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CURVATURE ESTIMATES FOR STABLE

MARGINALLY TRAPPED SURFACES

Lars Andersson & Jan Metzger

Abstract

We derive local integral and sup- estimates for the curvature
of stable marginally outer trapped surfaces in a sliced space-time.
The estimates bound the shear of a marginally outer trapped sur-
face in terms of the intrinsic and extrinsic curvature of a slice
containing the surface. These estimates are well adapted to situ-
ations of physical interest, such as dynamical horizons.

1. Introduction

The celebrated regularity result for stable minimal surfaces, due to
Schoen, Simon, and Yau [SSY75], gives a bound on the second funda-
mental form in terms of ambient curvature and area of the surface. The
proof of the main result of [SSY75] makes use of the Simons formula
[Sim68] for the Laplacian of the second fundamental form, together
with the non-negativity of the second variation of area. In this paper
we will prove a generalization of the regularity result of Schoen, Simon,
and Yau to the natural analogue of stable minimal surfaces in the con-
text of Lorentz geometry, stable marginally trapped surfaces. In this
case, a generalization of the Simons formula holds for the null second
fundamental form, and the appropriate notion of stability is that of sta-
bly outermost in the sense of [AMS05, New87]. A local area estimate
for stable marginally trapped surfaces, a generalization of a result due
to Pogorelov [Pog81], allows us to give a curvature bound independent
of assumptions on the area of the surface. An interesting feature of
our estimates is that they imply curvature bounds for stable minimal
surfaces or surfaces of constant mean curvature that do not depend on
bounds for the derivative of the ambient curvature.

Let Σ be a spacelike surface of co-dimension two in a (3 + 1)-dimen-
sional Lorentz manifold L and let l± be the two independent future
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directed null sections of the normal bundle of Σ, with corresponding
mean curvatures, or null expansions, θ±. Σ is called trapped if the
future directed null rays starting at Σ converge, i.e., if θ± < 0. If L
contains a trapped surface and satisfies certain causal conditions, then,
if in addition, the null energy condition is satisfied, L is future causally
incomplete [Pen65]. Let l+ be the outgoing null normal. If L is an
asymptotically flat spacetime this notion is well defined; otherwise the
outgoing direction can be fixed by convention. We call Σ a marginally
outer trapped surface (MOTS) if the outgoing lightrays are marginally
converging, i.e., if θ+ = 0. No assumption is made on the ingoing null
expansion θ− of a MOTS. If Σ is contained in a time symmetric Cauchy
surface, then θ+ = 0 if and only if Σ is minimal.

Marginally trapped surfaces are of central importance in general rela-
tivity, where they play the role of apparent horizons, or quasilocal black
hole boundaries. The conjectured Penrose inequality, proved in the Rie-
mannian case by Huisken and Ilmanen [HI01] and Bray [Bra01], may
be formulated as an inequality relating the area of the outermost appar-
ent horizon and the ADM mass. The technique of excising the interior
of black holes using apparent horizons as excision boundaries plays a
crucial role in current work in numerical relativity, where much of the
focus is on modelling binary black hole collisions.

In spite of the importance of marginally trapped surfaces in the ge-
ometry of space-times, the extent of our knowledge of the regularity and
existence of these objects is rather limited compared to the situation for
minimal surfaces.

A smooth marginally outer trapped surface is stationary with respect
to variations of area within its outgoing null cone, in view of the formula

δfl+µΣ = fθ+µΣ

where f is a function on Σ. The second variation of area at a MOTS in
the direction l+ is

δfl+θ
+ = −(|χ+|2 +G(l+, l+))f

where G denotes the Einstein tensor of L, and χ+ is the second fun-
damental form of Σ with respect to l+. For minimal surfaces in a Rie-
mannian manifold, or maximal hypersurfaces in a Lorentz manifold, the
second variation operator is an elliptic operator of second order. In con-
trast, the above equation shows that the second variation operator for
area of a MOTS, with respect to variations in the null direction l+, is an
operator of order zero. Therefore, although MOTS can be characterized
as stationary points of area, this point of view alone is not sufficient to
yield a useful regularity result. In spite of this, as we shall see below,
there is a natural generalization of the stability condition for minimal
surfaces, as well as of the regularity result of Schoen, Simon, and Yau,
to marginally outer trapped surfaces.
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It is worth remarking at this point that if we consider variations of
area of spacelike hypersurfaces in a Lorentz manifold, the stationary
points are maximal surfaces. Maximal surfaces satisfy a quasilinear
non-uniformly elliptic equation closely related to the minimal surface
equation. Due to the fact that maximal hypersurfaces are spacelike, they
are Lipschitz submanifolds. Moreover, in a space-time satisfying the
timelike convergence condition, every maximal surface is stable. Hence,
the regularity theory for maximal surfaces is of a different flavor than
the regularity theory for minimal surfaces (cf. [Bar84]).

Assume that L is provided with a reference foliation consisting of
spacelike hypersurfaces {Mt}, and that Σ is contained in one of the
leaves M of this foliation. Let (g,K) be the induced metric and the sec-
ond fundamental form of M with respect to the future directed timelike
normal n. Further, let ν be the outward pointing normal of Σ in M
and let A be the second fundamental form of Σ with respect to ν. After
possibly changing normalization, l± = n± ν, we have

θ± = H ± trΣK

where H = trA is the mean curvature of Σ and trΣK is the trace of the
projection of K to Σ. Thus the condition for Σ to be a MOTS, θ+ = 0,
is a prescribed mean curvature equation.

The condition that plays the role of stability for MOTS is the stably
outermost condition (see [AMS05, New87]). Suppose Σ is contained
in a spatial hypersurface M . Then Σ is stably locally outermost in
M if there is an outward infinitesimal deformation of Σ, within M ,
which does not decrease θ+. This condition, which is equivalent to the
condition that Σ is stable in case M is time symmetric, turns out to be
sufficient to apply the technique of [SSY75] to prove a bound on the
second fundamental form A of Σ in M . In contrast to the situation for
minimal surfaces the stability operator defined by the deformation of θ+

is not self-adjoint. Nevertheless, it has a real principal eigenvalue with
a corresponding principal eigenfunction which does not change sign.

The techniques of [SSY75] were first applied in the context of general
relativity by Schoen and Yau [SY81], where existence and regularity for
Jang’s equation were proved. Jang’s equation is an equation for a graph
in N =M ×R, and is of a form closely related to the equation θ+ = 0.
Let u be a function on M , and let K̄ be the pull-back to N of K along
the projection N →M . Jang’s equation is the equation

ḡij

(

DiDju
√

1 + |Du|2
+ K̄ij

)

= 0

where ḡij = gij −
DiuDju
1+|Du|2

is the induced metric on the graph Σ̄ of u in

N . Thus Jang’s equation can be written as θ̄ = 0 with

θ̄ = H̄ + trΣ̄ K̄,
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where H̄ is the mean curvature of Σ̄ in N . This shows that Jang’s
equation θ̄ = 0 is a close analog to the equation θ+ = 0 characterizing a
MOTS. Solutions to Jang’s equation satisfy a stability condition closely
related to the stably outermost condition stated above. This is due to
the fact that Jang’s equation is translation invariant in the sense that
if u solves Jang’s equation, then also u + c is a solution where c is a
constant. Thus, in the sense of section 5, graphical solutions to Jang’s
equation are stable. This fact allows Schoen and Yau [SY81] to apply
the technique of [SSY75] to prove regularity for solutions of Jang’s
equation. It is worth remarking that although the dominant energy
condition is assumed to hold throughout [SY81], in fact the proof of the
existence and regularity result for solutions of Jang’s equation presented
in [SY81] can be carried out without this assumption. In the present
paper, the dominant energy condition is not used in the proof of our
main regularity result (cf. Theorem 1.2 below).

It was proved by Galloway and Schoen [GS06], based on an argu-
ment for solutions of the Jang’s equation in [SY81], that the stability
of MOTS implies a “symmetrized” stability condition, which states that
the spectrum of a certain self-adjoint operator analogous to the second
variation operator for minimal surfaces is non-negative. The fact that
stability in the sense of stably outermost implies this symmetrized ver-
sion of stability was used in [GS06] to give conditions on the Yamabe
type of stable marginal surfaces in general dimension. It turns out that
this weaker symmetrized notion of stability is in fact sufficient for the
curvature estimates proved here. The symmetrized notion of stability
is also used in our local area estimates. However, since this notion has
no direct interpretation in terms of the geometry of the ambient space-
time, we prefer to state our results in terms of the stably outermost
condition.

Statement of results. The stability condition for MOTS which re-
places the stability condition for minimal surfaces and which allows one
to apply the technique of [SSY75] is the following.

Definition 1.1. Σ is stably outermost if there is a function f ≥ 0
on Σ, f 6= 0 somewhere, such that δfνθ

+ ≥ 0.

When there is no room for confusion we will refer to a stably outer-
most MOTS simply as a stable MOTS. This is analogous to the stability
condition for a minimal surface N ⊂ M . The condition that there ex-
ists a function f on N with f ≥ 0 and f 6= 0 somewhere, such that
δfνH ≥ 0, is equivalent to the condition that N is stable.

The main result of this paper is the following theorem (cf. theorem
6.10, corollary 6.11 as well as theorem 7.1).
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Theorem 1.2. Suppose Σ is a stable MOTS in (M,g,K). Then the
second fundamental form A satisfies the inequality

‖A‖∞ ≤ C(‖K‖∞, ‖∇K‖∞, ‖
MRm‖∞, inj(M,g)−1) .

Here ‖ · ‖∞ denotes the sup-norm of the respective quantity, taken
on Σ. As an application we prove a compactness result for MOTS (cf.
theorem 8.1).

Theorem 1.3. Let (gn,Kn) be a sequence of initial data sets on a
manifold M . Let (g,K) be another initial data set on M such that

‖MRm‖∞ ≤ C ,

‖K‖∞ + ‖M∇K‖∞ ≤ C,

inj(M,g) ≥ C−1 ,

for some constant C. Assume that

gn → g in C2
loc(M,g) and,

Kn → K in C1
loc(M,g).

Furthermore, let Σn ⊂ M be a sequence of immersed surfaces which
are stable marginally outer trapped with respect to (gn,Kn) and have
an accumulation point in M . In addition, assume that the Σn have
uniformly locally finite area, that is, for all x ∈M there exists 0 < r =
r(x) and a = a(x) <∞ such that

|Σn ∩BMtn
(x, r)| ≤ ar2 uniformly in n,

where BMtn
(x, r) denotes the ball in M around x with radius r.

