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CURVATURE ESTIMATES FOR STABLE
MARGINALLY TRAPPED SURFACES

LARS ANDERSSON & JAN METZGER

Abstract

We derive local integral and sup- estimates for the curvature
of stable marginally outer trapped surfaces in a sliced space-time.
The estimates bound the shear of a marginally outer trapped sur-
face in terms of the intrinsic and extrinsic curvature of a slice
containing the surface. These estimates are well adapted to situ-
ations of physical interest, such as dynamical horizons.

1. Introduction

The celebrated regularity result for stable minimal surfaces, due to
Schoen, Simon, and Yau [SSY75], gives a bound on the second funda-
mental form in terms of ambient curvature and area of the surface. The
proof of the main result of [SSY75] makes use of the Simons formula
[Sim68] for the Laplacian of the second fundamental form, together
with the non-negativity of the second variation of area. In this paper
we will prove a generalization of the regularity result of Schoen, Simon,
and Yau to the natural analogue of stable minimal surfaces in the con-
text of Lorentz geometry, stable marginally trapped surfaces. In this
case, a generalization of the Simons formula holds for the null second
fundamental form, and the appropriate notion of stability is that of sta-
bly outermost in the sense of [AMSO05, New87]. A local area estimate
for stable marginally trapped surfaces, a generalization of a result due
to Pogorelov [Pog81], allows us to give a curvature bound independent
of assumptions on the area of the surface. An interesting feature of
our estimates is that they imply curvature bounds for stable minimal
surfaces or surfaces of constant mean curvature that do not depend on
bounds for the derivative of the ambient curvature.

Let 3 be a spacelike surface of co-dimension two in a (3 4 1)-dimen-
sional Lorentz manifold L and let [* be the two independent future
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directed null sections of the normal bundle of 3, with corresponding
mean curvatures, or null expansions, #*. ¥ is called trapped if the
future directed null rays starting at ¥ converge, i.e., if % < 0. If L
contains a trapped surface and satisfies certain causal conditions, then,
if in addition, the null energy condition is satisfied, L is future causally
incomplete [Pen65]. Let [T be the outgoing null normal. If L is an
asymptotically flat spacetime this notion is well defined; otherwise the
outgoing direction can be fixed by convention. We call ¥ a marginally
outer trapped surface (MOTS) if the outgoing lightrays are marginally
converging, i.e., if 67 = 0. No assumption is made on the ingoing null
expansion #~ of a MOTS. If ¥ is contained in a time symmetric Cauchy
surface, then 87 = 0 if and only if ¥ is minimal.

Marginally trapped surfaces are of central importance in general rela-
tivity, where they play the role of apparent horizons, or quasilocal black
hole boundaries. The conjectured Penrose inequality, proved in the Rie-
mannian case by Huisken and Ilmanen [HIO1] and Bray [BraO1], may
be formulated as an inequality relating the area of the outermost appar-
ent horizon and the ADM mass. The technique of excising the interior
of black holes using apparent horizons as excision boundaries plays a
crucial role in current work in numerical relativity, where much of the
focus is on modelling binary black hole collisions.

In spite of the importance of marginally trapped surfaces in the ge-
ometry of space-times, the extent of our knowledge of the regularity and
existence of these objects is rather limited compared to the situation for
minimal surfaces.

A smooth marginally outer trapped surface is stationary with respect
to variations of area within its outgoing null cone, in view of the formula

5fl+,u2 = f0" s

where f is a function on Y. The second variation of area at a MOTS in
the direction [T is

