) →֒ f∗ω

m0

X′ , which natu-

rally gives rise to the inclusion f∗ω
2
X′/Γ →֒ f∗ω

2m0+2
X′ . Now Viehweg’s

semi-positivity theorem [27] implies that f∗ω
2
X′/Γ is generated by global

sections. Thus |(2m0 + 2)KX′ ||S can distinguish different generic irre-
ducible elements of |G|. So Assumption 2.9(2) is naturally satisfied for
all m ≥ ρ0 + 2m0 + 2. We have proved Claim A.

Finally, we consider the value of α. Recall that we may take β 7→
p

2m0+2p ≥ 1
m0+2 . Inequality (2.2) gives ξ ≥ 2

1+
m0
2

+m0+2
= 4

3(m0+2) . If

we take m = 3m0 + 4. Then α > 1. Theorem 2.11 says ξ ≥ 4
3m0+4 .

Eventually, take m ≥ 3m0 +6. Then α > 2. Theorem 2.11 implies that
ϕm is birational for all m ≥ 3m0 + 6.

We thus conclude the following:

Theorem 2.29. Assume Pm0
(X) ≥ 3 for some positive integer m0.

If the induced map f is of type I3, then:

1) ρ0 ≤ ρ1 ≤ ⌊3m0

2 ⌋+ 4.

2) K3 ≥ 36
5m0(m0+2)2 .

3) ϕm is birational if m ≥ 3m0 + 6.

By collecting all above results, we have the following:

Corollary 2.30. Assume Pm0
(X) ≥ 2 for some positive integer m0.

Then K3 ≥ 11
12m0(m0+1)2

.

2.31. Volume optimization.

Indeed, when m0 is small, the estimation of K3
X could be optimized

by recursively applying Theorem 2.11 with a suitable m.
For example, suppose m0 = 11 and f is of type III. Then inequality

(2.2) gives ξ ≥ 6
23 . Take m = 27. By Theorem 2.11, we get ξ ≥ 8

27 . So

inequality (2.1) gives K3 ≥ 8
3267 > 10

m2
0
(3m0+2)

.

Let’s consider another example with m0 = 8 and f being of type II.
Then we may take β = 1

8 . Inequality (2.2) gives ξ ≥ 2
17 . Take m = 26.

Then α ≥ 18
17 > 1. Theorem 2.11 gives ξ ≥ 2

13 . Take m = 24. Then
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α > 1. Again, one gets ξ ≥ 1
6 . So inequality (2.1) implies K3 ≥ 1

384 >
4

m2
0
(3m0+2)

.

With the idea mentioned above, a patient reader should have no
difficulty to check the following table on the lower bound of K3 for
small m0.

Table A
m0 2 3 4 5 6 7
III 1/3 8/81 1/22 8/325 1/72 4/441
II 1/8 2/45 1/52 1/100 1/162 4/1029

Pm0
≥ 3 1/8 2/45 1/52 1/100 1/162 4/1029

Pm0
≥ 2 5/96 5/264 1/108 1/192 5/1554 5/2408

m0 8 9 10 11 12
III 1/160 4/891 2/625 8/3267 1/522
II 1/384 2/1053 1/725 1/968 1/1224

Pm0
≥ 3 1/384 2/1053 1/725 1/968 1/1224

Pm0
≥ 2 5/3456 1/954 1/1276 5/8448 5/10764

Lemma 2.32. If f is of type In and q(X) = 0, then χ(OX) ≤ 1.

Proof. We have an induced fibration f : X ′ −→ Γ onto the rational
curve Γ. A general fiber S of f is a non-singular projective surface of
general type with pg(S) = 0. Because χ(OS) > 0, we see q(S) = 0. This
means f∗ωX′ = 0 and R1f∗ωX′ = 0 since they are both torsion free by
[15]. Thus we get by 2.6 the following formulae:

h2(OX) = h2(OX′) = h1(f∗ωX′) + h0(R1f∗ωX′) = 0;

q(X) = q(X ′) = g(Γ) + h1(R1f∗ωX′) = 0.

So we see χ(OX) = 1− q(X) + h2(OX)− pg(X) ≤ 1. q.e.d.

2.33. Miyaoka-Reid inequality on B(X). We refer to [4, Section
2] for the definition of baskets. Assume that Reid’s basket of singular-
ities on X is BX := B(X) = {(bi, ri)}. According to [21, 10.3], one
has

1

12
KX · c2(X) = −2χ(OX) +

∑

i

r2i − 1

12ri

where c2(X) is defined via the intersection theory by taking a resolution
of singularities of X. On the other hand, [18, Corollary 6.7] says KX ·
c2(X) ≥ 0. Thus one has the following inequality:

∑

i

ri − 24χ(OX ) ≥
∑

i

1

ri
. (2.7)

A direct application of inequality (2.7) is the following:

Corollary 2.34. Suppose that we have a packing between formal bas-
kets B := (B,χ(OX), P̃2) < B′ := (B′, χ(OX ), P̃2) and that inequality
(2.7) fails for B′. Then (2.7) fails for B.
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3. General type 3-folds with χ = 1

In this section, we always assume χ(OX) = 1. If there is a small num-
ber m0 such that Pm0

> 1, then one can detect the birational geometry
of X by studying ϕm0

. Thus a natural question is what practical num-
ber m0 can be found such that Pm0

> 1. This is exactly the motivation
of this section. Equivalently, we shall give a complete classification of
baskets to those X with Pm ≤ 1 for m ≤ 6.

3.1. Assumption: Pm(X) ≤ 1 for 1 ≤ m ≤ 6.

In fact, Pm satisfies the following geometric condition.

Lemma 3.2. Assume χ(OX) = 1. Then Pm+2 ≥ Pm + P2 for all
m ≥ 2.

Proof. By Reid’s formula ([21]), we have

Pm+2 − Pm − P2 = (m2 +m)K3
X − χ(OX) + (l(m+ 2)− l(m)− l(2)).

By [11, Lemma 3.1], one sees l(m+2)− l(m)− l(2) ≥ 0. Since K3
X > 0

and χ(OX) = 1, we have Pm+2 − Pm − P2 > −1. q.e.d.

We consider the formal basket

B := (B,χ(OX), P2(X))

where B = B(X). As we have seen in [4, Section 3],

(i) K3(B) = K3(B) = K3
X > 0;

(ii) Pm(B) = Pm(X) for all m ≥ 2.

By Lemma 3.2, we see P4 ≥ 2 if P2 > 0. Thus under Assumption 3.1,
we have P2 = 0. We can also get Pm+2 > 0 whenever Pm > 0. Thus, in
practice, we only need to study the following types: P2 = 0 and

(P3, P4, P5, P6) = (0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 1, 1).

(3.1)
Now we consider the formal basket B := (B, 1, 0). We might abuse

the notation of baskets and formal baskets in this section for we always
have χ = 1, P2 = 0 in this section. We keep the notation as in [4].

With explicit values of (P3, P4, P5, P6), we are able to determine

B
(5)(B) (cf. [4, Sections 3,4]). Our main task is to search all pos-

sible minimal (with regard to ≻) positive baskets Bmin dominated by

B
(5)(B). Take B5 := (B(5)(B), 1, 0) and Bmin := (Bmin, 1, 0). Then

we see B5 < B < Bmin.
Now we classify all minimal positive geometric baskets Bmin.

3.3. Case I: P3 = P4 = P5 = P6 = 0 (impossible)
We have σ = 10, τ = 4,∆3 = 5,∆4 = 14, ǫ = 0, σ5 = 0, and ǫ5 = 2.

The only possible initial basket is {5 × (1, 2), 4 × (1, 3), (1, 4)}. And
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B(5) = {3 × (1, 2), 2 × (2, 5), 2 × (1, 3), (1, 4)} with K3 = 1
60 . We shall

calculate Bmin of B(5).
If we pack {(1, 2), (2, 5)} into {(3, 7)}. Then we get:

I-1. B1,1 = {2× (1, 2), (3, 7), (2, 5), 2 × (1, 3), (1, 4)}, K3 = 1
420 ,

which admits no further prime packing into positive baskets. Hence
B1,1 is minimal positive.

We consider those baskets with (1, 2) unpacked because otherwise it’s
dominated by B1,1. So we consider the packing

{3 × (1, 2), (2, 5), (3, 8), (1, 3), (1, 4)}

with K3 = 1
120 . This basket allows two further packings to minimal

positive ones:
I-2. B1,2 = {3× (1, 2), (2, 5), (4, 11), (1, 4)} , K3 = 1

220 .

I-3. B1,3 = {3× (1, 2), (5, 13), (1, 3), (1, 4)}, K3 = 1
156 .

