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Abstract

In this paper we derive optimal growth estimates on the poten-
tial functions of complete noncompact shrinking solitons. Based
on this, we prove that a complete noncompact gradient shrinking
Ricci soliton has at most Euclidean volume growth. This lat-
ter result can be viewed as an analog of the well-known volume
comparison theorem of Bishop that a complete noncompact Rie-
mannian manifold with nonnegative Ricci curvature has at most
Euclidean volume growth.

1. The results

A complete Riemannian metric gij on a smooth manifold Mn is called
a gradient shrinking Ricci soliton if there exists a smooth function f on
Mn such that the Ricci tensor Rij of the metric gij is given by

Rij +∇i∇jf = ρgij

for some positive constant ρ > 0. The function f is called a poten-
tial function of the shrinking soliton. Note that by scaling gij one can
normalize ρ = 1

2 so that

Rij +∇i∇jf =
1

2
gij . (1.1)

Gradient shrinking Ricci solitons play an important role in Hamilton’s
Ricci flow as they correspond to self-similar solutions, and often arise as
Type I singularity models. In this paper, we investigate the asymptotic
behavior of potential functions and volume growth rates of complete
noncompact gradient shrinking solitons. Our main results are:

Theorem 1.1. Let (Mn, gij , f) be a complete noncompact gradient
shrinking Ricci soliton satisfying (1.1). Then the potential function f
satisfies the estimates

1

4
(r(x)− c1)

2 ≤ f(x) ≤ 1

4
(r(x) + c2)

2.
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Here r(x) = d(x0, x) is the distance function from some fixed point
x0 ∈ M , and c1 and c2 are positive constants depending only on n and
the geometry of gij on the unit ball Bx0(1).

Remark 1.1. In view of the Gaussian shrinker, namely, the flat
Euclidean space (Rn, g0) with the potential function |x|2/4, the leading
term 1

4r
2(x) for the lower and upper bounds on f in Theorem 1.1 is

optimal. Notice that, by Theorem 1.1, we have a proper, distance-like
function on (Mn, gij , f) defined by ρ(x) = 2

√
f . We also point out

that it has been known, by the work of Perelman [13], Ni and Wallach
[12], and Cao, Chen, and Zhu [3], that any 3-dimensional complete

noncompact nonflat shrinking gradient soliton is necessarily the round

cylinder S2 × R or one of its Z2 quotients.

Remark 1.2. When the Ricci curvature of (Mn, gij , f) is assumed
to be bounded, Theorem 1.1 was shown by Perelman [13]. Also, under
the assumption of Rc ≥ 0, a lower estimate of the form

f(x) ≥ 1

8
r2(x)− c′1

was shown by Ni [11] (see also Lemma 2.1 in [5]). Moreover, the upper
bound in Theorem 1.1 was essentially observed in [3], while a rough
quadratic lower bound, as pointed out by Carrillo and Ni [5] (Section 7,
p. 19), could follow from the argument of Fang, Man, and Zhang in [7].

Theorem 1.2. Let (Mn, gij , f) be a complete noncompact gradient
shrinking Ricci soliton. Then there exists some positive constant C1 > 0
such that

Vol(Bx0(r)) ≤ C1r
n

for r > 0 sufficiently large.

Remark 1.3. Feldman, Ilmanen, and Knopf [8] constructed a com-
plete noncompact gradient Kähler shrinker on the tautological line bun-
dle O(−1) of the complex projective space CPn−1 (n ≥ 2) which has
Euclidean volume growth, quadratic curvature decay, and with Ricci
curvature changing signs. This example shows that the volume growth
rate upper bound in Theorem 1.2 is optimal. Note that, on the other
hand, Carrillo and Ni [5] showed that any nonflat gradient shrinking

soliton with nonnegative Ricci curvature Rc ≥ 0 must have zero asymp-

totic volume ratio, i.e., limr→∞Vol(Bx0(r))/r
n = 0.

Remark 1.4. There are two well-known theorems on volume growth
of geodesic balls for complete noncompact Riemannian manifolds with
nonnegative Ricci curvature: a theorem of Yau and Calabi (see [16])
asserts that the geodesic balls of such manifolds have at least linear
growth, while the classical Bishop volume comparison theorem says (cf.
[14]) the geodesic balls have at most Euclidean growth. Theorem 1.2
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can be viewed as an analog of Bishop’s theorem for gradient shrinking
solitons. We also like to point out that Xi-Ping Zhu and the first author
(see Theorem 3.1 in [2]) showed that a complete noncompact gradient
shrinking Ricci soliton must have infinite volume. However, it remains
an interesting problem to see if a Calabi–Yau-type theorem holds for
gradient shrinking solitons, namely, whether every complete noncom-
pact gradient shrinking soliton has at least linear volume growth.

