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TWISTED CONSTANT SCALAR CURVATURE KÄHLER

METRICS AND KÄHLER SLOPE STABILITY

Jacopo Stoppa

Abstract

On a compact Kähler manifold we introduce a cohomologi-
cal obstruction to the solvability of the constant scalar curva-
ture (cscK) equation twisted by a semipositive form, appearing
in works of Fine and Song-Tian.

As a special case we find an obstruction for a manifold to be
the base of a holomorphic submersion carrying a cscK metric in
certain “adiabatic” classes. We apply this to find new examples
of general type threefolds with classes which do not admit a cscK
representative.

When the twist vanishes our obstruction extends the slope sta-
bility of Ross-Thomas to effective divisors on a Kähler manifold.
Thus we find examples of non-projective slope unstable manifolds.

1. Introduction

One of the central open problems in Kähler geometry is to char-
acterise the Kähler classes represented by a constant scalar curvature
Kähler (cscK) metric (or more generally an extremal metric).

Not much is known about this question in general except of course
for the Calabi-Yau Theorem [31] and the well known work of Yau, Tian
and others on Del Pezzo surfaces.

In the algebraic case of representing the first Chern class of an ample
line bundle the question is related to stability in algebraic geometry by
a conjecture of Yau [24], Tian [7] and Donaldson [10].

It is a fundamental result in the theory that the existence of a cscK
metric in the algebraic case implies K-semistability in the sense of Don-
aldson (the shortest proof is given in [11]).

From this Ross-Thomas derived a cohomological obstruction to solv-
ing the cscK equation in the algebraic case known as slope stability for
polarised manifolds [22]. This proved to be a very effective tool in the
study of cscK metrics on projective bundles and algebraic surfaces, see
e.g. [21].
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In this paper we expand from this starting point in two directions.

Firstly with Theorem 1.6 we extend slope stability (with respect to
effective divisors) to any Kähler class on a compact Kähler manifold,
confirming a conjecture of Ross-Thomas. This is explained in 1.3 below.
Non-projective examples are given in 5.13.

Our methods are necessarily different from those of Ross-Thomas, in
particular they are differential-geometric in nature. The key fact in this
connection is the lower bound for the K-energy proved by Donaldson
[12] and in more generality Chen-Tian [3], see 1.6 below. Then Section
3 is devoted to showing that the slope stability condition with respect
to an effective divisor arises precisely by imposing that this lower bound
holds as the Kähler form concentrates along the divisor to some extent
dictated by positivity.

The other main theme of this paper is that Kähler slope stability
generalises to an equation introduced by Fine and which we call the
twisted cscK equation. Solutions to the twisted cscK equation arise as
zeros of the moment map for an action of the group of exact symplecto-
morphisms. This was observed by G. Székelyhidi in analogy to the case
of cscK metrics where it was shown by Donaldson [8] and Fujiki. The
proof is given in Section 2.

Thus our main obstruction result, Theorem 1.3, is stated in this more
general setup.

This extension is not a mere formality however, as obstructing the
twisted cscKequation leads to interesting geometric applications through
the so-called “adiabatic limit” construction.

We hope to make this clear in the rest of this Introduction, see in
particular the obstruction Theorem 1.5 and the application to general
type threefolds explained in 1.4 below.
Notation. Throughout the paper we mix the additive and multiplica-
tive notation for divisors and line bundles. We write

√
−1 for the com-

plex number i and dc for the operator −
√
−1
2 (∂− ∂) (so ddc =

√
−1∂∂).

1.1. The twisted cscK equation. Let M be a compact Kähler man-
ifold with Kähler class Ω and let α be a closed pointwise semi-positive
(1, 1)-form on M . The equation that we are interested in, and which we
call the twisted cscK equation is finding a metric ω ∈ Ω such that

(1.1) S(ω)− Λωα = Ŝα.

Here S(ω) is the scalar curvature, Λωα denotes the trace of α with
respect to ω

Λωαω
n = nα ∧ ωn−1
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and Ŝα is the only possible topological constant, given by

Ŝα =
n(c1(X) − [α]) ∪ [ω]n−1

[ω]n
.

In particular if α = 0 we recover the cscK equation,

(1.2) S(ω) = Ŝ,

and Ŝ is just the average scalar curvature.
Equation (1.1) is a generalisation of (1.2) which arises naturally in the

work of Fine [13], [14] and Song-Tian [26], [27]. There twisted cscK
metrics in dimension n are related to genuine cscK metrics in higher
dimension by a limiting process.