Finally we consider the case that both (1, 2) and (2, 5) remain un-
packed. We get one more basket which is indeed minimal positive
I-4. B1,4 = {3× (1, 2), 2 × (2, 5), (1, 3), (2, 7)} , K3 = 1

210 .
A direct calculation shows that none of B1,1, B1,2, B1,3, and B1,4

satisfy inequality (2.7). Hence B does not satisfy (2.7), a contradiction.
This proves that Case I is impossible.

3.4. Case II: P3 = P4 = P5 = 0, P6 = 1 (⇛ B2,1, B2,2)
Now we have σ = 10, τ = 4, ∆3 = 5, ∆4 = 14, ǫ ≤ 1. If ǫ = 0, then

ǫ5 = 1; if ǫ = 1, then ǫ5 = 0. Thus all possible initial baskets and B(5)

are as follows:
II-i. B(0) = {5×(1, 2), 4×(1, 3), (1, 4)} ≻ B(5) = {4×(1, 2), (2, 5), 3×

(1, 3), (1, 4)}, with K3(B(5)) = 1
20 .

II-ii. B(0) = {5 × (1, 2), 4 × (1, 3), (1, 5)} ≻ B(5) = {5 × (1, 2), 4 ×
(1, 3), (1, 5)},with K3(B(5)) = 1

30 .
In Case II-i, we first consider the situation that all single baskets

(1, 2) are packed into {(6, 13), 3 × (1, 3), (1, 4)}, which gives a unique
minimal positive basket:
II-1. B2,1 = {(6, 13), (1, 3), (3, 10)} , K3 = 1

390 , P9 = 2, P13 = 3.

We then consider the situation that at least one basket (1, 2) remains
unpacked. Then we get the following minimal positive basket:
II-2. B2,2 = {(1, 2), (5, 11), (4, 13)} , K3 = 1

286 , P9 = 2, P13 = 3.
Notice, however, that if {3× (1, 2), (3, 7), 3 × (1, 3), (1, 4)} ≻ B, then

B dominates B2,2. Thus it remains to consider the situation that all
single baskets (1, 2) are unpacked, but (2, 5) must be packed with some
(1, 3). So we get the following minimal positive baskets:
II-3. B2,3 = {(4, 8), (3, 8), (3, 10)} , K3 = 1

40 .

II-4. B2,4 = {(4, 8), (4, 11), (2, 7)} , K3 = 2
77 .
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II-5. B2,5 = {(4, 8), (5, 14), (1, 4)} , K3 = 1
28 .

In Case II-ii, B(5) admits no further prime packing. Thus we get:
II-6. B2,6 = {(5, 10), (4, 12), (1, 5)}, K3 = 1

30 .
One may check that B2,3, B2,4, B2,5, B2,6 do not satisfy inequality

(2.7). Thus only II-1 and II-2 can happen.

3.5. Case III: P3 = P4 = 0, P5 = 1, P6 = 0 (⇛ B3,1 ∼ B3,5)
Now we have σ = 10, τ = 4, ∆3 = 5, ∆4 = 15. Moreover, P7 ≥ 1,

and hence ǫ = 0, σ5 = 0, and ǫ5 = 4. Thus the only possible initial
basket and B(5) are

B(0) = {5× (1, 2), 5 × (1, 3)} ≻ B(5) = {(1, 2), 4 × (2, 5), (1, 3)}.

So we get the following minimal positive baskets:
III-1. B3,1 = {(9, 22), (1, 3)}, K3 = 1

66 , P9 = 2, P10 = 3.

III-2. B3,2 = {(7, 17), (3, 8)}, K3 = 1
136 , P10 = 2, P12 = 3.

III-3. B3,3 = {(5, 12), (5, 13)}, K3 = 1
156 , P10 = 2, P12 = 3.

III-4. B3,4 = {(3, 7), (7, 18)}, K3 = 1
126 , P10 = 2, P12 = 3.

III-5. B3,5 = {(1, 2), (9, 23), }, K3 = 1
46 , P8 = 2, P10 = 4.

3.6. Case IV: P3 = P4 = 0, P5 = 1, P6 = 1 (⇛ B3,1, B3,2, B3,4, B3,5)
Now we have σ = 10, τ = 4, ∆3 = 5, ∆4 = 15. Moreover, the initial

basket must have n0
1,2 = n0

1,3 = 5, and hence n0
1,r = 0 for all r ≥ 4. It

follows that ǫ = 0, σ5 = 0, and ǫ5 = 3. Thus the only possible initial
basket and B(5) are

B(0) = {5× (1, 2), 5 × (1, 3)} ≻ B(5) = {2× (1, 2), 3 × (2, 5), 2 × (1, 3)}.

So we get the following minimal positive baskets:
IV-1. {(8, 19), (2, 6)} ≻ B3,1.
IV-2. {(6, 14), (4, 11)} ≻ B3,4.
IV-3. {(4, 9), (6, 16)} ≻ B3,2.
IV-4. {(2, 4), (8, 21)} ≻ B3,5.

3.7. Case V: P3 = 0, P4 = 1, P5 = 0, P6 = 1. (⇛ B5,1 ∼ B5,3)
We have σ = 10, τ = 4, ∆3 = 6, ∆4 = 13, and σ5 ≤ ǫ ≤ 2. The

initial baskets have 4 types:
V-i. {6× (1, 2), (1, 3), 3 × (1, 4)};
V-ii. {6 × (1, 2), (1, 3), 2 × (1, 4), (1, 5)};
V-iii. {6 × (1, 2), (1, 3), (1, 4), 2 × (1, 5)};
V-iv. {6× (1, 2), (1, 3), 2 × (1, 4), (1, r)} with r ≥ 6.

Cases V-iii and V-iv are impossible since K3 ≤ 0. For Case V-i,
we have ǫ5 = 1, and for V-ii, we have ǫ5 = 0. Hence B(5) has two
possibilities, correspondingly:
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V-i. {(5, 10), (2, 5), (3, 12)};
V-ii. {(6, 12), (1, 3), (2, 8), (1, 5)}.

By computation, we get minimal positive baskets as follows:
V-1. B5,1 = {(7, 15), (3, 12)}, K3 = 1

60 , P7 = 2, P8 = 3.

V-2. B5,2 = {(6, 12), (1, 3), (3, 13)}, K3 = 1
39 , P8 = 3.

V-3. B5,3 = {(6, 12), (3, 11), (1, 5)}, K3 = 1
55 , P8 = 2, P10 = 4.

3.8. Case VI: P3 = 0, P4 = P5 = P6 = 1 (⇛ B6,1 ∼ B6,6)
We have σ = 10, τ = 4, ∆3 = 6, ∆4 = 14. Also, P7 ≥ 1 and hence

σ5 ≤ ǫ ≤ 2. The initial baskets have four types:
VI-i. {6× (1, 2), 2 × (1, 3), 2 × (1, 4)};
VI-ii. {6× (1, 2), 2 × (1, 3), (1, 4), (1, 5)};
VI-iii. {6× (1, 2), 2 × (1, 3), 2 × (1, 5)};
VI-iv. {6× (1, 2), 2 × (1, 3), (1, 4), (1, r)} with r ≥ 6.

Since there are only 2 baskets of (1, 3), we have ǫ5 = 3 − σ5 ≤ 2.
Hence σ5 > 0 and ǫ > 0. Therefore, Case VI-i is impossible.

For Case VI-ii and ǫ5 = 2, we get:
VI-ii. B(5) = {4× (1, 2), 2 × (2, 5), (1, 4), (1, 5)}.
Hence we get minimal positive baskets as follows:
VI-1. B6,1 = {(1, 2), (7, 16), (2, 9)}, K3 = 1

144 , P7 = 2, P9 = 3.

VI-2. B6,2 = {(6, 13), (2, 5), (2, 9)}, K3 = 8
585 , P7 = 2, P8 = 3.

VI-3. B6,3 = {(8, 18), (1, 4), (1, 5)}, K3 = 1
180 , P7 = 2, P9 = 3.

For Case VI-iii and ǫ5 = 1, we get:
VI-ii. B(5) = {5× (1, 2), (2, 5), (1, 3), 2 × (1, 5)}.
Hence we get minimal positive baskets as follows:
VI-4. B6,4 = {(1, 2), (6, 13), (1, 3), (2, 10)}, K3 = 1

390 , P8 = 2, P9 = 3.

VI-5. B6,5 = {(5, 10), (3, 8), (2, 10)}, K3 = 1
40 , P8 = 3.

