J. DIFFERENTIAL GEOMETRY
86 (2010) 237-271
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Abstract

Let V be a complex nonsingular projective 3-fold of general
type. We shall give a detailed classification up to baskets of sin-
gularities on a minimal model of V. We show that the m-canonical
map of V' is birational for all m > 73 and that the canonical vol-

ume Vol(V) > 5. When x(Oy) < 1, our result is Vol(V) > 45,
which is optimal. Other effective results are also included in the

paper.

1. Introduction

Let Y be a nonsingular projective variety of dimension n. It is said
to be of general type if the pluricanonical map ¢, corresponding to
the linear system |[mKy | is birational into a projective space for m > 0.
Thus it is natural and important to find a constant ¢(n), depending only
on dimension, so that ¢, is birational onto its image for all m > ¢(n)
and for all Y with dimY = n.

It was classically known that, when dimY = 1, |mKy| gives an em-
bedding of Y into a projective space for m > 3. When dimY = 2,
Kodaira-Bombieri’s theorem [2] implies that |mKy | gives a birational
map onto the image for m > 5. A recent result of Hacon and M®Kernan
[10], Takayama [23], and Tsuji [25] shows the existence of ¢(n), which
is however non-explicit.

This is the continuation of our previous paper [4]. The aim of this
paper is to prove a practical constant ¢(3), which is not too far from
being sharp. Other effective results are included in this paper as well.

Recall that we have proved the following result in [4].

Theorem 1. ([4, Theorem 1.1]) Let V be a nonsingular projective
3-fold of general type. Then:

(1) P12 > 0,'
(2) Pny > 2 for some positive integer mgy < 24.

Our main theorems of this paper are as follows.
Received 1/8/2010.
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Theorem 1.1. Let V be a nonsingular projective 3-fold of general
type. Then:
(1) Py, >0 for allm > 27.
(2) Poy > 2 and P, > 2 for some positive integer mgy < 18.
(3) ©m is birational for all m > 73, and in case x(Ox) < 1, @, is
birational for all m > 40.

Here is our result on the volume.

Theorem 1.2. Let V be a non-singular projective 3-fold of general
type. Then:

(1) Vol(V) > 2660 Furthermore, Vol(V') = ﬁ if and only if Po =0
and either x(Ov) = 3, B(X) = {9 x 3(1,-1,1),
2x1(1,-1,3), (1, -1,7),3x $(1, -1, 1), L(1,-1,3), $(1,-1,1),
%(1, L1)} or x(Oy) =2, Z(X) = {2x1(1,-1,1),2x 1(1,-1,3),
2% $(1,-1,2), 55(1,-1,7), £(1,—1,1)} where B(X) is the basket
of singularities on a minimal model X of V.

(2) In case x(Oy) < 1, Vol(V) > 4—%0, which is an optimal lower
bound. Furthermore, Vol(V) = 4—%0 if and only if the basket of
singularities on any minimal model X of V is

1 1 1 1 1
~(1,-1,1), =(1,-1,3), =(1, -1,2), = (1,-1,1), = (1, -1, 1)}.
{3 X 2( Y Y )7 7( ) 73)7 5( ) ) )7 4( ) ) )7 6( ) ) )}

Theorem 1.2 (2) is optimal due to the following example:

Example 1.3. ([12, page 151, no. 23] ) The canonical hypersur-
face Xy C P(4,5,6,7,23) has 7 terminal quotient singularities and

. 3 _ 1 _ .
the canonical volume Ky, = = ;3. One knows x(Ox,) = 1 since

py(Xa6) = ¢(Xu6) = h*(Ox,) = 0. Furthermore, it is known that
©m 1s birational for all m > 27, but 96 is not birational.

We now briefly sketch the main idea of this article. A general ap-
proach to study pluricanonical maps in higher dimensions is by utiliz-
ing vanishing theorems. The difficulty is usually reduced to bound from
below the canonical volume

Vol(Y) := hmsup{—dlmcH (Y, Oy (mKy))}.
(mez+} M"
The volume is an integer when dimY < 2, and hence a naive lower
bound 1 is obtained. However, it’s a rational number in dimension three
or higher. This is an essential difficulty of high-dimensional birational
geometry.

Another technical approach is the induction approach initiated by
Kollar [15], who proved that ¢i1,,,+5 is birational provided P, > 2
for 3-folds of general type. Kollar’s method has been generalized in
several directions by Chen [7], Chen-Hacon [3], Chen-Zuo [8], Chen-
Chen [5], and so on. Therefore, it remains to consider 3-folds with
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small plurigenera. One notices that the plurigenus P,,(Y) is nothing
but the Euler characteristic x(X, mKx) of its minimal model X thanks
to the vanishing theorem, and moreover if the minimal model is non-
singular or Gorenstein, then x(Oy) < 0. One obtains P, > 4 easily by
the Riemann-Roch formula.

Reid introduced the notion of baskets of singularities which are local
deformation of singularities into cyclic quotients and derived a singular
Riemann-Roch formula for threefolds with at worst canonical singular-
ities. Roughly speaking, the “singular” Riemann-Roch formula com-
putes the Euler characteristic x(Y, mKy) by the usual Riemann-Roch
terms and the contribution from singularities which is computed by
baskets. The key new ingredient is our systematical study of baskets of
singularities in [4]. Our method provides a concrete way to determine
an approximation of a basket with given leading Euler characteristics
X(Ky), x(2Ky), -+, etc. As a consequence, we are able to prove the
finiteness of baskets with small leading Euler characteristics. It is even
possible to give explicit classification up to baskets, which is exactly
what we have done in this paper.

The article is organized as follows. In Section 2, we summarize some
results on the geometry of [mK|, which substantially extend the above
mentioned technique. Combining with the technique on baskets of sin-
gularities developed in [4], we will give a successful classification in case
x(O) = 1 in Section 3. In Section 4, we classify baskets such that
P, <1lforalll<m<12and x(O) > 1. We get 63 classes of baskets
of 3-folds in Table C. All these classification allows us to find a practical
number n; > 0 such that P,, > 2. Therefore, we are able to prove our
main theorems.

Throughout, we will frequently use those definitions, equalities, and
inequalities about formal baskets in our previous paper (see [4, Sections
3 and 4]). We prefer to use “=” to denote numerical equivalence, while
“~" represents linear equivalence. Roundup operator “[*]” is defined
to be “—|—x]", where rounddown “|[*|” means taking the integral part.

We are very grateful to an anonymous referee whose keen suggestion
makes this paper be much better organized.

Acknowledgments. The first author was partially supported by TIMS,
NCTS/TPE and National Science Council of Taiwan. The second au-
thor was supported by National Outstanding Young Scientist Founda-
tion (#10625103) and NNSFC Key project (#10731030).

2. Technical preparation

In this section, we set up some notions and principles evolved in our
detailed study. We shall prove some general results on pluricanonical
birationality and the lower bound of canonical volume. Though the
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method has already appeared in several previous works, the way of
applying it is resultful to the effect that we are able to treat various
situations while proving our main theorems.

2.1. Reduction to problems on minimal 3-folds. Let V be a
non-singular projective 3-fold of general type. By the 3-dimensional
Minimal Model Program (see, for instance, [14, 16, 20]), V' has a min-
imal model X (with Kx nef and admitting Q-factorial terminal sin-
gularities). Denote by Kx a canonical divisor of X. A basic fact is
that Vol(V) = K% > 0. From the view point of birational geometry, it
suffices to prove main theorem for minimal 3-folds X.

Definition 2.2. (1) The number p; = p;(X) denotes the minimal
positive integer such that P, (X) > i for all m > p;, where : =0, 1.

(2) The number p; = p;(X) denotes the minimal positive integer with
P,, = P, (X) > i wherei=0,1,2.

(3) Denote by #(X) the basket of singularities on X (according to
Reid [21]), and by 7(X) the Cartier index of X.

By our definition, we see pg < p1 and pg < 1 < p1. The existence
of p1 can be guaranteed by Theorem 1.

Now suppose we have P,,, > 2 for certain positive integer mgy. We
may study the geometry of the rational map ¢, = Pk |-

2.3. Set up for ¢,,,. We study the mop-canonical map of X:
Pmg - X --» ]P>Pm0—17

which is a rational map. First of all we fix an effective Weil divisor
Ky ~ moKx. By Hironaka’s big theorem, we can take successive
blow-ups 7 : X’ — X such that:
(i) X’ is smooth;
(ii) the movable part of |moK x| is base point free;
(iii) the support of the union of 7*(K,,,) and the exceptional divisors
is of simple normal crossings.

Set gmo = Pme ©m. Then gy, is a morphism by assumption. Let

X' L5 T =55 W’ be the Stein factorization of Gmo With W' the image
of X' through ¢;,,. In summary, we have the following commutative
diagram:

LT
X r
Imo
™ S
D - W
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Recall that
1

r(X)

with F effective since X is terminal. So we always have

T (Kx) = Kx — E,

m

[mr*(Kx)] = [mKx: — W

Eﬂ—-| S mKX/

for any integer m > 0. Denote by M,,, the movable part of |moKx/|.
One has

moﬂ'*(Kx) = Mmo + E;n()

for an effective Q-divisor E;no. In total, since
WX, [mor™ (Kx)]) = h2(X', [mom*(Kx)]) = Prng (X') = Py (X),

one has

mo
mQKX/ = Mmo + (E;no + mEW)

where E}, + r’(’"b—)g)E7T is exactly the fixed part of |moKx/|.
If dim(I") > 2, a general member S of |M,,,| is a nonsingular pro-
jective surface of general type by Bertini’s theorem and by the easy
addition formula for Kodaira dimension.
If dim(I") = 1, a general fiber S of f is an irreducible smooth pro-
jective surface of general type, still by the easy addition formula for
Kodaira dimension. We may write

where S; are smooth fibers of f for all i and a,,, > min{2P,,, —2, Py, +
g(T') — 1}, by considering the degree of the divisor f.(My) on T'.

