A CHARACTERIZATION OF THE STANDARD EMBEDDINGS OF $\mathbb{C} P^{2}$ AND Q^{3}

Jost Eschenburg, Maria Joao Ferreira \& Renato Tribuzy

Abstract

H. Hopf showed that the only constant mean curvature sphere \mathbb{S}^{2} immersed in \mathbb{R}^{3} is the round sphere. The Kähler framework is an adequate approach to generalize Hopf's theorem to higher dimensions. When $\varphi: M \rightarrow \mathbb{R}^{n}$ is an isometric immersion from a Kähler manifold, the complexified second fundamental form α splits according to types. The $(1,1)$ part of the second fundamental form plays the role of the mean curvature for surfaces and will be called the pluri-mean curvature $p m c$. Therefore isometric immersions with parallel pluri-mean curvature (p pmc isometric immersions) generalize in a natural way the cmc immersions. It is a standard fact that \mathbb{R}^{8} is the smallest space where $\mathbb{C} P^{2}$ can be embedded. The aim of this work is to generalize Hopf's theorem proving in particular that the only ppmc isometric immersion from $\mathbb{C} P^{2}$ into \mathbb{R}^{8} is the standard immersion.

1. Introduction and statement of results

The smallest \mathbb{R}^{k} into which $\mathbb{S}^{2}=\mathbb{C} P^{1}$ may be embedded is \mathbb{R}^{3}. H. Hopf [13] showed that, up to congruence, the only constant mean curvature (cmc) isometric immersion from the sphere into \mathbb{R}^{3} is the standard immersion. Affording higher dimensions in the domain manifold, an adequate setting is the class of Kähler manifolds. When M is a Kähler manifold and $\varphi: M \longrightarrow \mathbb{R}^{n}$ is an isometric immersion, the coupling of the second fundamental form α of φ with the complex structure J of M originates two operators. To describe these operators we denote respectively by $T^{c} M, T^{\prime} M$ and $T^{\prime \prime} M$ the complexification of $T M$ and the eigenbundles of J corresponding to the eigenvalues i and $-i$. We will denote π^{\prime} and $\pi^{\prime \prime}$ respectively the orthogonal projections of $T^{c} M$ onto $T^{\prime} M$ and $T^{\prime \prime} M$. Accordingly, each $X \in T^{c} M$ is decomposed as $X=X^{\prime}+X^{\prime \prime}$ where

$$
X^{\prime}=\pi^{\prime}(X)=\frac{1}{2}(X-i J X), \quad X^{\prime \prime}=\pi^{\prime \prime}(X)=\frac{1}{2}(X+i J X)
$$

[^0](type decomposition). Then the complexification of α decomposes accordingly giving rise to the components
\[

$$
\begin{aligned}
& \alpha^{(1,1)}(X, Y)=\alpha\left(X^{\prime}, Y^{\prime \prime}\right)+\alpha\left(X^{\prime \prime}, Y^{\prime}\right) \\
& \alpha^{(2,0)}(X, Y)=\alpha\left(X^{\prime}, Y^{\prime}\right)
\end{aligned}
$$
\]

H. Hopf discovered that the traceless part of the second fundamental form of an immersed surface with constant mean curvature ("cmc") is a holomorphic quadratic differential on the surface. This observation was the key to his well known theorem refered above. This holomorphic differential is nothing but the operator $\alpha^{(2,0)}$, and $\alpha^{(1,1)}=\langle\rangle$,$H where$ $H=\frac{1}{2} \operatorname{trace} \alpha$ is the mean curvature vector. In higher dimensions, the mean curvature (trace of α) can be generalized to $\alpha^{(1,1)}$ which we call pluri-mean curvature (see [3] for a justification). For isometric immersions where this part of the second fundamental form is parallel (parallel pluri-mean curvature, ppmc), the other part $\alpha^{(2,0)}$ is again a (normal bundle valued) holomorphic quadratic differential. When $\alpha^{(1,1)}$ vanishes identically, the immersion is called (1,1)-geodesic or pluriminimal ([6], [4], [5]). When $\alpha^{(2,0)}$ vanishes identically, the immersion is called $(2,0)$-geodesic; such immersion are also ppmc and have been classified by Ferus [12]: they are the so called standard embeddings of Kähler symmetric spaces (cf. Section 5 and [8]).

Isometric immersions with parallel pluri-mean curvature share some geometric features of parallel mean curvature surfaces, namely the existence of a 1-parameter deformation through a smooth family of isometric $p p m c$-immersions which, up to a parallel isomorphism, have the same normal bundle ([3]). Just as in the case of immersions with parallel mean curvature, isometric $p p m c$-immersions can also be characterized by the pluriharmonicity of their Gauss maps ($[\mathbf{1 0} \mathbf{0},[\mathbf{3}])$.

The smallest \mathbb{R}^{k} into which $\mathbb{C} P^{2}$ may be ppmc-immersed is \mathbb{R}^{8}. (The total Pontrjagin class of $M=\mathbb{C} P^{2}$ is $p(T M)=1+3 \xi^{2}$ where ξ is the standard generator of $H^{2}(M ; \mathbb{Z})$ (cf. [15], p. 178). If $f: M \rightarrow \mathbb{R}^{n}$ is any immersion with normal bundle $N M$, then $T M \oplus N M$ is a trivial bundle. Thus $p(T M) p(N M)=1$ whence $p(N M)=\left(1+3 \xi^{2}\right)^{-1}=1-3 \xi^{2}$. Since $p(N M)=1+p_{1}(N M)$, we get

$$
\begin{equation*}
p_{1}(N M)=-3 \xi^{2} . \tag{a}
\end{equation*}
$$

This excludes codimension one ($n=5$) since the normal bundle of an oriented hyperplane is trivial. If the codimension is two $(n=6)$, the normal bundle is an oriented plane bundle, hence a complex line bundle. Let $\eta=c_{1}(N M) \in H^{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right)$ be its first Chern class. Then by [15], p. 177 we have $1-p_{1}(N M)=(1-\eta)(1+\eta)=1-\eta^{2}$ and therefore

$$
\begin{equation*}
p_{1}(N M)=\eta^{2} . \tag{b}
\end{equation*}
$$

Comparing with (a) would yield $-3 \xi^{2}=\eta^{2} \in H^{4}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right) \cong \mathbb{Z}$ which is impossible since -3 is not a square number. The same conclusion holds
for codimension three $(n=7)$ provided that $N M$ splits off a trivial subbundle. If the mean curvature vector is nowhere zero, it generates such a subbundle.)