Combining Theorem 1.1 and Theorem 1.2, we also have the following
consequence, which was obtained previously in [10] and [15], respec-
tively.

Corollary 1.1. Let (Mn, gij , f) be a complete noncompact gradient
shrinking Ricci soliton. Then we have

∫

M

|u|e−fdV < +∞

for any function u on M with |u(x)| ≤ Aeαr
2(x), 0 ≤ α < 1

4 and A > 0.
In particular, the weighted volume of M is finite,

∫

M

e−fdV < +∞.

Acknowledgments. We are grateful to Ovidiu Munteanu for pointing
out to us the estimate (3.4) on the average scalar curvature which al-
lowed us to remove a certain mild assumption on the scalar curvature
in Theorem 1.2. The second author wishes to thank Jiayu Li for some
discussions. The first author was partially supported by NSF grants
DMS-0354621 and DMS-0506084; the second author was partially sup-
ported by CNPq and FAPERJ, Brazil.

2. Asymptotic behavior of the potential function

In this section, we investigate the asymptotic behavior of the potential
function of an arbitrary complete noncompact gradient shrinking Ricci
solitons and prove Theorem 1.1.

First of all, we need a few useful facts about complete gradient shrink-
ing solitons. The first basic result is due to Hamilton (cf. Theorem 20.1
in [9]).

Lemma 2.1. Let (Mn, gij , f) be a complete gradient shrinking soliton
satisfying (1.1). Then we have

∇iR = 2Rij∇jf,

and

R+ |∇f |2 − f = C0

for some constant C0. Here R denotes the scalar curvature of gij .
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As a consequence, by adding the constant C0 to f , we can assume

R+ |∇f |2 − f = 0. (2.1)

From now on we will make this normalization on f throughout the
paper.

We will also need the following useful result, which is a special case of
a more general result on complete ancient solutions due to B.-L. Chen
[6] (cf. Proposition 5.5 in [1]).

Lemma 2.2. Let (Mn, gij , f) be a complete shrinking Ricci soliton.
Then gij has nonnegative scalar curvature R ≥ 0.

As an immediate consequence of (2.1) and Lemma 2.2, one gets the
following result, which was essentially observed by Cao, Chen, and Zhu
[3] (cf. p. 78–79 in [3]).

Lemma 2.3. Let (Mn, gij , f) be a complete shrinking Ricci soliton
satisfying (1.1) and (2.1). Then

f(x) ≤ 1

4
(r(x) + 2

√

f(x0))
2, (2.2)

|∇f |(x) ≤ 1

2
r(x) +

√

f(x0), (2.3)

and

R(x) ≤ 1

4
(r(x) + 2

√

f(x0))
2. (2.4)

Here r(x) = d(x0, x) is the distance function from some fixed point
x0 ∈ M .

Proof. By Lemma 2.2 and (2.1),

0 ≤ |∇f |2 ≤ f, or |∇
√

f | ≤ 1

2
(2.5)

whenever f > 0. Thus
√
f is an Lipschitz function and

|
√

f(x)−
√

f(x0)| ≤
1

2
r(x).

Hence
√

f(x) ≤ 1

2
r(x) +

√

f(x0),

or

f(x) ≤ 1

4
(r(x) + 2

√

f(x0))
2.

This proves (2.2), from which (2.3) and (2.4) follow immediately when
combined with (2.1). q.e.d.

Now (2.2) provides the upper estimate on f in Theorem 1.1. However,
proving the lower estimate turns out to be more subtle.
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Proposition 2.1. Let (Mn, gij , f) be a complete noncompact gradi-
ent shrinking Ricci soliton satisfying the normalization conditions (1.1)
and (2.1). Then f satisfies the estimate

f(x) ≥ 1

4
(r(x)− c1)

2,

where c1 is a positive constant depending only on n and the geometry of
gij on the unit ball Bx0(1).

Proof. Consider any minimizing normal geodesic γ(s), 0 ≤ s ≤ s0
for some arbitrary large s0 > 0, starting from x0 = γ(0). Denote by
X(s) = γ̇(s) the unit tangent vector along γ. Then, by the second
variation of arc length, we have

∫ s0

0
φ2Rc(X,X)ds ≤ (n− 1)

∫ s0

0
|φ̇(s)|2ds (2.6)

for every nonnegative function φ(s) defined on the interval [0, s0]. Now,
following Hamilton [9], we choose φ(s) by

φ(s) =



















s, s ∈ [0, 1],

1, s ∈ [1, s0 − 1],

s0 − s, s ∈ [s0 − 1, s0].