Definition 2.4. We call S (in 2.3) a generic irreducible element of
the linear system |M,,,|. Denote by o : S — Sy the blow-down onto
the smooth minimal model Sy. By abuse of concepts, we define a generic
irreducible element of an arbitrary movable linear system on any pro-
jective variety in a similar way.

Definition 2.5. (1) Define the positive integer p = p(my) as follows:

1 if dim(D) > 2,
P= Y am, if dim(T) = 1.

(2) To simplify our statements, we say that the fibration f is of type
IIT (resp. II, I) if dimT" = 3 (resp. 2,1). According to our needs, we
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would like to divide type I into subclasses:

I, ifg(l') >0,

f is of type 3 1fg(l) =0, Py =3,
» if g(F) =0, pg(S) > 0,
I, it g(T) =0, py(S) =0

2.6. Invariants of the fibration. Let V be a smooth projective
3-fold and f : V — T a fibration onto a nonsingular curve I'. Leray
spectral sequence tells that

EP?:= HP(T, R fiwy) = E" := H"(V,wy).

By Serre duality and [15, Corollary 3.2, Proposition 7.6], one has the
torsion-freeness of the sheaves R’ f,wy and the following formulae:

h3(Oy) = B (T, fuwv) + K0T, R fuwy),
q(V) == h'(Oy) = g(T) + k' (T, R' fawy).

2.7. Birationality principles. Let Y be a nonsingular projective
variety on which there are two divisors D and M. Assume that |M|

is base point free. Take the Stein factorization of @1 YV N W —
P YV:M)=1 where f is a fibration onto a normal variety W. Then the
rational map ®p s is birational onto its image if one of the following
conditions is satisfied:
(i) ([24, Lemma 2]) dim @5 (Y) > 2, |D| # 0 and ®|p,py|s is bira-
tional for a general member S of |M].
(ii) ([6, §2.1]) dim @57 (Y) = 1, ®|p4py can separate different general
fibers of f and ®|p | F is birational for a general fiber F' of f.

Remark 2.8. For the condition 2.7(ii), one knows that ® p s can
separate different general fibers of f whenever dim ®;,(Y) =1, W is
a rational curve and D is an effective divisor. (In fact, since |M| can
separate different fibers of f, so can |D + M|.)

2.9. Assumptions. Let m be a positive integer. Let |G| be a base
point free linear system on S. Denote by C' a generic irreducible element
of |G|. Assume:

(1) The linear system |mK x| distinguishes different generic irreducible
elements of |Mp,| (namely, @5 ,((S") # Pk, ((S") for two
different generic irreducible elements S’, S” of | M,,,|).

(2) The linear system [mKx/|g on S (as a sub-linear system of
|mKx|s|) distinguishes different generic irreducible elements of
|G|. (Or sufficiently, the complete linear system

K5+ [(m — 1)n* (Kx) - S - %E:mw
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distinguishes different generic irreducible elements of |G|.)

2.10. A lower bound of K3. We keep the same notation as above.
Since 7* K x is nef and big, there is a rational number 5 > 0 such that
7*(Kx)|s — BC is numerically equivalent to an effective Q-divisor on S.

We further define the following quantities:

&= (rm"(Kx) C)xr;

o= (m—l—%—%)&
ap = [af
One has
K3 > miow*(KXF S>> %i(ﬂ*(KX) 0) = %ig. (2.1)

So it is essential to estimate the rational number & := (7*(Kx)-C)x/
in order to obtain the lower bound of K3. We recall the following:

Theorem 2.11. ([8, Theorem 3.1]) Keep the notation as above. The
inequality
deg(K¢) + ao

£=
m
holds if one of the following conditions is satisfied:
(i) a>1;
(ii) @ > 0 and C is an even dwisor, i.e., C ~ 2H for a divisor H on
S.

Furthermore, under Assumptions 2.9(1) and 2.9(2), the map ¢, =
P\nxc /| 8 birational onto its image if one of the following conditions is
satisfied:

(i) a>2;

(ii) @ > 2 and C is not a hyper-elliptic curve on S.

Remark 2.12. In particular, the inequality & > W in The-
orem 2.11 implies

deg KC
¢> delfio) (22)
1+ TO + 3
since, whenever m is big enough so that o > 1,
1
mé > deg(K¢) + ag > deg(Kc) + (m — 1 — % 3

As long as we have fixed a linear system |G| on S, we are able to
prove the effective non-vanishing of plurigenera as follows.

Proposition 2.13. Assume P, > 2 for some positive integer my.
Then Ppn(X) > 1 for all integers m > 1+ =0 + % In particular,

mo 4 1
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Proof. Assume m > 1+ % + % Keep the same notation as in 2.3.
Put .
Ly = (m—1)r"(Kx) — ];E;no

Then we have |Kx/ + [Ly,]| C [mKx|. Noting that
Lp—S=(m—1- %)w*(z{x)ys

is nef and big, the Kawamata-Viehweg vanishing theorem ([13, 26])
yields the surjective map

HY (X', Kxi + [Lm]) = H(S, (Kx' + [Lm]))s)- (2.3)

Since S is a generic irreducible element of a free linear system, one has
[*]]s > [#|g] for any divisor * on X'. It follows that

(Kxr + [Lm])is = Kxis + [Lm|s] ~ Ks + [(Lm — )] (2.4)

Note that there is an effective Q-divisor H on S such that %7?* (Kx)|s =
C + H. We consider

D= (L — S)s — H

on S. Then, by assumption, the divisor D,, — C = (m — 1 — % —
%)T(*(K x)|s is nef and big. Thus the Kawamata-Viehweg vanishing

theorem again gives the surjective map
HO(S,Ks—i- (D, 1) —)HO(C,K0+D), (2.5)

where D := [D,, — Cl|c is a divisor on C. Because C is a generic
irreducible element of a free linear system, we have D > [(D,, — C)c].
A simple calculation gives

1
deg(D)z(Dm—C)-C:(m—l—@—B)§:a>O.
p
Noting that g(C') > 2 since S is of general type, Riemann-Roch formula
on C gives h’(C, K¢ + D) > 2. Finally, surjective maps (2.3), (2.5) and
inequality (2.4) imply the statement. q.e.d.

We need the following lemma while studying type I, I,,, and I3 cases.

Lemma 2.14. Let S be a non-singular projective surface of general
type. Denote by o : S — Sy the blow-down onto its minimal model Sy.
Let Q be a Q-divisor on S. Then h%(S, K+ [Q]) > 2 under one of the
following conditions:

(i) pg(S) >0, Q =0*(Kg,) + Q1 for some nef and big Q-divisor Q1

on S;
(ii) pg(S) =0, Q =20%(Ks,) + Q2 for some nef and big Q-divisor Q2
on S.
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Proof. First of all, h%(S,2Ks) = h%(S,2Kg,) > 0 by the Riemann-
Roch theorem on S, which is a surface of general type. Fix an effective
divisor Ry ~ lo*(Kg,), where | = 1,2 in cases (i) and (ii), respectively.
Then Ry is nef and big and Ry is 1-connected by [17, Lemma 2.6]. The
Kawamata-Viehweg vanishing theorem says H'(S, Kg + [Q] — Rg) = 0,
which gives the surjective map

H(S,Kg + [Q]) — H°(Ro, K, + Gg,)

where GRo = ([Q—| _R0)|Ro with deg(GRO) > (Q—Ro)RQ =Q;-Ry > 0.
The 1-connectedness of Ry allows us to utilize the Riemann-Roch (see
[1], Chapter II) as in the usual way. Note that S is of general type. So
K&, > 0 and deg(Kr,) = 2pa(Ro) — 2 = (Ks + Ro)Ro > 2. By the
Riemann-Roch theorem on the 1-connected curve R, we have

h(Ro, Kry + GRry) > deg(Kry + Gr,) + 1 — pa(Ro) > pa(Ro) > 2.
Hence h9(S, Ks + [Q]) > 2. q.e.d.

Proposition 2.15. Assume P, > 2 for some positive integer my.
Then Py, > 2 for m > h(mg) under one of the following situations:

(i) h(mo) =2mo + 3 when f is of type Ip;

(ii) h(mo) = 3mo + 4 when f is of type I;
(ili) h(mo) = [220] + 4 when f is of type Is.

3mo

In particular, py < p1 < 2mg + 3,3mo + 4, | 5% ] + 4, respectively.

Proof. Keep the same notation as in 2.3. When f is of type I, we have
P = am,. By [8, Lemma 3.3], there is a sequence of rational numbers

{Bn} with 3, — m(;n+p > m01+1 such that

T (Kx)|s = Buo™(Ksy) = Hy,

for an effective Q-divisors H,,.
We consider

Dl i= (L — S)jg — (m—1— %)Hm =(m-1- %)BHJ*(KSO).

If, for m > 0, h%(S, Ks+[D;,]) > 2, then h(S, Kg+[(Lm — 9)141) =
2. It follows then that P, > 2 by surjective map (2.3) and inequality
(2.4). We can choose h(myg) according to the type of f.

When f is of type I),, we can pick a big number n so that Bn > m01+1 —

d for some 0 < § < 1. For m > 2mg + 3, we see (m — —%)Bn>l.

By Lemma 2.14 and since p,(S) > 0, we know h°(S, Ks + [D},]) > 2.
Thus we may take h(mg) = 2mq + 3.
When f is of type I,,, we still take a big number n so that 5,, > ﬁ—

0 for some 0 < § <« 1. But, for m > 3mg+4, we have (m—l—%)@n > 2.