The aim of this work is to generalize Hopf's theorem proving that the only ppmc-immersion from $\mathbb{C} P^{2}$ (with any Kähler metric) into \mathbb{R}^{8} is the standard immersion. In fact we will prove more: We will show that any ppmc immersion with codimension ≤ 4 is a standard embedding. Besides the \mathbb{S}^{2} and $\mathbb{C} P^{2}$, there is just one other case with codimension ≤ 4 : The complex quadric $Q^{3} \subset \mathbb{C} P^{4}$ which is the Grassmannian of oriented 2-planes in \mathbb{R}^{5}.

Theorem 1.1. Let M be a compact Kählerian manifold with positive first Chern class and $\varphi: M \rightarrow \mathbb{R}^{n}$ a full indecomposable isometric ppmc immersion with codimension ≤ 4. Then either M is isometric to \mathbb{S}^{2}, $\mathbb{C} P^{2}$ or Q^{3} (up to scaling), and φ is the standard embedding (up to congruence), or $\phi(M)$ is a minimal sphere in \mathbb{S}^{4}.

Corollary 1.2. Let $\varphi: \mathbb{C} P^{2} \rightarrow \mathbb{R}^{8}$ be an immersion whose induced metric is Kähler. If φ is ppmc, then φ is the standard embedding of $\mathbb{C} P^{2}$ endowed with the Fubini-Study metric.

Remark. The minimal spheres in \mathbb{S}^{4} have been classified by R. Bryant [2].

2. Holomorphic differentials

Let M be a Kähler manifold and $\varphi: M \rightarrow \mathbb{R}^{n}$ an isometric immersion. Let $\alpha: S^{2}(T M) \rightarrow N M$ (where S^{2} denotes the second symmetric power) be the second fundamental form (tacitly extended to the complexified bundles) with its components $\alpha^{(2,0)}, \alpha^{(1,1)}, \alpha^{(0,2)}=\overline{\alpha^{(2,0)}}$. Throughout the paper we assume that φ is $p p m c$, i.e. $\alpha^{(1,1)}$ is parallel with respect to the induced connections on $T M$ and $N M$. In particular, the (unnormalized) mean curvature vector $H=\operatorname{trace} \alpha=\sum_{i} \alpha\left(E_{i}, \overline{E_{i}}\right)$ (where E_{1}, \ldots, E_{m} is any unitary basis of $T^{\prime} M$) is a parallel normal vector field.

Lemma 2.1. The 4 -form

$$
\begin{equation*}
\beta:(A, B, C, D) \mapsto\langle\alpha(A, B), \alpha(C, D)\rangle \tag{1}
\end{equation*}
$$

on $\otimes^{4} T^{c} M$ - which is always symmetric in (A, B) and (C, D) - is symmetric in (B, C) iff $\langle R(B, C) A, D\rangle=0$.

Proof. This is immediate from the Gauss equation

$$
\langle\alpha(A, B), \alpha(C, D)\rangle-\langle\alpha(A, C), \alpha(B, D)\rangle=\langle R(B, C) D, A\rangle \quad \text { q.e.d. }
$$

Lemma 2.2. The form $\Lambda_{4}=\left\langle\alpha^{(2,0)}, \alpha^{(2,0)}\right\rangle$ on $\otimes^{4}\left(T^{\prime} M\right)$ is symmetric and holomorphic. Likewise, for any parallel normal vector field ξ, the symmetric 2-form $\Lambda_{\xi}=\left\langle\alpha^{(2,0)}, \xi\right\rangle$ on $\otimes^{2}\left(T^{\prime} M\right)$ is holomorphic.

Proof. Since M is Kähler, $R(B, C) D=0$ if $B, C \in T^{\prime} M$ and hence we see the symmetry of Λ_{4} from the previous Lemma 2.1. For the holomorphicity we need two preparations:
(a) Let $z=\left(z_{1}, \ldots, z_{m}\right)$ be a holomorphic chart and $Z_{j}=\partial / \partial z_{j}$ the corresponding holomorphic coordinate vector fields. Then

$$
\begin{equation*}
\nabla_{\bar{Z}_{k}} Z_{j}=\nabla_{Z_{j}} \bar{Z}_{k} \in T^{\prime} M \cap T^{\prime \prime} M=0 . \tag{2}
\end{equation*}
$$

(b) The Codazzi equations show for all $\bar{A} \in T^{\prime \prime} M$ and $B, C \in T^{\prime} M$

$$
\begin{equation*}
\left(\nabla_{\bar{A}} \alpha\right)(B, C)=\left(\nabla_{B} \alpha\right)(\bar{A}, C)=0 \tag{3}
\end{equation*}
$$

since $\alpha^{(1,1)}$ is parallel. Thus derivatives of α vanish as soon the arguments are of mixed type. Hence $\nabla_{\bar{A}} \Lambda_{\xi}=\left\langle\nabla_{\bar{A}} \alpha^{(2,0)}, \xi\right\rangle=0$ and similarly $\nabla_{\bar{A}} \Lambda_{4}=0$.
Now the partial derivatives with respect to \bar{z}_{k} are:

$$
\begin{array}{ccccc}
\frac{\partial}{\partial \bar{z}_{k}} \Lambda_{\xi}\left(Z_{a}, Z_{b}\right) & = & \Lambda_{\xi}\left(\nabla_{\bar{Z}_{k}} Z_{a}, Z_{b}\right)+\Lambda_{\xi}\left(Z_{a}, \nabla_{\bar{Z}_{k}} Z_{b}\right) & = & 0, \\
\frac{\partial}{\partial \bar{z}_{k}} \Lambda_{4}\left(Z_{a}, Z_{b}, Z_{c}, Z_{d}\right) & = & \Lambda_{4}\left(\nabla_{\bar{Z}_{k}} Z_{a}, Z_{b}, Z_{c}, Z_{d}\right)+\ldots & = & 0
\end{array}
$$

which shows that these forms are holomorphic.
q.e.d.