Let π : M → B be a holomorphic submersion of Kähler manifolds
endowed with a relatively ample line bundle L. The so-called adiabatic
classes on M are given by

(1.3) Ωr = c1(L) + rπ∗ΩB

where ΩB is any Kähler class on B. These are certainly Kähler for large
r.

Suppose that (1.2) can be solved in all the fibres of π inside the
restriction of c1(L), and that the fibres and base carry no nontrivial
holomorphic vector fields. In this case Fine proved that (1.2) can be
solved in Ωr for r ≫ 0 provided that the twisted equation (1.1) is
solvable in ΩB with respect to a special choice of α. Loosely speaking
the relevant α is the pullback of the Weil-Petersson type metric from
the moduli space of cscK metrics on a fibre.

We take up the application to adiabatic cscK metrics in Section 4. In
particular Theorem 1.5 gives a necessary numerical condition for their
existence.

In a different vein Song-Tian studied the untraced form of (1.1) (see
also [14]),

(1.4) Ric(ω) = λω + α

in connection with the Kähler-Ricci flow on an elliptic surface. In this
case λ = −1 and α is given by the pullback of the genuine Weil-Petersson
metric plus a singular contribution corresponding to multiple fibres.

They prove that the Kähler-Ricci flow converges to a solution of (1.4)
on the base which they call a generalised Kähler-Einstein metric.

In a recent preprint [27] this result is extended to the general case of
a projective manifold with positive Kodaira dimension and semiample
canonical bundle. The limiting solutions still have the form (1.4).

1.2. Obstructions. Our first result gives a cohomological obstruction
for the twisted cscK equation to admit a solution in the class Ω.

Recall that the positive cone

P ⊂ H1,1(M,C) ∩H2(M,R)
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is given by cohomology classes Θ which evaluate positively on irreducible
subvarieties, that is ∫

V
Θp > 0

for any p-dimensional irreducible analytic subvariety V ⊂M .
Let D ⊂M be an effective divisor.

Definition 1.1. The Seshadri constant of D with respect to Ω is
given by

ǫ(D,Ω) = sup{x : Ω− xc1(O(D)) ∈ P}.
We define coefficients αi, i = 0, 1 by

α1(x) =

∫
X c1(D) ∪ (Ω − xc1(D))n−1

(n− 1)!
,(1.5)

α2(x) =

∫
X c1(D) ∪ (c1(X)− [α]− c1(D)) ∪ (Ω− xc1(D))n−2

2(n − 2)!
.(1.6)

Definition 1.2. The twisted Ross-Thomas polynomial of (X,Ω) with
respect to D and α is given by

Fα(λ) =

∫ λ

0
(λ− x)α2(x)dx+

λ

2
α1(0) −

Ŝα

2

∫ λ

0
(λ− x)α1(x)dx.

Theorem 1.3 (Stability condition). If (1.1) is solvable in the class
Ω then

(1.7) Fα(λ) ≥ 0

for all effective divisors D ⊂ X and 0 ≤ λ ≤ ǫ(D,Ω).

The proof will be given in Section 3.

Remark 1.4. For λ < ε(D,Ω) we have α1(x) > 0 so the quotient

µλ(OD,Ω) =

∫ λ
0 (λ− x)α2(x)dx+ λ

2α1(0)∫ λ
0 (λ− x)α1(x)dx

is well defined. Following Ross-Thomas we call this slope. Then the
inequality (1.7) can be rewritten as

(1.8) µλ(OD,Ω) ≥
Ŝα

2
.

The point is that choosing Ω = c1(L), α = 0 gives back the slope
stability condition of Ross-Thomas [22] in the algebraic setting.

The relation of our work with slope stability is explained in 1.3 below.

Next we obtain an obstruction to the existence of the adiabatic cscK
holomorphic submersions introduced above.
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Theorem 1.5. Let π : M → B be a holomorphic submersion en-
dowed with a relatively ample line bundle L, which is fibrewise cscK
with fibrewise average scalar curvature Sb. If the adiabatic classes (1.3)
admit cscK metrics for r ≫ 0 then (1.7) holds with

(1.9) [α] = c1(π∗KX|B) +
Sb

n+ 1
c1(π∗L)

for all effective divisors D ⊂ B and 0 ≤ λ ≤ ǫ(D,ΩB).