Then a subsequence of the Σn converges to a smooth immersed surface
Σ locally in the sense of C1,α graphs. Σ is a MOTS with respect to
(g,K). If Σ is compact, then it is also stable.

Outline of the paper. In sections 2 and 3 we discuss the notation
and preliminary results, as well as a Simons identity which holds for the
shear of a MOTS. Section 4 introduces the linearization of the operator
θ+ acting on surfaces represented as graph over a MOTS. The stability
conditions we use are discussed in section 5. The curvature estimates
are derived in section 6 under the assumption of local area bounds.
In section 7 we show how these bounds can be derived in terms of
the ambient geometry. Finally section 8 uses the established curvature
bounds to prove the compactness theorem.

Acknowledgments. The authors wish to thank Walter Simon, Marc
Mars, Greg Galloway, Rick Schoen, and Gerhard Huisken for useful con-
versations. We are grateful for the hospitality and support of the Isaac
Newton Institute, as part of this work was done during the workshop
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2. Preliminaries and notation

In this section we set up notation and recall some preliminaries from
differential geometry. In the sequel we will consider two-dimensional
spacelike submanifolds Σ of a four-dimensional manifold L. As a space-
time manifold, L is equipped with a metric h of signature (−,+,+,+).
The inner product induced by h will frequently be denoted by 〈·, ·〉. In
addition, we will assume, that Σ is contained in a spacelike hypersurface
M in L. The metric onM induced by h will be denoted by g, the metric
on Σ by γ. We will denote the tangent bundles by TL, TM , and TΣ,
and the space of smooth tangential vector fields along the respective
manifolds by X (Σ), X (M), and X (L). Unless otherwise stated, we will
assume that all manifolds and fields are smooth.

We denote by n the future directed unit timelike normal of M in L,
which we will assume to be a well-defined vector field along M . The
normal of Σ in M will be denoted by ν, which again is assumed to be a
well-defined vector field along Σ.

The two directions n and ν span the normal bundle NΣ of Σ in L,
and moreover, we can use them to define two canonical null directions,
which also span this bundle, namely, l± := n± ν.

In addition to the metrics, h and its Levi-Civita connection L∇ induce
the second fundamental form K of M in L. It is the normal part of L∇,
in the sense that for all vector fields X,Y ∈ X (M),

(1) L∇XY = M∇XY +K(X,Y )n .

The second fundamental form of Σ in M will be denoted by A. For
vector fields X,Y ∈ X (Σ) we have

(2) M∇XY = Σ∇XY −A(X,Y )ν .

For vector fields X,Y ∈ X (Σ), the connection of L therefore splits
according to

(3) L∇XY = Σ∇XY +KΣ(X,Y )n−A(X,Y )ν = Σ∇XY − II(X,Y ) ,

where II(X,Y ) = A(X,Y )ν − KΣ(X,Y )n is the second fundamental
form of Σ in L. Here KΣ denotes the restriction of K to TΣ, the
tangential space of Σ.

The trace of II with respect to γ, which is a vector in the normal
bundle of Σ, is called the mean curvature vector and is denoted by

(4) H =
∑

i

II(ei, ei) ,

for an orthonormal basis e1, e2 of Σ. Since H is normal to Σ, it satisfies

(5) H = Hν − Pn

where H = γijAij is the trace of A and P = γijKΣ
ij is the trace of KΣ,

with respect to γ. For completeness, we note that the norms of II and
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H are given by

|II|2 = |A|2 − |KΣ|2 and(6)

|H|2 = H2 − P 2 .(7)

Recall that since H and II have values normal to Σ, the norms are taken
with respect to h and are therefore not necessarily non-negative.

We use the following convention to represent the Riemann curvature
tensor ΣRm, the Ricci tensor ΣRc, and the scalar curvature ΣSc of Σ.
Here X,Y,U, V ∈ X (Σ) are vector fields.

ΣRm(X,Y,U, V ) =
〈

Σ∇X
Σ∇Y U − Σ∇Y

Σ∇XU − Σ∇[X,Y ]U, V
〉

,

ΣRc(X,Y ) =
∑

i

ΣRm(X, ei, ei, Y ) ,

ΣSc =
∑

i

ΣRc(ei, ei) .

Analogous definitions hold for MRm, MRc, and MSc as well as LRm,
LRc, and LSc, with the exception that for LRc and LSc we take the
trace with respect to the indefinite metric h.

We recall the Gauss and Codazzi equations of Σ in L, which relate
the respective curvatures. The Riemann curvature tensors ΣRm and
LRm of Σ and L, respectively, are related by the Gauss equation. For
vector fields X,Y,U, V we have

(8) ΣRm(X,Y,U, V ) =
LRm(X,Y,U, V ) +

〈

II(X,V ), II(Y,U)
〉

−
〈

II(X,U), II(Y, V )
〉

.

In two dimensions, all curvature information of Σ is contained in its
scalar curvature, which we will denote by ΣSc. The scalar curvature
of L will be denoted by LSc. The information of the Gauss equation
above is fully contained in the following equation, which emerges from
the above one by first taking the trace with respect to Y,U and then
with respect to X,V :

(9) ΣSc = LSc+2LRc(n, n)−2LRc(ν, ν)−2LRm(ν, n, n, ν)+|H|2−|II|2 .

The Codazzi equation, which relates LRm to II, has the following form:

(10)
〈

L∇X II(Y,Z), S
〉

=
〈

∇Y II(X,Z), S
〉

+ LRm(X,Y, S, Z)

for vector fields X,Y,Z ∈ X (Σ) and S ∈ Γ(NΣ).
There is also a version of the Gauss and Codazzi equations for the

embedding of M in L. They relate the curvature LRm of L to the
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curvature MRm of M . For vector fields X,Y,U, V ∈ X (M) we have
MRm(X,Y,U, V )

= LRm(X,Y,U, V )−K(Y,U)K(X,V ) +K(X,U)K(Y, V ) ,
(11)

M∇XK(Y,U)− M∇YK(X,U) = LRm(X,Y, n, U) .(12)

These equations also have a traced form, namely,
MSc = LSc + 2LRc(n, n)− (trK)2 + |K|2 and(13)

MdivK − M∇ trK = LRc(·, n) .(14)

We now investigate the connection N∇ on the normal bundle NΣ of
Σ. Recall that for sections N of NΣ and X ∈ X (Σ), this connection is
defined as

N∇XN =
(

L∇XN
)⊥
,

where again (·)⊥ means taking the normal part. We have

0 = X(1) = X
(

〈n, n〉
)

= 2〈N∇Xn, n〉 ,

and similarly 〈N∇Xν, ν〉 = 0. Therefore the relevant component of N∇
is

〈

N∇Xν, n
〉

=
〈

L∇Xν, n
〉

= −K(X, ν) .

Recall that X is tangential to Σ. This lead us to define the 1-form S
along Σ by the restriction of K(·, ν) to TΣ.

(15) S(X) := K(X, ν) .

Then, for an arbitrary section N of NΣ with N = fν + gn, we have
N∇XN = X(f)ν +X(g)n + S(X)

(

fn+ gν) .

In particular

(16) N∇X l
± = ±S(X)l± .

We will later consider the decomposition of II into its null components.
For X,Y ∈ X (Σ) let

(17) χ±(X,Y ) :=
〈

II(X,Y ), l±〉 = K(X,Y )±A(X,Y ) .

The traces of χ± respectively will be called θ±:

(18) θ± = 〈H, l±〉 = P ±H .

The Codazzi equation (10) implies a Codazzi equation for χ±.

Lemma 2.1. For vector fields X,Y,Z ∈ X (Σ) the following relation
holds:

∇Xχ
±(Y,Z) = ∇Y χ

±(X,Z) +Q±(X,Y,Z)

∓ χ±(X,Z)S(Y )± χ±(Y,Z)S(X) .
(19)

Here,

(20) Q±(X,Y,Z) = LRm(X,Y, l±, Z).
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3. A Simons identity for χ±

We use the Codazzi equation we derived in the previous section to
compute an identity for the Laplacian of χ±, which is very similar to
the Simons identity for the second fundamental form of a hypersurface
[Sim68, SSY75].

The Laplacian on the surface Σ is defined as the operator

Σ
∆ = γijΣ∇2

ij .

In the sequel, we will drop the superscript on Σ
∆ and Σ∇, since all

tensors below will be defined only along Σ. We will switch to index
notation, since this is convenient for the computations to follow. In this
notation

T
i1···ip
j1···jq

denotes a (p, q)-tensor T as the collection of its components in an ar-
bitrary basis {∂i}

2
i=1 for the tangent spaces. To make the subsequent

computations easier, we will usually pick a basis of normal coordinate
vectors. Also note that we use Latin indices ranging from 1 to 2 to
denote components tangential to the surface Σ.

Recall, that the commutator of the connection is given by the Rie-
mann curvature tensor, such that for a (0, 2)-tensor Tij ,

(21) ∇k∇lTij −∇l∇kTij =
ΣRmklmiTmj +

ΣRmklmjTim .

Note that we use the shorthand ΣRmklmjTim = ΣRmklpjTiqγ
pq when

there is no ambiguity. That is, we assume that we are in normal coordi-
nates where γij = γij = δij . Also note that this fixes the sign convention
for ΣRmijkl such that ΣRcij =

ΣRmikkj is positive on the round sphere.

Lemma 3.1. The Laplacian of χ = χ+ satisfies the following iden-
tity:

χij∆χij = χij∇i∇jθ
+ + χij

(

LRmkilkχlj +
LRmkiljχkl

)

+ χij∇k

(

Qkij − χkjSi + χijSk
)

+ χij∇i

(

Qkjk − θ+Sj + χjkSk
)

− |II|2|χ|2 + θ+χ+
ijχ

+
jkχ

+
ki − θ+χ+

ijχ
+
jkK

Σ
ki − Pχ+

ijχ
+
jkχ

+
ki

where P = γijKΣ
ij is the trace of KΣ.