Now let us assume that M is compact with positive first Chern class. Then M allows a Kähler metric with positive Ricci curvature, cf. [1], (11.16), p.322. A Bochner type argument allows the conclusion that there are no nonzero holomorphic differentials on M (see [14]), in particular:

Corollary 2.3. Let M be a compact Kähler manifold with positive first Chern class and $\varphi: M \rightarrow \mathbb{R}^{n}$ an isometric ppme immersion. Then the forms $\Lambda_{4}=\left\langle\alpha^{(2,0)}, \alpha^{(2,0)}\right\rangle$ and $\Lambda_{\xi}=\left\langle\alpha^{(2,0)}, \xi\right\rangle$ for every parallel normal field ξ vanish on all of M.

A ppmc immersion φ will be called half isotropic if the last assertion is true, i.e. if $\left\langle\alpha^{(2,0)}, \alpha^{(2,0)}\right\rangle=0$ and $\left\langle\alpha^{(2,0)}, \xi\right\rangle=0$ for every parallel normal field $\xi \in N^{o}$ where

$$
\begin{equation*}
N^{o}=\left\{\alpha\left(A^{\prime}, B^{\prime \prime}\right) ; A, B \in T M\right\} . \tag{4}
\end{equation*}
$$

We have seen that positive first Chern class implies half isotropic.

3. Indecomposability

Let M be a Kähler manifold. An isometric immersion $\varphi: M \rightarrow \mathbb{R}^{n}$ is decomposable if M is a Riemannian product of Kähler submanifolds, $M=M_{1} \times M_{2}$, and there are isometric immersions $\varphi_{i}: M_{i} \rightarrow \mathbb{R}^{n_{i}}$ with $n=n_{1}+n_{2}$ such that $\varphi=\varphi_{1} \times \varphi_{2}$.

Lemma 3.1. Let M be Kähler and $\varphi: M \rightarrow \mathbb{R}^{n}$ an isometric ppmcimmersion which is decomposable. Then both factors are ppmc.

Proof. The type decomposition of the second fundamental form α is inherited to its components α_{1} and α_{2}, and since the projections onto M_{i} are parallel, the components $\alpha_{i}^{(1,1)}$ of $\alpha^{(1,1)}$ are also parallel. q.e.d.

Passing to the components if necessary, we may assume from now on that our ppmc immersion $\varphi: M \rightarrow \mathbb{R}^{n}$ is indecomposable. Moreover we will always assume that φ is full, i.e. $\varphi(M)$ is not contained in a proper affine subspace of \mathbb{R}^{n}. We put

$$
\begin{equation*}
N^{1}=\left\{\alpha^{(2,0)}(A, B)+\alpha^{(0,2)}(A, B) ; A, B \in T M\right\} \tag{5}
\end{equation*}
$$

which is a subbundle of $N M$ on an open subset $M_{o} \subset M$.
Lemma 3.2. Let ξ be any parallel normal vector field with $\xi \perp N^{1} M$. Then the corresponding Weingarten operator $A_{\xi} \in \operatorname{Hom}(T M, T M)$ is parallel and commutes with J.

Proof. Let $A_{\xi}^{(1,1)}$ be the (1,1)-Weingarten map of ξ,

$$
\left\langle A_{\xi}^{(1,1)}(X), Y\right\rangle:=\left\langle\alpha^{(1,1)}(X, Y), \xi\right\rangle
$$

Since $\alpha^{(1,1)}(J X, J Y)=\alpha^{(1,1)}(X, Y)$, we have

$$
\left\langle J^{-1} A_{\xi}^{(1,1)}(J X), Y\right\rangle=\left\langle A_{\xi}^{(1,1)}(J X), J Y\right\rangle=\left\langle A_{\xi}^{(1,1)}(X), Y\right\rangle
$$

thus $J^{-1} A_{\xi}^{(1,1)} J=A_{\xi}^{(1,1)}$, so $A_{\xi}^{(1,1)}$ commutes with J. Since both $\alpha^{(1,1)}$ and ξ are parallel, so is $A_{\xi}^{(1,1)}$. But the $(2,0)$ and $(0,2)$ components of α are perpendicular to ξ, thus $\left\langle A_{\xi}(X), Y\right\rangle=\langle\alpha(X, Y), \xi\rangle=$ $\left\langle\alpha^{(1,1)}(X, Y), \xi\right\rangle=\left\langle A_{\xi}^{(1,1)} X, Y\right\rangle$ whence $A_{\xi}=A_{\xi}^{(1,1)}$.
q.e.d.

Proposition 3.3. Let $\varphi: M \rightarrow \mathbb{R}^{n}$ be indecomposable, full, ppmc and half isotropic. Then $\varphi(M)$ is minimal in a round sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$, and any parallel normal field in N^{o} is a multiple of the position vector.

Proof. Let $\xi \in N^{o} M$ be any parallel normal field. By half isotropy, $\xi \perp N^{1}$. From Corollary 2.3 we have $\Lambda_{\xi}=\left\langle\xi, \alpha^{2,0}\right\rangle=0$. Hence by the previous lemma the Weingarten operator A_{ξ} is parallel and its eigenspaces form parallel J-invariant distributions E_{1}, \ldots, E_{r}. The parallelity of ξ also implies that $R^{N}(A, B) \xi=0$ for any A, B and then the Ricci equation shows that A_{ξ} commutes with any other Weingarten operator A_{η}. Therefore $\alpha\left(E_{i}, E_{j}\right)=0$ for $i \neq j$, and by Moore's theorem [16], φ is decomposable unless $r=1$. Hence $A_{\xi}=\lambda_{\xi} I$ for some $\lambda_{\xi} \in \mathbb{R}$.