g0t = —(IXTP+ G f

where G denotes the Einstein tensor of L, and x* is the second fun-
damental form of ¥ with respect to [™. For minimal surfaces in a Rie-
mannian manifold, or maximal hypersurfaces in a Lorentz manifold, the
second variation operator is an elliptic operator of second order. In con-
trast, the above equation shows that the second variation operator for
area of a MOTS, with respect to variations in the null direction [T, is an
operator of order zero. Therefore, although MOTS can be characterized
as stationary points of area, this point of view alone is not sufficient to
yield a useful regularity result. In spite of this, as we shall see below,
there is a natural generalization of the stability condition for minimal
surfaces, as well as of the regularity result of Schoen, Simon, and Yau,
to marginally outer trapped surfaces.
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It is worth remarking at this point that if we consider variations of
area of spacelike hypersurfaces in a Lorentz manifold, the stationary
points are maximal surfaces. Maximal surfaces satisfy a quasilinear
non-uniformly elliptic equation closely related to the minimal surface
equation. Due to the fact that maximal hypersurfaces are spacelike, they
are Lipschitz submanifolds. Moreover, in a space-time satisfying the
timelike convergence condition, every maximal surface is stable. Hence,
the regularity theory for maximal surfaces is of a different flavor than
the regularity theory for minimal surfaces (cf. [Bar84]).

Assume that L is provided with a reference foliation consisting of
spacelike hypersurfaces {M,;}, and that ¥ is contained in one of the
leaves M of this foliation. Let (g, K') be the induced metric and the sec-
ond fundamental form of M with respect to the future directed timelike
normal n. Further, let v be the outward pointing normal of ¥ in M
and let A be the second fundamental form of X with respect to v. After
possibly changing normalization, {* = n + v, we have

0t = H+try K

where H = tr A is the mean curvature of ¥ and trx;, K is the trace of the
projection of K to ¥. Thus the condition for ¥ to be a MOTS, 6+ = 0,
is a prescribed mean curvature equation.

The condition that plays the role of stability for MOTS is the stably
outermost condition (see [AMSO05, New87]). Suppose X is contained
in a spatial hypersurface M. Then X is stably locally outermost in
M if there is an outward infinitesimal deformation of ¥, within M,
which does not decrease #*. This condition, which is equivalent to the
condition that 3 is stable in case M is time symmetric, turns out to be
sufficient to apply the technique of [SSY75] to prove a bound on the
second fundamental form A of X in M. In contrast to the situation for
minimal surfaces the stability operator defined by the deformation of 6™
is not self-adjoint. Nevertheless, it has a real principal eigenvalue with
a corresponding principal eigenfunction which does not change sign.

The techniques of [SSY75] were first applied in the context of general
relativity by Schoen and Yau [SY81], where existence and regularity for
Jang’s equation were proved. Jang’s equation is an equation for a graph
in N = M x R, and is of a form closely related to the equation 87 = 0.
Let u be a function on M, and let K be the pull-back to N of K along
the projection N — M. Jang’s equation is the equation

g D;D;u _
g” - + KZ] =0
1+ |Dul?
where g = g9 — % is the induced metric on the graph 3 of v in

N. Thus Jang’s equation can be written as § = 0 with
0=H + trg K,
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where H is the mean curvature of ¥ in N. This shows that Jang’s
equation @ = 0 is a close analog to the equation T = 0 characterizing a
MOTS. Solutions to Jang’s equation satisfy a stability condition closely
related to the stably outermost condition stated above. This is due to
the fact that Jang’s equation is translation invariant in the sense that
if u solves Jang’s equation, then also u + ¢ is a solution where c is a
constant. Thus, in the sense of section 5, graphical solutions to Jang’s
equation are stable. This fact allows Schoen and Yau [SY81] to apply
the technique of [SSY75] to prove regularity for solutions of Jang’s
equation. It is worth remarking that although the dominant energy
condition is assumed to hold throughout [SY81], in fact the proof of the
existence and regularity result for solutions of Jang’s equation presented
in [SY81] can be carried out without this assumption. In the present
paper, the dominant energy condition is not used in the proof of our
main regularity result (cf. Theorem 1.2 below).

It was proved by Galloway and Schoen [GS06], based on an argu-
ment for solutions of the Jang’s equation in [SY81], that the stability
of MOTS implies a “symmetrized” stability condition, which states that
the spectrum of a certain self-adjoint operator analogous to the second
variation operator for minimal surfaces is non-negative. The fact that
stability in the sense of stably outermost implies this symmetrized ver-
sion of stability was used in [GS06] to give conditions on the Yamabe
type of stable marginal surfaces in general dimension. It turns out that
this weaker symmetrized notion of stability is in fact sufficient for the
curvature estimates proved here. The symmetrized notion of stability
is also used in our local area estimates. However, since this notion has
no direct interpretation in terms of the geometry of the ambient space-
time, we prefer to state our results in terms of the stably outermost
condition.