For Case VI-iv and ǫ5 = 2, we get:
VI-iv. B(5) = {4× (1, 2), 2 × (2, 5), (1, 4), (1, r)} with r ≥ 6.
Since K3(B(5)) > 0, we must have r = 6. Then we get the following
minimal positive basket:
VI-6. B6,6 = {(3, 6), (3, 7), (2, 5), (1, 4), (1, 6)}, K3 = 1

420 , P10 = 2,
P12 = 3.

3.9. Case VII: P3 = 1, P4 = 0, P5 = P6 = 1 (impossible)
We have σ = 9, τ = 3, ∆3 = 1, ∆4 = 9. Moreover, P7 ≥ 1 and

hence ǫ = 0. It follows that σ5 = 0 and ǫ5 = 2. The initial basket is
B(0) = {(1, 2), 7 × (1, 3), (1, 4)}.

Note that there is only one basket of type (1, 2). However, since
ǫ5 = 2, one has 1 ≥ n5

2,5 = 2, a contradiction. Thus Case VII does not
happen.
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3.10. Case VIII: P3 = P4 = P5 = P6 = 1 (⇛ B8,1 ∼ B8,3)
We have σ = 9, τ = 3, ∆3 = 2, ∆4 = 8. Moreover, P7 ≥ 1 and then

ǫ ≤ 1. If ǫ = 1, then σ5 = 1 and ǫ5 = 1. If ǫ = 0, then σ5 = 0 and
ǫ5 = 2. The initial baskets and B(5) have 2 types:
VIII-i. B(0) = {2× (1, 2), 4× (1, 3), 3× (1, 4)} ≻ B(5) = {2× (2, 5), 2×
(1, 3), 3 × (1, 4)} with K3(B(5)) = 1

60 .

VIII-ii. B(0) = {2× (1, 2), 4 × (1, 3), 2 × (1, 4), (1, 5)} ≻ B(5) = {(1, 2),
(2, 5), 3 × (1, 3), 2 × (1, 4), (1, 5)} with K3(B(5)) = 0.

Clearly, Case VIII-ii is impossible since K3 is not positive.
For Case VIII-i, we first consider the situation that one single basket

(2, 5) is packed, so that we get the basket {(2, 5), (3, 8), (1, 3), (4, 12)}.
We can get two minimal positive baskets as follows:
VIII-1. B8,1 = {(5, 13), (1, 3), (3, 12)}, K3 = 1

156 , P7 = 2, P8 = 3.

VIII-2. B8,2 = {(2, 5), (4, 11), (3, 12)}, K3 = 1
220 , P7 = 2, P8 = 3.

It remains to consider the situation that each single basket (2, 5)
remains unpacked. We then obtain the basket

B210 := {(4, 10), (1, 3), (2, 7), (2, 8)}

with K3 = 1
210 , P7 = 2, P10 = 3. After a one-step prime packing, we

get the minimal positive basket:
VIII-3. B8,3 = {(4, 10), (1, 3), (3, 11), (1, 4)}, K3 = 1

660 , P7 = 2.

The detailed classification (3.3∼ 3.10) makes it possible for us to
study the birational geometry of X, of which the first application is the
following theorem.

Theorem 3.11. Assume χ(OX) = 1. Then K3
X ≥ 1

420 . Furthermore,

K3
X = 1

420 if, and only if, B = B6,6.

Proof. If µ1 ≤ 6, then Proposition 2.30 implies K3
X ≥ 1

294 · 11
12 > 1

420 .
We may assume that Pm ≤ 1 for m ≤ 6. We have seen P2 = 0. Since

B5 < B < Bmin and by [4, Lemma 3.6], we have

K3
X = K3(B) ≥ K3(Bmin)

where Bmin is in the set {B2,1, B2,2, B3,1 ∼ B3,5, B5,1 ∼ B5,3, B6,1 ∼
B6,6, B8,1 ∼ B8,3}.

If Bmin 6= B6,6, or B8,3, then we have seen K3(Bmin) >
1

420 .
If Bmin = B8,3, we show B 6= B8,3. In fact, if B = B8,3, then

P7(B) = 2 as we have seen in 3.10. By Table A in Section 2, we have
K3

X = K3(B) ≥ 5
2408 > 1

660 , a contradiction. Hence B ≻ B8,3. Notice
that B8,3 is obtained, exactly, by one-step packing from

B210 := {(4, 10), (1, 3), (2, 7), (2, 8)}

and no other ways. This says B < B210 and so K3
X ≥ K3(B210) =

1
210 .

We have seen K3(B6,6) =
1

420 . We are done. q.e.d.
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With a different approach, L. Zhu [29] also proved K3 ≥ 1
420 . The

proof of the last theorem gives the following:

Corollary 3.12. Assume χ(OX) = 1 and Pm ≤ 1 for all m ≤ 6.
Then B(X) either dominates a minimal basket in the set

{B2,1, B2,2, B3,1 ∼ B3,5, B5,1 ∼ B5,3, B6,1 ∼ B6,6, B8,1, B8,2}

or dominates the basket B210.

Corollary 3.13. Assume χ(OX) = 1. Then P10(X) ≥ 2 and, in
particular, µ1 ≤ 10.

Proof. If Pm0
≥ 2 for some m0 ≤ 6, then, by Lemma 3.2, one can see

P10 ≥ 2. Otherwise, Corollary 3.12 and [4, Lemma 3.6] imply that
P10 = P10(B(X)) ≥ P10(B∗) where B∗ denotes a minimal positive
basket mentioned in Corollary 3.12. By a direct computation, we get
P10(B∗) ≥ 2. q.e.d.

Example 1.3 shows that the statement in Corollary 3.13 is optimal
since P9(X46) = 1.

Theorem 3.14. Assume χ(OX) = 1. Then:

(1) ρ0 ≤ 7.
(2) Either P5 > 0 or P6 > 0.

Proof. (1) Recall that µ0 := min{m|Pm > 0}. By 3.3, we see µ0 ≤ 6.
When µ0 ≤ 3, it is easy to deduce the statement by Lemma 3.2.
When µ0 = 4, Lemma 3.2 implies P2k > 0 for all k ≥ 3. If P7 > 0,

Lemma 3.2 implies P2k+1 > 0 for all k ≥ 3 and the statement (1) is
true. Assume P7 = 0. Then P5 = 0. Now ǫ5 = 2− P6 − σ5 ≥ 0 implies
σ5 ≤ 2 − P6 ≤ 1. On the other hand, ǫ6 = P4 + P6 − ǫ = 0 implies
ǫ ≥ 2. This means σ5 = P6 = P4 = 1 and the situation corresponds
to 3.7. Thus B < Bmin where Bmin = B5,2, B5,3. But the computation
tells P7(Bmin) > 0, a contradiction.

When µ0 = 5, we study P8. If P8 > 0, then (1) is true by Lemma
3.2. Assume P8 = 0. Then P6 = 0. Now ǫ6 = P5 − P7 − ǫ = 0 gives
ǫ = 0 and P5 = P7 since P7 ≥ P5. Since n0

1,4 = 1 − P5 ≥ 0, we see
P5 = 1. So the situation corresponds to 3.5. Since the computation
shows P8 ≥ P8(B3,∗) > 0, a contradiction.

Finally, when µ0 = 6, we study P7. If P7 > 0, then Lemma 3.2 implies
(1). Otherwise, P7 = 0. Now ǫ6 = P6 − ǫ = 0 implies ǫ = P6 > 0.
Besides, ǫ5 = 2 − P6 − σ5 ≥ 0 says P6 ≤ 1 since σ5 > 0. Hence
ǫ = P6 = 1. The situation corresponds to 3.4. But the computation
shows P7 ≥ P7(B2,1) > 0 or P7 ≥ P7(B2,2) > 0, a contradiction.

(2) Assume P5 = P6 = 0. Then Lemma 3.2 implies P3 = P4 = 0. The
situation corresponds to 3.3, which is impossible as already seen there.

q.e.d.

D. Shin [22] proved the first statement in a different way.



EXPLICIT BIRATIONAL GEOMETRY OF THREEFOLDS 259

4. General type 3-folds with χ > 1

In this section, we assume χ(OX) > 1. Again, we will frequently
apply our formulae and inequalities in [4, Sections 3 and 4].