Proof. Recall that in coordinates the Codazzi equation (19) for χij

reads

(22) ∇iχjk = ∇jχik +Qijk − χikSj + χjkSi .
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Then compute, using (22) in the first and third step, and the commu-
tator relation (21) in the second, to obtain

∇k∇lχij = ∇k∇iχlj +∇k

(

Qlij − χljSi + χijSl
)

= ∇i∇kχlj +
ΣRmkimlχmj +

ΣRmkimjχlm

+∇k

(

Qlij − χljSi + χijSl
)

= ∇i∇jχkl +
ΣRmkimlχmj +

ΣRmkimjχlm

+∇k

(

Qlij − χljSi + χijSl
)

+∇i

(

Qkjl − χklSj + χjlSk
)

.

(23)

We will use the Gauss equation (8) to replace the ΣRm-terms by LRm-
terms. Observe that

IIij = −1
2χ

+
ij l

− − 1
2χ

−
ijl

+ .

Plugging this into the Gauss equation (8) gives

ΣRmijkl =
LRmijkl +

1
2

(

χ+
ikχ

−
jl + χ−

ikχ
+
jl − χ+

ilχ
−
jk − χ−

ilχ
+
jk

)

.

Combining with (23), we infer that

∇k∇lχij = ∇i∇jχkl +
LRmkimlχmj +

LRmkimjχlm

+ 1
2

(

χ+
ilχ

−
km + χ−

ilχ
+
km − χ+

klχ
−
im − χ−

klχ
+
im

)

χ+
mj

+ 1
2

(

χ+
kmχ

−
ij + χ−

kmχ
+
ij − χ+

kjχ
−
im − χ−

kjχ
+
im

)

χ+
lm

+∇k

(

Qlij − χljSi + χijSl
)

+∇i

(

Qkjl − χklSj + χjlSk
)

.

Taking the trace with respect to k, l yields

∆χij = ∇i∇jθ
+ + LRmkilkχlj +

LRmkiljχkl

+∇k

(

Qkij − χkjSi + χijSk
)

+∇i

(

Qkjk − θ+Sj + χjkSk
)

+
1

2

(

χ−
ij|χ

+|2 + 〈χ+, χ−〉χ+
ij − θ+χ+

jkχ
−
ki − θ−χ+

jkχ
+
ki

)

+
1

2

(

χ+
jkχ

−
klχ

+
li − χ−

jkχ
+
klχ

+
li

)

.

We contract this equation with χ+
ij and obtain

χij∆χij = χij∇i∇jθ
+ + χij

(

LRmkilkχlj +
LRmkiljχkl

)

+ χij∇k

(

Qkij − χkjSi + χijSk
)

+ χij∇i

(

Qkjk − θ+Sj + χjkSk
)

+ 〈χ+, χ−〉|χ|2 − 1
2θ

+χ+
ijχ

+
jkχ

−
ki −

1
2θ

−χ+
ijχ

+
jkχ

+
ki .

Now observe that χ−
ij = 2KΣ

ij − χ+
ij and θ− = 2P − θ+. Substituting

this into the last two terms, together with 〈χ+, χ−〉 = −|II|2, we arrive
at the identity we claimed. q.e.d.
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4. The Deformation of θ+

This section is concerned with the deformation of the operator θ+, as
defined in equation (18). We begin by considering an arbitrary, spacelike
surface Σ ⊂ L. Assume that the normal bundle is spanned by the
globally defined null vector fields l±, such that 〈l+, l−〉 = −2. We call
such a frame a normalized null frame. As before, let θ± := 〈H, l±〉. We
abbreviate χ = χ+.

A variation of Σ is a differentiable map

F : Σ× (−ε, ε) → L : (x, t) 7→ F (x, t) ,

such that F (·, 0) = idΣ is the identity map on Σ. The vector field
∂F
∂t

∣

∣

t=0
= V is called variation vector field of F . We will only consider

variations, with variation vector fields V of the form V = αl+ + βl−.
Note that in this setting, as a normalized null frame is not uniquely

defined by its properties, the notion of θ+ depends on the frame chosen.
The freedom we have here is the following. Assume k± is another nor-
malized null frame for the normal bundle of Σ, that is, h(k±, k±) = 0
and h(k+, k−) = −2. Since the null cone at each point is unique, the
directions of k± can be aligned with l±. But their magnitudes can be
different, so k+ = eωl+ and k− = e−ωl− with a function ω ∈ C∞(Σ).

Therefore, if we want to compute the deformation of θ+, it will not
only depend on the deformation of Σ, as encoded in the deformation
vector V . It will also depend on the change of the frame, that is, on the
change of the vector l+, which is an additional degree of freedom.

To expose the nature of that freedom, observe that if l±(t) is a null

frame on each Σt := F (Σ, t), then ∂l±

∂t

∣

∣

∣

t=0
is still normal to Σ. On the

other hand,

0 = ∂
∂t

∣

∣

t=0
〈l+, l+〉 = 2

〈

∂l+

∂t

∣

∣

∣

t=0
, l+
〉

and

0 = ∂
∂t

∣

∣

t=0
〈l+, l−〉 =

〈

∂l+

∂t

∣

∣

∣

t=0
, l−
〉

+
〈

∂l−

∂t

∣

∣

∣

t=0
, l+
〉

Therefore ∂l±

∂t

∣

∣

∣

t=0
= wl± for a function w ∈ C∞(Σ). Thus the linearized

change of the frame is described by the single function w, which we will
call the variation of the null frame.

If we fix both of the quantities V and w, a straightforward (but
lengthy) computation gives the deformation of θ+.

Lemma 4.1. Assume F : Σ × (−ε, ε) → L is a variation of Σ with
variation vector field V = αl++βl−. Assume further that the variation
of the null frame is w. Then the variation of θ+ is given by

δV,wθ
+ = 2∆β − 4S(∇β)− α

(

|χ|2 + LRc(l+, l+)
)

+ 2θ+w

− β
(

2 div S − 2|S|2 − |II|2 + LRc(l+, l−)− 1
2
LRm(l+, l−, l−, l+)

)

.
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If we consider marginally trapped surfaces, then the term θ+w in the
previous calculation vanishes, and we get expressions independent of
the change in the frame. As a consequence, we state the following two
corollaries, which also restrict the variations we take into account.

Corollary 4.2. Assume Σ is a marginally trapped surface, that is, it
satisfies the equation θ+ = 0. Then the deformation of θ+ in direction
of −l− is given by

δ−βl−,wθ
+ = 2L−β ,

where the operator L− is given by

L−β = −∆β + 2S(∇β) + β
(

divS − 1
2 |II|

2 − |S|2 −Ψ−

)

,

and Ψ− = 1
4
LRm(l+, l−, l−, l+)− 1

2
LRc(l+, l−).

If we assume that Σ ⊂M , where M is a three-dimensional spacelike
surface, then Σ can be deformed in the direction of ν, the normal of Σ
in M . The deformation of θ+ then turns out to be the following.

Corollary 4.3. Assume Σ is a marginally trapped surface; then the
deformation of θ+ in the spatial direction of ν := 1

2(l
+ − l−) is given by

δfν,w = LMf ,

where the operator LM is given by

LMf = −∆f + 2S(∇f) + f
(

divS − |χ|2 + 〈KΣ, χ〉 − |S|2 −ΨM

)

,

and ΨM = 1
4
LRm(l+, l−, l−, l+) + LRc(ν, l+).

Remark 4.4. 1) Using the Gauss equation (9), we can rewrite the
expression for LM as follows:

(24) LMf = −∆f + 2S(∇f) + f
(

div S − 1
2 |χ|

2 − |S|2 + 1
2
ΣSc− Ψ̃M

)

.

Here Ψ̃M = G(n, l+) where G = LRc− 1
2
LSch denotes the Einstein

tensor of h.
Note that in view of the Gauss and Codazzi equations of the

embeddingM →֒ L, equations (13) and (14), the term Ψ̃M can be
rewritten as

Ψ̃M = 1
2

(

MSc + (trK)2 − |K|2
)

− 〈MdivK −M∇ trK, ν〉

=: µ+ J(ν) ,
(25)

where J = MdivK − M∇ trK is the projection of G(n, ·) to M
and µ = 1

2 (
MSc+(trK)2−|K|2) = G(n, n). The dominant energy

condition is equivalent to |J | ≤ µ. Thus, if the dominant energy

condition holds, Ψ̃M turns out to be non-negative.
2) The same procedure gives that we can write L− as

(26) L−f = −∆f + 2S(∇f) + f
(

div S − |S|2 + 1
2
ΣSc− Ψ̃−

)

.
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with Ψ̃− = G(l+, l−). Note that Ψ̃− is non-negative if the dom-
inant energy condition holds. However, this representation does
not contain a term |χ|2, which does not allow us to get estimates
on sup |χ|2. However, in the case of strict L− stability there is a
sheet M such that the surface is LM -stable. We can then apply
the subsequent results to get the estimates of theorem 1.2 in this
case.

5. Stability of marginally outer trapped surfaces

As before, consider a four-dimensional space time L4, with a three-
dimensional spacelike slice M3. As in the previous sections, the future
directed unit normal to M in L will be denoted by n. In M consider a
two-dimensional surface Σ, such that there exists a global unit normal
vector field ν of Σ in M . The vector fields n and ν span the normal
bundle of Σ in L and give rise to two canonical null vectors l± = n± ν.
Again we use the shorthand χ = χ+.

In this section we introduce two notions of stability for a marginally
trapped surface. These are related to variations of the surface in dif-
ferent directions. The first definition is equivalent to definition 2 in
[AMS05]. There a stably outermost marginally outer trapped surface,
is defined as surface, on which the principal eigenvalue of LM is posi-
tive. We recall from definition 1.1 that an LM -stable MOTS is defined
as follows.

Definition 5.1. A two-dimensional surface Σ ⊂ M ⊂ L is called a
LM -stable marginally outer trapped surface if:

1) Σ is marginally trapped with respect to l+ , that is θ+ = 0.
2) There exists a function f ≥ 0, f 6≡ 0 such that LMf ≥ 0 . Here

LM is the operator from corollary 4.3.

Remark 5.2. 1) Although LM is not formally self-adjoint, the
eigenvalue of LM with the smallest real part is real and non-
negative (cf. [AMS05, Lemma 1]). This definition is equivalent
to saying that the principal eigenvalue of LM is non-negative. This
is seen as follows:

Let λ be the principal eigenvalue LM . Then, since λ is real,
the L2-adjoint L∗

M of LM has the same principal eigenvalue and a
corresponding eigenfunction g > 0. Pick f ≥ 0 as in the definition
of LM -stability, i.e., LMf ≥ 0. Then compute

λ

∫

Σ
fg dµ =

∫

Σ
fL∗

Mg dµ =

∫

Σ
LMfg dµ .