Then
∫ s0

0
Rc(X,X)ds =

∫ s0

0
φ2Rc(X,X)ds +

∫ s0

0
(1− φ2)Rc(X,X)ds

≤ (n− 1)

∫ s0

0
|φ̇(s)|2ds+

∫ s0

0
(1− φ2)Rc(X,X)ds

≤ 2(n − 1) + max
Bx0(1)

|Rc|+ max
Bγ(s0)

(1)
|Rc|.

On the other hand, by (1.1), we have

∇X ḟ = ∇X∇Xf =
1

2
−Rc(X,X). (2.7)

Integrating (2.7) along γ from 0 to s0, we get

ḟ(γ(s0))− ḟ(γ(0)) =
1

2
s0 −

∫ s0

0
Rc(X,X)ds

≥ s0
2

− 2(n − 1)− max
Bx0(1)

|Rc| − max
Bγ(s0)

(1)
|Rc|.

In case gij has bounded Ricci curvature |Rc| ≤ C for some constant
C > 0, then it would follow that

ḟ(γ(s0)) ≥
1

2
s0 − ḟ(γ(0)) − 2(n − 1)− 2C =

1

2
(s0 − c), (2.8)



180 H.-D. CAO & D. ZHOU

and that

f(γ(s0)) ≥
1

4
(s0 − c)2 − f(x0)−

c2

4
,

proving what we wanted. (Indeed, the above argument was essentially
sketched by Perelman (see, p.3 of [13]), and a detailed argument was
presented in [4] (p. 385–386).)

However, since we do not assume any curvature bound in Theorem
1.1, we have to modify the above argument.

First of all, by integrating (2.7) along γ from s = 1 to s = s0 − 1
instead and using (2.6) as before, we have

ḟ(γ(s0 − 1)) − ḟ(γ(1)) =

∫ s0−1

1
∇X ḟ(γ(s))ds

=
1

2
(s0 − 2)−

∫ s0−1

1
Rc(X,X)ds

=
1

2
(s0 − 2)−

∫ s0−1

1
φ2(s)Rc(X,X)ds

≥ s0
2

− 2n+ 1− max
Bx0 (1)

|Rc|+
∫ s0

s0−1
φ2Rc(X,X)ds.

Next, using (2.7) and integration by parts one more time as in [7], we
obtain

∫ s0

s0−1
φ2Rc(X,X)ds =

1

2

∫ s0

s0−1
φ2(s)ds−

∫ s0

s0−1
φ2(s)∇X ḟ(γ(s))ds

=
1

6
+ ḟ(γ(s0 − 1))− 2

∫ s0

s0−1
φ(s)ḟ(γ(s))ds.

Therefore,

2

∫ s0

s0−1
φ(s)ḟ(γ(s))ds ≥ s0

2
− 2n+

7

6
− max

Bx0(1)
|Rc|+ ḟ(γ(1)). (2.9)

Furthermore, by (2.5) we have

|ḟ(γ(s))| ≤
√

f(γ(s)),

and

|
√

f(γ(s))−
√

f(γ(s0))| ≤
1

2
(s0 − s) ≤ 1

2
,

whenever s0 − 1 ≤ s ≤ s0. Thus,

max
s0−1≤s≤s0

|ḟ(γ(s))| ≤
√

f(γ(s0)) +
1

2
. (2.10)

Combining (2.9) and (2.10), and noting 2
∫ s0
s0−1 φ(s)ds = 1, we conclude

that
√

f(γ(s0)) ≥
1

2
(s0 − c1)
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for some constant c1 depending only on n and the geometry of gij on
the unit ball Bx0(1). This completes the proof of Proposition 2.1 and
Theorem 1.1. q.e.d.

3. Volume growth of complete gradient shrinking solitons

In this section, we examine the volume growth of geodesic balls of
complete noncompact gradient shrinking Ricci solitons.

Let us define

ρ(x) = 2
√

f(x).

Then, by Theorem 1.1, we have

r(x)− c ≤ ρ(x) ≤ r(x) + c (3.1)

with c = max{c1, c2} > 0. Also, we have

∇ρ =
∇f√
f

and |∇ρ| = |∇f |√
f

≤ 1. (3.2)

Denote by

D(r) = {x ∈ M : ρ(x) < r} and V (r) =

∫

D(r)
dV.

Then, by the co-area formula (cf. [14]), we have

V (r) =

∫ r

0
ds

∫

∂D(s)

1

|∇ρ|dA.

Hence,

V ′(r) =

∫

∂D(r)

1

|∇ρ|dA =
r

2

∫

∂D(r)

1

|∇f |dA. (3.3)

Here we have used (3.2) in deriving the last identity in (3.3).

Lemma 3.1.

nV (r)− rV ′(r) = 2

∫

D(r)
RdV − 2

∫

∂D(r)

R

|∇f |dV.