Statement of results. The stability condition for MOTS which re-
places the stability condition for minimal surfaces and which allows one
to apply the technique of [SSY75] is the following.

Definition 1.1. ¥ is stably outermost if there is a function f > 0
on X, f # 0 somewhere, such that 67,07 > 0.

When there is no room for confusion we will refer to a stably outer-
most MOTS simply as a stable MOTS. This is analogous to the stability
condition for a minimal surface N C M. The condition that there ex-
ists a function f on N with f > 0 and f # 0 somewhere, such that
dr,H >0, is equivalent to the condition that IV is stable.

The main result of this paper is the following theorem (cf. theorem
6.10, corollary 6.11 as well as theorem 7.1).
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Theorem 1.2. Suppose ¥ is a stable MOTS in (M, g, K). Then the
second fundamental form A satisfies the inequality

1Allee < CUIK oo, IV oo, M Rinl oo, in(M, g) 7).

Here || - ||« denotes the sup-norm of the respective quantity, taken
on X. As an application we prove a compactness result for MOTS (cf.
theorem 8.1).

Theorem 1.3. Let (g, K,) be a sequence of initial data sets on a
manifold M. Let (g, K) be another initial data set on M such that

IMRm < C,
1K oo + M VE oo < C,
inj(M, g) > C7',
for some constant C. Assume that
gn =g in Che(M,g) and,
K,— K in CL.M,qg).

Furthermore, let ¥, C M be a sequence of immersed surfaces which
are stable marginally outer trapped with respect to (gn, K,) and have
an accumulation point in M. In addition, assume that the X, have
uniformly locally finite area, that is, for all x € M there exists 0 < r =
r(z) and a = a(x) < co such that

15, N By, (z,7)] < ar? uniformly in n,

where By, (x,7) denotes the ball in M around x with radius r.

Then a subsequence of the X3, converges to a smooth immersed surface
Y locally in the sense of CY® graphs. ¥ is a MOTS with respect to
(9,K). If ¥ is compact, then it is also stable.

Outline of the paper. In sections 2 and 3 we discuss the notation
and preliminary results, as well as a Simons identity which holds for the
shear of a MOTS. Section 4 introduces the linearization of the operator
0T acting on surfaces represented as graph over a MOTS. The stability
conditions we use are discussed in section 5. The curvature estimates
are derived in section 6 under the assumption of local area bounds.
In section 7 we show how these bounds can be derived in terms of
the ambient geometry. Finally section 8 uses the established curvature
bounds to prove the compactness theorem.
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versations. We are grateful for the hospitality and support of the Isaac
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2. Preliminaries and notation

In this section we set up notation and recall some preliminaries from
differential geometry. In the sequel we will consider two-dimensional
spacelike submanifolds ¥ of a four-dimensional manifold L. As a space-
time manifold, L is equipped with a metric h of signature (—,+, +,+).
The inner product induced by h will frequently be denoted by (-,-). In
addition, we will assume, that X is contained in a spacelike hypersurface
M in L. The metric on M induced by h will be denoted by ¢, the metric
on Y by 7. We will denote the tangent bundles by T'L,TM, and T3,
and the space of smooth tangential vector fields along the respective
manifolds by X' (X), X (M), and X(L). Unless otherwise stated, we will
assume that all manifolds and fields are smooth.

We denote by n the future directed unit timelike normal of M in L,
which we will assume to be a well-defined vector field along M. The
normal of ¥ in M will be denoted by v, which again is assumed to be a
well-defined vector field along X.

The two directions n and v span the normal bundle N'Y of ¥ in L,
and moreover, we can use them to define two canonical null directions,
which also span this bundle, namely, [* = n + v.

In addition to the metrics, h and its Levi-Civita connection L V induce
the second fundamental form K of M in L. It is the normal part of *v,
in the sense that for all vector fields X,Y € X (M),

(1) Lyyy =MyxY + K(X,Y)n.