As f ≥ 0, f 6≡ 0, g > 0, and LMf ≥ 0, this implies λ ≥ 0.
The eigenfunction ψ of LM with respect to the principal eigen-

value does not change sign. Therefore it can be chosen positive,
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ψ > 0. Thus, the definition in fact is equivalent to the existence of
ψ > 0 such that LMψ = λψ ≥ 0. We will use this fact frequently
in the subsequent sections. Note that LM -stability is equivalent to
the notion of a stably outermost MOTS in [AMS05, definition 2].

2) The conditions from the above definition are satisfied in the fol-
lowing situation. Let Σ = ∂Ω be the boundary of the domain Ω
and satisfy θ+ = 0. Furthermore assume that there is a neighbor-
hood U of Σ such that the exterior part U \ Ω does not contain
any trapped surface, i.e., a surface with θ+ < 0. Then Σ is stable.
Assume not. Then the principal eigenvalue would be negative and
the corresponding eigenfunction ψ would satisfy LMψ < 0, ψ > 0.
This would imply the existence of trapped surfaces outside of Σ,
since the variation of Σ in direction ψν would decrease θ+.

Note that the condition θ+ = 0 does not depend on the choice of the
particular frame. Therefore, to say that a surface is marginally trapped,
we do not need any additional information. In contrast, the notion of
stability required here does depend on the frame, since clearly there is
no distinct selection of ν when only Σ—and not M—is specified.

To address this issue, we introduce the second notion of stability of
marginally outer trapped surfaces, namely with reference to the direc-
tion −l−. This definition is more in spirit of Newman [New87] and
recent interest in the so called dynamical horizons [AK03, AG05].

Definition 5.3. A two-dimensional surface Σ ⊂ M ⊂ L is called a
L−-stable marginally outer trapped surface (L−-stable MOTS) if:

1) Σ is marginally trapped with respect to l+ , that is θ+ = 0.
2) There exists a function f ≥ 0, f 6≡ 0 such that L−f ≥ 0 . Here L−

is the operator from corollary 4.2.

Remark 5.4. It turns out that this notion of stability does not de-
pend on the choice of the null frame. This is due to the natural trans-
formation law of the stability operator L− when changing the frame
according to l̃+ = fl+ and l̃− = f−1l−. Then the operator L̃− with re-
spect to this frame satisfies f−1L̃(fβ) = Lβ for all functions β ∈ C∞(Σ),

as it is expected from the facts that θ̃+ = fθ+ and −βl− = −βf l̃−.

Remark 5.5. 1) Remark 5.2 is also valid here, in particular the
definition implies that there exists a function ψ > 0 with L−ψ ≥ 0.

2) Technically speaking, the equation for a marginally trapped sur-
face prescribes the mean curvature H of Σ inM to equal minus the
value of a function P : TM → R : (p, v) 7→ trK−Kijν

iνj , namely,
H(p) = −P (p, ν) for all p ∈ Σ. This is a degenerate quasilinear el-
liptic equation for the position of the surface. These equations do
not allow estimates for second derivatives without any additional
information. This is where the two stability conditions come into
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play. They give the additional piece of information needed in the
estimates as in the case for stable minimal surfaces.

The two notions of stability above imply the positivity of certain
symmetric differential operators as it was noticed in [GS06] for the
operator LM . However, the inequality there is not quite sufficient for
our purposes; it needs some further rearrangement. This is the content
of the following Lemmas. Basically lemmas 5.6 and 5.7 are the only
way how stability is used in the subsequent estimates. Thus one could
use these, in particular equation (27), to define a notion of symmetrized
stability for MOTS.

Lemma 5.6. If Σ is a stable MOTS, then for all ε > 0 and for all
η ∈ C∞

c (Σ) the following inequality holds:
∫

Σ
η2|χ|2 dµ ≤ (1 + ε)

∫

Σ
|∇η|2 + η2

(

1+ε
4ε |KΣ|2 −ΨM

)

dµ.

Proof. Take f as in the definition of a stable MOTS. From remark
5.2 we can assume f > 0. Then f−1LMf ≥ 0. Multiply this relation by
η2, integrate, and expand LM as in corollary 4.3. This yields

0 ≤

∫

Σ
η2
(

−f−1∆f+2f−1S(∇f)+divS−|χ|2+〈KΣ, χ〉−|S|2−ΨM

)

dµ .

By sorting terms, and partially integrating the Laplacian and the diver-
gence term, we obtain

∫

Σ
η2|χ|2 + η2

(

f−2|∇f |2 − 2f−1S(∇f) + |S|2
)

dµ

≤

∫

Σ
2η〈∇η, f−1∇f − S〉+ η2|χ| |KΣ| − η2ΨM dµ .

By the Schwarz inequality
∫

Σ
2η〈∇η, f−1∇f − S〉dµ ≤

∫

Σ
|∇η|2 + η2|f−1∇f − S|2 dµ,

and for any ε > 0
∫

Σ
η2|KΣ| |χ|dµ ≤ (4ε)−1

∫

Σ
η2|KΣ|2 dµ+ ε

∫

Σ
η2|χ|2 .

Cancelling the terms
∫

Σ η
2|f−1∇f − S|2 dµ and ε

∫

Σ η
2|χ|2 dµ on both

sides and redefining ε, we conclude the claimed inequality. q.e.d.

The following lemma is based on the original computation of [GS06].

Lemma 5.7. If Σ is a stable MOTS, then for all 1 > ε > 0 there
exist constants c and C(ε−1) such that for all η ∈ C∞

c (Σ) the following
inequality holds:
∫

Σ
η2|χ|2 dµ ≤ (1 + ε)

∫

Σ
|∇η|2 + η2

(

c|MRc| − Ψ̃M + C(ε−1)|KΣ|2
)

dµ.
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Proof. We proceed as in the computation of lemma 5.6, but with the
alternative representation (24) for LM . As in [GS06], we get

(27)

∫

Σ
η2|χ|2 dµ ≤

∫

Σ
2|∇η|2 + η2

(

ΣSc− 2Ψ̃M

)

dµ.

We use Gauss’ equation to replace ΣSc in the following way:

ΣSc = MSc− 2MRc(ν, ν) +H2 − |A|2,

where A is the second fundamental form of Σ ⊂ M and H is the mean
curvature. We can move the |A|2 term to the left-hand side. Then
H2 = P 2 by θ+ = 0 and thus H2 ≤ 4|KΣ|2. The remaining terms are
controlled by 3|MRc|. Inserting this, we find that
∫

Σ
η2(|χ|2 + |A|2) dµ ≤

∫

Σ
2|∇η|2 + η2

(

3|MRc|+ 4|KΣ|2 − Ψ̃M

)

dµ.

Now fix ε > 0. Since χ = A+KΣ we can estimate

2|χ|2 ≤ (1 + ε)|χ|2 + (1− ε)(|A|2 + 2〈A,KΣ〉+ |KΣ|2)

≤ (1 + ε)(|χ|2 + |A|2) + ((2ε)−1 − 2ε)|KΣ|2.

Inserting this into the above inequality we find the claimed inequality.
q.e.d.

A similar, but fundamentally different, inequality holds in the case of
L−-stability. The fundamental difference is that the gradient term on
the right has a factor of a little more than two, instead of a little more
than one, as with the LM -stability. In view of lemma 5.9 this factor of
two is not at all surprising. This factor is the reason why the procedure
in section 6 does not work to give curvature estimates for L−-stable
surfaces.

Lemma 5.8. If Σ is a L−-stable MOTS, then for all ε > 0 the
following inequality holds:

∫

Σ
|χ|2η2 dµ ≤ 2(1 + ε)

∫

Σ
|∇η|2 + η2

(

(2ε)−1|KΣ|2 −Ψ−

)

dµ.

We conclude with the remark that LM -stability implies L−-stability.

Lemma 5.9. Let (L, h) satisfy the null energy condition, i.e., assume
that for all null vectors l we have that LRc(l, l) ≥ 0. Then if Σ is an
LM -stable MOTS, then it is also L−-stable.

Proof. We use the notation from section 4, where we introduced the
linearization of θ+. For any function f compute

LMf − L−f = δfν,wθ
+ − 1

2δfl−,wθ
+ = 1

2δfl+,wθ
+

= −1
2f
(

|χ|2 + LRc(l+, l+)
)

.
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If f > 0, then by the null energy condition, the right-hand side is non-
positive. If in addition LMf ≥ 0, as in the definition of LM -stability,
then this implies that

L−f ≥ LMf ≥ 0 .

Hence Σ is also LM stable. q.e.d.

6. A priori estimates

In this section we derive the actual estimates for stable outermost
marginally trapped surfaces. All but the most basic estimates hold only
for LM -stable surfaces, as defined in section 5. This is due to the factor
of two appearing in front of the gradient term in lemma 5.8, which does
not allow us to carefully balance the Simons inequality and the stability
inequalities.

Throughout this section we will make the assumption that the sur-
faces in question have locally uniformly finite area.

Definition 6.1. If there exists r > 0 and a < ∞, such that for all
x ∈ Σ

(28) |BΣ(x, r)| ≤ a,

then we say that Σ has (r, a)-locally uniformly finite area.

Here BΣ(x, r) denotes the the ball of radius r around x in Σ. In
the sequel we will denote BΣ(x, r) by B(x, r). The estimates below
work in exactly the same way if intrinsic balls are replaced by extrinsic
balls. Later, we will derive such bounds for stable MOTS in terms of
the ambient geometry.

We first begin with the observation that the stability of a MOTS
gives a local L2-estimate for the shear tensor χ = χ+.

In the sequel, for a tensor T , we denote by ‖T‖∞ = supΣ |T |. That
is, ∞-norms are taken on Σ only. Constant are always denoted by C;
if we want to clarify the dependence of the constants, we denote by
C(a, b, . . .) a constant that depends on the quantities a, b . . . in such a
way that C deteriorates as a+ b+ . . .→ ∞.

Lemma 6.2. Suppose Σ is an LM -stable MOTS with (r, a)-locally
uniformly finite area. Then for all x ∈ Σ

∫

B(x,r/2)
|χ|2 dµ ≤ C(r−1, a, ‖KΣ‖∞, ‖ΨM‖∞) .

Alternatively, the constant can be chosen to depend on ‖Ψ̃M‖∞ and
‖MRc‖∞ instead of ‖ΨM‖∞.