By Lemma 2.14 again, we see h"(S, Kg+ [D/,]) > 2. Thus we may take
h(mo) = 3mg + 4.




246 J.A. CHEN & M. CHEN

Finally, when f is of type I3, we have p > 2. One may take a big

number n so that 3, > ﬁ—d for some 0 < § < 1. For m > [ 322 | 44,

we have (m—1— %)ﬁn > 2. Lemma 2.14 implies h°(S, Ks+[D!,]) > 2.
Thus we may take h(mg) = [22¢ ] +4. This completes the proof. q.e.d.

Lemma 2.16. Assume P,,,(X) > 2 for some positive integer my.
Keep the same notation as in 2.3. Then, for m > pg+mg, Assumptions
2.9 (1) is satisfied if f is of type 111,11,13,1,, or Ip,.

Proof. Let t > 0 be an integer. We consider the linear system |K x/ +
HT('*(Kxﬂ + Mmo’ C ’(mo +t+ 1)KX/‘. Since Kx: + H?T*(Kxﬂ > (t +
1)m*(Kx), we see that Ky + [tm*(Kx)] is effective whenever t+1 > py.

When f is of type I3, I, or I,,, we necessarily have g(I') = 0. Thus, by
[24, Lemma 2] and Remark 2.8, the linear system |Kx + [t7*(Kx)]| +
M, | can separate different generic irreducible elements S of | My, |-
q.e.d.

Lemma 2.17. Let T be a non-singular projective surface of general
type on which there is a base point free linear system |G|. Let @ be an
arbitrary Q-divisor on T. Then the linear system |Kp + [Q] + G| can
distinguish different generic irreducible elements of |G| under one of the
following conditions:

(i) K1+ [Q] is effective and |G| is not composed with an irrational
pencil of curves;

(ii) @ is nef and big and |G| is composed with an irreducible pencil of
curves.

Proof. Statement (i) follows from [24, Lemma 2| and Remark 2.8.

For statement (ii), we pick up a generic irreducible element C' of |G|.
Then G = sC where s > 2 and C? = 0. Let C’ be another generic
irreducible element. The Kawamata-Viehweg vanishing theorem gives
the surjective map

HT, K7 + [Q] + G) — H°(C, K¢ + D) ® H(C', Kev + D)

where D := ([Q]+G—C)|c and D' := ([Q]+G—C")|¢r with deg(D) >
0, deg(D’) > 0. Since T is of general type, both C' and C’ are curves
of genus > 2. Thus h°(C, K¢ + D) = h%(C’, K¢ + D') > 1. Thus
|K7 + [Q] 4+ G| can distinguish C' and C’. g.e.d.

Lemma 2.18. Assume P,,,(X) > 2 for some positive integer my.
Keep the same notation as in 2.3. Take G := S|g for a generic irre-
ducible element S of |My,,|. Then Assumptions 2.9 (2) is satisfied under
one of the following situations:

(i) f is of type III and m > py + myg.
(ii) f is of type IT and m > max{py + mo,2mgy + 2}.
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Proof. Since

Ks+ [(m—1)n*(Kx) =S — 1E, 1js
Ks+ (m—1)m*(Kx)is — (S+ Ej)is
Kg+ (m—mo — )7 (Kx)|s

(m —mo)m*(Kx)|s + G

VI v

and
Ks+ (m—mo— )7 (Kx)|s
> Kg+ (m —2mg — 1)7T*(Kx)‘g + G,
Lemma 2.17 implies that |Kg + [(m — 1)7*(Kx) — S — %E;nohﬂ can
distinguish different generic irreducible elements of |G| respectively.
Note that, if f is of type I1I, |G| is not composed with a pencil of
curves. We are done. q.e.d.

Under the condition F,,, > 2, we study the pluricanonical map ¢,
according to the type of f.

2.19. Type II1.

When f is of type II1, we have p = 1 by definition. In this case,
S ~ M,,, and |S| gives a generically finite morphism. We take G := 9|s.
Then |G| is base point free and | gives a generically finite map. So a
generic irreducible element C' ~ G is a smooth curve.

If |G| gives a birational map, then dim ¢ (C) = 1 for a general
member C. The Riemann-Roch and Clifford’s theorem on C says C? =
G- C > 2. If pg gives a generically finite map of degree > 2, since
RO(S,G) > hO(X',S)—1 > 3, one gets C2 > 2(h%(S,G) —2) > 2. Either
way, we have C? > 2. So deg(K¢) = (Kg +C)-C > 2C? > 4. We see
deg(K¢) > 6 since it is a even number.

One may take = m%) since mom*(Kx)|s > C.

Now inequality (2.2) gives £ > Mﬁ. Take m = 3mp + 2. Then

a = (m—2mg—1)¢ > 3. So, by Theorem 2.11, £ > 3ml(?+2. It follows

from inequality (2.1) that K3 > ﬁg.
0+2)mg

We now consider the non-vanishing of plurigenera. By Proposition
2.13, we have P, > 2 for all m > 2mgy + 1. Now, if m = 2mgy +
1, the surjective map (2.3) and inequality (2.4) lead us to compute
hO(S,Kgs + [mom*Kx|s]). Let L be a generic irreducible element in
|S|s|. Then L is effective and nef. Since h?(Kg + L) = 0, one has
hO(S, Ks+L) > x(S, Ks+L) = $(Kg-L+L?)+x(0s) > 2 by Riemann-
Roch theorem. Hence Pop4+1 > 2. Also, Py, > P, > 2. Therefore,
we have P,, > 1 for all m > 2myg. In particular, py < p1 < 2myg.

By Lemmas 2.16 and 2.18, Assumptions 2.9(1) and 2.9(2) are satisfied

if m > 3mgp. Now o = (m —2mgy—1)§ > (m —2mg — 1)%. One sees
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thata>21fm>%

. Hence ¢, is birational if

1
m > max{3mg — 1, %}
We conclude the following;:

Theorem 2.20. Assume Pp,,(X) > 2 for some positive integer my.
If the induced map f is of type I11. Then:

1) po < p1 < 2my.

2) K3 >

= (Bmo+2)m3 "
3) ©m is birational if m > max{3mg — 1, %}
2.21. Type I1I.

When f is of type II, we see that S ~ M,,,. Take |G| := |S|s|, which
is, clearly, composed with a pencil of curves.

Since a generic irreducible element C of |G| is a smooth curve of
genus > 2, we have deg(K¢) > 2. Furthermore, we have h°(S,G) >
hO(X’,S) —1>2. So G = aC where @ > h°(S,G) — 1 > 1. This means
that mom* (Kx)|s > S|s >num C. So we may take § = m%)

Now inequality (2.2) gives £ > ﬁ. Take m = 3mgp + 2. Then
o« > 1. One gets £ > =—2— by Theorem 2.11. So inequality (2.1)

3mo+2
implies K3 > m.
Exactly the same proof as in Type I11 shows that py < p1 < 2myg.
By Lemmas 2.16 and 2.18, Assumptions 2.9(1) and 2.9(2) are satisfied
if m > 3mg. Now a = (m — 2mg — 1)€ > (m — 2mg — 1)Tg+2. One
sees that o > 2 if m > W. Since W > 3myg, @ is birational if
m > Tmetd

We conclude the following;:

Theorem 2.22. Assume Pp,,(X) > 2 for some positive integer my.
If the induced map f is of type 11, then:

1) po < p1 < 2my.

3 4
2) B2 G

3) ©m s birational if m > W.

2.23. Type I,.

Since g(I') > 0, one sees ¢(X) > 0 and hence X is irregular. This
case is particularly well-behaved. It’s known that ,, is birational for
all m > 7 (see [3]). Also K% > 5 (see [5]).

2.24. Type I,.

We have an induced fibration f : X’ — T with g(I') = 0. By
definition, p = am, > 1. By assumption, py(S) > 0 for a general fiber
S of f. We take G := 20" (Kg,). Then one knows that |G| is base point
free (see [9, Theorem 3.1]). Thus |G| is not composed with a pencil and
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a generic irreducible element C' is smooth. By [8, Lemma 3.3], we can
find a sequence of rational numbers {5, } with 5, — mop 5 such that
(K X)‘ g— %"C’ = H,, for effective Q-divisors H,,. We may assume that
ﬁzm—éforsome0<5<<l.

Since C' ~ 20*(Kg,),

deg(Kg) = (Ks+C)-C > (n*(Kx)|s +C)-C > C* > 4.

Since deg(K¢) is even, we see deg(K¢g) > 6.

Now inequality (2.2) gives £ > ?mfﬁ Take m = 4myg + 5. Then

a=m—-1—my— —)§ > 2 and Theorem 2.11 gives & > 4m —5- So, by
inequality (2.1), one gets K3 > 2 G e Jj) CTTEIE
Note that
Ks+ [(m—1)n*(Kx) =S = 1 E, 1is
Ks-l- Rm—mo—l)ﬂ'*(Kx)ww (2 6)
Ks—l-Rm—mo—l)ﬂ*(Kx)w—B%Hnw ’

v Iv

Ks+ Q1] +0*(Ks,) +C

where Q1 := (m—mo—1)7"(Kx))g—C—0*(Ks,) — ﬁ%Hn = (m—mo—
1-— B%)W*(KXHS is nef and big whenever m > 4mgy + 5. By Lemma
2.14(1), Ks+[Q1]+0*(Ks,) is effective. Thus, according to [24, Lemma
2], Assumption 2.9 (2) is satisfied for m > 4mg + 5. Since Proposition
2.15 (ii) implies pg < 2mg + 3, Lemma 2.16 (ii) tells that Assumption
2.9(1) is satisfied as long as m > 3mg + 3. Take m > 4my + 5. Then
a>(m—3my—3)§ > 27210:14 > 2. So Theorem 2.11 implies that ¢, is
birational for all m > 4mg + 5.
We thus summarize:

Theorem 2.25. Assume Pp,,(X) > 2 for some positive integer my.
If the induced map f is of type I, then:

1) po < p1 < 2mg + 3.
3 9
2) K° 2 st ame 5 -
3) ©m is birational if m > 4mgy + 5.