When Pm0
≥ 2 for some positive integer m0 ≤ 12, known theorems

will give an effective lower bound of K3
X and a practical pluricanonical

birationality. Therefore, similar to Section 3, we need to classify X up
to baskets when preceding plurigenera are smaller. For this reason, we
make the following:

4.1. Assumption: Pm ≤ 1 for all m ≤ 12.

According to [4, Lemma 4.8], we have seen that P2 = 0 under As-
sumption 4.1. Note that inequality [4, (3.14)], for general-type 3-folds,
is as follows:

2P5+3P6+P8+P10+P12 ≥ χ+10P2+4P3+P7+P11+P13+R (4.1)

where

R := 14σ5 − 12n0
1,5 − 9n0

1,6 − 8n0
1,7 − 6n0

1,8 − 4n0
1,9 − 2n0

1,10 − n0
1,11

= 2n0
1,5 + 5n0

1,6 + 6n0
1,7 + 8n0

1,8 + 10n0
1,9 + 12n0

1,10 + 13n0
1,11

+14
∑

r≥12 n
0
1,r

and σ5 =
∑

r≥5 n
0
1,r.

Inequality (4.1) and Assumption 4.1 imply that both χ and P13 are
bounded from above. Thus our formulae in [4, Section 4] allows us to

explicitly compute B(12). To be more solid, we prove the following:

Proposition 4.2. Assume χ(OX) > 1 and Pm ≤ 1 for all m ≤ 12.
Then the formal basket B = B(X) := (B(X), χ(OX ), 0) has a finite
number of possibilities.

Proof. We study n0
1,r for r ≥ 6. If there exists a number r ≥ 6 such

that n0
1,r 6= 0, then R ≥ 5 by the definition of R in inequality (4.1).

Hence, by (4.1), one has

8 ≥ 2P5 + 3P6 + P8 + P10 + P12 ≥ χ+ 5 ≥ 7.

This implies that P5 = P6 = 1. Hence P11 = 1. Now (4.1) again reads
5 + P8 + P10 + P12 ≥ 8 + P7 + P13. It follows that P8 = P10 = P12 = 1
and P7 = P13 = 0. This gives a contradiction since P13 ≥ P5P8 = 1. So
we conclude n0

1,r = 0 for all r ≥ 6. In other words, [4, Assumption 3.8]
is satisfied.

This essentially allows us to utilize those formulae in the last part of
[4, Section 3]. In particular, one sees that each quantity there is bounded

and hence B(12) has a finite number of possibilities. Dominated by B(12)

(i.e., B(12) < B), B = B(X) also has a finite number of possibilities.
We are done. q.e.d.
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4.3. Complete classification of B satisfying Assumption 4.1.

Note that, for all 0 < m,n ≤ 12, and m+ n ≤ 13,

Pm+n ≥ PmPn (4.2)

naturally holds since Pm, Pn ≤ 1.
Suppose we have known B(12). Then we can determine all possible

minimal positive baskets Bmin dominated by B(12), where Bmin ∈ T (a
finite set). Now the formal basket B satisfies the following relation:

(B(12), χ, 0) < B < (Bmin, χ, 0)

for some Bmin ∈ T . Therefore, by [4, Lemma 3.6], we have K3
X =

K3(B) ≥ K3(Bmin) > 0 and Pm = Pm(B) ≥ Pm(Bmin). This is the
whole strategy.

The calculation can be done by a simple computer program, or even
by hand. Our main result is Table C, which is a complete list of all
possibilities of B(12) and its minimal positive elements.

In fact, first we preset Pm = 0, 1 for m = 3, · · · , 11. Then ǫ6 = 0 gives
the value of ǫ. So we know the value of n0

1,5. By inequality (4.1) we get

the upper bound of χ since P13 ≥ 0. Since n7
1,4 ≥ 0, we get the upper

bound of η. Similarly n9
2,9 ≥ 0 gives the upper bound of ζ. Also n11

4,9 ≥ 0

yields α ≤ ζ. Finally, n11
3,8 ≥ 0 gives the upper bound of β. Now we set

P12 = 0, 1. Then inequality (4.1) again gives the upper bound of P13,
noting that χ ≥ 2. Clearly there are, at most, finitely many solutions.
With inequality (4.2) imposed, we can get about 80 cases. An important

property to mention is the inequality K3(B(12)) ≥ K3(B) = K3
X > 0.

With K3 > 0 imposed on, we have 63 outputs, which is exactly Table
C. Simultaneously, we have been able to calculate all those minimal
positive baskets dominated by B(12), since B(12) is “nearly” minimal in
most cases.

If one would like to take a direct calculation by hand, it is of course
possible. Consider the no. 2 case in Table C as an example. Since
P2 = 0, P3 = · · · = P7 = 0, P8 = 1, and P9 = P10 = P11 = 0, [4, (3.10)]
tells that ǫ = 0 and thus σ5 = 0, which means R = 0. Now inequality
(4.1) gives P12+1 ≥ χ+P13 ≥ 2. So P12 = 1, χ = 2, and P13 = 0. Now
the formula for ǫ10 gives ǫ10 = −η ≥ 0, which means η = 0. Similarly,
n9
1,5 = ζ−1 ≥ 0. On the other hand, n9

3,7 = 1−ζ ≥ 0. Thus ζ = 1. Now

n11
4,9 = ζ − α ≥ 0 gives α ≤ 1. n11

3,11 = 1− ζ − α− β ≥ gives α = β = 0.
Finally, we get

{n1,2, n5,12, . . . , n1,5} = {4, 0, 1, 0, 0, 2, 1, 0, 3, 0, 0, 0, 2, 0, 0}.

That is, B(12) = {4× (1, 2), (4, 9), 2 × (2, 5), (3, 8), 3 × (1, 3), 2 × (1, 4)}.
We see that B(12) admits only one prime packing of type

{(2, 5), (3, 8)} ≻ {(5, 13)}
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over the minimal positive basket {4×(1, 2), (4, 9), (2, 5), (5, 13), 3×(1, 3), 2×
(1, 4)}. We simply write this as {(5, 13), ∗} in Table C. It is now easy to

calculate K3 for both B(12) and the minimal positive basket {(5, 13), ∗}.
Finally, we can directly calculate Pm. At the same time, µ1 is given in
the table. For our needs in this context, we also display the value of
P18 = P18(B

(12)) or P18(Bmin) and P24 = P24(B
(12)) or P24(Bmin) in

Table C, though the symbols P18 or P24 are misused here.
So theoretically we can finish our classification by detailed computa-

tions. We omit the details because all calculations are similar.

4.4. Notation. By abuse of notation, we denote by B∗ the final
basket corresponding to No.* in Table C. For example, B2 = {4 ×
(1, 2), (4, 9), 2 × (2, 5), (3, 8), 3 × (1, 3), 2 × (1, 4)} while B2a = {4 ×
(1, 2), (4, 9), (2, 5), (5, 13), 3 × (1, 3), 2 × (1, 4)} is minimal positive. The
relation is as follows:

B2 < B < B2a.

Clearly, for this case, we have 1
360 = K3(B2) ≥ K3

X ≥ K3(B2a) =
1

1170 .
Another typical example is No.63, where we have

B63 = {5×(1, 2), (4, 9), 2×(3, 7), (2, 5), (3, 8), (4, 11), 3×(1, 3), (2, 7), (1, 5)},

which is already minimal positive. So we have the relation

B(12) = B63 = B = Bmin

and thus K3
X = 1

5544 . Of course, we will see that No.63 does not happen
on any X.

Now we begin to analyze Table C and pick out “impossible” cases.

Proposition 4.5. In Table C, B 6= B∗ for any B∗ in the set

{B4a, B9, B16a, B16c, B18a, B20a, B21a, B22, B24, B27a,

B29a, B33a, B44b, B46a, B47, B52a, B55, B60a, B61, B63}.