Proof. The desired bound is easily derived from lemma 5.6 or 5.7. We
will restrict ourselves to the proof of the first statement. To this end,
fix ε = 1

2 , x ∈ Σ, and choose a cut-off function η ≥ 0 such that η ≡ 1 on
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B(x, r/2), η = 0 on ∂B(x, r), and |∇η| ≤ 4r−1. The left-hand side of
the equation in lemma 5.6 is then is an upper bound for the left-hand
side in the claim, whereas the right-hand side can be estimated by the
claimed quantities. q.e.d.

This estimate can also be derived from L−-stability:

Lemma 6.3. Suppose Σ is an L−-stable MOTS with (r, a)-locally
uniformly finite area. Then for all x ∈ Σ

∫

B(x,r/2)
|χ|2 dµ ≤ C(r−1, a, ‖KΣ‖∞, ‖Ψ−‖∞) .

Proposition 6.4. Let Σ be an LM -stable MOTS. For any ε > 0, any
p ≥ 2, and any function η we have the estimate
∫

Σ
η2|χ|p+2 dµ ≤ p2

4 (1 + ε)

∫

Σ
η2|χ|p−2

∣

∣∇|χ|
∣

∣

2
dµ

+ C(ε−1, ‖ΨM‖∞, ‖K
Σ‖∞)

∫

Σ

(

η2 + |∇η|2
)

|χ|p dµ.

Alternatively, we can make the constant on the right-hand side to be of
the form C(ε−1, ‖Ψ̃M‖∞, ‖K

Σ‖∞, ‖
MRc‖∞)).

This proposition also holds for L−-stable surfaces with appropriate
modifications of the dependencies of C, and a general factor of two on
the right-hand side. This factor of two is the reason why an argument
like the subsequent one fails to give curvature estimates for L−-stable
MOTS.

Proof. We will restrict to the proof of the first statement, since the
other is proved similarly. From lemma 5.6 we find that for any δ > 0
there is C(δ−1) such that for all functions φ, we have

∫

Σ
φ2|χ|2 dµ ≤ (1 + δ)

∫

Σ
|∇φ|2 + φ2

(

C(δ−1)|KΣ|2 −ΨM

)

dµ.

We substitute φ by η|χ|p/2. To this end compute

∇(η|χ|p/2) = ∇η|χ|p/2 + η p
2 |χ|

p/2−1∇|χ|.

For any δ > 0 we thus can estimate

|∇(η|χ|p/2)|2 ≤ (1− δ)
p2

4
|χ|p−2η2

∣

∣∇|χ|
∣

∣

2
+ C(δ−1)|∇η|2|χ|p.

Inserting this estimate into the first inequality, we find
∫

Σ
η2|χ|p+2 dµ ≤ (1 + δ)2 p2

4

∫

Σ
η2|χ|p−2

∣

∣∇|χ|
∣

∣

2

+

∫

Σ
C(δ−1)|∇η|2 + η2|χ|p

(

C(δ−1)|KΣ|2 −ΨM

)

dµ.

Adjusting δ yields the claimed estimate. q.e.d.
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We now aim for an estimate on the gradient term on the right-hand
side of the estimate in proposition 6.4. The main tool will be the Si-
mons identity from section 3. To avoid that the estimated depend on
derivatives of curvature, we use similar techniques as in [Met07].

Proposition 6.5. Let Σ be an LM -stable MOTS. Then there exists
p0 > 2 such that for 2 ≤ p ≤ p0 and all functions η we have the estimate

∫

Σ
η2|χ|p−2

∣

∣∇|χ|
∣

∣

2
dµ

≤ C(p, ‖ΨM‖∞, ‖K
Σ‖∞, ‖Q‖∞, ‖

LRmΣ‖∞, ‖S‖∞)

·

∫

Σ
(η2 + |∇η|2)|χ|p + η2|χ|p−2.

Alternatively, as before, we can replace the dependence of the constant
on ‖ΨM‖∞ by a dependence on ‖Ψ̃M‖∞ and ‖MRc‖∞.

Before we can start the proof of the proposition, we state the following
lemma. It states an improved Kato’s inequality similar to [SY81]. A
general reference for such inequalities is [CGH00].

Lemma 6.6. On a surface Σ with θ+ = 0 we have the estimate

|∇χ|2 −
∣

∣∇|χ|
∣

∣

2
≥ 1

33

(
∣

∣∇|χ|
∣

∣

2
+ |∇χ|2

)

− c
(

|Q|2 + |S|2|χ|2
)

.

Here c is a purely numerical constant.

Proof. The proof goes along the lines of a similar argument in Schoen
and Yau in [SY81, p. 237], but for the sake of completeness, we include
a sketch of it here.

In the following computation we do not use the Einstein summation
convention and work in a local orthonormal frame for TΣ. Let T :=
|∇χ|2 −

∣

∣∇|χ|
∣

∣

2
. We compute

|χ|2T = |χ|2|∇χ|2 − 1
4

∣

∣∇|χ|2
∣

∣

2

=
∑

i,j,k,l,m

(χij∇kχlm)2 −
∑

k

(

∑

ij

χij∇kχij

)2

= 1
2

∑

i,j,k,l,m

(

χij∇kχlm − χlm∇kχij

)2
.

In the last term consider only summands with i = k and j = m. This
gives

|χ|2T ≥ 1
2

∑

i,j,l

(

χij∇iχjl − χjl∇iχij

)2

≥ 1
8

∑

l

(

∑

i,j

χij∇iχjl − χjl∇iχij

)2
.
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Use the Codazzi equation (22) to swap indices in the gradient terms.
We arrive at

|χ|2T ≥ 1
8

∑

l

(

∑

i,j

(

χij∇lχij + χijQilj − χljQiji

)

+
∑

i

(

θSiχil − χil∇iθ
)

− |χ|2Sl
)2
.

By the fact that (a− b)2 ≥ 1
2a

2 − b2, this implies

|χ|2T ≥ 1
16

∑

l

(

∑

i,j

χij∇lχij

)2

− 1
8

∑

l

(

∑

i,j

(

χijQilj − χljQiji

)

+
∑

i

χil(θSi −∇iθ)− |χ|2Sl
)2

≥ 1
16 |χ|

2
∣

∣∇|χ|
∣

∣

2
− c |χ|2

(

|Q|2 + |S|2|χ|2
)

.

Dividing by |χ|2, we get

|∇χ|2 −
∣

∣∇|χ|
∣

∣

2
≥ 1

16

∣

∣∇|χ|
∣

∣

2
− c
(

|Q|2 + |S|2|χ|2
)

.

Adding 1
32

(

|∇χ|2 −
∣

∣∇|χ|
∣

∣

2)
to both sides of this inequality and multi-

plying by 32
33 yields the desired estimate. q.e.d.

Proof of proposition 6.5. We will restrict to the proof of the first state-
ment, since the other is proved similarly. Compute

∆|χ|2 = 2|χ|∆|χ| + 2
∣

∣∇|χ|
∣

∣

2
.

On the other hand,

∆|χ|2 = 2χij∆χij + 2|∇χ|2.

Subtracting these equations yields

|χ|∆|χ| = χij∆χij + |∇χ|2 −
∣

∣∇|χ|
∣

∣

2
.

In the case θ+ = 0, the Simons identity from lemma 3.1 gives

χij∆χij = χij

(

LRmkilkχlj +
LRmkiljχkl

)

− |II|2|χ|2 − Pχijχjkχki

+ χij∇k

(

Qkij − χkjSi + χijSk
)

+ χij∇i

(

Qkjk + χjkSk
)

.

Note that χijχjkχki = tr(χ3), and the trace of a 2×2 matrix A satisfies
the relation trA3 = trA(trA2 − detA). Since χ is traceless, this term
vanishes. In addition, |II|2 = 〈χ, χ−〉 = |χ|2 − 2〈KΣ, χ〉.

As we are not interested in the particular form of some terms, to
simplify notation, we introduce the ∗-notation. For two tensors T1 and
T2, the expression T1 ∗ T2 denotes linear combinations of contractions
of T1 ⊗ T2.
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To remember that in the above equation we need to evaluate LRm
only on vectors tangential to Σ, we use the projection of LRm to TΣ
and denote this by LRmΣ. Then the above equations combine to

− |χ|∆|χ|+ |∇χ|2 −
∣

∣∇|χ|
∣

∣

2

= |χ|4 + |χ|2 ∗ χ ∗KΣ + χ ∗ χ ∗ LRmΣ + χ ∗ ∇
(

Q+ χ ∗ S
)

.
(29)

Multiply this equation by η2|χ|p−2 and integrate. This yields
∫

Σ
−η2|χ|p−1∆|χ|+ η2|χ|p−2

(

|∇χ|2 −
∣

∣∇|χ|
∣

∣

2)
dµ

=

∫

Σ
η2
(

|χ|p+2 + |χ|pχ ∗KΣ + |χ|p−2χ ∗ χ ∗ LRmΣ

+ |χ|p−2χ ∗ ∇(Q+ χ ∗ S)
)

dµ.

Next, do a partial integration on the term including the Laplacian and
on the last term on the second line. We find that

∫

Σ
η2(p− 1)|χ|p−2

∣

∣∇|χ|
∣

∣

2
+ η2|χ|p−2

(

|∇χ|2 −
∣

∣∇|χ|
∣

∣

2)
dµ

≤

∫

Σ
η2|χ|p+2 dµ

+ c

∫

Σ
η|χ|p−1|∇η| |∇|χ|| + η|χ|p−1|∇η|(|Q| + |χ||S|) dµ

+ c

∫

Σ
η2
{

|χ|p+1|KΣ|+ |χ|p|LRmΣ|

+ |χ|p−2
(

|∇χ|+
∣

∣∇|χ|
∣

∣

)

(|Q|+ |χ||S|)
}

dµ .

(30)

Here c is a purely numerical constant. For any ε > 0, we can estimate

c

∫

Σ
η2|χ|p+1|KΣ|dµ ≤ ε

∫

Σ
η2|χ|p+2 dµ+ C(ε−1)

∫

Σ
η2|χ|p|KΣ|2 dµ

as well as

c

∫

Σ
η2|χ|p−2

(

|∇χ|+
∣

∣∇|χ|
∣

∣

)

(|Q|+ |χ||S|) dµ

≤ ε

∫

Σ
η2|χ|p−2

(

|∇χ|2 +
∣

∣∇|χ|
∣

∣

2)
dµ

+ C(ε−1)

∫

Σ
η2
(

|χ|p|S|2 + |χ|p−2|Q|2
)

dµ .