In particular all this holds for the mean curvature vector $\xi=H$. By compactness, $\lambda_{H} \neq 0$. Thus H is umbilic and $\varphi(M)$ is contained as a minimal submanifold in a sphere of radius $1 /|\lambda|$.

But for any parallel normal field $\xi \perp H$ in N^{o} we have trace $A_{\xi}=$ $\langle H, \xi\rangle=0$ and hence $\lambda_{\xi}=0$. So ξ is a constant vector since $\partial_{X} \xi=$ $-A_{\xi}(X)+\nabla_{X}^{N} \xi=0$ for any tangent vector X. Moreover $\varphi(M) \subset \xi^{\perp}$. By the fullness assumption this shows $\xi=0$.
q.e.d.

4. The Riccati equation

Next we shall consider the distribution $\Delta=\operatorname{ker} \alpha^{(2,0)}$. As we shall see, this is an autoparallel distribution on M. We need some properties of such distributions.

Let M be a Riemannian manifold and $\Delta \subset T M$ an auto-parallel distribution, i.e. $\nabla_{\Delta} \Delta \subset \Delta$. Denoting $\Gamma=\Delta^{\perp}$, we also have $\nabla_{\Delta} \Gamma \subset \Gamma$, since $\left\langle\nabla_{\Delta} \Gamma, \Delta\right\rangle=-\left\langle\Gamma, \nabla_{\Delta} \Delta\right\rangle \subset\langle\Gamma, \Delta\rangle=0$.

Proposition 4.1. For any vector field $T \in \Delta$ we consider the tensor $C_{T} \in \operatorname{Hom}(\Gamma, \Gamma)$,

$$
C_{T} X=-\left(\nabla_{X} T\right)^{\Gamma}
$$

for all $X \in \Gamma$. Then we have for all $S, T \in \Delta$:

$$
\begin{equation*}
\nabla_{S} C_{T}=C_{T} C_{S}+C_{\nabla_{S} T}+R(, S) T \tag{6}
\end{equation*}
$$

Proof. For any $X \in \Gamma$ we have

$$
\begin{equation*}
\left(\nabla_{S} C_{T}\right) X=\nabla_{S}\left(C_{T} X\right)-C_{T}\left(\nabla_{S} X\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
\nabla_{S}\left(C_{T} X\right) & =-\nabla_{S}\left(\nabla_{X} T\right)^{\Gamma} \\
& =-\left(\nabla_{S} \nabla_{X} T\right)^{\Gamma} \\
& =\left(-R(S, X) T-\nabla_{X} \nabla_{S} T-\nabla_{[S, X]} T\right)^{\Gamma}, \tag{8}\\
-C_{T}\left(\nabla_{S} X\right) & =-C_{T}\left(\left(\nabla_{S} X\right)^{\Gamma}\right) \\
& =-C_{T}\left(\left(\nabla_{X} S\right)^{\Gamma}\right)-C_{T}\left([S, X]^{\Gamma}\right) \\
& =C_{T} C_{S} X+\left(\nabla_{\left.[S, X]^{\Gamma} T\right)^{\Gamma} .}\right. \tag{9}
\end{align*}
$$

Let $L=[S, X]$. Then

$$
\left(\nabla_{L} T\right)^{\Gamma}=\left(\nabla_{L^{\Gamma}} T+\nabla_{L^{\Delta}} T\right)^{\Gamma}=\left(\nabla_{L^{\Gamma}} T\right)^{\Gamma}
$$

since $\nabla_{\Delta} \Delta \subset \Delta \perp \Gamma$. Hence the last terms of (8) and (9) cancel each other. Moreover, $\nabla_{S} T \in \Delta$ and

$$
-\left(\nabla_{X} \nabla_{S} T\right)^{\Gamma}=C_{\nabla_{S} T} X
$$

Further note that $\langle R(\Delta, \Gamma) \Delta, \Delta\rangle=0$ since Δ is totally geodesic, so the curvature term $R(S, X) T$ in (8) is automatically in Γ. Thus inserting (8) and (9) into (7) proves (6).
q.e.d.

Corollary 4.2. If (M, J) is Kähler and $\Delta \subset T M$ autoparallel with $J \Delta=\Delta$ and $C_{T} J=J C_{T}$ (i.e. C_{T} is \mathbb{C}-linear), then $R(, T) T$ is \mathbb{C}-linear on Γ.

Proof. This is immediate from (6) for $S=T$ and the parallelity of J.

5. The kernel of $\alpha^{(2,0)}$

Now let M be a Kähler manifold and $\varphi: M \rightarrow \mathbb{R}^{n}$ an isometric $p p m c$ immersion. Let us consider

$$
\begin{equation*}
\Delta=\operatorname{ker} \alpha^{(2,0)}=\left\{X \in T M ; \alpha\left(X^{\prime}, Y^{\prime}\right)=0 \forall_{Y \in T M}\right\} \tag{10}
\end{equation*}
$$

which is of maximal dimension on an open subset $M_{o} \subset M$ and hence a distribution on M_{o}. We denote Δ^{\prime} the projection of Δ to $T^{\prime} M$. Clearly Δ is J-invariant.

When $\Delta=T M$, i.e. $\alpha^{(2,0)}=0$, the immersion is called $(2,0)$-geodesic. In this case, the Codazzi equations immediately show $\nabla \alpha=0$. Such immersions (so called extrinsic symmetric spaces) have been classified by D. Ferus $[\mathbf{1 2}]$. The (2,0)-geodesic ones are the standard embeddings of the Kähler symmetric spaces, defined as follows. A Kähler symmetric space is a Kähler manifold M which is also a symmetric space such that all point reflections are holomorphic. If M is compact without local euclidean factor, the almost complex structure J_{p} at any point $p \in M$ defines an element of its transvection Lie algebra \mathfrak{g}; this map $p \mapsto J_{p}$: $M \rightarrow \mathfrak{g}$ is the standard embedding (cf. [8]). E.g. for $M=\mathbb{S}^{2}$, the transvection Lie algebra is $\mathfrak{g}=\mathfrak{s o}(3) \cong \mathbb{R}^{3}$ and for $M=\mathbb{C} P^{2}$ we have $\mathfrak{g}=\mathfrak{s u}(3) \cong \mathbb{R}^{8}$.