An analogous statement holds when L is replaced by a class Ω0 which
is positive and cscK along the fibres. The proof will be given in Section
4.

We will give concrete examples of how one can apply both results
in Section 5. In particular Corollary 5.3 gives an a priori obstruction
for an algebraic surface with a fixed Kähler class to be the base of an
adiabatic cscK submersion.

1.3. Kähler slope stability. Ross-Thomas prove that subschemes can
give an obstruction to the solvability of the cscK equation in the pro-
jective case Ω = c1(L). Given a subscheme Z ⊂ M they define a co-
homological slope µλ(OZ , L) depending on a positive parameter λ less
than the Seshadri constant. They prove that if (1.2) is solvable in c1(L)
then the slope inequality

(1.10) µλ(OZ , L) ≥ µ(M,L)

where µ(M,L) = −nKM .Ln−1

2Ln must hold for all Z ⊂ M and 0 < λ ≤
ǫ(Z,L). In other words (M,L) must be slope semistable. The particular
form of (1.10) is of course modelled on slope stability for vector bundles
(in terms of quotient sheaves).

As we already observed in the special case of effective divisors (1.10)
is equivalent to inequality (1.7) with the choices Ω = c1(L), α = 0.

Motivated by the Uhlenbeck-Yau Theorem for vector bundles [29]
Ross-Thomas extended the definition of slope to any analytic subvariety
of a Kähler manifold, and conjectured that (1.10) still gives a necessary
condition for (1.2) to be solvable. We refer to [22] Section 4.4 for more
details. In our case we only need to allow any Kähler class Ω in place
of c1(L).

Thus Theorem 1.3 with the choice α = 0 gives a proof of this conjec-
ture in the case of effective divisors, namely

Theorem 1.6. If a Kähler class Ω on a Kähler manifold M admits
a cscK representative it is slope semistable with respect to effective di-
visors.

A concrete non-projective example is given in Lemma 5.13.
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Remark 1.7. The case of divisors is somehow central in slope sta-
bility. In general blowing up the subscheme Z ⊂ M reduces to the
exceptional divisor E ⊂ BlZM , polarised by L1/λ ⊗O(−E). This trick
is not directly relevant to us because for our methods we need smooth-
ness of the ambient space. However one might hope to keep track of
the resolution of singularities in this context. Since all our concrete
examples are based on effective divisors, we do not pursue this here.

In a different vein Ross-Panov [21] Section 4 prove that for algebraic
surfaces it is enough to check slope stability with respect to divisors.

1.4. General type 3-folds. By the Calabi-Yau Theorem if KM is am-
ple we can find a Kähler-Einstein metric in its first Chern class. On the
other hand one may ask what happens for classes far from c1(KM ).
These have proved hard to obstruct and the first example of a surface
with ample canonical bundle and a class with no cscK representative
was found only in recent years by Ross [18].

To date the only examples for general type threefolds are somewhat
trivial, namely products of an obstructed surface with a curve of genus
at least 2, endowed with the product class. In 5.6, 5.8, 5.10 we apply our
results on adiabatic cscK metrics to provide new examples of general
type threefolds with obstructed classes.

1.5. Log-geometry. Given an effective divisor D on M , log-geometry
replaces the canonical bundle KM by KM +D and calls D the bound-
ary of M . Note that this is precisely what happens when we replace
slope stability with our condition (1.8), that is we replace c1(KM ) by
c1(KM ) + [α] throughout. On the other hand Székelyhidi [28] has con-
jectured that the slope stability condition for the existence of a complete
extremal metric on the complement of a reduced effective divisor D is
precisely log-slope, replacing c1(KM ) by c1(KM + O(D)) in the slope
inequality. Thus in geometric terms coupling with an adiabatic class in
a holomorphic submersion and removing a divisor should have the same
slope stability condition.

1.6. K-energy. Finally a few words about our method of proof. Our
results are based on the computation of a suitable energy functional, the
“twisted K-energy”, along a metric degeneration breaking the Kähler
form into currents of integration (see Section 3 and Theorem 3.1 in
particular).

Thus we introduce the natural analogue of the K-energy on the space
of Kähler metrics in a given Kähler class. For any φ ∈ H, the space of

Kähler potentials of ω, let ωφ = ω + ddcφ, µφ =
ωn
φ

n! .