The second fundamental form of ¥ in M will be denoted by A. For
vector fields X,Y € X(X) we have

(2) MyxY ="vxY — AX,Y)v.

For vector fields X,Y € X(X), the connection of L therefore splits
according to

(3) VXY =FVxY + K¥(X,Y)n - AX,Y )y = FVxY —I(X,Y),
where I(X,Y) = A(X,Y)v — K¥(X,Y)n is the second fundamental
form of ¥ in L. Here K> denotes the restriction of K to TY, the
tangential space of X.

The trace of II with respect to 7, which is a vector in the normal
bundle of ¥, is called the mean curvature vector and is denoted by

(4) 7‘[ = ZH(GZ’, 62') s

for an orthonormal basis ey, e5 of . Since ‘H is normal to X, it satisfies
(5) H=Hv— Pn

where H = v A;; is the trace of A and P = vinZ% is the trace of K™,
with respect to . For completeness, we note that the norms of II and
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‘H are given by

(6) 0P* = [A = |[K¥]*  and
(7) |H|? = H* — P2,

Recall that since H and I have values normal to 3, the norms are taken
with respect to h and are therefore not necessarily non-negative.

We use the following convention to represent the Riemann curvature
tensor “Rm, the Ricci tensor ~Re, and the scalar curvature >Sc of X.
Here X,Y,U,V € X(X) are vector fields.

"Rm(X,Y,U,V) = CVxTVyU — 2y VxU — *Vix U, V),
E1:{(3()(, Y) == Z ERm(X7 €i, €y Y) )

*Sc = Z “Re(es, €5) -

%

Analogous definitions hold for ¥ Rm, YRe, and M Sc as well as “Rm,
LRe, and TSe, with the exception that for “Rc and “Sc we take the
trace with respect to the indefinite metric h.

We recall the Gauss and Codazzi equations of ¥ in L, which relate
the respective curvatures. The Riemann curvature tensors “Rm and

LRm of ¥ and L, respectively, are related by the Gauss equation. For
vector fields X,Y, U,V we have

(8) *Rm(X,Y,U, V)=
LRm(X,Y,U, V) + (I(X, V), L(Y,U)) — (I(X,U),L(Y,V)) .

In two dimensions, all curvature information of 3 is contained in its
scalar curvature, which we will denote by “Sc. The scalar curvature
of L will be denoted by “Sc. The information of the Gauss equation
above is fully contained in the following equation, which emerges from
the above one by first taking the trace with respect to Y,U and then
with respect to X, V:

(9) *Sc = LSc+2FRe(n, n)—2LRe(v, v)—2LRm(v, n,n, v)+|H[>—|1* .
The Codazzi equation, which relates “Rm to I, has the following form:
(10) (FvxI(Y, Z),S) = (VyI(X,Z),S) + "Rm(X,Y, S, Z)

for vector fields X,Y,Z € X(X) and S € T(NVY).
There is also a version of the Gauss and Codazzi equations for the
embedding of M in L. They relate the curvature “Rm of L to the
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curvature ¥ Rm of M. For vector fields X,Y,U,V € X (M) we have
MRm(X,Y,U,V)
(1) ='Rm(X,Y,U,V) - K(Y,U)K(X,V) + K(X,U)K(Y,V),
(12) MyxK(Y,U) -MvyK(X,U) = "Rm(X,Y,n,U).
These equations also have a traced form, namely,
(13) Mge = IS¢ + 2LRe(n,n) — (tr K)? + | K|? and
(14) MiivKk — Mg tr K = "Re(-,n).
We now investigate the connection V'V on the normal bundle N'Y of
Y. Recall that for sections N of 'Y and X € X(X), this connection is
defined as
NYxN = (LVXN)l7
where again (-)* means taking the normal part. We have
0=X(1)= X((n,n>) = 2<NVXn,n> )

and similarly <N Vxv,v) = 0. Therefore the relevant component of N \v4
is

<NVXV,n> = <LVX1/,n> =-K(X,v).
Recall that X is tangential to ¥. This lead us to define the 1-form S
along ¥ by the restriction of K(-,v) to TX.

(15) S(X):=K(X,v).