In particular, cases No. 9, No. 22, No. 24, No. 47, No. 55, No. 61,
and No. 63 do not happen at all.
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Table C

No. (P3, · · · , P11) P18 P24 µ1 χ B(12) = (n1,2, n5,11, · · · , n1,5) or Bmin K3

1 (0, 0, 0, 0, 0, 0, 0, 1, 0) 4 8 14 2 (5, 0, 0, 1, 0, 3, 0, 0, 3, 0, 0, 1, 0, 0, 0) 3
770

2 (0, 0, 0, 0, 0, 1, 0, 0, 0) 3 7 15 2 (4, 0, 1, 0, 0, 2, 1, 0, 3, 0, 0, 0, 2, 0, 0) 1
360

2a 2 3 18 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 1
1170

3 (0, 0, 0, 0, 0, 1, 0, 1, 0) 3 7 15 3 (6, 1, 0, 0, 0, 4, 1, 0, 4, 0, 1, 0, 2, 0, 0) 23
9240

3a 2 3 18 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 17
30030

4 (0, 0, 0, 0, 0, 1, 0, 1, 0) 4 9 14 3 (7, 0, 1, 0, 0, 4, 0, 1, 3, 0, 1, 0, 2, 0, 0) 13
3465

4a 1 2 14 {(4, 11), (2, 6), ∗} ≻ {(6, 17), ∗} 1
5355

5 (0, 0, 0, 0, 0, 1, 0, 1, 0) 5 10 14 3 (7, 0, 1, 0, 0, 4, 1, 0, 4, 0, 0, 1, 1, 0, 0) 17
3960

5a 4 3 15 {(8, 20), (3, 8), ∗} ≻ {(11, 28), ∗} 1
1386

5b 3 3 15 {(5, 13), (4, 15), ∗} 1
1170

6 (0, 0, 0, 1, 0, 0, 0, 1, 0) 3 6 14 3 (9, 0, 0, 2, 0, 1, 0, 1, 4, 0, 2, 0, 0, 0, 1) 1
462

7 (0, 0, 0, 1, 0, 0, 1, 0, 0) 3 5 14 2 (5, 0, 1, 1, 0, 0, 0, 0, 5, 0, 1, 0, 0, 0, 1) 1
630

7a 2 3 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
1680

8 (0, 0, 0, 1, 0, 0, 1, 1, 0) 3 5 14 3 (7, 1, 0, 1, 0, 2, 0, 0, 6, 0, 2, 0, 0, 0, 1) 1
770

9 (0, 0, 0, 1, 0, 1, 0, 0, 0) 2 2 14 3 (9, 0, 0, 2, 0, 0, 1, 1, 4, 0, 1, 0, 0, 1, 0) 1
5544

10 (0, 0, 0, 1, 0, 1, 0, 0, 0) 3 6 14 3 (8, 0, 1, 1, 0, 0, 2, 0, 5, 0, 1, 0, 1, 0, 1) 1
630

10a 2 4 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
1680

11 (0, 0, 0, 1, 0, 1, 0, 1, 0) 2 4 14 3 (9, 0, 0, 2, 0, 0, 1, 1, 3, 1, 0, 0, 1, 0, 1) 3
3080

11a 2 3 14 {(3, 8), (4, 11), ∗} ≻ {(7, 19), ∗} 1
2660

12 (0, 0, 0, 1, 0, 1, 0, 1, 0) 5 11 14 3 (9, 0, 1, 0, 0, 1, 2, 0, 4, 0, 2, 0, 0, 0, 1) 1
252

12a 4 6 14 {(2, 5), (6, 16), ∗} ≻ {(8, 21), ∗} 1
630

13 (0, 0, 0, 1, 0, 1, 0, 1, 0) 3 4 14 4 (12, 0, 0, 2, 0, 2, 0, 2, 4, 0, 2, 0, 0, 1, 0) 4
3465

14 (0, 0, 0, 1, 0, 1, 0, 1, 0) 3 6 14 4 (10, 1, 0, 1, 0, 2, 2, 0, 6, 0, 2, 0, 1, 0, 1) 1
770

15 (0, 0, 0, 1, 0, 1, 0, 1, 0) 4 8 14 4 (11, 0, 1, 1, 0, 2, 1, 1, 5, 0, 2, 0, 1, 0, 1) 71
27720

15a 2 4 14 {(4, 11), (1, 3), ∗} ≻ {(5, 14), ∗} 1
2520

15b 3 4 14 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 23
36036

15c 3 5 14 {(7, 16), (7, 19), ∗} 31
31920

16 (0, 0, 0, 1, 0, 1, 0, 1, 0) 5 9 14 4 (11, 0, 1, 1, 0, 2, 2, 0, 6, 0, 1, 1, 0, 0, 1) 43
13860

16a 4 3 14 {(4, 10), (3, 8), ∗} ≻ {(7, 18), ∗} 1
3080

16b 4 4 14 {(2, 5), (6, 16), ∗} ≻ {(8, 21), ∗} 1
1386

16c 3 3 14 {(7, 16), (5, 13), ∗} 3
16016

17 (0, 0, 0, 1, 0, 1, 0, 1, 1) 3 6 14 3 (9, 0, 0, 2, 0, 0, 0, 2, 3, 0, 1, 0, 1, 0, 1) 3
1540

18 (0, 0, 0, 1, 0, 1, 0, 1, 1) 4 7 14 3 (9, 0, 0, 2, 0, 0, 1, 1, 4, 0, 0, 1, 0, 0, 1) 23
9240

18a 2 3 14 {(4, 11), (1, 3), ∗} ≻ {(5, 14), ∗} 1
3080

18b 4 6 14 {(3, 8), (4, 11), ∗} ≻ {(7, 19), ∗} 83
43890

19 (0, 0, 0, 1, 0, 1, 1, 0, 0) 3 3 14 3 (8, 0, 1, 1, 0, 1, 0, 1, 5, 0, 1, 0, 0, 1, 0) 2
3465

20 (0, 0, 0, 1, 0, 1, 1, 0, 0) 4 7 14 3 (7, 0, 2, 0, 0, 1, 1, 0, 6, 0, 1, 0, 1, 0, 1) 1
504

20a 3 3 18 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 1
16380

21 (0, 0, 0, 1, 0, 1, 1, 1, 0) 4 8 14 2 (6, 0, 1, 0, 0, 0, 1, 0, 3, 1, 0, 0, 0, 0, 1) 1
360

21a 2 3 16 {(1, 3), (3, 10), ∗} ≻ {(4, 13), ∗} 1
4680

22 (0, 0, 0, 1, 0, 1, 1, 1, 0) 2 3 18 3 (7, 1, 0, 1, 0, 1, 1, 0, 5, 1, 0, 0, 1, 0, 1) 1
9240

23 (0, 0, 0, 1, 0, 1, 1, 1, 0) 3 5 14 3 (8, 0, 1, 1, 0, 1, 0, 1, 4, 1, 0, 0, 1, 0, 1) 19
13860

23a 2 3 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
2640

24 (0, 0, 0, 1, 0, 1, 1, 1, 0) 3 3 14 4 (10, 1, 0, 1, 0, 3, 0, 1, 6, 0, 2, 0, 0, 1, 0) 1
3465

25 (0, 0, 0, 1, 0, 1, 1, 1, 0) 4 7 14 4 (9, 1, 1, 0, 0, 3, 1, 0, 7, 0, 2, 0, 1, 0, 1) 47
27720

25a 4 6 14 {(5, 11), (4, 9), ∗} ≻ {(9, 20), ∗} 1
840

26 (0, 0, 0, 1, 0, 1, 1, 1, 0, ) 5 9 14 4 (10, 0, 2, 0, 0, 3, 0, 1, 6, 0, 2, 0, 1, 0, 1) 41
13860

26a 3 5 14 {(4, 11), (1, 3), ∗} ≻ {(5, 14), ∗} 1
1260

27 (0, 0, 0, 1, 0, 1, 1, 1, 0) 6 10 14 4 (10, 0, 2, 0, 0, 3, 1, 0, 7, 0, 1, 1, 0, 0, 1) 97
27720

27a 5 3 14 {(6, 15), (3, 8), ∗} ≻ {(9, 23), ∗} 19
79695

27b 5 5 14 {(5, 13), (5, 18), ∗} 1
1170

28 (0, 0, 0, 1, 0, 1, 1, 1, 1) 4 8 14 2 (5, 1, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 1) 23
9240

29 (0, 0, 0, 1, 0, 1, 1, 1, 1) 5 10 14 2 (6, 0, 1, 0, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 1) 13
3465

29a 2 3 14 {(4, 11), (2, 6), ∗} ≻ {(6, 17), ∗} 1
5355

30 (0, 0, 0, 1, 0, 1, 1, 1, 1) 3 5 14 3 (7, 1, 0, 1, 0, 1, 0, 1, 5, 0, 1, 0, 1, 0, 1) 1
924

31 (0, 0, 0, 1, 0, 1, 1, 1, 1) 4 6 14 3 (7, 1, 0, 1, 0, 1, 1, 0, 6, 0, 0, 1, 0, 0, 1) 1
616

32 (0, 0, 0, 1, 0, 1, 1, 1, 1) 5 8 14 3 (8, 0, 1, 1, 0, 1, 0, 1, 5, 0, 0, 1, 0, 0, 1) 2
693

32a 4 6 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
528

32b 2 2 14 {(4, 11), (1, 3), ∗} ≻ {(5, 14), ∗} 1
1386

33 (0, 0, 0, 1, 1, 0, 0, 1, 0) 2 4 14 2 (5, 0, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0) 1
840

33a 1 3 14 {(3, 10), (2, 7), ∗} ≻ {(5, 17), ∗} 1
2856
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No. (P3, · · · , P11) P18 P24 µ1 χ (n1,2, n4,9, · · · , n1,5) or Bmin K3