Definition 1.8. The variation of the twisted K-energy at ωφ is the
1-form

δMα(δφ) = −
∫

M
δφ(S(ωφ)− Λωφ

α− Ŝα)µφ
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for δφ ∈ TφH ∼= C∞(M,R).

The form δMα on H is closed. Choosing a base-point ω ∈ Ω and
integrating along any path gives a well-defined twisted K-energy Mα.

This is just the sum of the well known K-energy [16] and a variant of
the J-functional introduced by Chen [2]. Its critical points are precisely
solutions of (1.1). It is not hard to prove that these are actually local
minimisers.

Since it is the sum of two functionals which are convex along geodesics
in H, Mα is also convex. More precisely the second derivative along a
path φ = φt is given by

d2

dt2
Mα = ‖∂∇(1,0)φ̇‖2φ + (∂φ̇ ∧ ∂φ̇, α)φ

−
∫

M
(φ̈− 1

2
|∇1,0φ̇|2φ)(S(ωφ)− Λωφ

α− Ŝα)µφ

where all the metric quantities are computed with respect to ω + ddcφ.
The geodesic equation is φ̈ − 1

2 |∇1,0φ̇|2φ = 0. Semmes and Donaldson
have shown that this is the equation of geodesics for a negatively curved
locally symmetric space structure on H.

If either α is strictly positive at a point or M has no Hamiltonian
holomorphic vector fields, Mα is strictly convex along geodesics in H.
In this case, the results of Chen-Tian [3] on the regularity of weak
geodesics imply uniqueness of solutions of (1.1). In general, they imply
the following lower bound on Mα.

Lemma 1.9. If (1.1) is solvable the twisted K-energy Mα is bounded
below in Ω.

Acknowledgements. This work took shape mainly thanks to conver-
sations with G. Székelyhidi. The moment map interpretation in partic-
ular is due to him. I thank my advisor R. Thomas for his great support
and for suggesting to prove Theorem 1.6 via the K-energy. J. Fine, A.
Ghigi, D. Panov, S. Rollenske and J. Ross provided useful comments
and suggestions. Referee corrections improved the original manuscript
essentially. I am grateful to the Geometry Groups at Pavia (in particu-
lar G. Pirola) and Imperial College, and especially to S. K. Donaldson
for many interesting discussions about cscK metrics and the material
presented here.

2. Moment map interpretation

In this section we show that when the form α is symplectic the oper-
ator

ω 7→ Ŝα − S(ω) + Λωα
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can be viewed as a moment map, essentially by combining Donaldson’s
moment map computations in [8] and [9]. In particular this holds when
α is positive (rather than only semipositive as in the rest of the paper).

Let (B,ω) be a symplectic manifold of dimension n and let us assume
for simplicity that H1(B) = 0. We write J for the space of integrable
complex structures on B which are compactible with ω. The space J
admits a natural symplectic form, and the action of the group of sym-
plectomorphisms Symp(B,ω) preserves this symplectic form. Let us
identify the Lie algebra of Symp(B,ω) with C∞

0 (B,R), the smooth func-
tions with vanishing integral, via the Hamiltonian construction. Also,
using the L2 inner product with respect to the volume form ωn

n! let us
identify the dual of C∞

0 (B,R) with itself.

Theorem 2.1 (Donaldson). The map

J 7→ Ŝ − S(J),

is an equivariant moment map for the action of Symp(B,ω) on J .
Here S(J) is the scalar curvature of the Kähler metric given by (ω, J)

and Ŝ is its average which is independent of J .

Now let M be diffeomorphic to B and fix a symplectic form α on M .
Let M be the space of diffeomorphisms f : B →M in a fixed homotopy
class. The tangent space TfM to M at f can be identified with the
space of vector fields on M . This has a natural symplectic form given
by

Ωf (v,w) =

∫

B
f∗(α(v,w))

ωn

n!
.

The group Symp(B,ω) acts on M by composition on the right, preserv-
ing Ω.

Theorem 2.2 (Donaldson). The map

ν : f 7→ Λωf
∗(α)

is an equivariant moment map for the action of Symp(B,ω) on M .

Proof. We give the simple proof for the reader’s convenience. Let us
first consider the infinitesimal action of Symp(B,ω) on M . For this
let H ∈ C∞(B), and write XH for the Hamiltonian vector field on B

generated by H. The infinitesimal action at a point f ∈ M is given by
f∗(XH). To show that ν is a moment map we therefore have to show

〈dνf (w),H〉 = Ωf (f∗XH , w) =

∫

S
f∗(α(f∗XH , w))

ωn

n!
,

where w ∈ TfM .