2.26. Type I,.

Similar to the type I, case, we have p > 1. We take |G| := |40*(Kg,)|
which is base point free by a well-known result in [2]. Thus |G| is not
composed with a pencil and a generic irreducible element C' is smooth.
Similarly, we can find a Sequence of rational numbers {3, } with 3, —
o +p such that 7*(Kx), S - —C’ H,, for effective Q-divisors H,,. We
may assume that § > ﬁ d for some 0 < § < 1.

Since deg(K¢) > 160*(Kg,)? > 16 and deg(K¢) is even, inequality

(2.2) gives £ > 5mlf+5. Take m = 6mo+6. Then o = (m—l—mo—%)f =
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18 > 3 and Theorem 2.11 gives & >

11
gets K3 > TImo o T2
By Proposition 2.15, we have P, > 2 for all m > 3my + 4. Thus we
have the following:

3m0 +3- S0, by inequality (2.1), one

Theorem 2.27. Assume Pp,,(X) > 2 for some positive integer my.
If the induced map f is of type I, then:

1) po < p1 < 3mg + 4.
3 11
2) K 2 12m0(m0+1)2'
3) ©m is birational if m > 5mg + 6 (cf. [7, Theorem 0.1]).

2.28. Type I3.

We take Gi = 40*(Kg,) so as to estimate K5. Then, as seen in
2.26, deg(K¢) > 18. Being in a better situation with p = ay,, — 1 >
2, a better number S can be found. In fact, by [8, Lemma 3.3], one
may take a number sequence {f,} with 3, +— such

P 1
Tmotp) = ot
that 7* (K x)|s — 8, C is numerically equivalent to an effective Q-divisor.

Namely, one may take a number ﬁ > m ) for some 0 < § < 1.

Now inequality (2.2) gives & > W’ ie., &> m by taking the
B
limit. Hence inequality (2.1) implies K3 > ﬁ

We take a different |G| on S to study the birationality. In fact, we
will take |G| to be the movable part of |20%(Kg,)|. A different point
from previous ones is that |G| is not always base point free. But since
we have the induced fibration f : X’ — I", we can consider the relative
bi-canonical map of f, namely, the rational map ¥ : X’ --» P over
I'. First we can blow up the indeterminacy of ¥ on X’. Then we can
assume, in the birational equivalence sense, that ¥ is a morphism over
B. By further modifying 7, we can even finally assume that m dominates
U. With this assumption (or by taking a sufficiently good 7), we see
that |G| is base point free since |G| gives the bicanonical morphism for
each general fiber S of f.

By Proposition 2.15 and Lemma 2.16, Assumption 2.9(1) is satisfied
for m > L@J + 4. Recall that we have p = ap,, > 2.

Claim A. Assumption 2.9(2) is satisfied for m > min{3mg + 6, pp +
2mg + 2}.

In fact, the argument of 2.24 works here. A different place is that we
have a better bound for /3, since p > 2, but we only have deg(K¢) > 2.
By [8, Lemma 3.3], we can find a sequence of rational numbers {3, } with
Bn %ﬂ)) such that 7*(Kx)|g — ,Bn(QO'*(KSO)) = H,, for effective

Q-divisors Hy,. We may assume that § > ——— — ¢ for some 0 < ¢ < 1.
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Now the last three terms of inequality (2.6) can be replaced by

Kg+ [(m —mo — )" (Kx))s]

> Kg+ [(m—mo—1)r*(Kx)s — 3 Hn]|

= Ks+ [Q2] +40"(Ks,)
where Q2 := (m —mg — 1)7"(Kx)|g — 40" (Ks,) — %Hn = (m—mgy —
1-— ;—n)ﬂ'*(Kx)’S is nef and big whenever m > 3mg + 6. According
to a theorem of Xiao [28], |G| is either not composed with a pencil or
composed with a rational pencil. Thus, according to [24, Lemma 2]
and Remark 2.8, Assumption 2.9(2) is satisfied for m > 3mg + 6. On
the other hand, we have an inclusion, Or(2) — fuw'y?, which natu-

rally gives rise to the inclusion f*w§<, = f*w§<’7°+2. Now Viehweg’s

semi-positivity theorem [27] implies that f*w§<, /T is generated by global
sections. Thus |(2mg + 2)Kx/||s can distinguish different generic irre-

ducible elements of |G|. So Assumption 2.9(2) is naturally satisfied for
all m > pg + 2mg + 2. We have proved Claim A.

Finally, we consider the value of a. Recall that we may take § +—

p 1 : : 2 ___ 4
ST 2 morz- Inequality (2.2) gives § > T meT3 = 30moT?)” If

we take m = 3mg + 4. Then o > 1. Theorem 2.11 says £ > Té_‘_m
Eventually, take m > 3mg+ 6. Then a > 2. Theorem 2.11 implies that
m is birational for all m > 3mg + 6.

We thus conclude the following;:

Theorem 2.29. Assume Pp,,(X) > 3 for some positive integer my.
If the induced map f is of type I3, then:

1) po<pr <[350]+4.
3 36
2) K 2 5m0(m0+2)2'
3) ©m is birational if m > 3mgy + 6.

By collecting all above results, we have the following:

Corollary 2.30. Assume Py,,(X) > 2 for some positive integer my.

3 11
Then K= 2 famstmor 1

2.31. Volume optimization.

Indeed, when myq is small, the estimation of K g’( could be optimized
by recursively applying Theorem 2.11 with a suitable m.

For example, suppose mg = 11 and f is of type I11. Then inequality

(2.2) gives £ > %. Take m = 27. By Theorem 2.11, we get £ > %, So

inequality (2.1) gives K3 > z5= > E?)(BLSTD'

Let’s consider another example with mo = 8 and f being of type I1.
Then we may take g = %. Inequality (2.2) gives £ > 1—27 Take m = 26.

Then o > % > 1. Theorem 2.11 gives & > % Take m = 24. Then
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a > 1. Again, one gets £ > %. So inequality (2.1) implies K3 > ﬁ >

4
m3(3mo+2)°
With the idea mentioned above, a patient reader should have no
difficulty to check the following table on the lower bound of K? for

small my.

Table A
mo 2 3 4 5 6 7
III 1/3 8/81 1/22 8/325 1/72 4/441
II 1/8 2/45 1/52 1/100 1/162  4/1029

Pn, >3 1/8 2/45 1/52  1/100 1/162 4/1029
Pn,>2 5/96 5/264 1/108 1/192 5/1554 5/2408
mo 8 9 10 11 12
IIT  1/160 4/891 2/625 8/3267 1/522
II 1/384 2/1053 1/725 1/968 1/1224
P, >3 1/384 2/1053 1/725 1/968 1/1224
Pn, >2 5/3456 1/954 1/1276 5/8448 5/10764

Lemma 2.32. If f is of type I,, and q¢(X) =0, then x(Ox) < 1.

Proof. We have an induced fibration f : X’ — T" onto the rational
curve I'. A general fiber S of f is a non-singular projective surface of
general type with py(S) = 0. Because x(Og) > 0, we see ¢(S) = 0. This
means f,wy’ = 0 and R! f,wxs = 0 since they are both torsion free by
[15]. Thus we get by 2.6 the following formulae:

h*(Ox) = h*(Ox:) = b (fawxr) + B° (R fuwxr) = 0;
¢(X) = q(X") = g() + h' (R fuwx) = 0.
So we see x(Ox) =1—q(X) + h*(Ox) — py(X) < 1. q.e.d.
2.33. Miyaoka-Reid inequality on %#(X). We refer to [4, Section
2] for the definition of baskets. Assume that Reid’s basket of singular-
ities on X is Bx = #A(X) = {(b;,7i)}. According to [21, 10.3], one
has

1

EKX . CQ(X) = —2X(OX) + Z

r? -1
127’2‘

where co(X) is defined via the intersection theory by taking a resolution
of singularities of X. On the other hand, [18, Corollary 6.7] says Kx -
c2(X) > 0. Thus one has the following inequality:

1
i — 24x(0Ox) > —. 2.7
DUEENCRES 3 1)
A direct application of inequality (2.7) is the following:

Corollary 2.34. Suppose that we have a packing between formal bas-

kets B := (B,x(Ox), P,) = B' := (B',x(Ox), P2) and that inequality
(2.7) fails for B'. Then (2.7) fails for B.
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3. General type 3-folds with y =1

In this section, we always assume x(Ox) = 1. If there is a small num-
ber mg such that P,,, > 1, then one can detect the birational geometry
of X by studying ¢,,,. Thus a natural question is what practical num-
ber mg can be found such that P, > 1. This is exactly the motivation
of this section. Equivalently, we shall give a complete classification of
baskets to those X with P,, <1 for m < 6.

3.1. Assumption: P, (X) <1 for 1 <m <6.
In fact, P, satisfies the following geometric condition.

Lemma 3.2. Assume x(Ox) = 1. Then P12 > Py, + Py for all
m > 2.

Proof. By Reid’s formula ([21]), we have
Ppys = Py — Py = (m? + m)KX — x(Ox) + (I(m + 2) — I(m) — 1(2)).

By [11, Lemma 3.1], one sees {(m +2) —I(m) —{(2) > 0. Since K% >0
and x(Ox) =1, we have P49 — Py, — P > —1. q.e.d.