In addition we estimate

c

∫

Σ
η|χ|p−1|∇η| |∇|χ||dµ

≤ ε

∫

Σ
η2
∣

∣∇|χ|
∣

∣

2
|χ|p−2 + C(ε−1)

∫

Σ
|∇η|2|χ|p dµ,
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and
∫

Σ
η|χ|p−1|∇η|(|Q| + |χ||S|) dµ

≤

∫

Σ
|∇η|2|χ|p + η2

(

|χ|p−2|Q|2 + |χ|p|S|2
)

dµ.

Inserting these estimates into the estimate (30) gives

∫

Σ
η2(p − 1)|χ|p−2

∣

∣∇|χ|
∣

∣

2
+ η2|χ|p−2

(

|∇χ|2 −
∣

∣∇|χ|
∣

∣

2)
dµ

≤

∫

Σ
(1 + ε)η2|χ|p+2 + 2εη2|χ|p−2

(

|∇χ|2 +
∣

∣∇|χ|
∣

∣

2)
dµ

+ C(ε−1)

∫

Σ
|∇η|2|χ|p dµ

+ C(ε−1, ‖KΣ‖∞, ‖
LRmΣ‖∞, ‖S‖∞, ‖Q‖∞)

∫

Σ
η2
(

|χ|p + |χ|p−2
)

dµ.

(31)

We apply lemma 6.6 to estimate the second term on the left-hand side

from below by 1
33

∫

Σ η
2
(
∣

∣∇|χ|
∣

∣

2
+|∇χ|2

)

dµ. In addition, use proposition
6.4 to estimate the first term on the right-hand side. This yields
∫

Σ
η2(p− 1)|χ|p−2

∣

∣∇|χ|
∣

∣

2
+ ( 1

33 − 2ε)η2|χ|p−2
(

|∇χ|2 + |∇|χ|
∣

∣

2)
dµ

≤ p2

4 (1 + ε)2
∫

Σ
η2|χ|p−2

∣

∣∇|χ|
∣

∣

2
dµ

+ C(ε−1, ‖KΣ‖∞, ‖Q‖∞, ‖
LRmΣ‖∞, ‖S‖∞)

·

∫

Σ
η2
(

|χ|p + |χ|p−2
)

+ |∇η|2|χ|p dµ .

Choose p0 > 2 close enough to 2 and ε small enough, such that for
2 < p < p0 the gradient term on the right-hand side can be absorbed
on the left-hand side. This gives the desired estimate. q.e.d.

Combining propositions 6.4 and 6.5 and the initial L2-estimate in lemma
6.2 gives the following Lp estimates for |χ|.

Theorem 6.7. There exists p0 > 2 such that for all 2 ≤ p ≤ p0 and
all LM -stable MOTS Σ which have (r, a)-locally uniformly finite area,
the shear χ satisfies for all x ∈ Σ the estimates

∫

B(x,r/8)
|χ|p+2 dµ ≤ C,(32)

∫

B(x,r/8)
|χ|p−2

∣

∣∇|χ|
∣

∣

2
dµ ≤ C,(33)
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and
∫

B(x,r/8)
|∇χ|2 dµ ≤ C .(34)

Here C = C(r−1, a, ‖ΨM‖∞, ‖K
Σ‖∞, ‖Q‖∞, ‖

LRmΣ‖∞, ‖S‖∞), or al-

ternatively, we can replace the dependence on ‖ΨM‖∞ by ‖Ψ̃M‖∞ and
‖MRc‖∞.

Proof. Fix x ∈ Σ and choose η to be a cut-off function with η ≡ 1
in B(x, r/4) and η ≡ 0 outside of B(x, r/2), such that 0 ≤ η ≤ 1 and
|∇η| ≤ 4r−1. Plugging this into the estimates of 6.5 and 6.4 for p = 2,
in view of the local area bound, and the local L2-estimate from lemma
6.2, yields L4-estimates for |χ| in B(x, r/4).

We pick p0 a little smaller than the value allowed by Proposition 6.5.
Then for any 2 < p ≤ p0, proceed as before, but now choose a cut-off
function η̄ with η̄ ≡ 1 in B(x, r/8) and η̄ ≡ 0 outside of B(x, r/4), such
that 0 ≤ η̄ ≤ 1 and |∇η̄| ≤ 8r−1. The resulting Lp and Lp−2-norms of
|χ| on the right-hand side can now be estimated by combinations of the
L4-norm of |χ| and the local area bound.

To see the last estimate, note that in the proof of proposition 6.5,
by appropriately choosing ε, we can retain a small portion of the term
∫

Σ η
2|χ|p−2|∇χ|2 dµ on the right-hand side. q.e.d.

For the next step—the derivation of sup-bounds on χ—we use the gener-
alization by Hoffman and Spruck [HS74] of the Michael-Simon-Sobolev
inequality [MS73] in the following form.

Lemma 6.8. For (M,g) exist constants cS0 , c
S
1 , such that for all hy-

persurfaces Σ ⊂M and all functions f ∈ C∞(Σ) with |suppf | ≤ cS0 the
following estimate holds:

(
∫

Σ
|f |2 dµ

)1/2

≤ cS1

∫

Σ
|∇f |+ |fH|dµ .

Here H is the mean curvature of Σ and the constants cS0 , c
S
1 depend only

on a lower bound for the injectivity radius and an upper bound for the
curvature of (M,g).

Remark 6.9. Replacing f by fp in the above inequality and using
Hölders inequality gives that for all 1 < p <∞ and all f with |suppf | ≤
cS0 ,

(
∫

Σ
fp dµ

)2/p

≤ cSp |suppf |
2/p

∫

Σ
|∇f |2 + |Hf |2 dµ .

The constant cSp only depends on cS1 and p.
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Theorem 6.10. Let Σ be an LM -stable MOTS with (r, a)-locally fi-
nite area. Then the shear χ satisfies the estimate

sup
Σ

|χ| ≤ C.

The constant C depends only on r−1, a, ‖ΨM‖∞, ‖KΣ‖∞, ‖Q‖∞,
‖LRmΣ‖∞, ‖S‖∞, ‖MRm‖∞, and inj(M,g)−1.

Alternatively, the dependence on ‖ΨM‖∞ can be replaced by ‖Ψ̃M‖∞.

Proof. We will restrict to the proof of the first statement, since the
others are proved similarly.

We will proceed in a Stampacchia iteration. Let η be a cut-off
function with η ≡ 1 on B(x, r/16) and η ≡ 0 outside B(x, r/8) such
that 0 ≤ η ≤ 1 and |∇η| ≤ 16. Let u := |χ| and for k ≥ 0 set
uk := max{ηu − k, 0}. In addition, set A(k) := suppuk. Then clearly
A(k) ⊂ B(x, r/8), such that on A(k) the estimates from theorem 6.7
hold.

The L2-bound for |χ| from lemma 6.2 implies that

k2|A(k)| ≤

∫

A(k)
η2u2 dµ ≤

∫

B(x,r/8)
η2u2 dµ

≤ C(r−1, a, ‖ΨM‖∞, ‖K
Σ‖∞) .

Therefore there exists k0 = k0(|Σ|, ‖ΨM‖∞, ‖K
Σ‖∞, c0) <∞, such that

|A(k)| ≤ c0 for all k ≥ k0. Here we want cS0 to be the constant from
lemma 6.8, to be able to apply the estimate from there for all functions
with support in A(k), with k ≥ k0.

To proceed, let q > 2. Multiply the Simons identity, in the form (29)
from the proof of proposition 6.5, by uqk and integrate. This yields
∫

A(k)
−uqku∆u+ uqk(|∇χ|

2 − |∇u|2) dµ

≤ c

∫

A(k)
uqku

4 + |K|uqku
3 + |LRmΣ|uqku

2 + uqkχ ∗ ∇
(

Q+ χ ∗ S
)

dµ .

Here c is a purely numerical constant. Partially integrate the Laplacian
on the right hand side and the last term on the left-hand side. This
yields

∫

A(k)
qηuuq−1

k |∇u|2 + qu2uq−1〈∇η,∇u〉 + uqk|∇χ|
2 dµ

≤ c

∫

A(k)
uqku

4 + |K|uqku
3 + |LRmΣ|uqku

2

+
(

uqk|∇χ|+ uq−1
k u|∇uk|

)(

|Q|+ u|S|
)

dµ.

Note that the term
∫

qηuuq−1
k |∇u|2 dµ on the left-hand side controls

∫

uqk|∇u|
2 dµ. But before we use this estimate, we absorb the gradient
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terms into the first term on the left-hand side using |∇uk| ≤ η∇u +
C(r−1)u. Consider for example the term containing |∇χ|2:

c

∫

A(k)
uqk|∇χ|(|Q|+ u|S|) dµ

≤

∫

A(k)
uqk|∇χ|

2 dµ+ c

∫

A(k)
uqk|Q|2 + uqku

2|S|2 dµ.

The other terms which contain |∇u| can be treated similarly, such that
the resulting terms can be absorbed on the left. This yields an estimate
of the form

∫

A(k)
uqk|∇u|

2 dµ

≤ C(q, ‖KΣ‖∞, ‖Q‖∞, ‖
LRmΣ‖∞, ‖S‖∞)

∫

A(k)
uq−2
k u6 + uq−2

k u2 dµ.

(35)

Note that we used that uk ≤ u and u ≤ u2 + 1 here to get rid of the
extra terms. We begin estimating the terms on the right-hand side of
(35) using lemma 6.8. Rewrite and estimate the first term as follows:

∫

A(k)
uq−2
k u6 dµ

=

∫

A(k)
(uku

6/q−2)q−2 dµ

≤ |A(k)|
(

c̃Sq−2

∫

A(k)

∣

∣∇(uku
6/q−2)

∣

∣

2
+ |Huku

6/q−2|2 dµ
)q−2/2

.

(36)

To estimate the first term on the right-hand side, we use uk/u ≤ 1 to
compute on A(k) that

∣

∣∇(uku
6/q−2)

∣

∣ ≤ u6/q−2|∇uk|+
6

q−2u
6/q−2|∇u|uk

u

≤ c(q, r−1)(u6/q−2|∇u|+ u
6

q−2
+1

).