Let ft be a path in M such that f0 = f and d
dtft = w at t = 0. Then

dνf (w) =
d

dt

∣∣∣∣
t=0

Λωf
∗(α) = Λωf

∗(d(ιwα)).
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Therefore

〈dνf (w),H〉 =
∫

B
Hd(f∗(ιwα)) ∧

ωn−1

(n− 1)!

=

∫

B
f∗(ιwα) ∧ ιXH

ω ∧ ωn−1

(n− 1)!

=

∫

B
f∗(α(f∗XH , w))

ωn

n!
.

This shows that ν is a moment map. q.e.d.

We now combine the above two moment maps. Let us fix a complex
structure I on M which is compatible with α and consider the subspace
of M × J given by

S = {(f, f∗(I)) | f ∈ M such that f∗(I) is compatible with ω}.
Then S is preserved by the action of Symp(B,ω), and the moment map
restricted to S is given by

(f, f∗(I)) 7→ −S(ω, f∗(I)) + Λωf
∗(α) + C,

where C is a constant such that the integral over B is zero.
Following Donaldson let us now consider the complexification of the

action of Symp(B,ω). This can only be done on the level of the Lie
algebras. Both J and M have natural complex structures so we can
complexify the infinitesimal action of the Lie algebra C∞

0 (B). This gives
rise to an integrable distribution on M ×J which is tangent to S . We
think of the leaves of the resulting foliation of S as the complexified
orbits.

If (f, f∗(I)) is a zero of the moment map, then

S((f−1)∗ω, I)− Λ(f−1)∗ωα

is constant. If in addition (f, f∗(I)) is in the complexified orbit of
(id, I) then in fact (f−1)∗ω is in the same Kähler class as ω, so we have
a solution of the twisted cscK equation.

3. Proof of the stability condition

As already mentioned in the Introduction what we actually prove
in this section is a result on the asymptotic behaviour of the twisted
K-energy.

Theorem 3.1. Let D ⊂ M be an effective divisor. For any base-
point ω ∈ Ω and 0 < λ < ǫ(D,Ω) there exists a family of Kähler forms
ωε ∈ Ω, 0 < ε ≤ 1 with ω1 = ω and such that as ε→ 0

(3.1) Mα(ωε) = −πFα(λ) log(ε) + l.o.t.

By Lemma 1.9 this settles Theorem 1.3.
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Remark 3.2. It must be pointed out that expansions for the K-
energy of the form (3.1) are known to hold in a different setup, namely
for the pullback Fubini-Study metric along the fibres of a C∗-action in
projective space (under some regularity assumptions) by the work of
Paul-Tian [19], Phong-Sturm-Ross [20] and others.

Theorem 3.1 will be proved in several steps. We first recall the fun-
damental Nakai-Moishezon criterion of Demailly-Paun [5].

Theorem 3.3 (Demailly-Paun). The Kähler cone K is a connected
component of the positive cone P.

Corollary 3.4. ǫ(D,Ω) = sup{x : Ω− xc1(O(D)) ∈ K}.
This holds because Ω− xc1(O(D)) is in the connected component of

Ω ∈ K.
Let ω ∈ Ω be any Kähler form, and h be any Hermitian metric

on O(D) with curvature form Θ. We begin by defining the family in
Theorem 3.1 near ε = 0.

Given a canonical section σ ∈ H0(O(D)) we define potentials

ψε =
1

2
log(ε2 + |σ|2h)

for 0 < ε≪ 1. By the Poincaré-Lelong equation there is a weak conver-
gence

ddcλψε ⇀ −λΘ+ λ[D]

where [D] denotes the (closed, positive) current of integration along
D. By Corollary 3.4 for 0 < λ < ǫ(D,Ω) we can find a potential u
(independent of ε) such that

η = ω − λΘ+ ddcu > 0.

We define our family for 0 < ε≪ 1 by

(3.2) ωε = ω + ddcu+ ddcλψε.

Since [D] is positive,

η + λ[D] > η

holds in the sense of currents, and the sequence ωε converges weakly to
η + λ[D], so the inequality

ωε > η

holds in the sense of currents for ε≪ 1. In other words ωε−η is a strictly
positive (1, 1)-current for all small ε. But since it is also a smooth (1, 1)-
form, this implies it is actually a Kähler form (more generally a similar
pointwise statement holds for a current with locally L1 coefficients, see
[4] Section 3).