We consider the formal basket
B := (B, x(0x), P2(X))
where B = Z(X). As we have seen in [4, Section 3],
(i) K3(B)=K3(B) =K% >0;
(ii) Pp(B) = Py (X) for all m > 2.
By Lemma 3.2, we see Py > 2 if P, > 0. Thus under Assumption 3.1,

we have P, = 0. We can also get Pp,12 > 0 whenever P,, > 0. Thus, in
practice, we only need to study the following types: P, = 0 and

(Ps, Py, P, Ps) = (0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),
(07 17 07 1)7 (07 17 17 1)7 (17 07 17 1)7 (17 17 17 1)'
(3.1)
Now we consider the formal basket B := (B,1,0). We might abuse
the notation of baskets and formal baskets in this section for we always
have x = 1, P» = 0 in this section. We keep the notation as in [4].
With explicit values of (Ps, Py, Ps, Ps), we are able to determine
BO)(B) (cf. [4, Sections 3,4]). Our main task is to search all pos-
sible minimal (with regard to ) positive baskets By, dominated by
BO)(B). Take B® := (#°)(B),1,0) and B, = (Bmin,1,0). Then
we see B® = B = Bpin.
Now we classify all minimal positive geometric baskets Biyir,-

3.3. Case I. P; = P, = P; = P; = 0 (impossible)

We have 0 = 10,7 = 4,A3 =5,A* = 14,e = 0,05 = 0, and €5 = 2.
The only possible initial basket is {5 x (1,2),4 x (1,3),(1,4)}. And
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B® = {3 x (1,2),2 x (2,5),2 x (1,3),(1,4)} with K* = &. We shall
calculate By, of BO).

If we pack {(1,2),(2,5)} into {(3,7)}. Then we get:
I-1. Byy ={2x(1,2),(3,7),(2,5),2 x (1,3),(1,4)}, K* = 35,
which admits no further prime packing into positive baskets. Hence
By 1 is minimal positive.

We consider those baskets with (1, 2) unpacked because otherwise it’s
dominated by Bj 1. So we consider the packing

{3 x(1,2),(2,5),(3,8),(1,3),(1,4)}

with K3 = ﬁ. This basket allows two further packings to minimal

positive ones:
I-2. Bip={3x(1,2),(2,5),(4,11),(1,4)} , K* = 5.
I-3. Bis={3x(1,2),(5,13),(1,3),(1,4)}, K* = 1%.

Finally we consider the case that both (1,2) and (2,5) remain un-
packed. We get one more basket which is indeed mlmmal positive
I-4. Big={3x(1,2),2 % (2,5),(1,3),(2,7)} , K* = 5.

A direct calculation shows that none of By, Bip, Bi3, and Bj4
satisfy inequality (2.7). Hence B does not satisfy (2.7), a contradiction.
This proves that Case I is impossible.

3.4. Case II: P3 = P4 = P5 = O,Pﬁ =1 (3 32,1,3272)

Now we have 0 = 10, 7 =4, A3 =5, A* =14, e < 1. If € = 0, then
€5 = 1; if € = 1, then e5 = 0. Thus all possible initial baskets and B®)
are as follows

II-i. BO = {5x(1, ) X
(1,3), (1,4)}, with K3( 5)

I-ii. BO) = {5 x (1,2),4
(1,3),(1,5)},with K3(B®)) =

In Case II-i, we first consider the situation that all single baskets
(1,2) are packed into {(6,13),3 x (1,3),(1,4)}, which gives a unique
minimal positive basket:

II-1. By = {(6,13),(1,3),(3,10)} , K3 =

:L
0< 3),(L5)} = BO) — {5 x (1,2),4 x

390, Py =2, Pj3 =3.
We then consider the situation that at least one basket (1,2) remains
unpacked. Then we get the following mmlmal positive basket:
I1-2. Bss = {(1,2),(5,11),(4,13)} , K3 = 286 Py=2, P3=3.
Notice, however, that if {3 x (1, 2) (3,7),3 x (1,3), (1 4)} = B, then
B dominates Bao. Thus it remains to consider the situation that all
single baskets (1,2) are unpacked, but (2,5) must be packed with some
(1,3). So we get the following minimal positive baskets:
II-3. By3 ={(4,8),(3,8),(3,10)} , K3 = L.
II-4. Byy ={(4,8),(4,11),(2,7)} , K3 = Z.
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II-5. Bys = {(4,8),(5,14),(1,4)} , K3 = &.

In Case II-ii, B®) admits no further prime packing. Thus we get:
I1-6. By = {(5,10),(4,12),(1,5)}, K3 = .

One may check that B3, Bo4, Bajs, Bag do not satisfy inequality
(2.7). Thus only IT-1 and II-2 can happen.

3.5. Case III: P3 = P4 = 0,P5 = 1,P6 =0 (3 Bg,l ~ B375)

Now we have o = 10, 7 = 4, A®> = 5, A* = 15. Moreover, P; > 1,
and hence € = 0, o5 = 0, and e5 = 4. Thus the only possible initial
basket and B®) are

B = {5x(1,2),5 x (1,3)} = B® = {(1,2),4 x (2,5), (1,3)}.

So we get the following minimal posmve baskets:

I1I-1. B3y = {(9,22),(1,3)}, K3 = &=, Py =2, Pjp = 3.
III-2. B3y = {(7,17),(3,8)}, K3 = &, Pio =2, Pio = 3.
ITII-3. B3z = {(5,12),(5,13)}, K® = 1k, Pyg =2, P2 = 3.
III-4. B34 ={(3,7),(7,18)}, K3 = <L, Pig =2, P = 3.
III-5. Bys ={(1,2),(9,23),}, K3 = £, Py =2, Pg=4.

66’

3.6. Case IV: P3 = P4 = 0,P5 = 1,P6 =1 (3 33’1,33,2,B374,Bg75)
Now we have o = 10, 7 = 4, A3 = 5, A* = 15. Moreover, the initial
basket must have n%z = n%g = 5, and hence n(l)m =0forallr >4 It

follows that € = 0, o5 = 0, and €5 = 3. Thus the only possible initial
basket and B®) are

BO = {5x(1,2),5 x (1,3)} = B® = {2 x (1,2),3 x (2,5),2 x (1,3)}.

So we get the following minimal positive baskets:
IV-1. {(8,19),(2,6)} > Bs;.
IV-2. {(6,14),(4,11)} > Bs 4.
IV-3. {(4,9),(6,16)} =~ Bs .
IV-4. {(2,4),(8,21)} > Bss.

3.7.Case V: P3=0,P,=1,P5,=0,F; = 1. (3 B571 ~ B573)

We have 0 = 10, 7 = 4, A = 6, A* = 13, and 05 < € < 2. The
initial baskets have 4 types:
V-i. {6 X (172) ( ) ( )}a
V-ii. {6 X (172) (1 3) ( ’ )7( )}
V-iii. {6 X (172) ( ) (174)7 ( )}7
V-iv. {6 x (1,2),(1,3),2 x (1,4),(1,r)} with r > 6.

Cases V-iii and V-iv are impossible since K3 < 0. For Case V-i,
we have €5 = 1, and for V-ii, we have e5 = 0. Hence B® has two
possibilities, correspondingly:
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V-i. {(57 10)7 (27 5)7 (37 12)}a
V-ii. {(67 12)7 (17 3)7 (27 8)7 (17 5)}
By computation, we get minimal positive baskets as follows:
V-1. Bs1 = {(7,15),(3,12)}, K3 = &, P7 2, Pg = 3.
V-2. Bso = {(6,12),(1,3),(3,13)}, K3 = 39, Py =3.

V-3. Bs3=1{(6,12),(3,11),(1,5)}, K> = &, Py =2, Pjp = 4.

3.8. Case VI: P3 = 0,P4 = P5 = P6 =1 (3 B671 ~ B6,6)
We have 0 = 10, 7 = 4, A3 = 6, A* = 14. Also, P; > 1 and hence
o5 < € < 2. The initial baskets have four types:
VI-i. {6 x (1,2),2 x (1,3),2 x (1,4)};
VI-ii. {6 X (17 2)7 2 x (17 3)7 (17 4)7 (17 5)}7
VI-iii. {6 x (1,2),2 x (1,3),2 x (1,5)};
VI-iv. {6 x (1,2),2 x (1,3),(1,4),(1,r)} with r > 6.
Since there are only 2 baskets of (1,3), we have e = 3 — 05 < 2.
Hence o5 > 0 and € > 0. Therefore, Case VI-i is impossible.
For Case VI-ii and €5 = 2, we get:
VI-ii. BO) = {4 x (1,2),2 x (2,5), (1,4), (1,5)}.
Hence we get minimal positive baskets as follows
VI-1. Bei = {(1,2),(7,16),(2,9)}, K = g, Pr =2, By =3.
VI-2. Bgs = {(6,13),(2,5),(2,9)}, K3 ==, P, =2, P =3.
VI-3. Bgs = {(8,18), (1,4),(1,5)}, K3 = -5, Py =2, Py = 3.

For Case VI-iii and €5 = 1, we get:
VI-ii. B®) = {5 x (1,2),(2,5),(1,3),2 x (1,5)}.
Hence we get minimal positive baskets as follows:
VI-4. Bsy ={(1,2),(6,13),(1,3),(2,10)}, K3 s, By =2, Py =3.
VI-5. Bgs = {(5,10),(3,8),(2,10)}, K3 = &, Py = 3.

For Case VI-iv and €5 = 2, we get:
VI-iv. BO) = {4 x (1,2),2 x (2,5), (1,4),(1,7)} with r > 6.
Since K 3(3(5)) > 0, we must have r = 6. Then we get the following
minimal positive basket:
VI-6. Bsg = {(3,6),(3,7),(2,5),(1,4),(1,6)}, K* = £, Pio = 2,
Py =3.