Then, for an arbitrary section N of N'Y with N = fv + gn, we have
NN = X(f)v + X(g)n + S(X)(fn+ gv).

In particular

(16) Ny xi* = £S(X)I*.

We will later consider the decomposition of II into its null components.
For X,Y € X(X) let

(17) YE(X,Y) = (I(X,Y),1*) = K(X,Y) £ A(X,Y).
The traces of YT respectively will be called §%:
(18) 0 = (H,IX)=P+H.

The Codazzi equation (10) implies a Codazzi equation for x*.

Lemma 2.1. For vector fields X,Y,Z € X(X) the following relation
holds:
(19) Vxx*(Y,2) = Vyx (X, 2) + QF(X,Y, 2)
FXT(X, 2)S(Y) £xF(Y, 2)S(X).
Here,

(20) QY(X,Y,Z) =Rm(X,Y,I*, 2).
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3. A Simons identity for y*

We use the Codazzi equation we derived in the previous section to
compute an identity for the Laplacian of T, which is very similar to
the Simons identity for the second fundamental form of a hypersurface
[Sim68, SSY75].

The Laplacian on the surface X is defined as the operator

SA = ,yijEVZZj ‘

In the sequel, we will drop the superscript on A and >V, since all
tensors below will be defined only along ¥. We will switch to index
notation, since this is convenient for the computations to follow. In this
notation

i1 tp

J1Jq
denotes a (p, q)-tensor T' as the collection of its components in an ar-
bitrary basis {8,-}?:1 for the tangent spaces. To make the subsequent
computations easier, we will usually pick a basis of normal coordinate
vectors. Also note that we use Latin indices ranging from 1 to 2 to
denote components tangential to the surface X.

Recall, that the commutator of the connection is given by the Rie-

mann curvature tensor, such that for a (0, 2)-tensor Tj;,

(21) ViViTij — ViViTi; = "RigrmiTmg + “Riggn; Tim -

Note that we use the shorthand ERmklijim = ZRmklpjﬂq’ypq when
there is no ambiguity. That is, we assume that we are in normal coordi-
nates where v;; = v/ = §;;. Also note that this fixes the sign convention
for ZRm,-jkl such that ERCU = ERmikkj is positive on the round sphere.

Lemma 3.1. The Laplacian of x = x T satisfies the following iden-
tity:

XijAXij = Xi;ViV;i0T 4+ xij (FRmpaxiy + “Ringix)
+ Xij Vi (Qrij — X1Si + XiSk)
+Xij Vi(Qrjk — 07 Sj + xjxSk)
2|12 D
— [P ® + 0 x5t — 0T xaGE: — PGt
where P = ’yini? is the trace of K*.

Proof. Recall that in coordinates the Codazzi equation (19) for y;;
reads

(22) Vixjk = VjiXik + Qijr — XitSj + XjkSi -
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Then compute, using (22) in the first and third step, and the commu-
tator relation (21) in the second, to obtain

(23)
ViVixi; = ViVixy + Vi(Quj — X155 + Xi551)
= ViVixi; + “RigimiXmj + =Rl Xim
+ Vie(Quij — x155: + xi5:51)
= V;ViXk + “RigimiXmj + =R Xim
+ Vi(Quj — X155 + Xi551) + Vi(Qrjt — xw1Sj + X;15k) -

We will use the Gauss equation (8) to replace the *Rm-terms by “Rm-
terms. Observe that

Iy = =550 = 350"
Plugging this into the Gauss equation (8) gives
“Rmyjre = “Rmgjr + 5 (XX + XX — Xa Gk — Xa Xk -
Combining with (23), we infer that
ViVixij = ViVixer + “RigimiXmg + "R Xim
+ 3 (X X X Xilin = XX = X5t Xiom) Xom
+ 3 (X X Xiem X35 = Xij X = Xij Xim ) Xitm
+ Vie(Quij — x155: + xi551) + Vi(Qrji — xw1Sj + X1Sk) -
Taking the trace with respect to k,[ yields
Axi; = ViV;i0T + I Rmpirx; + “Rmgas X
+ Vi (Qrij — XSi + Xi55%) + Vi(Qrjr — 07S; + xjkSk)
+ %(x,}lx*l2 + (T XTI — O XX — 07 XGX)
+ %(x]*kxmﬁ = XGRXAXG )
We contract this equation with X;; and obtain
XijAXi; = Xi;ViVi0T + xij ("R + “ R xa )
+ Xij Vi (Qrij — XkjSi + Xi5Sk)
+ Xij Vi(Qrjr — 07 Sj + xjxSk)
+ (XTI = 50T XX xi — 30 XX -
Now observe that Xij = ZKZ% — Xz—';‘ and - = 2P — 0T. Substituting