Observe that if q is large enough, namely, such that 2 + 12
q−2 < p0 and

12
q−2 + 2 ≤ 2 + p0, then theorem 6.7 yields that

∫

A(k)

∣

∣∇(uku
6/q−2)

∣

∣

2
dµ ≤ C(q)

∫

A(k)
u12/q−2|∇u|2 + u

12

q−2
+2

dµ ≤ C(q).

Here, and for the remainder of the proof, C(q) denotes a constant that
depends on q and, in addition to that, on all the quantities the constant
in the statement of this theorem depends on.
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To address the second term in (36), recall that since 0 = θ+ = H+P ,
we have ‖H‖∞ = ‖P‖∞ ≤ 2‖KΣ‖∞. Therefore

∫

A(k)
H2u2ku

12/q−2 dµ ≤ 4‖KΣ‖2∞

∫

Σ
u

12

q−2
+2 dµ ≤ C(q) ,

where the last estimate also follows from theorem 6.7 if q is large enough.
Summarizing these steps, we have

∫

A(k)
uq−2
k u6 dµ ≤ C(q)|A(k)| .

A similar procedure for the remaining terms in (35) finally yields the
estimate

(37)

∫

A(k)
uqk|∇u|

2 dµ ≤ C(q)|A(k)| ,

provided q > q0 is large enough. Fix such a q > q0 and let f = u
1+q/2
k .

Since

|∇f |2 ≤ C(q, r−1)(uqk|∇u|
2 + uqku

2),

equation (37) and the above estimates imply that
∫

A((k)
|∇f |2 dµ ≤ C(q)|A(k)|.

The Hoffman-Spruck-Sobolev inequality from lemma 6.8, combined with
theorem 6.7, furthermore yields

∫

A(k)
f2 dµ =

∫

A(k)
uq+2
k dµ ≤ C(q)|A(k)|

(

∫

A(k)
|∇u|2 +Hu2 dµ

)
q+2

2

≤ C(q)|A(k)|.

Thus one further application of lemma 6.8 yields
∫

A(k)
uq+2
k dµ =

∫

A(k)
f2 dµ ≤ C(q)|A(k)|2 .

Consider h > k ≥ k0. Then on A(h) we have that uk ≥ h − k and
therefore we derive the following iteration inequality:

|h− k|q+2|A(h)| ≤

∫

A(h)
uq+2
k dµ ≤

∫

A(k)
uq+2
k dµ ≤ C(q)|A(k)|2 .

Then [Sta66, lemma 4.1] implies that |A(k0 + d)| = 0 for

dq+2 ≤ C(q)|A(k0)| ≤ C(q)a.

In view of the definition of A(k) = suppmax{ηu − k, 0}, this yields in
particular |χ|(x)| ≤ C(q). As x was arbitrary, the claim follows. q.e.d.



CURVATURE ESTIMATES FOR STABLE MOTS 257

Corollary 6.11. Let Σ ⊂ M be an LM -stable MOTS with (r, a)-
locally uniformly finite area. Then Σ satisfies the following estimates:

sup
Σ

|χ| ≤ C(a, r−1, ‖K‖∞, ‖∇K‖∞, ‖
MRm‖∞, (inj(M,g))−1)

In addition, for all x ∈ Σ we have an L2-gradient estimate of the form
∫

B(x,r/8)
|∇χ|2 dµ ≤ C(a, r−1, ‖K‖∞, ‖∇K‖∞, ‖

MRm‖∞) .

Proof. The statement to prove is that the constants only depend on
the stated quantities. This is due to the following reasons.

First, we use the above estimates using the representation of constants
containing ‖Ψ̃M‖∞ an ‖MRm‖∞. As we have seen in remark 1, we can
estimate

|Ψ̃M | ≤ c(|K|2 + |∇K|+ |MRm|),

where c is a numerical constant. Second, since for all X,Y,Z ∈ X (Σ),

Q(X,Y,Z) = LRm(X,Y, n, Z) + LRm(X,Y, ν, Z),

we can use the Gauss and Codazzi equations of the embedding M →֒ L
to estimate

|Q|+ |LRmΣ| ≤ c(|K|2 + |∇K|+ |MRm|).

Third, obviously

|KΣ|2 + |S|2 ≤ |K|2 .

Thus we see that all quantities are controlled by ‖K‖∞, ‖∇K‖∞, and
‖MRm‖∞, where the ∞-norms are computed on Σ. Note that the de-
pendency on inj(M) comes from the fact that the constants cS0 and cS1 in
the Hoffman-Spruck-Sobolev inequality only depend on ‖MRm‖∞ and
inj(M)−1. q.e.d.

We conclude with an estimate for the principal eigenfunction to LM or
L−.

Theorem 6.12. Let Σ be an LM -stable MOTS. Let λ ≥ 0 be the
principal eigenvalue of LM and f > 0 its corresponding eigenfunction.
They satisfy the estimates

λ|Σ|+ 1
2

∫

Σ
f−2|∇f |2 dµ ≤ 4π +

∫

Σ
|S|2 dµ−

∫

Σ
Ψ̃M dµ

and
∫

|∇2f |2 dµ

≤ λ2
∫

Σ
f2 dµ

+ C(|Σ|, ‖K‖∞, ‖∇K‖∞, ‖
MRm‖∞, inj(M,g)−1)

∫

Σ
f2 + |∇f |2 dµ.
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The same estimates hold for L−-stable MOTS when f and λ are the
principal eigenfunction and eigenvalue of L− instead; then Ψ̃M has to
be replaced by Ψ̃− in the first estimate.

Proof. The first estimate follows from a computation similar to the
proof of lemma 5.6.

The second estimate then follows from the first by using the identity
∫

Σ
|∇2f |2 dµ =

∫

Σ
(∆f)2 + ΣRc(∇f,∇f) dµ .

To estimate the terms on the right-hand side, note that

−∆f = λf − 2S(∇f)− f(divS − 1
2 |χ|

2 − |S|2 + 1
2
ΣSc− Ψ̃M)

and as Σ is two-dimensional
ΣRc(∇f,∇f) = 1

2
ΣSc|∇f |2 .

In view of the Gauss equation for Σ ⊂M and the bounds for χ, we find
the claimed estimate. q.e.d.

Corollary 6.13. If Σ is an LM -stable MOTS, then the principal
eigenfunction f > 0 to LM which is normalized such that ‖f‖∞ = 1
satisfies the estimate

∫

Σ
f2 + |∇f |2 + |∇2f |2 dµ

≤ C(|Σ|, |Σ|−1, ‖K‖∞, ‖∇K‖∞, ‖
MRm‖∞, inj(M,g)−1).

The same estimate holds for L−-stable MOTS, when f is the principal
eigenfunction to L− instead, and the constant depends on |Σ|, |Σ|−1,
‖K‖∞, ‖LRm‖∞, and inj(M,g)−1).

Proof. Since ‖f‖∞ = 1, we have
∫

Σ f
2 dµ ≤ |Σ|. Then since f−2 ≥ 1,

the first estimate from the previous theorem implies
∫

Σ
|∇f |2 ≤ C(|Σ|, ‖K‖∞, ‖∇K‖∞, ‖

MRm‖∞) .

Since λ2
∫

Σ f
2 ≤ λ2|Σ| ≤ C|Σ|−1 the above estimates combined with

the previous theorem imply the claim. q.e.d.

Remark 6.14. A local version of these estimates can also be derived
from local area bounds, like the curvature estimates before. In the
subsequent application, however, we will not use this more general form.

7. Local area bounds

This section is devoted to derive the area bounds needed for the
curvature estimates in the previous section.

The following theorem is analogous to Pogorelov’s estimate for stable
minimal surfaces [Pog81]. We will modify the proof of Colding and
Minicozzi given in [CM02].
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Theorem 7.1. Let (M,g) be a Riemannian 3-manifold with bounded
curvature ‖MRm‖∞ ≤ C.

Let Σ ⊂ M be an immersed surface with bounded mean curvature
‖H‖∞ ≤ C. Assume that there exist α > 0 and a constant Z ≥ 0 such
that for all functions η ∈ C∞

c (Σ) we have

(38) −

∫

Σ

ΣSc η2 dµ ≤

∫

Σ
(2− α)|∇η|2 + Zη2 dµ.

Then there exists r0 = r0(α
−1, Z, ‖H‖∞, ‖

MRm‖∞) such that for all
r < r0, the area |Σ ∩BΣ(x, r)| is bounded by

|Σ ∩BΣ(x, r)| ≤
4π
α r

2.

Proof. Fix an arbitrary x ∈ Σ. By the Gauss equation for Σ we know
that

ΣSc = MSc− 2MRc(ν, ν) +H2 − |A|2 ≤ C(‖H‖∞, ‖
MRm‖∞).

Hence by the Rauch comparison theorems (cf. [CE75, section 1.10]),
there is a radius 0 < r1 = r1(‖H‖∞, ‖

MRm‖∞) such that Σ has no
conjugate points in BΣ(x, r1). Hence the pull-back γ of the metric of Σ
to the disc Dr1 := B(0, r1) in TxΣ is regular and satisfies (38).

Denote Ds = B(0, s) the disk of radius 0 ≤ s ≤ r1 in Dr1 and
Γs = ∂Ds the boundary. Note that Ds is a topological disk and Γs is
a single circle. Furthermore, the area of Ds with respect to γ is bigger
than |BΣ(x, s)|, for s < r1.

In the stability inequality, we set η = η(s) = max{1 − s
r0
, 0}, where

0 < r ≤ r1 will be chosen below. Denote by K(s) =
∫

Ds
Scal dµ. Then

K ′(s) =
∫

Γs
Scal dl, where dl is the line element of Γs induced by γ.

Hence, by the co-area formula and partial integration,

−

∫

Dr

Scal η2 dµ = −

∫ r

0
K ′(s)η2(s) ds =

∫ r

0
K(s)(η2(s))′ ds.

Let l(s) = length(Γs). By the formula for the variation of arc length and
the Gauss-Bonnet formula we find l′(s) = 2π −K(s), as Γs is a circle,
on which the geodesic curvature integrates to 2π. Thus we compute,
using (η2(s))′ = −2

r (1−
s
r ), (η

2(s))′′ = 2
r2

and the co-area formula

−

∫

Dr

Scal η2 dµ = 2π

∫ r

0
(η2(s))′ ds+

∫ r

0
l(s)(η2(s))′′ ds

= −
2π

r

∫ r

0

(

1−
s

r

)

ds+
2

r2

∫ r

0
l(s) ds = −2π +

2

r2
|Dr|.