3.9. Case VII: P;=1,P; =0,P; = P; = 1 (impossible)

We have 0 = 9, 7 = 3, A3 = 1, A* = 9. Moreover, P; > 1 and
hence € = 0. It follows that o5 = 0 and €5 = 2. The initial basket is
BO = {(1,2),7 x (1,3),(1,4)}.

Note that there is only one basket of type (1,2). However, since
€5 = 2, one has 1 > ngﬁ = 2, a contradiction. Thus Case VII does not
happen.
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3.10. Case VIII: P3 = P4 = P5 = P6 =1 (3 Bg,l ~ B&g)

We have 0 =9, 7 = 3, A3 =2, A* = 8. Moreover, Py > 1 and then
e <1 Ife=1,then o5 =1and ¢ = 1. If ¢ = 0, then 05 = 0 and
€5 = 2. The initial baskets and B®) have 2 types:

VIII-i. BO) = {2x(1,2),4 x (1,3),3 x (1,4)} = B®) = {2 x (2,5),2
(1,3),3 x (1,4)} with K3(B®) = &.

VIII-ii. BO = {2 x (1,2),4 x (1,3),2 x (1,4),(1,5)} = B® = {(1,2),
(2,5),3 x (1,3),2 x (1,4), (1,5)} with K3(B®)) = 0.

Clearly, Case VIII-ii is impossible since K3 is not positive.

For Case VIII-i, we first consider the situation that one single basket
(2,5) is packed, so that we get the basket {(2,5),(3,8),(1,3), (4,12)}.
We can get two minimal positive baskets as follows
VIII-1. Bs; = {(5,13),(1,3),(3,12)}, K3 = 5, P, =2, Py = 3.
VIII-2. Bgs = {(2,5), (4,11),(3,12)}, K3 = % Pr=2 Py=3.

It remains to consider the situation that each single basket (2,5)
remains unpacked. We then obtain the basket

B210 = {(47 10)7 (17 3)7 (27 7)7 (27 8)}
with K3 = 210, P; = 2, Pjyp = 3. After a one-step prime packing, we
get the minimal positive basket:
VIII-3. Bg3 = {(4,10),(1,3),(3,11),(1,4)}, K3 = P =2.

The detailed classification (3.3~ 3.10) makes it possible for us to
study the birational geometry of X, of which the first application is the
following theorem.

Theorem 3.11. Assume x(Ox) = 1. Then K% >
K3 = ﬁ if, and only if, & = Bs .

660 )

420 Furthermore,

Proof. If 1 < 6, then Proposition 2.30 implies K3 > 254 % > ﬁ.
We may assume that P, < 1 for m < 6. We have seen P, = 0. Since

B® = B = B, and by [4, Lemma 3.6], we have

K% = K3(B) > K3(Bmin)
where B, is in the set {3271,3272,3371 ~ 3375,3571 ~ B573,B671 ~
B, Bg,1 ~ Bg 3}

If Bmin # Bs s, or Bg 3, then we have seen K3(Buin) > 4—é0.

If Bmin = Bgg3, we show B # Bgs. In fact, if B = Bgs, then
P;(B) = 2 as we have seen in 3.10. By Table A in Section 2, we have
K% = K3(B) > 522 > &=, a contradiction. Hence B = Bg3. Notice
that Bg 3 is obtained, exactly, by one-step packing from

Baio := {(4,10),(1,3),(2,7),(2,8)}

and no other ways. This says B = Bs1p and so K3 > K3(Bgyo) = 210
We have seen K3(Bgg) = 735. We are done. q.e.d.
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With a different approach, L. Zhu [29] also proved K3 > ﬁ. The
proof of the last theorem gives the following;:

Corollary 3.12. Assume x(Ox) =1 and P, < 1 for all m < 6.
Then B(X) either dominates a minimal basket in the set

{Ba,1,B22,B31 ~ B35,B51 ~ Bs3,B61 ~ Beg, Bs1,Bg o}
or dominates the basket Boig.

Corollary 3.13. Assume x(Ox) = 1. Then Pio(X) > 2 and, in
particular, py < 10.

Proof. If Py, > 2 for some mgy < 6, then, by Lemma 3.2, one can see
Py > 2. Otherwise, Corollary 3.12 and [4, Lemma 3.6] imply that
Py = Pio(#(X)) > Pip(Bs) where B, denotes a minimal positive
basket mentioned in Corollary 3.12. By a direct computation, we get
Plo(B*) > 2. q.e.d.

Example 1.3 shows that the statement in Corollary 3.13 is optimal
since Pg(X46) =1.

Theorem 3.14. Assume x(Ox) = 1. Then:

(1) po<T7.
(2) Either Ps >0 or Pg > 0.

Proof. (1) Recall that ug := min{m|P,, > 0}. By 3.3, we see ug < 6.

When py < 3, it is easy to deduce the statement by Lemma 3.2.

When pg = 4, Lemma 3.2 implies Py, > 0 for all k > 3. If P; > 0,
Lemma 3.2 implies Por1q > 0 for all £ > 3 and the statement (1) is
true. Assume P; = 0. Then P; = 0. Now €5 = 2 — Ps — 05 > 0 implies
o5 < 2— P < 1. On the other hand, ¢¢ = Py + Ps — ¢ = 0 implies
€ > 2. This means o5 = P3 = P4 = 1 and the situation corresponds
to 3.7. Thus B = Bunin Where By, = Bs 2, Bs 3. But the computation
tells Py(Bpin) > 0, a contradiction.

When pg = 5, we study Ps. If P > 0, then (1) is true by Lemma
3.2. Assume Py = 0. Then P = 0. Now ¢ = P5 — P — ¢ = 0 gives
e = 0 and P; = P; since P; > Pj5. Since n(1)74 =1-—PFP; > 0, we see
Ps; = 1. So the situation corresponds to 3.5. Since the computation
shows Py > Pg(B3 ) > 0, a contradiction.

Finally, when pg = 6, we study P;. If P; > 0, then Lemma 3.2 implies
(1). Otherwise, P = 0. Now ¢ = P — e = 0 implies ¢ = P > 0.
Besides, ¢ = 2 — P3 — 05 > 0 says P < 1 since o5 > 0. Hence
€ = P; = 1. The situation corresponds to 3.4. But the computation
shows P; > P;(By;) > 0 or Py > P;(By2) > 0, a contradiction.

(2) Assume P; = Ps = 0. Then Lemma 3.2 implies P; = Py = 0. The
situation corresponds to 3.3, which is impossible as already seen there.

q.e.d.

D. Shin [22] proved the first statement in a different way.
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4. General type 3-folds with y > 1

In this section, we assume x(Ox) > 1. Again, we will frequently
apply our formulae and inequalities in [4, Sections 3 and 4].

When FP,,, > 2 for some positive integer mo < 12, known theorems
will give an effective lower bound of K g’( and a practical pluricanonical
birationality. Therefore, similar to Section 3, we need to classify X up
to baskets when preceding plurigenera are smaller. For this reason, we
make the following:

4.1. Assumption: P,, <1 for all m < 12.

According to [4, Lemma 4.8], we have seen that P, = 0 under As-
sumption 4.1. Note that inequality [4, (3.14)], for general-type 3-folds,
is as follows:

2P;+3Ps+ Ps+Pio+ P12 > x+10P, +4P3+ P, + P+ Pis+R (4.1)

where
R = 1405 - 127’1/(1)75 - 97’1/(1)76 - 87’1;?’7 - 6”?,8 - 47’1/(1)79 - 27’1;?’10 - n?’ll
= 271?’5 + 5”?,604_ 671(1)77 + 871(1)78 + 1071(1)79 + 12”?710 + 1371?’11
+143 251011,

and o5 = Y, o517 .

Inequality (4.1) and Assumption 4.1 imply that both x and P;3 are
bounded from above. Thus our formulae in [4, Section 4] allows us to
explicitly compute B2 To be more solid, we prove the following:

Proposition 4.2. Assume x(Ox) > 1 and P, <1 for all m < 12.
Then the formal basket B = B(X) := (B(X),x(Ox),0) has a finite
number of possibilities.

Proof. We study "(1),r for » > 6. If there exists a number r» > 6 such
that n?,r # 0, then R > 5 by the definition of R in inequality (4.1).
Hence, by (4.1), one has

8>2P+3F+Ps+Pog+Pio>x+52>7.

This implies that P = Ps = 1. Hence P;; = 1. Now (4.1) again reads
54 Py + Pig + P12 > 8+ Py + Pi3. It follows that Py = Pijg = Pjo =1
and P; = P;3 = 0. This gives a contradiction since P53 > PsPs = 1. So
we conclude "(1],r = 0 for all » > 6. In other words, [4, Assumption 3.§]
is satisfied.

This essentially allows us to utilize those formulae in the last part of
[4, Section 3]. In particular, one sees that each quantity there is bounded
and hence B(1? has a finite number of possibilities. Dominated by B(1?)
(ie., B1?) = B), B = #(X) also has a finite number of possibilities.
We are done. q.e.d.
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4.3. Complete classification of B satisfying Assumption 4.1.
Note that, for all 0 < m,n <12, and m + n < 13,

Poin > PP, (4.2)

naturally holds since P,, P, < 1.

Suppose we have known B2, Then we can determine all possible
minimal positive baskets By, dominated by B(12), where Bpin € T (a
finite set). Now the formal basket B satisfies the following relation:

(B1,x,0) = B = (Buin, X, 0)

for some Byin € T. Therefore, by [4, Lemma 3.6], we have K3 =
K3(B) > K3(Buin) > 0 and P, = Pp(B) > Ppy(Buin). This is the
whole strategy.