34 (0, 0, 0, 1, 1, 0, 0, 1, 0) 4 8 14 3 (7, 0, 1, 1, 0, 2, 1, 0, 3, 0, 3, 0, 0, 0, 0) 1
360

34a 3 6 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
560

34b 3 4 14 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 1
1170

35 (0, 0, 0, 1, 1, 0, 0, 1, 1) 3 6 14 2 (5, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 0, 0, 0, 0) 1
462

36 (0, 0, 0, 1, 1, 0, 1, 1, 0) 3 5 14 2 (4, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0) 1
630

36a 2 3 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
1680

36b 2 4 14 {(3, 10), (2, 7), ∗} ≻ {(5, 17), ∗} 4
5355

37 (0, 0, 0, 1, 1, 0, 1, 1, 0) 5 9 14 3 (6, 0, 2, 0, 0, 3, 0, 0, 4, 0, 3, 0, 0, 0, 0) 1
315

38 (0, 0, 0, 1, 1, 0, 1, 1, 1) 3 5 14 2 (3, 1, 0, 1, 0, 1, 0, 0, 3, 0, 2, 0, 0, 0, 0) 1
770

39 (0, 0, 0, 1, 1, 1, 0, 1, 0) 3 6 14 3 (7, 0, 1, 1, 0, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0) 1
630

39a 2 4 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
1680

39b 2 5 14 {(3, 10), (2, 7), ∗} ≻ {(5, 17), ∗} 4
5355

40 (0, 0, 0, 1, 1, 1, 0, 1, 0) 5 10 14 4 (9, 0, 2, 0, 0, 3, 2, 0, 4, 0, 3, 0, 1, 0, 0) 1
315

40a 4 4 14 {(4, 10), (3, 8), ∗} ≻ {(7, 18), ∗} 1
2520

40b 4 5 14 {(2, 5), (6, 16), ∗} ≻ {(8, 21), ∗} 1
1260

41 (0, 0, 0, 1, 1, 1, 0, 1, 1) 5 11 13 2 (5, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 0) 1
252

42 (0, 0, 0, 1, 1, 1, 0, 1, 1) 3 6 14 3 (6, 1, 0, 1, 0, 1, 2, 0, 3, 0, 2, 0, 1, 0, 0) 1
770

43 (0, 0, 0, 1, 1, 1, 0, 1, 1) 4 8 14 3 (7, 0, 1, 1, 0, 1, 1, 1, 2, 0, 2, 0, 1, 0, 0) 71
27720

43a 2 4 14 {(4, 11), (1, 3), ∗} ≻ {(5, 14), ∗} 1
2520

43b 3 4 14 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 23
36036

43c 3 5 14 {(7, 16), (7, 19), ∗} 31
31920

44 (0, 0, 0, 1, 1, 1, 0, 1, 1) 5 9 14 3 (7, 0, 1, 1, 0, 1, 2, 0, 3, 0, 1, 1, 0, 0, 0) 43
13860

44a 4 4 14 {(2, 5), (6, 16), ∗} ≻ {(8, 21), ∗} 1
1386

44b 3 3 14 {(7, 16), (5, 13), ∗} 3
16016

44c 4 6 14 {(7, 16), (5, 18), ∗} 1
720

44d 4 4 14 {(5, 13), (5, 18), ∗} 1
2184

45 (0, 0, 0, 1, 1, 1, 1, 0, 1) 4 7 14 2 (3, 0, 2, 0, 0, 0, 1, 0, 3, 0, 1, 0, 1, 0, 0) 1
504

46 (0, 0, 0, 1, 1, 1, 1, 1, 0) 4 7 14 3 (6, 0, 2, 0, 0, 2, 1, 0, 3, 1, 1, 0, 1, 0, 0) 1
504

46a 3 3 16 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 1
16380

46b 3 6 14 {(3, 10), (2, 7), ∗} ≻ {(5, 17), ∗} 7
6120

47 0, 0, 0, 1, 1, 1, 1, 1, 1) 2 3 16 2 (3, 1, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0) 1
9240

48 0, 0, 0, 1, 1, 1, 1, 1, 1) 3 5 14 2 (4, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0) 19
13860

48a 2 3 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
2640

49 (0, 0, 0, 1, 1, 1, 1, 1, 1) 4 7 14 3 (5, 1, 1, 0, 0, 2, 1, 0, 4, 0, 2, 0, 1, 0, 0) 47
27720

49a 4 6 14 {(5, 11), (4, 9), ∗} ≻ {(9, 20), ∗} 1
840

50 (0, 0, 0, 1, 1, 1, 1, 1, 1) 5 9 14 3 (6, 0, 2, 0, 0, 2, 0, 1, 3, 0, 2, 0, 1, 0, 0) 41
13860

50a 3 5 14 {(4, 11), (1, 3), ∗} ≻ {(5, 14), ∗} 1
1260

51 (0, 0, 0, 1, 1, 1, 1, 1, 1) 6 10 14 3 (6, 0, 2, 0, 0, 2, 1, 0, 4, 0, 1, 1, 0, 0, 0) 97
27720

51a 5 4 14 {(4, 10), (3, 8), ∗} ≻ {(7, 18), ∗} 1
1386

51b 5 5 14 {(5, 13), (5, 18), ∗} 1
1170

52 (0, 0, 1, 0, 0, 1, 0, 1, 0) 3 7 14 2 (4, 0, 0, 1, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 1) 1
420

52a 2 3 18 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 1
2184

53 (0, 0, 1, 0, 0, 1, 1, 1, 0) 4 8 14 2 (3, 0, 1, 0, 0, 3, 1, 0, 3, 0, 0, 0, 0, 0, 1) 1
360

53a 3 4 15 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 1
1170

54 (0, 0, 1, 0, 1, 0, 0, 1, 0) 2 4 14 2 (2, 0, 0, 2, 0, 3, 1, 0, 1, 0, 1, 0, 0, 0, 0) 1
840

55 (0, 0, 1, 0, 1, 0, 0, 1, 0) 2 2 14 3 (4, 0, 0, 3, 0, 4, 1, 0, 3, 0, 0, 1, 0, 0, 0) 1
3080

56 (0, 0, 1, 0, 1, 0, 1, 1, 0) 3 5 14 2 (1, 0, 1, 1, 0, 4, 0, 0, 2, 0, 1, 0, 0, 0, 0) 1
630

56a 2 3 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
1680

57 (0, 0, 1, 0, 1, 0, 1, 1, 0) 3 3 14 3 (3, 0, 1, 2, 0, 5, 0, 0, 4, 0, 0, 1, 0, 0, 0) 1
1386

58 (0, 0, 1, 0, 1, 1, 0, 1, 0) 3 6 14 3 (4, 0, 1, 1, 0, 4, 2, 0, 2, 0, 1, 0, 1, 0, 0) 1
630

58a 2 4 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
1680

59 (0, 0, 1, 0, 1, 1, 0, 1, 1) 2 4 14 2 (2, 0, 0, 2, 0, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0) 3
3080

59a 2 3 14 {(3, 8), (4, 11), ∗} ≻ {(7, 19), ∗} 1
2660

60 (0, 0, 1, 0, 1, 1, 1, 1, 0) 4 7 14 3 (3, 0, 2, 0, 0, 5, 1, 0, 3, 0, 1, 0, 1, 0, 0) 1
504

60a 3 3 15 {(2, 5), (3, 8), ∗} ≻ {(5, 13), ∗} 1
16380

61 (0, 0, 1, 0, 1, 1, 1, 1, 1) 2 3 15 2 (0, 1, 0, 1, 0, 3, 1, 0, 2, 0, 0, 0, 1, 0, 0) 1
9240

62 (0, 0, 1, 0, 1, 1, 1, 1, 1) 3 5 14 2 (1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 0, 1, 0, 0) 19
13860

62a 2 3 14 {(4, 9), (3, 7), ∗} ≻ {(7, 16), ∗} 1
2640

63 (0, 0, 1, 1, 1, 1, 1, 1, 1) 3 4 14 3 (5, 0, 1, 2, 0, 1, 1, 1, 3, 0, 1, 0, 0, 0, 1) 1
5544
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Proof. Assume B = B∗. We hope to deduce a contradiction.
(1). If P14 ≥ 2, then Proposition 2.30 implies K3 ≥ 11

37800 > 1
3437 .

Thus B 6= B4a, B9, B16c, B24, B27a, B29a, B44b, B63.
(2). If P15 ≥ 2, then Proposition 2.30 implies K3 ≥ 11

46080 > 1
4190 .