Lemma 5.1. For all $S, T \in \Delta$ and $A \in T M$ we have:

$$
\begin{align*}
\nabla_{A^{\prime \prime}} T^{\prime} & \in \Delta^{\prime} \tag{11}\\
\nabla_{S} T & \in \Delta . \tag{12}
\end{align*}
$$

Proof. The Codazzi equations give for all $B \in T M$:

$$
\left(\nabla_{A^{\prime \prime}} \alpha\right)\left(T^{\prime}, B^{\prime}\right)=\left(\nabla_{T^{\prime}} \alpha\right)\left(A^{\prime \prime}, B^{\prime}\right)=0
$$

since $\alpha^{(1,1)}$ is parallel. Hence $\alpha\left(\nabla_{A^{\prime \prime}} T^{\prime}, B^{\prime}\right)=-\alpha\left(T^{\prime}, \nabla_{A^{\prime \prime}} B^{\prime}\right)=0$ since $T \in \Delta$. This proves (11). For (12) we have to show

$$
\alpha\left(\nabla_{S} T^{\prime}, B^{\prime}\right)=0
$$

for all $S, T \in \Delta$ and $B \in T M$. We split $S=S^{\prime}+S^{\prime \prime}$. Since $\alpha\left(\nabla_{S^{\prime \prime}} T^{\prime}, B^{\prime}\right)$ $=0$ by (11), it remains to show $\alpha\left(\nabla_{S^{\prime}} T^{\prime}, B^{\prime}\right)=0$. But $\left(\nabla_{S^{\prime}} \alpha\right)\left(T^{\prime}, B^{\prime}\right)=$ $\left(\nabla_{B^{\prime}} \alpha\right)\left(T^{\prime}, S^{\prime}\right)=\nabla_{B^{\prime}}\left(\alpha\left(T^{\prime}, S^{\prime}\right)\right)-\alpha\left(\nabla_{B^{\prime}} T^{\prime}, S^{\prime}\right)-\alpha\left(T^{\prime}, \nabla_{B^{\prime}} S^{\prime}\right)=0$. Thus

$$
\alpha\left(\nabla_{S^{\prime}} T^{\prime}, B^{\prime}\right)=-\alpha\left(T^{\prime}, \nabla_{S^{\prime}} B^{\prime}\right)=0 .
$$

q.e.d.

Corollary 5.2. Δ is autoparallel and hence integrable, and the leaves are totally geodesic Kähler submanifolds which are (2,0)-geodesic in the ambient euclidean space.

Proof. Δ is autoparallel by (12), hence integrable with totally geodesic leaves, and since Δ is J-invariant, the leaves are Kähler submanifolds of M. Moreover they are (2,0)-geodesic since $\alpha^{(2,0)}=0$ on Δ.
q.e.d.

Now let $\Gamma=\Delta^{\perp}$. Consider the tensor field $C: \Delta \rightarrow \operatorname{Hom}(\Gamma, \Gamma)$ defined by

$$
\begin{equation*}
C_{T}(X)=-\left(\nabla_{X} T\right)^{\Gamma} \tag{13}
\end{equation*}
$$

for $T \in \Delta$ and $X \in \Gamma$.
Lemma 5.3. C_{T} commutes with J.
Proof. By (11) we have $\left(\nabla_{X^{\prime \prime}} T^{\prime}\right)^{\Gamma}=0=\left(\nabla_{X^{\prime}} T^{\prime \prime}\right)^{\Gamma}$. Extending the Γ-projection complex linearly and using the splitting $X=X^{\prime}+X^{\prime \prime}$ and $T=T^{\prime}+T^{\prime \prime}$ we have

$$
\left(\nabla_{X} T\right)^{\Gamma}=\left(\nabla_{X^{\prime}} T^{\prime}\right)^{\Gamma}+\left(\nabla_{X^{\prime \prime}} T^{\prime \prime}\right)^{\Gamma}
$$

and consequently

$$
\left(\nabla_{J X} T\right)^{\Gamma}=i\left(\nabla_{X^{\prime}} T^{\prime}\right)^{\Gamma}-i\left(\nabla_{X^{\prime \prime}} T^{\prime \prime}\right)^{\Gamma}=J\left(\nabla_{X} T\right)^{\Gamma} .
$$

Now the claim follows from the definition of C_{T}, see (13).
q.e.d.

6. Small codimension

Let $N^{1}=N^{\prime}+N^{\prime \prime} \subset N M$ where N^{\prime} is spanned by the values of $\alpha^{(2,0)}$ and $N^{\prime \prime}=\overline{N^{\prime}}$ by the values of $\alpha^{(0,2)}$; these are subbundles on an open subset $M_{o} \subset M$. By Corollary 2.3, N^{\prime} and $N^{\prime \prime}$ are isotropic, $\left\langle N^{\prime}, N^{\prime}\right\rangle=$ 0 . Denoting by (,) the hermitean inner product, $(X, Y)=\langle X, \bar{Y}\rangle$, we have $\left(N^{\prime}, N^{\prime \prime}\right)=\left\langle N^{\prime}, N^{\prime}\right\rangle=0$ and thus

$$
\operatorname{dim} N^{1}=2 \operatorname{dim} N^{\prime}
$$

Moreover note that $N^{1} \perp H \neq 0$, hence $N \supset \mathbb{R} H \oplus N^{1}$ and therefore

$$
\begin{equation*}
\operatorname{codim} \varphi(M) \geq 2 \operatorname{dim} N^{\prime}+1 \tag{14}
\end{equation*}
$$

Definition. A ppmc immersion φ is said to be isotropic if

$$
\left\langle\alpha^{(2,0)}, \alpha^{(2,0)}\right\rangle=0=\left\langle\alpha^{(2,0)}, \alpha^{(1,1)}\right\rangle
$$

i.e. the values of $\alpha^{(2,0)}, \alpha^{(0,2)}, \alpha^{(1,1)}$ span subbundles which are mutually perpendicular with respect to the hermitian inner product.