Proof. Taking the trace in (1.1), we have

R+∆f =
n

2
.
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Thus,

nV (r)− 2

∫

D(r)
RdV = 2

∫

D(r)
∆fdV

= 2

∫

∂D(r)
∇f · ∇ρ

|∇ρ|

= 2

∫

∂D(r)
|∇f |dV

= 2

∫

∂D(r)

f −R

|∇f | dV

= rV ′(r)− 2

∫

∂D(r)

R

|∇f |dV.

q.e.d.

Remark 3.1. As pointed out to us by Ovidiu Munteanu, we have
also actually shown that

∫

D(r)
RdV ≤ n

2
V (r). (3.4)

Namely, the average scalar curvature over D(r) is bounded by n/2.

Now we are ready to prove Theorem 1.2.

Proof. Let (Mn, gij , f) be a complete noncompact gradient shrinking
Ricci soliton. Denote

χ(r) =

∫

D(r)
RdV.

By the co-area formula, we have

χ(r) =

∫ r

0
ds

∫

∂D(s)

R

|∇ρ|dA =
1

2

∫ r

0
sds

∫

∂D(s)

R

|∇f |dA.

Hence

χ′(r) =
r

2

∫

∂D(r)

R

|∇f |dA.

Therefore, Lemma 3.1 can be rewritten as

nV (r)− rV ′(r) = 2χ(r)− 4

r
χ′(r). (3.5)

This implies that

(r−nV (r))′ = 4r−n−2e
r
2

4 (e−
r
2

4 χ(r))′

= 4r−n−2χ′(r)− 2r−n−1χ(r).
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Integrating the above equation from r0 to r, we get

r−nV (r)− r−n
0 V (r0) = 4r−n−2χ(r)

∣

∣

r

r0
+ 4(n+ 2)

∫ r

r0

r−n−3χ(r)dr

− 2

∫ r

r0

r−n−1χ(r)dr

= 4r−n−2χ(r)− 4r−n−2
0 χ(r0)

+ 2

∫ r

r0

r−n−3χ(r)(2(n + 2)− r2)dr.

Since χ(r) is positive and increasing in r, we have, for r0 =
√

2(n + 2),
∫ r

r0

r−n−3χ(r)(2(n + 2)− r2)dr ≤ χ(r0)

∫ r

r0

r−n−3(2(n + 2)− r2)dr

= χ(r0) (−2r−n−2 +
1

n
r−n)

∣

∣

∣

∣

r

r0

.

Thus,

r−nV (r)− r−n
0 V (r0) ≤ 4r−n−2(χ(r)− χ(r0)) +

2

n
χ(r0)(r

−n − r−n
0 ).

It follows that, for r ≥ r0 =
√

2(n+ 2),

V (r) ≤ (r−n
0 V (r0))r

n + 4r−2χ(r). (3.6)

On the other hand, by (3.4) we have

4r−2χ(r) ≤ 2nr−2V (r) ≤ 1

2
V (r), (3.7)

for r sufficiently large.
Plugging (3.7) into (3.6), we obtain

V (r) ≤ 2r−n
0 V (r0)r

n.

Therefore, by (3.1),

Vol(Bx0(r)) ≤ V (r + c) ≤ V (r0)r
n

for r large enough. This finishes the proof of Theorem 1.2.
q.e.d.

We conclude with the following volume lower estimate.

Proposition 3.1. Let (Mn, gij , f) be a complete noncompact gradi-
ent shrinking Ricci soliton. Suppose the average scalar curvature satis-
fies the upper bound

1

V (r)

∫

D(r)
RdV ≤ δ (3.8)

for some positive constant δ < n/2 and all sufficiently large r. Then
there exists some positive constant C2 > 0 such that

Vol(Bx0(r)) ≥ C2r
n−2δ
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for r sufficiently large.

Proof. Combining the assumption (3.8) with Lemma 3.1 and Lemma
2.2, it follows that

(n− 2δ)V (r) ≤ rV ′(r). (3.9)

Thus,
∫ r

1

V ′(s)

V (s)
ds ≥

∫ r

1

n− 2δ

s
ds.

Consequently,

V (r) ≥ V (1)rn−2δ .

Therefore, in view of (3.1),

Vol(Bx0(r)) ≥ V (r − c) ≥ 2−nV (1)rn−2δ

for r sufficiently large.
q.e.d.

Remark 3.2. As we mentioned in the introduction, X.-P. Zhu and
the first author (see [2]) have shown that a complete noncompact gra-
dient shrinking soliton, without any curvature assumption, must have
infinite volume. Their proof is, however, more sophisticated, relying on
a logarithmic inequality of Carrillo and Ni [5] and the Perelman-type
noncollapsing argument for complete gradient shrinking solitons.
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