Hence B 6= B60a, B61.
(3). If P16 ≥ 2, then Proposition 2.30 implies K3 ≥ 11

55488 > 1
5045 .

Hence B 6= B46a, B47.
(4). If P18 ≥ 2, then Proposition 2.30 implies K3 ≥ 11

77976 > 1
7089 .

Thus B 6= B20a, B22.
(5). Besides, we see P6(B33a) = 1, P16(B33a) = 2 but P22(B33a) = 1,

a contradiction. So B 6= B33a.
(6). For cases 16a, 18a, 21a, 52a, and case 55, one has P17(B∗) = 0.

But since P8(B21a) = P9(B21a) = 1, B 6= (B21a). Also for case 52a and
case 55, since P5(B∗) = P12(B∗) = 1, we see B 6= B52a, B55. For case
18a, since P6(B18a) = P11(B18a) = 1, we see B 6= B18a. Finally, since
P19(B16a) = −1, we see B 6= B16a. q.e.d.

Theorem 4.6. Assume χ(OX) > 1. Then K3
X ≥ 1

2660 . Furthermore,

K3
X = 1

2660 if, and only if, P2 = 0 and either χ = 3, B = B11a, or χ = 2,
B59a.

Proof. If Pm0
≥ 2 for some positive integer m0 ≤ 12, then Proposition

2.30 implies K3
X ≥ 11

24336 > 1
2213 > 1

2660 .
Assume Pm ≤ 1 for m ≤ 12. Then we have seen B ≥ B∗ where B∗ is

one in Table C excluding those cases listed in Proposition 4.5.
We can see K3(B11a) = K3(B59a) =

1
2660 .

We pick out those cases with K3(B∗) <
1

2660 . They are cases 4a, 16a,
16c, 18a, 20a, 21a, 27a, 29a, 33a, 44b, 46a, and case 60a. In all these
cases, Corollary 4.5 says B 6= B∗. Thus B ≻ B∗. In order to prove the
theorem, we need to study the one-step unpacking of B∗ case by case.

First we consider case 4a and case 29a. It’s obtained by 2-steps of
packing from B4:

B4 = {(2, 6), (4, 11), ∗} ≻ B4.5 := {(1, 3), (5, 14), ∗} ≻ {(6, 17), ∗} = B4a.

By [4, Lemma 3.6], we get K3
X = K3(B) ≥ K3(B4.5) = 1

630 > 1
2660 .

Similarly, we also get K3
X > 1

2660 for case 29a.
Next, we consider cases 18a, 20a, 21a, 46a, 52a, 60a. The common

property is that they are obtained by a 1-step packing from B(12). So
the only possibility is B(12) = B. Thus K3

X = K3(B18) or K3(B20) or

K3(B21) or K
3(B46) or K

3(B52) or K
3(B60). In a word, K3

X > 1
2660 .

The remaining cases are 16a, 16c, 27a, and 44b. For case 44b, there
are two intermediate baskets dominating B44c or B44d, respectively.
Thus, in particular, K3

X > 1
2184 . For case 27a, it’s obtained from B27 by
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3-steps of packing, namely,

B27 = {3× (2, 5), (5, 8), ∗} ≻ {2× (2, 5), (5, 13), ∗}
≻ B27.5 := {(2, 5), (7, 18), ∗} ≻ {(9, 23), ∗} = B27a.

Thus we see B < B27.5 and K3
X ≥ K3(B27.5) =

1
1386 > 1

2660 . Finally, we
consider cases 16a and 16c. We know

B16 = {(4, 9), (3, 7), (2, 5), (2, 5), (3, 8), (3, 8), ∗}.

The 1-step packing of B16 yields

B16.5 := {(4, 9), (3, 7), (2, 5), (5, 13), (3, 8), ∗},

and the 1-step prime packing of B16.5 is either B16a or B16c. Thus, if B <

B16.5, then K3
X ≥ K3(B16.5) = 85

72072 > 1
848 . The other intermediate

basket dominating B16a and B16c is

B16.6 := {(7, 16), (2, 5), (2, 5), (3, 8), (3, 8), ∗}

with K3(B16.6) =
13

6160 > 1
474 . There are no other ways to obtain either

B16a or B16c beginning from B(16). The theorem is proved. q.e.d.

Corollary 4.7. Assume χ(OX) > 1. Then P24 ≥ 2.

Proof. By [4, Theorem 4.15], we know either P10 ≥ 2 or P24 ≥ 2.
When q(X) > 0, the statement follows from [3]. So we may assume
q(X) = 0.

If P10 ≥ 2, we take m0 = 10 and study ϕ10. Keep the same notation
as in 2.3. By Lemma 2.32, f must be of type III, II, Ip. Proposition
2.15 (i), Theorem 2.20 (1), and Theorem 2.22 (1) imply P24 ≥ 2. q.e.d.

Theorem 4.8. Assume χ(OX) > 1. Then Pm0
≥ 2 for some positive

integer m0 ≤ 18. In particular, µ1 ≤ 18.

Proof. Assume Pm ≤ 1 for all m ≤ 12. Then Table C tells us that

B(12)
< B < Bmin

where Bmin is of certain type in Table C. Since, in Table C, we have seen
µ1(Bmin) ≤ 18, thus [4, Lemma 3.6] implies µ1(X) ≤ µ1(Bmin) ≤ 18.
q.e.d.

Theorem 4.9. Assume χ(OX) > 1. Then ρ0(X) ≤ 27.

Proof. The statement follows from [3] when q(X) > 0. Assume
q(X) = 0 from now on.

If Pm0
≥ 2 for some m0 ≤ 12, then the induced fibration f from

ϕm0
is of type III, II, or Ip by Lemma 2.32. Thus Proposition 2.15(i),

Theorem 2.20(1), and Theorem 2.22(1) imply that Pm > 0 for all m ≥
27.

If Pm ≤ 1 for all m ≤ 12, we have a complete classification (cf.
Table C). For each Bmin in Table C, we observed that Pm > 0 for all
47 ≥ m ≥ 24. This is enough to assert Pm > 0 for all m ≥ 24. We are
done. q.e.d.
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5. Pluricanonical birationality

In this section, we mainly study the birationality of ϕm. Then we
can conclude our main theorems. Let X be a projective minimal 3-fold
of general type. First, we recall several known theorems.

Theorem 5.1 ([3]). Assume q(X) := h1(OX) > 0. Then ϕm is
birational for all m ≥ 7.

Theorem 5.2. ([7], [Theorem 0.1]) Assume Pm0
≥ 2 for some pos-

itive integer m0. Then ϕm is birational onto its image for all m ≥
5m0 + 6.

Theorem 5.3 ([8]). Assume χ(OX) ≤ 0. Then ϕm is birational for
all m ≥ 14.

We need the following lemma to prove our main theorems.

Lemma 5.4. Assume Pm0
(X) ≥ 2 for some positive integer m0.

Keep the same notation as in 2.3 and assume f is of type Ip or In.
Suppose |G| is a base point free linear system on S. If there exists
an integer m1 > 0 with m1π

∗(KX)|S ≥ G, then Assumption 2.9(2) is
satisfied for all integers

m ≥ max{ρ0 +m0 +m1,m0 +m1 + 2}.

Proof. Since

KS + ⌈(m− 1)π∗(KX)− S − 1
pE

′
m0

⌉|S
≥ KS + (m− 1)π∗(KX)|S − (S + E′

m0
)|S

≥ (m−m0)π
∗(KX)|S ≥ (m−m0 −m1)π

∗(KX)|S +G

and
KS + (m−m0 − 1)π∗(KX)|S

≥ KS + (m−m0 −m1 − 1)π∗(KX)|S +G,

Lemma 2.17 implies that |KS + ⌈(m− 1)π∗(KX)− S − 1
pE

′
m0

⌉|S | can

distinguish different generic irreducible elements of |G| when m ≥ ρ0 +
m0 +m1 and m ≥ m0 +m1 + 2. q.e.d.

Theorem 5.5. Let X be a projective minimal 3-fold of general type
with χ(OX) = 1. Then ϕm is birational for all m ≥ 40.