We conclude that for 0 < ε≪ 1, ωε is a Kähler form. We still need to
prescribe the base-point to be ω1 = ω. This can be achieved by choosing
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ψε → 0 as ε → 1, and making u = uε dependent on ε away from ε = 0
so that uε → 0 as ε→ 1 and ω + ddcψε + ddcuε is always Kähler.

The next important observation is that we have a uniform C∞ bound
for ωε away from D (that is, in any compact subset of X \ D). This
means that for the sake of proving Theorem 3.1 we need only study the
behaviour of Mα near points of supp(D).

Let us first write down in detail the model case of x ∈ supp(D) near
which D is reduced and smooth. This will be enough for the general
case thanks to standard results in the theory of currents.

So choose coordinates (z = {zi}n−1
i=1 , w) near x such that D is locally

given by {w = 0}. Then

ψε =
1

2
log(ε2 + e−2ϕ|w|2)

near x, where e−ϕ is the weight for h on O(D)|U with respect to the
Euclidean norm | · |. We make the first order expansion in the D-
transversal direction

e−2ϕ = e−2ϕ̃(1 + g)

where ϕ̃ = ϕ̃(z) does not depend on the transversal coordinate w while
g = g(z, w). In other words ϕ̃ is the restriction of ϕ to D, extended
to be constant in the w direction. In particular g and all its zi, zj
derivatives vanish identically along {w = 0}. We will use this fact
repeatedly. Moreover from now on we assume that we have chosen
normal z-coordinates at x so that

ϕ̃ = ∂ziϕ̃ = ∂zj ϕ̃ = 0.

Since ϕ̃ is independent of w this holds in a small slice {z = z(x)}.
We will need local expressions for the derivatives of the potential ψε.

Lemma 3.5. In the slice {z = z(x)},

∂εψε =
ε

ε2 + |w|2(1 + g)
,

∂w∂wψε =
ε2
(
1 + g + w ∂wg + w ∂wg + |w|2 ∂w∂wg

)

2 (ε2 + |w|2 (1 + g))2

+
|w|4 (−∂wg ∂wg + (1 + g) ∂w∂wg)

2 (ε2 + |w|2 (1 + g))2
,

∂zi∂wψε =
ε2w ∂zig

2 (ε2 + |w|2 (1 + g))2
− |w|4 ∂zig∂wg

2 (ε2 + |w|2 (1 + g))2

+
|w|2∂zi∂wg

2 (ε2 + |w|2 (1 + g))
,

∂zi∂zjψε =
|w|2(−2(1 + g)∂zi∂zj ϕ̃+ ∂zi∂zjg)

2 (ε2 + |w|2 (1 + g))
− ∂zig∂zjg|w|4

2 (ε2 + |w|2 (1 + g))2
.
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Proof. First

∂εψε =
ε

ε2 + e−2ϕ̃|w|2 (1 + g)
=

ε

ε2 + |w|2 (1 + g)
.

The other terms are more complicated. We compute

∂w∂wψε =
e2ϕ̃ ε2

(
1 + g + w ∂wg + w ∂wg + |w|2 ∂w∂wg

)

2
(
e2ϕ̃ ε2 + |w|2 (1 + g)

)2

+
|w|4 (−∂wg ∂wg + (1 + g) ∂w∂wg)

2
(
e2ϕ̃ ε2 + |w|2 (1 + g)

)2 .

In our normal coordinates this equals

ε2
(
1 + g +w ∂wg + w ∂wg + |w|2 ∂w∂wg

)

2 (ε2 + |w|2 (1 + g))2

+
|w|4 (−∂wg ∂wg + (1 + g) ∂w∂wg)

2 (ε2 + |w|2 (1 + g))2
.

Similarly

∂zi∂wψε = − e2ϕ̃ ε2 w (1 + g + w ∂wg) ∂ziϕ̃(
e2ϕ̃ ε2 + |w|2 (1 + g)

)2

+

(
e2ϕ̃ ε2 w − |w|4∂wg

)
∂zig +

(
e2ϕ̃ ε2|w|2 + |w|4 (1 + g)

)
∂zi∂wg

2
(
e2ϕ̃ ε2 + |w|2 (1 + g)

)2 .