Lemma 6.1. Let M be Kähler and $\varphi: M \rightarrow \mathbb{R}^{n}$ an isometric ppmc immersion of codimension ≤ 4. If $\operatorname{codim} \Delta \geq 2$, then φ is isotropic.

Proof. We have seen above that $\left\langle\alpha^{(2,0)}, \alpha^{(2,0)}\right\rangle=\Lambda_{4}=0$. We need to show $\left\langle\alpha^{(2,0)}, \alpha^{(1,1)}\right\rangle=0$, i.e.

$$
\left\langle\alpha\left(X^{\prime}, Y^{\prime}\right), \alpha\left(Z^{\prime}, W^{\prime \prime}\right)\right\rangle=0
$$

for all $X, Y, Z, W \in T M_{o}$. Let us fix Z and W. The values of $\alpha^{(2,0)}$ lie in N^{\prime} which is complex one-dimensional on M_{o} since $N^{\prime} \neq 0$ and $2 \operatorname{dim} N^{\prime}+1 \leq 4$ by (14). Thus the subspace of all U with $\alpha\left(U^{\prime}, Z^{\prime}\right)=0$ has dimension $n-1$. By Lemma 2.1 we have for any such U

$$
\left\langle\alpha\left(U^{\prime}, V^{\prime}\right), \alpha\left(Z^{\prime}, W^{\prime \prime}\right)\right\rangle=\left\langle\alpha\left(U^{\prime}, Z^{\prime}\right), \alpha\left(V^{\prime}, W^{\prime \prime}\right)\right\rangle=0
$$

Since $\operatorname{dim} \Delta \leq n-2$, we may choose our U outside Δ, and hence we find some V such that $\alpha\left(U^{\prime}, V^{\prime}\right) \neq 0$. But since $\operatorname{dim} N^{\prime}=1$ we may replace the particular element $\alpha\left(U^{\prime}, V^{\prime}\right)$ by an arbitrary $\alpha\left(X^{\prime}, Y^{\prime}\right) \in N^{\prime}$ and obtain $\left\langle\alpha\left(X^{\prime}, Y^{\prime}\right), \alpha\left(Z^{\prime}, W^{\prime \prime}\right)\right\rangle=0$.
q.e.d.

Lemma 6.2. (cf. [11]) Let M be a compact Kähler manifold with $c_{1}(M)>0$ and $\varphi: M \rightarrow \mathbb{R}^{n}$ an isometric ppmc immersion with codimension ≤ 4. If $\operatorname{codim} \Delta=1$, then either $\varphi(M)$ is $(2,0)$-geodesic or φ is decomposable into a product of two ppmc immersions one of which is $(2,0)$-geodesic.

Proof. By Theorem 4.1, the tensor field $C_{T}: \Gamma \rightarrow \Gamma$ corresponding to Δ (see (13)) satisfies the Riccati equation (6). Since Γ is complex one-dimensional (with the complex structure defined by J) and C_{T} is complex linear by Lemma 5.3, it is a complex multiple of the identity, $C_{T}=\lambda I$. Let γ be a geodesic on a maximal leaf of Δ and denote by T its velocity field. Then $C_{T(t)}=\lambda(t) I$ where the complex function $\lambda(t)$ satisfies the Riccati type equation

$$
\begin{equation*}
\lambda^{\prime}=\lambda^{2}+r \tag{15}
\end{equation*}
$$

where $R(, T) T=r(t) I$ with $r(t)=\left\langle R^{M}(Y, T) T, Y\right\rangle_{\gamma(t)}$. We will see in the subsequent Lemma 6.3 that $r \geq 0$. It is well known that 0 is the only real solution of (15) which is defined on the whole real line (any other solution has a pole). Therefore C_{T} has no real eigenvalues. But if λ is complex, $\lambda=\mu+i \eta$, we replace T by the vector $\tilde{T}=\mu T-\eta J T=\bar{\lambda} T$ and get $C_{\tilde{T}}=\bar{\lambda} C_{T}=\bar{\lambda} \lambda I=\left(\mu^{2}+\eta^{2}\right) I$ at the initial point $t=0$. Extending \tilde{T} to the tangent vector field along a geodesic $\tilde{\gamma}$, we obtain $C_{\tilde{T}}=\tilde{\lambda} I$ with $\tilde{\lambda}(0) \in \mathbb{R}$. Then $\tilde{\lambda}(t)$ is a real solution of (15) and as before we conclude $\tilde{\lambda}=0$ which implies $\lambda=0$. We conclude that $C_{T}=0$ for all $T \in \Delta$ which shows that Δ is not only autoparallel, but even fully parallel, and then the same holds for $\Gamma=\Delta^{\perp}$. Hence M_{o} is locally a product of two nontrivial Kähler manifolds M_{1} and M_{2}.

To prove that $\varphi_{\mid M_{o}}$ is a product of immersions we first notice that $\alpha\left(S^{\prime}, Y^{\prime}\right)=0$ for all $S \in \Delta$ and $Y \in \Gamma$. Using Lemma 2.1 and the vanishing of curvature tensor components with mixed Δ and Γ entries, we get

$$
0=\left\langle\alpha\left(S^{\prime}, Y^{\prime}\right), \alpha\left(S^{\prime \prime}, Y^{\prime \prime}\right)\right\rangle=\left\langle\alpha\left(S^{\prime}, Y^{\prime \prime}\right), \alpha\left(S^{\prime \prime}, Y^{\prime}\right)\right\rangle
$$

This shows $\alpha\left(S^{\prime}, Y^{\prime \prime}\right)=0$ and henceforth $\alpha(S, Y)=0$ whenever $S \in \Delta$ and $Y \in \Delta^{\perp}$. Then $\varphi_{\mid M_{o}}$ splits as a product of immersions [16]. An
analyticity argument allows the conclusion that M is globally a product of two Riemann surfaces M_{1} and M_{2} and φ is a product of two ppmc immersions, φ_{1} and φ_{2} where one of the factors (the integral leaves of Δ) is $(2,0)$-geodesic.