Proof. If Pm0
≥ 2 for some m0 ≤ 6, then, by Theorem 5.2, ϕm is

birational for m ≥ 36.
Assume Pm ≤ 1 for all m ≤ 6. Then, by Corollary 3.12, B(X) either

dominates a minimal basket in

{B2,1, B2,2, B3,1 ∼ B3,5, B5,1 ∼ B5,3, B6,1 ∼ B6,6, B8,1, B8,2}

or dominates the basket B210. We have known Pm(X) ≥ Pm(B∗,∗). By
analyzing all the above baskets, we see a common property that there
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is a pair of positive integers (n0, n1) satisfying Pn0
≥ 2, Pn1

≥ 3, and
one of the following conditions:

(1) n0 ≤ 10, n1 ≤ 12 (see cases III-2, III-3, III-4, VI-6);
(2) n0 ≤ 9, n1 ≤ 13 (for the remaining cases).
By Theorem 3.14 (1), we know ρ0 ≤ 7. We set m0 = n1. Keep the

same notation as in 2.3. Our proof is organized according to the type
of f . Note that Pm0

≥ 3 and m0 ≤ 13. By Theorem 5.1, we only need
to care about the situation q(X) = 0.

Case 1. f is of type I3.
Take G to be the movable part of |2σ∗(KS0

)|. Claim A implies that
Assumption 2.9(2) is satisfied whenever m ≥ 35 ≥ ρ0+2m0+2. Clearly,
by Lemma 2.16, Assumption 2.9(1) is also satisfied. As seen in the later
part of 2.28, we can take a rational number β 7→ p

2m0+2p ≥ 1
m0+2 . Now

inequality (2.2) gives ξ ≥ 4
45 . Take m = 35. Then α = (35 − 1 − m0

2 −
1
β )ξ ≥ 10

9 > 1. Theorem 2.11 gives ξ ≥ 4
35 . Take m = 32. Then α > 1.

We will see ξ ≥ 1
8 similarly. Now, for m ≥ 39, α ≥ (39−1− 13

2 −15)ξ ≥
33
16 > 2. Theorem 2.11 says that ϕm is birational for all m ≥ 39.

Case 2. f is of type II or III.
We take m̃0 = n0 and m1 = n1. We still use the mechanics of 2.3 to

study ϕm̃0
instead of ϕm0

. But most notations will use the symbol ˜.
Note that m̃0 ≤ 10 and Pm̃0

≥ 2.

If f̃ is of type II or III, Theorem 2.20(3) and Theorem 2.22(3) imply
that ϕm is birational for m ≥ 38.

If f̃ is of type In or Ip, we take G̃ to be the movable part of |Mm1
|S̃ |,

where S̃ is a generic irreducible element of |Mm̃0
|. Clearly, h0(S̃,Mm1

|S̃)
≥ 2 since dimϕm1

(X) ≥ 2. Thus we are in the situation with

m1π
∗(KX)|S̃ ≥ G̃. We may always take a sufficiently good π̃ instead

of π. Now Lemma 2.16 and Lemma 5.4 imply that Assumptions 2.9(1)
and 2.9(2) are simultaneously satisfied for m ≥ 30 ≥ ρ0 + m̃0 + m1.

Finally, we study the value of α. Clearly, one may take β̃ = 1
m1

. Thus

inequality (2.2) says ξ ≥ 2
1+m̃0+m1

. For situations (1) and (2), we have

ξ ≥ 2
23 . Take m = 35. Then α ≥ 24

23 > 1. Theorem 2.11 gives ξ ≥ 4
35 .

Take m = 32. Then, similarly, we get ξ ≥ 1
8 . Take m ≥ 40. Then

α ≥ 17
8 > 2. Theorem 2.11 implies that ϕm is birational for all m ≥ 40.

We are done. q.e.d.

L. Zhu [30] showed ϕm is birational for m ≥ 46.

Theorem 5.6. Let X be a projective minimal 3-fold of general type
with χ(OX) > 1. Then ϕm is birational for all m ≥ 73.

Proof. By Theorem 5.1, we only need to consider the situation q(X) =
0. According to Lemma 2.32, the induced fibration f from ϕm0

is of
type III, II, or Ip.
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If Pm0
≥ 2 for some m0 ≤ 16, then, by Theorems 2.20, 2.22, and 2.25,

ϕm is birational for all m ≥ 69 . Assume Pm ≤ 1 for all m ≤ 16. Then
we have a complete classification for Bmin as in Table C. More precisely,
we see B < B2a, B < B3a and B ≻ B20a, B ≻ B52a, noting that case
No.22 doesn’t happen by Proposition 4.5. As we have observed in the
proof of Theorem 4.6, for cases No. 20a and No. 52a, we actually have
B = B20 and B = B52. Thus we see P14(X) ≥ 2 in both cases, a
contradiction. We are left to study cases No. 2a and No. 3a, which
correspond to two formal baskets, (B2a, 2, 0) and (B3a, 3, 0), where

B2a = {4× (1, 2), (4, 9), (2, 5), (5, 13), 3 × (1, 3), 2 × (1, 4)},

B3a = {6× (1, 2), (5, 11), 3 × (2, 5), (5, 13), 4 × (1, 3), (2, 7), 2 × (1, 4)}.

The computation gives the following datum:

ρ0 µ1 µ2 µ3

B2a 20 18 24 30
B3a 20 18 20 30

When B < B3a, we have P20(X) = P20(B) ≥ P20(B3a) ≥ 3. The-
orems 2.20 and 2.29 imply that ϕm is birational for all m ≥ 66 unless
f is type II. Indeed, if f is of type II and m0 = 20, at least we have
ξ ≥ 2

31 , following the argument in 2.21. Take m = 57; we have α > 1

and hence ξ ≥ 4
57 . Now take m ≥ 70; we have α = (70 − 41) 4

57 > 2.
Thus ϕm is birational for all m ≥ 70.

Now the theorem follows from the following claim.

Claim B. When B < B2a, ϕm is birational for all m ≥ 73.

The proof is similar to that of Theorem 5.5, Case 1 and Case 2. We
have known ρ0 ≤ 20. We can find two numbers n0 ≤ 18 and n1 ≤ 24
with Pn0

(X) ≥ 2 and Pn1
(X) ≥ 3. First, we set m0 = n1. Keep the

same notation as in 2.3. Our proof is organized according to the type
of f . Note that Pm0

≥ 3 and m0 ≤ 24.

Case i. f is of type I3.
By Lemma 2.32, f must be of type Ip. Take G = 2σ∗(KS0

). Claim
A implies that Assumption 2.9(2) is satisfied whenever m ≥ 70 ≥
ρ0 + 2m0 + 2. Clearly, by Lemma 2.16, Assumption 2.9(1) is also sat-
isfied. As seen in the latter part of 2.28, we can take a rational num-
ber β 7→ p

2m0+2p ≥ 1
m0+2 . Note that |G| is base point free, and we

have deg(KC) ≥ 6. Now inequality (2.2) gives ξ ≥ 2
13 . For m ≥ 70,

α ≥ (70 − 1 − 12 − 26)ξ > 2. Theorem 2.11 says that ϕm is birational
for all m ≥ 70.

Case ii. f is of type II or III.
We take m̃0 = n0 and m1 = n1. We still use the mechanics of 2.3 to

study ϕm̃0
instead of ϕm0

. Noting that m̃0 ≤ 18, when f̃ is of type III



EXPLICIT BIRATIONAL GEOMETRY OF THREEFOLDS 269

or II, Theorems 2.20 and 2.22 imply that ϕm is birational for allm ≥ 66.
We are left to study the situation with f̃ being of type I. We take G̃
to be the movable part of |Mm1

|S̃ |. Clearly, h0(S̃,Mm1
|S̃) ≥ 2 since

dimϕm1
(X) ≥ 2. Thus we are in the situation with m1π

∗(KX)|S̃ ≥ G̃.
Now Lemma 2.16 and Lemma 5.4 imply that Assumptions 2.9(1) and
2.9(2) are simultaneously satisfied for m ≥ 62 ≥ ρ0 + m̃0 +m1. Clearly,

one may take β̃ = 1
m1

. Thus inequality (2.2) says ξ ≥ 2
1+m̃0+m1

≥ 2
43 .

Take m = 65. Then α ≥ 44
43 > 1. Theorem 2.11 gives ξ ≥ 4

65 . Take

m = 60. Then similarly we get ξ ≥ 1
15 . Take m = 59. Then we shall get

ξ ≥ 4
59 . Take m = 58 and we obtain ξ ≥ 2

29 . Eventually, for m ≥ 73,
we see α > 2 and Theorem 2.11 implies that ϕm is birational for all
m ≥ 73. We are done. q.e.d.

We have proved all the main results. Indeed, Theorem 1.1 follows
from Theorem 5.1, Theorem 5.3, Theorem 5.5, and Theorem 5.6. The-
orem 1.2 follows from Theorem 3.11 and Theorem 4.6.

Finally, we would like to ask the following:

Question 5.7. Can one find an optimal lower bound for K3?

The following problem is very interesting.

Open Problem 5.8. Can one find a minimal 3-fold X of general
type with q(X) = 0 and χ(OX) > 1?
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