Using normal coordinates this simplifies to

ε2w ∂zig

2 (ε2 + |w|2 (1 + g))2
− |w|4 ∂zig∂wg

2 (ε2 + |w|2 (1 + g))2
+

|w|2∂zi∂wg
2 (ε2 + |w|2 (1 + g))

.

Finally

∂zi∂zjψε =
|w|2e2 ϕ̃ε2(−2 (1 + g) ∂zi∂zj ϕ̃− 2 ∂ziϕ̃ ∂zjg)

2
(
e2 ϕ̃ ε2 + |w|2 (1 + g)

)2

+
|w|2

(
e2 ϕ̃ ε2

(
2 ∂zj ϕ̃ (2 (1 + g) ∂ziϕ̃− ∂zig) + ∂zi∂zjg

))

2
(
e2 ϕ̃ ε2 + |w|2 (1 + g)

)2

+
|w|4

(
−2 (1 + g)2 ∂zi∂zj ϕ̃− ∂zig∂zjg + (1 + g) ∂zi∂zjg

)

2
(
e2ϕ̃ ε2 + |w|2 (1 + g)

)2 .

In normal coordinates this becomes

|w|2(−2(1 + g)∂zi∂zj ϕ̃+ ∂zi∂zjg)

2 (ε2 + |w|2 (1 + g))
− ∂zig∂zjg|w|4

2 (ε2 + |w|2 (1 + g))2
.

q.e.d.
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In the situation above, for p ≥ 0 we write

(ddcψε)
p = αp,ε + βp,ε

where

αp,ε = (
√
−1)p


∑

i,j

∂zi∂zjψεdzi ∧ dzj +
∑

i

∂zi∂wψεdzi ∧ dw

+
∑

j

∂zj∂wψεdw ∧ dzj




p

,

βp,ε = (
√
−1)p−1p


∑

i,j

∂zi∂zjψεdzi ∧ dzj




p−1

∧ (∂w∂wψε

√
−1dw ∧ dw)

(setting β0,ε = 0). Then isolating the terms in Lemma 3.5 which are
unbounded as ε→ 0 we find

Lemma 3.6. For p ≥ 2

(ddcψε)
p = αp,ε + βp,ε,

where

αp,ε = ai ∧ ε2w ∂zig

2 (ε2 + |w|2 (1 + g))2
dzi ∧ dw

+bj ∧ ε2w ∂zig

2 (ε2 + |w|2 (1 + g))2
dzj ∧ dw

+cij ∧ ε4|w|2 ∂zig∂zjg
2 (ε2 + |w|2 (1 + g))4

dzi ∧ dzj ∧ dw ∧ dw + dij ∧ dzi ∧ dzj

and ai, bj , cij , dij are uniformly bounded forms (as ε→ 0), while

βp,ε = (
√
−1)p−1p


∑

i,j

∂zi∂zjψεdzi ∧ dzj




p−1

∧ε
2
(
1 + g + w ∂wg + w ∂wg + |w|2 ∂w∂wg

)

2 (ε2 + |w|2 (1 + g))2
√
−1dw ∧ dw + f

and the form f is uniformly bounded (as ε→ 0).

The cases p = 0, 1 on the other hand are trivial. When computing
the K-energy we need to test the forms (ddcψε)

p against the function
ε∂εψε.
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Proposition 3.7. In the sense of currents on M ,

(3.3) ε∂εψε ⇀ 0

and, for p ≥ 1,

(3.4) ε∂εψε(dd
cψε)

p ⇀
(−1)p+1π

2(1 + p)
Θp−1 ∧ [D].

Proof. Weak convergence can be checked locally. Consider first the
model case of a point x ∈ supp(D) near which Supp(D) is smooth.
By taking a finite ramified cover we can assume that D is reduced.
This does not affect weak convergence. Choosing coordinates at x as in
Lemma 3.6 we know that

ε∂εψε =
ε2

ε2 + |w|2(1 + g)

in a slice {z = z(z)}. The right hand side is uniformly bounded and
it converges to 0 uniformly away from w = 0, thus it converges to 0
weakly as ε→ 0. Thus (3.3) holds away from the set of singular points
of Supp(D).

Weak convergence extends to allM thanks to the Support and Skoda
theorems, as in the proof of Lemma 2.1 of [5] for example.

The second weak convergence is more complicated. As for (3.3) it
is enough to check it near a smooth, reduced point. Thus we use the
decomposition in Lemma 3.6, and we first show

ε∂εψεαp,ε ⇀ 0.