this into the last two terms, together with (xT,x~) = —|I|?, we arrive
at the identity we claimed. q.e.d.
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4. The Deformation of 61

This section is concerned with the deformation of the operator 6T, as
defined in equation (18). We begin by considering an arbitrary, spacelike
surface ¥ C L. Assume that the normal bundle is spanned by the
globally defined null vector fields (*, such that (I*,17) = —2. We call
such a frame a normalized null frame. As before, let 0% := (H,1*). We
abbreviate y = yT.

A variation of X is a differentiable map

F:¥ x(—e,e) = L:(z,t) — F(x,t),

such that F(-,0) = idy is the identity map on X. The vector field
%—ﬂ +—o = V is called variation vector field of F'. We will only consider
variations, with variation vector fields V of the form V = al* + 81~

Note that in this setting, as a normalized null frame is not uniquely
defined by its properties, the notion of 7 depends on the frame chosen.
The freedom we have here is the following. Assume k* is another nor-
malized null frame for the normal bundle of ¥, that is, h(k™, k%) = 0
and h(kT,k~) = —2. Since the null cone at each point is unique, the
directions of k* can be aligned with {*. But their magnitudes can be
different, so kT = el and k= = e ¥[~ with a function w € C*(X).

Therefore, if we want to compute the deformation of 6T, it will not
only depend on the deformation of ¥, as encoded in the deformation
vector V. It will also depend on the change of the frame, that is, on the
change of the vector [T, which is an additional degree of freedom.

To expose the nature of that freedom, observe that if I*(¢) is a null

frame on each ¥; := F(X,t), then % . is still normal to X. On the
=
other hand,

0 ot
0: E‘t:() <l+,l+> :2< ot t:(]’l+> and
_ 0 -\ _ /ot - ol—
0= Flp 050y = (| _ )+ (| 1)
Therefore %‘ = wi™ for a function w € C°°(¥). Thus the linearized

change of the fi"ame is described by the single function w, which we will
call the variation of the null frame.

If we fix both of the quantities V and w, a straightforward (but
lengthy) computation gives the deformation of 7.

Lemma 4.1. Assume F : ¥ X (—e,e) — L is a variation of ¥ with
variation vector field V = al™ + Bl~. Assume further that the variation
of the null frame is w. Then the variation of 07 is given by

Syl =248 —4S(VB) — a(|x[* + FRe(1F1h) + 207w
— B(2div S —2|S* — [I? + “Re(1% 1) — X Rm (1% 15 1517h) .
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If we consider marginally trapped surfaces, then the term 67w in the
previous calculation vanishes, and we get expressions independent of
the change in the frame. As a consequence, we state the following two
corollaries, which also restrict the variations we take into account.

Corollary 4.2. Assume X is a marginally trapped surface, that is, it
satisfies the equation 0T = 0. Then the deformation of 0T in direction
of =1~ is given by

6_g- w0 =2L_p,
where the operator L_ is given by
L_B=-AB+2S(VB)+B(divS — S — |S]* - ¥_),
and U_ = HERm (1515151 — $ERe(I%10).

If we assume that 3 C M, where M is a three-dimensional spacelike
surface, then ¥ can be deformed in the direction of v, the normal of 3
in M. The deformation of 87 then turns out to be the following.

Corollary 4.3. Assume X is a marginally trapped surface; then the
deformation of 0T in the spatial direction of v := %(lJr —17) is given by
Ofvw =L f,

where the operator Ly is given by
Laf = —Af+2S(Vf) + f(divs — x> + (K=, x) — [S]* — Tur),
and Uy = Y Rm (15151519 + “Re(v, 1F).