The calculation can be done by a simple computer program, or even
by hand. Our main result is Table C, which is a complete list of all
possibilities of B(?) and its minimal positive elements.

In fact, first we preset P,, = 0, 1 form = 3,--- ,11. Then ¢ = 0 gives
the value of €. So we know the value of ”(1),5' By inequality (4.1) we get
the upper bound of x since P;3 > 0. Since "IA > 0, we get the upper
bound of . Similarly n%g > 0 gives the upper bound of (. Also n}l}g >0
yields o < (. Finally, n%}g > 0 gives the upper bound of 5. Now we set
P13 =0, 1. Then inequality (4.1) again gives the upper bound of Pi3,
noting that y > 2. Clearly there are, at most, finitely many solutions.
With inequality (4.2) imposed, we can get about 80 cases. An important
property to mention is the inequality K3(B1?) > K3(B) = K3 > 0.
With K2 > 0 imposed on, we have 63 outputs, which is exactly Table
C. Simultaneously, we have been able to calculate all those minimal
positive baskets dominated by B2 since B2 is “nearly” minimal in
most cases.

If one would like to take a direct calculation by hand, it is of course
possible. Consider the no. 2 case in Table C as an example. Since
P2 :0, P3 — :P7:0, szl, and Pg :P10 :P11 :0, [4, (310)]
tells that € = 0 and thus o5 = 0, which means R = 0. Now inequality
(4.1) gives Pio+1> x+ P13 > 2. So Pio =1, x =2, and P;3 = 0. Now
the formula for €1y gives €19 = —n > 0, which means n = 0. Similarly,
n%S = (—1 > 0. On the other hand, ngj =1—-(>0. Thus ( = 1. Now
n}l}ng—QZOgivesagl. n%,’lnzl—g—a—ﬁzgivesoz:ﬁzo.
Finally, we get

{n1,27 n5,125 - - - ,’I’L175} = {47 07 17 07 07 27 17 07 37 07 07 07 27 07 0}

That is, B = {4 x (1,2), (4,9),2 x (2,5), (3,8),3 x (1,3),2 x (1,4)}.
We see that B2 admits only one prime packing of type

{(2,5),(3,8)} = {(5,13)}
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over the minimal positive basket {4x(1,2), (4,9), (2,5), (5,13),3x(1,3),2x
(1,4)}. We simply write this as {(5,13), x} in Table C. It is now easy to
calculate K3 for both B(!?) and the minimal positive basket {(5,13), *}.
Finally, we can directly calculate P,,. At the same time, pq is given in
the table. For our needs in this context, we also display the value of
P18 = Plg(B(12)) or P18(Bmin) and P24 = P24(B(12)) or P24(Bmin) in
Table C, though the symbols P;g or Py, are misused here.

So theoretically we can finish our classification by detailed computa-
tions. We omit the details because all calculations are similar.

4.4. Notation. By abuse of notation, we denote by B, the final
basket corresponding to No.* in Table C. For example, By = {4 X
(1,2),(4,9),2 x (2,5),(3,8),3 x (1,3),2 x (1,4)} while By, = {4 X
(1,2),(4,9),(2,5),(5,13),3 x (1,3),2 x (1,4)} is minimal positive. The
relation is as follows:

By = B = Bag.
Clearly, for this case, we have W}o = K3(By) > K% > K3(Ba,) =

Another typical example is No.63, where we have
Bgs = {5x%(1,2),(4,9),2%x(3,7),(2,5),(3,8), (4,11),3%x(1,3),(2,7),(1,5)},
which is already minimal positive. So we have the relation

B"? = Bgy = B = Buin

and thus K 39’( = ﬁ. Of course, we will see that No.63 does not happen
on any X.

L
1170

Now we begin to analyze Table C and pick out “impossible” cases.

Proposition 4.5. In Table C, B # B, for any By in the set
{Bja, By, Bi6a, Bi6cs B1ga» B2oa, B21as B22, Baa, Bota,

B2y, B33a, Baay, Basa, Bar, Bsaa, Bss, Beoas Be1, Bes }-

In particular, cases No. 9, No. 22, No. 24, No. 47, No. 55, No. 61,
and No. 63 do not happen at all.
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Proof. Assume B = B,. We hope to deduce a contradiction.

(1). If P14 > 2, then Proposition 2.30 implies K3 > i > L.
Thus B # Bua, By, Bigc, Bos, Bata, Baga, Baay, Bes3.

(2). If P15 > 2, then Proposition 2.30 implies K3 > o > o
Hence B 75 Bﬁoa, B61.

(3). If Pig > 2, then Proposition 2.30 implies K3 > o > -
Hence B 75 B46a7 B47.

(4). If Pig > 2, then Proposition 2.30 implies K3 > % > ﬁ.
Thus B 75 Bgoa, B22.

(5) Besides, we see Pﬁ(nga) =1, Plﬁ(nga) = 2 but P22(B33a) =1,
a contradiction. So B # Bgs,.

(6). For cases 16a, 18a, 21a, 52a, and case 55, one has Py7(B) = 0.
But since Ps(Ba214) = Po(B214) = 1, B # (Ba1,). Also for case 52a and
case b5, since P5(By) = Pi2(By) = 1, we see B # Bsa,, Bss. For case
18a, since Ps(Bigs) = P11(Bigqs) = 1, we see B # Big,. Finally, since
Plg(Blﬁa) = —1, we see B 75 BlGa- q.e.d.

Theorem 4.6. Assume x(Ox) > 1. Then K% > 5d=. Furthermore,
Kg’( = ﬁ if, and only if, P, = 0 and either x = 3, B = Bi14, 07 X = 2,
Bsga.

Proof. If Py, > 2 for some positive integer mg < 12, then Proposition
2.30 implies K% > e > 590z > 5065

Assume P, <1 for m < 12. Then we have seen B > B, where B, is
one in Table C excluding those cases listed in Proposition 4.5.

We can see K3(Bi1,) = K3(Bsge) = ﬁ.

We pick out those cases with K3(B,) < ﬁ. They are cases 4a, 16a,
16¢c, 18a, 20a, 21a, 27a, 29a, 33a, 44b, 46a, and case 60a. In all these
cases, Corollary 4.5 says B # B,. Thus B > B,. In order to prove the
theorem, we need to study the one-step unpacking of B, case by case.

First we consider case 4a and case 29a. It’s obtained by 2-steps of
packing from By:

By ={(2,6),(4,11),%} > By :={(1,3),(5,14), %} > {(6,17),*} = Buq.

By [4, Lemma 3.6], we get K% = K*(B) > K3(Bys) = 555 > 5a5-
Similarly, we also get K% > ﬁ for case 29a.

Next, we consider cases 18a, 20a, 21a, 46a, 52a, 60a. The common
property is that they are obtained by a 1-step packing from B2, So
the only possibility is B(!?) = B. Thus Kg’( = K3(Byg) or K3(By) or
K3(Ba1) or K3(Byg) or K3(Bss) or K3(Bgo). In a word, K5 > ﬁ.

The remaining cases are 16a, 16c, 27a, and 44b. For case 44b, there
are two intermediate baskets dominating Byg4. or Byy4g, respectively.
Thus, in particular, K g’( > ﬁ. For case 27a, it’s obtained from Bs; by
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3-steps of packing, namely,
Bor = {3 x (2,5),(5,8),x} = {2 x (2,5),(5,13), %}
= Bors:= {(2, 5), (7, 18), *} - {(9, 23), *} = Boy7,.

Thus we see B = By75 and Kg’( > K3(Bars) =
consider cases 16a and 16c. We know

Bl6 = {(47 9)7 (37 7)7 (27 5)7 (27 5)7 (37 8)7 (37 8)7 *}
The 1-step packing of Bg yields
B16.5 = {(4, 9), (3, 7), (2, 5), (5, 13), (3, 8), *},
and the 1-step prime packing of Byg 5 is either Big, or Bige. Thus, if B =
Big.5, then K§’< > K3(316_5) = % > 8718. The other intermediate
basket dominating B, and Big. is
Bl6.6 = {(77 16)7 (27 5)7 (27 5)7 (37 8)7 (37 8)7 *}

with K3(Bigg) = % > ﬁ. There are no other ways to obtain either

1 1 .
1586 > 9660+ [inally, we

Biga or Bige beginning from B9, The theorem is proved. q.e.d.
Corollary 4.7. Assume x(Ox) > 1. Then Pyy > 2.

Proof. By [4, Theorem 4.15], we know either Pjg > 2 or Py > 2.
When ¢(X) > 0, the statement follows from [3]. So we may assume
q(X) =0.

If Pig > 2, we take mg = 10 and study ¢19. Keep the same notation
as in 2.3. By Lemma 2.32, f must be of type I11, 11, I,. Proposition
2.15 (i), Theorem 2.20 (1), and Theorem 2.22 (1) imply Py > 2. g.e.d.

Theorem 4.8. Assume x(Ox) > 1. Then P,,, > 2 for some positive
integer mo < 18. In particular, pu; < 18.

Proof. Assume P, < 1 for all m < 12. Then Table C tells us that
B(12) = B = Bmin

where Byin is of certain type in Table C. Since, in Table C, we have seen
11 (Bmin) < 18, thus [4, Lemma 3.6] implies p1(X) < p1(Bmin) < 18.
q.e.d.

Theorem 4.9. Assume x(Ox) > 1. Then po(X) < 27.

Proof. The statement follows from [3] when ¢(X) > 0. Assume
¢(X) = 0 from now on.

If P, > 2 for some mg < 12, then the induced fibration f from
©m, is of type 111, I1, or I, by Lemma 2.32. Thus Proposition 2.15(i),
Theorem 2.20(1), and Theorem 2.22(1) imply that P, > 0 for all m >
27.