Lemma 6.3. For all $T \in \Delta$ and $Y \in \Gamma=\Delta^{\perp}$ we have

$$
\begin{equation*}
\langle R(Y, T) T, Y\rangle \geq 0 \tag{16}
\end{equation*}
$$

Proof. We consider the complex multilinear extension of the curvature tensor and claim that, whenever $T, S \in \Delta$ and $Y \in \Gamma$,

$$
\begin{equation*}
R\left(Y^{\prime \prime}, T^{\prime}\right) S^{\prime} \in \Delta^{\prime}, \quad R\left(Y^{\prime}, T^{\prime \prime}\right) S^{\prime \prime} \in \Delta^{\prime \prime} \tag{17}
\end{equation*}
$$

To prove this claim we remember from (11) that $\nabla_{Z^{\prime \prime}} T^{\prime} \in \Delta^{\prime}$ (respectively $\nabla_{Z^{\prime}} T^{\prime \prime} \in \Delta$) whenever T is a section of Δ and $Z \in T M$. Using this and the fact that Δ is an auto-parallel distribution, we know that $\nabla_{T^{\prime}} \nabla_{Y^{\prime \prime}} S^{\prime}, \nabla_{Y^{\prime \prime}} \nabla_{T^{\prime}} S^{\prime}$ and $\nabla_{\left[T^{\prime}, Y^{\prime \prime}\right]} S^{\prime}$ are in Δ^{\prime}, hence $R\left(Y^{\prime \prime}, T^{\prime}\right) S^{\prime} \in \Delta^{\prime}$. This proves (17).

We also recall that on any Kähler manifold we have $R\left(Y^{\prime}, T^{\prime}\right)=0=$ $R\left(Y^{\prime \prime}, T^{\prime \prime}\right)$. Thus

$$
\begin{aligned}
R(Y, T) & =R\left(Y^{\prime}, T^{\prime \prime}\right)+R\left(Y^{\prime \prime}, T^{\prime}\right), \\
\langle R(A, B) Y, T\rangle & =\left\langle R(A, B) Y^{\prime}, T^{\prime \prime}\right\rangle+\left\langle R(A, B) Y^{\prime \prime}, T^{\prime}\right\rangle
\end{aligned}
$$

for arbitrary A, B. Since $T^{\prime \prime} M$ is isotropic ("Isotropic" means that the inner product vanishes: $\langle X+i J X, Y+i J Y\rangle=\langle X, Y\rangle-\langle J X, J Y\rangle+$ $i(\langle X, J Y\rangle+\langle J X, Y\rangle)=0$ for all $X \in T M)$, we conclude from (17), the Gauss equation and $\alpha\left(T^{\prime}, Y^{\prime}\right)=0$:

$$
\begin{aligned}
\langle R(Y, T) T, Y\rangle & =\left\langle R\left(Y^{\prime \prime}, T^{\prime}\right) T^{\prime \prime}, Y^{\prime}\right\rangle+\left\langle R\left(Y^{\prime}, T^{\prime \prime}\right) T^{\prime}, Y^{\prime \prime}\right\rangle \\
& =2\left\langle\alpha\left(T^{\prime}, T^{\prime \prime}\right), \alpha\left(Y^{\prime \prime}, Y^{\prime}\right)\right\rangle .
\end{aligned}
$$

Again from Gauss equation (Lemma 2.1) we obtain

$$
\left\langle\alpha\left(T^{\prime}, T^{\prime \prime}\right), \alpha\left(Y^{\prime \prime}, Y^{\prime}\right)\right\rangle=\left\langle\alpha\left(T^{\prime}, Y^{\prime \prime}\right), \alpha\left(T^{\prime \prime}, Y^{\prime}\right)\right\rangle .
$$

Thus

$$
\langle R(Y, T) T, Y\rangle=2\left\langle\alpha\left(T^{\prime}, Y^{\prime \prime}\right), \alpha\left(T^{\prime \prime}, Y^{\prime}\right)\right\rangle \geq 0 .
$$

q.e.d.

7. The isotropic case

Recall that a ppme immersion is isotropic if $\left\langle\alpha^{(2,0)}, \alpha^{(2.0)}\right\rangle=0$ and $N^{o} \perp N^{1}$. Clearly "isotropic" is stronger than "half isotropic". A general study of this case has been done in [7], but in the present situation of low codimension we can do better.

Proposition 7.1. Let $\varphi: M \rightarrow \mathbb{R}^{n}$ be full indecomposable isotropic ppme with codimension ≤ 4. Then either $\varphi(M)$ is an isotropic minimal surface ("superminimal surface") in \mathbb{S}^{4} or M is isometric to \mathbb{S}^{2} or $\mathbb{C} P^{2}$
or Q^{3} (up to scaling) and φ is the standard embedding $\mathbb{S}^{2} \hookrightarrow \mathbb{R}^{3}=\mathfrak{s o}(3)$ or $\mathbb{C} P^{2} \hookrightarrow \mathbb{R}^{8}=\mathfrak{s u}(3)$ or $Q^{3} \hookrightarrow \mathbb{R}^{10}=\mathfrak{s o}(5)$.

Proof. We have to show that $\alpha^{(2,0)}=0$; then φ is a standard embedding of a Kähler symmetric space with codimension ≤ 4 and we are done.