Remark 4.4. 1) Using the Gauss equation (9), we can rewrite the
expression for Ly, as follows:

(24) Lyf = —Af+2S(Vf) + f(divS — 3|x[* = [S]> +4¥Sc — ¥yy) .

Here ¥y = G(n,1") where G = ‘Re— %LSC h denotes the Einstein
tensor of h.

Note that in view of the Gauss and Codazzi equations of the
embedding M < L, equations (13) and (14), the term ¥, can be
rewritten as

Uy =2 (MSe+ (r K)? — |K*) — MdivK — MV ir K, v)
= p+J(v),
where J = MdivK — My tr K is the projection of G(n,-) to M
and p = 1(MSc+ (tr K)? — |K|?) = G(n,n). The dominant energy
condition is equivalent to |J| < u. Thus, if the dominant energy

condition holds, ¥, turns out to be non-negative.
2) The same procedure gives that we can write L_ as

(26) L f=—-Af+2S(Vf)+ f(divS —[S* + 1¥Sc - ¥_).
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with W_ = G(I*,17). Note that W_ is non-negative if the dom-
inant energy condition holds. However, this representation does
not contain a term |x|2, which does not allow us to get estimates
on sup |x|?. However, in the case of strict L_ stability there is a
sheet M such that the surface is Ljs-stable. We can then apply
the subsequent results to get the estimates of theorem 1.2 in this
case.

5. Stability of marginally outer trapped surfaces

As before, consider a four-dimensional space time L*, with a three-
dimensional spacelike slice M?3. As in the previous sections, the future
directed unit normal to M in L will be denoted by n. In M consider a
two-dimensional surface X, such that there exists a global unit normal
vector field v of ¥ in M. The vector fields n and v span the normal
bundle of ¥ in L and give rise to two canonical null vectors [T = n 4 v.
Again we use the shorthand xy = x™.

In this section we introduce two notions of stability for a marginally
trapped surface. These are related to variations of the surface in dif-
ferent directions. The first definition is equivalent to definition 2 in
[AMSO05]. There a stably outermost marginally outer trapped surface,
is defined as surface, on which the principal eigenvalue of Ljs is posi-
tive. We recall from definition 1.1 that an Ly;-stable MOTS is defined
as follows.

Definition 5.1. A two-dimensional surface ¥ C M C L is called a
Lyy-stable marginally outer trapped surface if:

1) ¥ is marginally trapped with respect to [t , that is 67 = 0.
2) There exists a function f > 0, f # 0 such that Ly, f > 0. Here
Ly is the operator from corollary 4.3.

Remark 5.2. 1) Although Lj; is not formally self-adjoint, the
eigenvalue of Lj; with the smallest real part is real and non-
negative (cf. [AMSO05, Lemma 1]). This definition is equivalent
to saying that the principal eigenvalue of Lj; is non-negative. This
is seen as follows:

Let A be the principal eigenvalue Lj;. Then, since A is real,
the L2-adjoint L3, of Ly has the same principal eigenvalue and a
corresponding eigenfunction g > 0. Pick f > 0 as in the definition
of Ljs-stability, i.e., Lysf > 0. Then compute

A/fgduz/fL}’ugduz/LMfgdu-
by b by

As f >0, f#£0,9g>0,and Ly f > 0, this implies A > 0.
The eigenfunction v of Lj; with respect to the principal eigen-
value does not change sign. Therefore it can be chosen positive,
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1) > 0. Thus, the definition in fact is equivalent to the existence of
1) > 0 such that Ly¢ = A > 0. We will use this fact frequently
in the subsequent sections. Note that L ;-stability is equivalent to
the notion of a stably outermost MOTS in [AMSO05, definition 2].

2) The conditions from the above definition are satisfied in the fol-
lowing situation. Let ¥ = 92 be the boundary of the domain (2
and satisfy 67 = 0. Furthermore assume that there is a neighbor-
hood U of ¥ such that the exterior part U \ © does not contain
any trapped surface, i.e., a surface with # < 0. Then X is stable.
Assume not. Then the principal eigenvalue would be negative and
the corresponding eigenfunction v would satisfy Las¢ < 0, ¥ > 0.
This would imply the existence of trapped surfaces outside of 3,
since the variation of ¥ in direction ¥ would decrease 7.