If P, <1 for all m < 12, we have a complete classification (cf.
Table C). For each B, in Table C, we observed that P, > 0 for all
47 > m > 24. This is enough to assert P, > 0 for all m > 24. We are
done. q.e.d.
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5. Pluricanonical birationality

In this section, we mainly study the birationality of ¢,,. Then we
can conclude our main theorems. Let X be a projective minimal 3-fold
of general type. First, we recall several known theorems.

Theorem 5.1 ([3]). Assume q(X) := h'(Ox) > 0. Then ¢, is
birational for all m > 7.

Theorem 5.2. ([7], [Theorem 0.1]) Assume P, > 2 for some pos-
itive integer mqg. Then ., is birational onto its image for all m >
dmg + 6.

Theorem 5.3 ([8]). Assume x(Ox) < 0. Then ¢, is birational for
all m > 14.

We need the following lemma to prove our main theorems.

Lemma 5.4. Assume Py (X) > 2 for some positive integer my.
Keep the same notation as in 2.3 and assume f is of type I, or I,.
Suppose |G| is a base point free linear system on S. If there exists
an integer my > 0 with mim*(Kx)|s > G, then Assumption 2.9(2) is
satisfied for all integers

m > maz{po + mo + mi,mg +mq + 2}.

Proof. Since

Ks+ [(m = )n*(Kx) = S = ;B ]is

_ LB,

> KS + (m — 1)7T*(KX S — (S+E7/710)|5

> (m—mo)7*(Kx)|s > (m —mo —m1)7"(Kx)s +G
and

Ks+ (m—mg — )7 (Kx)|s
> Ks+(m—mo—m—1)m"(Kx)s+G,

Lemma 2.17 implies that |Kg + [(m — 1)7*(Kx) — S — %E;nohﬂ can
distinguish different generic irreducible elements of |G| when m > py +
mgo +mq and m > mg + mq + 2. q.e.d.

Theorem 5.5. Let X be a projective minimal 3-fold of general type
with x(Ox) = 1. Then ¢, is birational for all m > 40.

Proof. If P, > 2 for some my < 6, then, by Theorem 5.2, ¢,, is
birational for m > 36.

Assume P, <1 for all m < 6. Then, by Corollary 3.12, #(X) either
dominates a minimal basket in

{Ba,1,B22,B31 ~ B35,B51 ~ Bs3,B61 ~ B, Bs1,Bga}

or dominates the basket Bajg. We have known P, (X) > Py, (B ). By
analyzing all the above baskets, we see a common property that there
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is a pair of positive integers (ng,n1) satisfying P,, > 2, P,, > 3, and
one of the following conditions:

(1) np <10, ny < 12 (see cases I11-2, I11-3, I11-4, VI-6);

(2) np <9, n; < 13 (for the remaining cases).

By Theorem 3.14 (1), we know py < 7. We set mg = n1. Keep the
same notation as in 2.3. Our proof is organized according to the type
of f. Note that P, > 3 and mg < 13. By Theorem 5.1, we only need
to care about the situation ¢(X) = 0.

Case 1. f is of type I3.

Take G to be the movable part of [20*(Kg,)|. Claim A implies that
Assumption 2.9(2) is satisfied whenever m > 35 > pg+2my+2. Clearly,
by Lemma 2.16, Assumption 2.9(1) is also satisfied. As seen in the later
part of 2.28, we can take a rational number 8 — m > m Now
mequahty (2.2) gives & > fz. Take m = 35 Then o = (35 —1 — 22 —

)5 > 10 > 1. Theorem 2. 11 gives § > 5. Take m = 32. Then « > 1.

We W1ll see £ > L 5 similarly. Now, for m > 39, a>(39—-1— % —15)¢ >
> 2. Theorem 2.11 says that ¢, is birational for all m > 39.

Case 2. fis of type Il or I11.

We take my = ng and mq = ny. We still use the mechanics of 2.3 to
study ¢, instead of ¢,,,. But most notations will use the symbol ~
Note that my < 10 and Py, > 2.

If f is of type IT or 111, Theorem 2.20(3) and Theorem 2.22(3) imply
that ¢, is birational for m > 38.

If f is of type I,, or I, we take G to be the movable part of | M, |5l
where S is a generic irreducible element of | M, |. Clearly, h°(S, M, |3)
> 2 since dimg,,,(X) > 2. Thus we are in the situation with
mim* (Kx)|g > G. We may always take a sufficiently good 7 instead
of 7. Now Lemma 2.16 and Lemma 5.4 imply that Assumptions 2.9(1)
and 2.9(2) are simultaneously satisfied for m > 30 > pg + mo + my.
Finally, we study the value of a. Clearly, one may take 8 = le Thus
1nequahty (2.2) says & > m For situations (1) and (2), we have
&> 2—3. Take m = 35. Then o > 23 > 1. Theorem 2.11 gives § > ==
Take m = 32. Then, similarly, we get & > 51;. Take m > 40. Then

a> 3 17~ 2. Theorem 2.11 implies that ¢, is birational for all m > 40.
We are done. q.e.d.

L. Zhu [30] showed ¢, is birational for m > 46.

Theorem 5.6. Let X be a projective minimal 3-fold of general type
with x(Ox) > 1. Then ¢, is birational for all m > 73.

Proof. By Theorem 5.1, we only need to consider the situation ¢(X) =
0. According to Lemma 2.32, the induced fibration f from ¢,,, is of
type I11I, II, or I,
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If P,,, > 2 for some mg < 16, then, by Theorems 2.20, 2.22, and 2.25,
©m is birational for all m > 69 . Assume P, < 1 for all m < 16. Then
we have a complete classification for By, as in Table C. More precisely,
we see B = Bo,, B = B3, and B > By, B = Bs24, noting that case
No.22 doesn’t happen by Proposition 4.5. As we have observed in the
proof of Theorem 4.6, for cases No. 20a and No. 52a, we actually have
B = Byy and B = Bsz. Thus we see Pi4(X) > 2 in both cases, a
contradiction. We are left to study cases No. 2a and No. 3a, which
correspond to two formal baskets, (Bag,2,0) and (Bs,, 3,0), where

Baa = {4 % (1,2),(4,9),(2,5), (5,13),3 x (1,3),2 x (1,4)},
Bsa = {6 x (1,2),(5,11),3 x (2,5), (5,13),4 x (1,3),(2,7),2 x (1,4)}.

The computation gives the following datum:

Po M1 M2 3
By, |20 18 24 30
B3, |20 18 20 30

When B = Bj,, we have PQ()(X) = PQ()(B) > P2()(B3a) > 3. The-
orems 2.20 and 2.29 imply that ¢, is birational for all m > 66 unless
fis type Il. Indeed, if f is of type II and mg = 20, at least we have
&> %, following the argument in 2.21. Take m = 57; we have o > 1
and hence £ > 51‘7. Now take m > 70; we have o = (70 — 41)51‘7 > 2.
Thus ¢y, is birational for all m > 70.

Now the theorem follows from the following claim.

Claim B. When B = Bay,, @, is birational for all m > 73.

The proof is similar to that of Theorem 5.5, Case 1 and Case 2. We
have known py < 20. We can find two numbers ng < 18 and n; < 24
with P, (X) > 2 and P,,(X) > 3. First, we set my = n;. Keep the
same notation as in 2.3. Our proof is organized according to the type
of f. Note that P, > 3 and mg < 24.

Case i. f is of type I3.

By Lemma 2.32, f must be of type I,. Take G = 20*(Kg,). Claim
A implies that Assumption 2.9(2) is satisfied whenever m > 70 >
po + 2mg + 2. Clearly, by Lemma 2.16, Assumption 2.9(1) is also sat-
isfied. As seen in the latter part of 2.28, we can take a rational num-
ber 5 — me+2p > m01+2. Note that |G| is base point free, and we

have deg(Kc) > 6. Now inequality (2.2) gives £ > % For m > 70,
a> (70 —1—12 —26)¢ > 2. Theorem 2.11 says that ¢, is birational

for all m > 70.

Case ii. fis of type Il or I11.
We take mo = ng and m1 = ny. We still use the mechanics of 2.3 to
study ¢, instead of ¢,,,. Noting that mo < 18, when f is of type 111
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or Il, Theorems 2.20 and 2.22 imply that ¢, is birational for all m > 66.

We are left to study the situation with f being of type I. We take G

to be the movable part of M, |g|. Clearly, ho(g,Mm1|5) > 2 since

dim @y, (X) > 2. Thus we are in the situation with m7*(Kx)[g > G.

Now Lemma 2.16 and Lemma 5.4 imply that Assumptions 2.9(1) and

2.9(2) are simultaneously satisfied for m > 62 > pg + mg + mq. Clearly,
1 2

one may take 8 = 7+ Thus inequality (2.2) says £ > m > i3

Take m = 65. Then o > % > 1. Theorem 2.11 gives £ > %. Take
m = 60. Then similarly we get & > % Take m = 59. Then we shall get
&> %. Take m = 58 and we obtain £ > %. Eventually, for m > 73,
we see a > 2 and Theorem 2.11 implies that ¢,, is birational for all
m > 73. We are done. q.e.d.

We have proved all the main results. Indeed, Theorem 1.1 follows
from Theorem 5.1, Theorem 5.3, Theorem 5.5, and Theorem 5.6. The-
orem 1.2 follows from Theorem 3.11 and Theorem 4.6.

Finally, we would like to ask the following;:

Question 5.7. Can one find an optimal lower bound for K3?
The following problem is very interesting.

Open Problem 5.8. Can one find a minimal 3-fold X of general
type with ¢(X) =0 and x(Ox) > 17
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