Furthermore, compute
∫

Dr

|∇η|2 dµ =
1

r2

∫ r

0
l(s) ds =

1

r2
|Dr|,
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and estimate
∫

Dr

Zη2 dµ ≤ Z|Dr|.

Hence equation (38) implies that

−2π + 2
r2

|Dr| ≤
2−α
r2

|Dr|+ Z|Dr|.

Thus

α|Dr| ≤ 2πr2 + Zr2|Dr|.

Choose r2 = min{ α
2Z , r

2
1} and absorb the error term. This yields the

claim. q.e.d.

The above theorem yields the local area bound for stable MOTS needed
for the curvature estimates.

Corollary 7.2. Let Σ be an LM -stable MOTS. Then there exists
r0 > 0 depending only on ‖K‖∞, ‖∇K‖∞, and ‖MRc‖∞, such that for
every x ∈ Σ and r < r0

|Σ ∩BΣ(x, r)| ≤ 6πr2.

Proof. To see that theorem 7.1 is applicable on an LM -stable MOTS,
recall equation (27). As |χ|2 ≥ 1

2 |A|
2−4|KΣ|2 and by the Gauss equation

|A|2 = MSc− ΣSc− 2MRc(ν, ν) +H2,

we find from (27), taking the scalar curvature term to the left, that

−
3

2

∫

Σ

ΣScη2 dµ ≤

∫

Σ
2|∇η|2 + Zη2 dµ

where Z = Z(‖K‖∞, ‖∇K‖∞, ‖
MRc‖∞). As on a MOTS ‖H‖∞ =

‖P‖∞ ≤ 2‖KΣ‖∞, theorem 7.1 gives the desired bounds. q.e.d.

Theorem 6.10 and corollary 6.11 imply the following estimates.

Corollary 7.3. Let Σ be an LM -stable MOTS; then

‖χ‖∞ ≤ C
(

‖K‖∞, ‖∇K‖∞, ‖
MRm‖∞, (inj(M,g))−1

)

.

Furthermore, there exists 0 < r̄ = r̄(‖K‖∞, ‖∇K‖∞, ‖
MRm‖∞) such

that for all x ∈ Σ
∫

B(x,r̄)
|∇χ|2 dµ ≤ C(‖K‖∞, ‖∇K‖∞, ‖

MRm‖∞) .
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8. Applications

The main application of the curvature estimates proved in this paper
is the following compactness property of stable MOTS.

Theorem 8.1. Let (gn,Kn) be a sequence of initial data sets on a
manifold M . Let (g,K) be another initial dataset on M such that

‖MRm‖∞ ≤ C ,

‖K‖∞ + ‖M∇K‖∞ ≤ C,

inj(M,g) ≥ C−1 ,

for some constant C. Assume that

gn → g in C2
loc(M,g) and

Kn → K in C1
loc(M,g).

Furthermore, let Σn ⊂ M be a sequence of immersed surfaces which
are stable marginally outer trapped with respect to (gn,Kn) and have
an accumulation point in M . In addition, assume that the Σn have
uniformly locally finite area, that is, for all x ∈M there exists 0 < r =
r(x) and a = a(x) <∞ such that

(39) |Σn ∩BMtn
(x, r)| ≤ ar2 uniformly in n,

where BMtn
(x, r) denotes the ball in M around x with radius r.

Then a subsequence of the Σn converges to a smooth immersed surface
Σ locally in the sense of C1,α graphs. Σ is a MOTS with respect to
(g,K). If Σ is compact, then it is also stable.

Proof. By the estimates in corollary 6.11, the above assumptions,
even without (39), are sufficient to imply that the shears χn, and thus
the second fundamental forms An, of the Σn, with respect to the metric
gn are uniformly bounded

|An| ≤ C.

As gn is eventually C2-close to g, this bound translates to a bound for
the second fundamental forms Ãn of Σn with respect to the metric g.

In the sequel BM (x, s) denotes an extrinsic ball in (M,g). As the
geometry of the (M,gn) is uniformly bounded, the uniform curvature
bound implies in particular, that there exists a radius s such that for
every x ∈ Σn the connected component of Σn ∩ BM (x, s) containing x
can be written as graph of a function uxn over TxΣn, where the function
uxn is uniformly bounded in C2. Without loss of generality, we can
assume that s < r, where r is from equation (39).

Now let x ∈ M be arbitrary. From the previous fact we conclude
that each connected component of Σn∩BM(x, s), which intersects Σn∩
BM (x, s/2), contains a uniform amount of area. In view of the local
area bound (39), we conclude that there are only finitely many such
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components. Furthermore, the maximal number of those components is
uniform in n.

Hence, in each ball BM(x, s/2), we can extract a convergent subse-
quence of the Σn, such that Σn∩BM (x, s) converges in C1,α to a smooth
surface Σx. As the Mtn can be covered by countably many such balls,
a diagonal argument yields a convergent subsequence of the Σn and a
limit surface Σ, which is immersed (cf. remark 8.2). Note that since the
Σn have an accumulation point in (M,g), the limit Σ is non-empty.

Furthermore, C1,α convergence yields that Σ is C1,α and satisfies a
weak version of the equation θ+ = 0. In view of standard regularity
theory for prescribed mean curvature equations, we find that Σ is in
fact smooth (cf. [GT01]).

If Σ is compact, we can cover Σ with finitely many balls B(x, s/8).
As before we know that locally the Σn converge to Σ in C1,α. Since
we also have local W 1,2-bounds on χ we can furthermore assume that
Σn → Σ in W 2,p for a fixed, large p, which will be selected below.

From this we can conclude that the metrics of the Σn converge to the
metric of Σ in Cα ∩W 1,p. We can pull back the metrics of the Σn to Σ
and call them γn. The metric on Σ will be denoted by γ. Then define the
operators Ln as the pull-backs of the operator LM on Σn to Σ. Let fn
be the principal eigenfunctions of Ln with eigenvalues λn and normalize
such that ‖fn‖∞ = 1. Since the area of the Σn is eventually bounded
below by half of the area of Σ, theorem 6.12 implies that 0 ≤ λn ≤ C,
where C = C(C̄, ‖K‖∞, ‖∇K‖∞, ‖

MRm‖∞). Thus we can assume that
the λn converge to some λ with 0 ≤ λ ≤ C.

By corollary 6.13, the W 2,2-norm of the fn taken with respect to
the metrics γn is uniformly bounded. Recall that the difference of the
Hessian of f with respect to γn and γ is of the form

(

∇2
γn −∇2

γ

)

f = −
(

Γγn − Γγ

)

∗ df

where Γγ and Γγn denote the connection coefficients of γ and γn. Fur-
thermore, ∇f is bounded in any Lp and by W 1,p convergence of the
metrics Γγn − Γγ → 0 in Lp. Thus we find that also ‖fn‖W 2,2 ≤ C,
where the norm is taken with respect to the metric γ on Σ. Hence we
can assume that fn → f in W 1,p. The Sobolev embedding W 1,p →֒ C0

implies that f ≥ 0, and ‖f‖∞ = 1, so f 6≡ 0.
The next step is to take the equation Lnfn = λnfn to the limit. Since

fn → f only in W 1,p, we have to use the weak version of this equation,
namely, that for all φ ∈ C∞(Σ),

∫

Σ
γijn (dfn)idφj +Bi

n(dfn)iφ+ Cnfφdµ = λn

∫

Σ
fnφdµ ,

where Bn and Cn are the coefficients of the operator Ln. By the W 2,p-
convergence of the surfaces, we find that γn converges to γ in W 1,p, and
Bi

n and Cn converge in Lp to the coefficients Bi and C of LM on Σ.
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Thus, since fn converges in W 1,p to f , we can choose p large enough to
infer that the limit of the above integrals converges to the corresponding
integral on Σ, that is f satisfies

∫

Σ
〈∇f,∇φ〉+ 〈B,∇f〉φ+Cfφdµ = λ

∫

Σ
fφdµ .

Thus f is a weak eigenfunction of LM on Σ. Elliptic regularity implies
that f is smooth and satisfies LMf = λf . Since λ ≥ 0 and f ≥ 0, f 6≡ 0,
we conclude that Σ is stable. q.e.d.

Remark 8.2. If the limit surface is not compact, then it still follows
that it is “symmetrized” stable in the sense that inequality (27) holds
for all test functions η with compact support.

Remark 8.3. 1) If the surfaces Σn are embedded, one would as-
sume that the limit Σ is embedded as well. However this is not
necessarily the case. This is due to the fact that at a point p where
Σ touches itself, the equation θ+ = 0 is satisfied with respect to
the outward normal. At p the normals corresponding to these
two sheets point into opposite directions at p. If we flip one of
the normals, to make them point into the same direction to apply
the maximum principle in a graphical situation, the equation for
one sheet will remain θ+ = 0, but for the other it will change to
θ− = 0. Hence, one cannot compare the two sheets.

However, if Σ also satisfies θ− ≤ 0, then the maximum principle
implies that the set S of touching points is open. By continuity S
is closed, and S 6= Σ, as the Σn are embedded and have bounded
curvature. Hence S = ∅ and Σ is embedded.

2) If the assumption of uniformly locally finite area does not hold,
but the surfaces Σn are embedded, the limit still exists in the sense
of laminations. Here, the limit is a lamination, for which the leaves
are “symmetrized” stable MOTS (cf. remark 8.2). Convergence is
in the sense of laminations in the class Cα, with convergence of the
leaves in C1,α, for any 0 < α < 1. For a proof of this statement,
we refer to [CM04, appendix B]; in the reference this is stated
for minimal laminations, but the modification to the MOTS case
is straightforward.

For the sake of completeness we state the definition of a lami-
nation. A lamination L ⊂ M is a closed set, which is a disjoint
union of complete connected smooth surfaces, called leaves. Fur-
thermore, there are coordinate charts for M , ψ : V ⊂ M → R3,
V a neighborhood of some point x ∈ M , such that the image of
each leaf L of L is contained in a set of the form R2 × t, where
t ∈ I, and I is a closed subset of R. A sequence of laminations
Ln is said to converge to a lamination L if the coordinate charts
converge and L is the set of accumulation points of the Ln.
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3) There are examples of compact three dimensional manifolds which
contain sequences of compact stable minimal surfaces of fixed
genus and unbounded area [CM99, Dea03]. Thus assumption
(39) does not follow immediately from standard theory, even when
the surfaces Σn are confined to a compact region.
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