Note that the condition #% = 0 does not depend on the choice of the
particular frame. Therefore, to say that a surface is marginally trapped,
we do not need any additional information. In contrast, the notion of
stability required here does depend on the frame, since clearly there is
no distinct selection of ¥ when only ¥—and not M—is specified.

To address this issue, we introduce the second notion of stability of
marginally outer trapped surfaces, namely with reference to the direc-
tion —!~. This definition is more in spirit of Newman [New87] and
recent interest in the so called dynamical horizons [AK03, AGO05].

Definition 5.3. A two-dimensional surface ¥ C M C L is called a
L_-stable marginally outer trapped surface (L_-stable MOTS) if:

1) ¥ is marginally trapped with respect to [T , that is 07 = 0.
2) There exists a function f > 0, f # 0 such that L_f > 0. Here L_
is the operator from corollary 4.2.

Remark 5.4. It turns out that this notion of stability does not de-
pend on the choice of the null frame. This is due to the natural trans-
formation law of the stability operator L_ when changing the frame
according to [t = fI* and [~ = f~1~. Then the operator L_ with re-
spect to this frame satisfies f~'L(fS) = L for all functions 8 € C®(%),
as it is expected from the facts that 6 = f0* and —81~ = —BfI.

Remark 5.5. 1) Remark 5.2 is also valid here, in particular the
definition implies that there exists a function ¢ > 0 with L_1 > 0.
2) Technically speaking, the equation for a marginally trapped sur-
face prescribes the mean curvature H of XX in M to equal minus the
value of a function P : TM — R : (p,v) — trK — K;;v'7, namely,
H(p) = —P(p,v) for all p € ¥. This is a degenerate quasilinear el-
liptic equation for the position of the surface. These equations do
not allow estimates for second derivatives without any additional
information. This is where the two stability conditions come into
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play. They give the additional piece of information needed in the
estimates as in the case for stable minimal surfaces.

The two notions of stability above imply the positivity of certain
symmetric differential operators as it was noticed in [GS06] for the
operator Lj;. However, the inequality there is not quite sufficient for
our purposes; it needs some further rearrangement. This is the content
of the following Lemmas. Basically lemmas 5.6 and 5.7 are the only
way how stability is used in the subsequent estimates. Thus one could
use these, in particular equation (27), to define a notion of symmetrized
stability for MOTS.

Lemma 5.6. If ¥ is a stable MOTS, then for all € > 0 and for all
n € C°(X) the following inequality holds:
LR s () [ 190 P (R = ) di

Proof. Take f as in the definition of a stable MOTS. From remark
5.2 we can assume f > 0. Then f~'Ly;f > 0. Multiply this relation by
n?, integrate, and expand Ly as in corollary 4.3. This yields

0< /E 02 (= LA F+2F LS (V f)4div S—|x [P+ (K, x)—|SPP— W) dp.

By sorting terms, and partially integrating the Laplacian and the diver-
gence term, we obtain

/E P+ 2 (f2AV R — 28 SV F) + ISP) du

S/E2U<Vn,f‘lvf—5>+n2lxl K> —n* Uy dp.

By the Schwarz inequality

/E (T, fIV S — Sy du < /Z Vol + P17V S - S dg,

and for any € > 0

LR an < et [ iR [ i,
Cancelling the terms [;,n?|f~'Vf — S|?dp and € [5, n*[x|* dp on both
sides and redefining e, we conclude the claimed inequality. q.e.d.

The following lemma is based on the original computation of [GS06].

Lemma 5.7. If ¥ is a stable MOTS, then for all 1 > € > 0 there
exist constants ¢ and C(e71) such that for all n € C°(X) the following
inequality holds:

/2 i du < (14 ) /E V02 4 72 (M Re| - Fag + O EPP) dp.
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Proof. We proceed as in the computation of lemma 5.6, but with the
alternative representation (24) for L. As in [GS06], we get

(27) /2772|><|2 dp < /EZIWI2 + 17 (*Sc — 20 7