Thus assume that $\alpha^{(2,0)}$ does not vanish identically. Then the subbundle $N^{o} \subset N M$ must have rank one; otherwise in view of (14), each fibre of N^{o} would have dimension two and we would have another parallel normal field perpendicular to H in N^{o} which is impossible by Proposition 3.3. Thus φ takes values in the sphere \mathbb{S}^{n-1}, and the restriction $\varphi_{S}: M \rightarrow \mathbb{S}^{n-1}$ is pluriminimal or $(1,1)$-geodesic, i.e. the second fundamental form α_{S} of φ_{S} has vanishing (1,1)-component. By the subsequent lemma, M is a surface. Thus $\varphi(M)$ is an isotropic minimal surface of \mathbb{S}^{n-1} with $n \leq 6$. But such minimal surfaces do not exist in \mathbb{S}^{5} which is not an inner symmetric space (cf. [9]), thus $\varphi(M) \subset \mathbb{S}^{4}$.
q.e.d.

Lemma 7.2. ([5], [17]) Let M be a compact Kähler manifold and $\varphi_{S}: M \rightarrow \mathbb{S}^{n-1}$ a pluriminimal immersion. Then M is a surface.

Proof. Let $\operatorname{dim} M=2 m$. Composing φ_{S} with the embedding $\mathbb{S}^{n-1} \subset$ \mathbb{R}^{n}, we get a ppmc immersion $\varphi: M \rightarrow \mathbb{R}^{n}$. Taking, at each $x \in M$, an orthonormal basis $E_{i}, J E_{i}, 1 \leq i \leq m$, and using Gauss equations we obtain that

$$
\left\langle\alpha\left(E_{i}^{\prime}, E_{i}^{\prime \prime}\right), \alpha\left(E_{j}^{\prime \prime}, E_{j}^{\prime}\right)\right\rangle=\left\langle\alpha\left(E_{i}^{\prime}, E_{j}^{\prime \prime}\right), \alpha\left(E_{i}^{\prime \prime}, E_{j}^{\prime}\right)\right\rangle,
$$

from whence $H=0$ which cannot happen. In fact,

$$
\alpha\left(E_{i}^{\prime}, E_{i}^{\prime \prime}\right)=\left\langle E_{i}^{\prime}, E_{i}^{\prime \prime}\right\rangle H=\frac{1}{2} H
$$

while $\alpha\left(E_{i}^{\prime}, E_{j}^{\prime \prime}\right)=\left\langle E_{i}^{\prime}, E_{j}^{\prime \prime}\right\rangle H=0$ for $i \neq j$. q.e.d.

Proof of the Main Theorem: The proof of Theorem 1.1 is obtained from Lemma 6.1, Lemma 6.2 and Proposition 7.1.

References

[1] A. Besse, Einstein Manifolds, A Series of Modern Surveys, Springer-Verlag, 1987.
[2] R. Bryant, Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Diff. Geom. 17 (1982), 455-473.
[3] F.E. Burstall, J.H. Eschenburg, M.J. Ferreira \& R. Tribuzy, Kähler submanifolds with parallel pluri-minimal curvature, Diff. Geom and Apl. 20 (2004), 47-66.
[4] M. Dajczer \& D. Gromoll, Real Kähler submanifolds and uniqueness of the Causs map, J. Diff. Geom. 22 (1985), 13-25.
[5] M. Dajczer \& L. Rodrigues, Rigidity of real Kähler submanifolds, Duke Math. J. 53 (1986), 211-220.
[6] J. Eells \& L. Lemaire, Another report on Harmonic Maps, Bull. London Math. Soc. 86 vol. 20 (1988).
[7] J.-H. Eschenburg, M.J. Ferreira \& R. Tribuzy, Isotropic ppmc immersions, Diff. Geom. Appl. 25 (2007), 351-355.
[8] J.-H. Eschenburg \& P. Quast, Pluriharmonic maps into Kähler symmetric spaces and Sym's formula, Math. Z. 264 (2010), 469-481.
[9] J.-H. Eschenburg \& R. Tribuzy, Associated families of pluriharmonic maps and isotropy, manuscripta math. 95 (1998), 295-310.
[10] M. Ferreira \& R. Tribuzy, Kählerian submanifolds of \mathbb{R}^{n} with pluriharmonic Gauss map, Bull.. Soc. Math. Belg. 45 (1993), 183-197.
[11] M. Ferreira \& R. Tribuzy, On the Nullity of Isometric Immersions from Kähler Manifolds, Rend. Sem. Mat. Univ. Pol. Torino 65 (2007), 345-352.
[12] D. Ferus, Symmetric Submanifolds of Euclidean Space, Math. Ann. 247 (1980), 81-93.
[13] H. Hopf, Differential Geometry in the Large, Lecture Notes in Mathematics, 1000, Springer-Verlag (1983).
[14] S. Kobayashi \& H.H. Wu, On Holomorphic Sections of Certain Hermitian Vector Bundles, Math. Ann. 198 (1970), 1-4.
[15] J.W. Milnor \& J.D. Stasheff, Characteristic Classes, Annals of Mathematics Studies 76, Princeton 1974.
[16] J.D. Moore, Isometric Immersions of Riemannian Products, J. Diff. Geom. 5 (1971), 159-168.
[17] S. Udagawa, Holomorphicity of certain stable harmonic maps and minimal immersions, Proc. London Math. Soc. (3), 57 (1988), 577-598.

Institut für Mathematik
Universität Augsburg
D-86135 Augsburg, Germany
E-mail address: eschenburg@math.uni-augsburg.de
CMAF/Universidade de Lisboa Complexo Interdisciplinar da Universidade de Lisboa

Av. Prof. Gama Pinto 2 1649-003 Lisboa, Portugal

E-mail address: mjferr@ptmat.fc.ul.pt

Departamento de Matemtica
Universidade Federal do Amazonas
Av. Gen Rodrigo Otvio, 3000
69077000 Manaus, Brazil
E-mail address: ribuzy@pq.cnpq.br

[^0]: The authors wish to thank Fundação para a Ciência e Tecnologia, Portugal and CNPq and FAPEAM, Brasil, for support.

 Received 03/07/2008.