Since ε∂εψε ⇀ 0, multiplying by it kills all the bounded forms (in the
ε → 0 limit). By Lemma 3.6 the only unbounded terms appearing in
αp,ε are bounded forms wedged with

ε2w ∂zig

2 (ε2 + |w|2 (1 + g))2
dzi ∧ dw

(or its conjugate), or

ε4|w|2 ∂zig∂zjg
2 (ε2 + |w|2 (1 + g))4

dzi ∧ dzj ∧ dw ∧ dw.

Changing variable by w = εw′ to compare with a sequence of forms
defined for w′ ∈ C and using Lebesgue’s dominated convergence one
can check that the forms

ε2w

2 (ε2 + |w|2 (1 + g))2
dzi ∧ dw,

ε4|w|2
2 (ε2 + |w|2 (1 + g))4

dzi ∧ dzj ∧ dw ∧ dw

converge to currents supported at w = 0. In αp,ε, these forms are mul-
tiplied by ∂zig, ∂zig∂zjg respectively. Both functions vanish for w = 0.
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Thus the weak limit of the unbounded forms in αp,ε is 0, and multiply-
ing by the uniformly bounded function ε∂εψε does not change this.

Finally we show that

ε∂εψεβp,ε ⇀
(−1)p+1π

2(1 + p)
Θp−1 ∧ [D].

As for αp,ε multiplying by ε∂εψε kills all bounded terms, and by Lemma

3.6 the unbounded part of βp,ε may be written as (
√
−1)p−1 times by

p


∑

i,j

|w|2(−2(1 + g)∂zi∂zj ϕ̃+ ∂zi∂zjg)

2 (ε2 + |w|2 (1 + g))
dzi ∧ dzj

− ∂zig∂zjg|w|4

2 (ε2 + |w|2 (1 + g))2
dzi ∧ dzj

)p−1

∧ε
2
(
1 + g + w ∂wg + w ∂wg + |w|2 ∂w∂wg

)

2 (ε2 + |w|2 (1 + g))2
dw ∧ dw.

The first factor is uniformly bounded, while the form

ε2
(
1 + g + w ∂wg + w ∂wg + |w|2 ∂w∂wg

)

2 (ε2 + |w|2 (1 + g))2
dw ∧ dw

converges weakly to a current supported on w = 0. In particular wedg-
ing by it kills (in the ε → 0 limit) all bounded terms divisible by zi, zj
derivatives of g, since they vanish along {w = 0}. We are left to compute
the weak limit of

ε∂εψε(
√
−1)p−1p


∑

i,j

|w|2(−2(1 + g)∂zi∂zj ϕ̃)

2 (ε2 + |w|2 (1 + g))
dzi ∧ dzj




p−1

∧ε
2
(
1 + g + w ∂wg + w ∂wg + |w|2 ∂w∂wg

)

2 (ε2 + |w|2 (1 + g))2
√
−1dw ∧ dw.

We rewrite this as

(−1)p+1

2
p(ddcϕ̃)p−1 ∧

√
−1dw ∧ dw ·

· ε
4(1 + g)p−1|w|2(p−1)

(ε2 + |w|2 (1 + g))p+2

(
1 + g + w ∂wg + w ∂wg + |w|2 ∂w∂wg

)
.

The second factor in this form is converging uniformly to 0 away from
{w = 0}. Moreover the change of variable w = εw′ together with
dominated convergence show that the w-transversal integrals of this
form are converging to

∫ 2π

0

∫

R

s2p−1

(1 + s2)p+2
dsdθ =

π

p(p+ 1)
,
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so that the form is converging in the sense of currents to

π

p(p+ 1)
[{w = 0}].

Thus the required weak limit is

(−1)p+1π

2(1 + p)
(ddcϕ̃)p−1 ∧ [{w = 0}].

To finish the proof note that ddcϕ̃ represents the restriction of the curva-
ture form Θ|D (extended to be constant in the vertical direction) while
[{w = 0}] represents D. q.e.d.

We will need a well known integration by parts formula (see e.g. [2]),
adapted to our situation.

Lemma 3.8.

δMα = δ

∫

M
log

(
ωn
φ

ωn

)
ωn
φ

n!
+ ŜαδI − δJα,

where

δI =

∫

M
δφ
ωn
φ

n!
,

δJα =

∫

M
δφ (Ric(ω)− α) ∧

ωn−1
φ

(n − 1)!
.

Thanks to this formula the proof of Theorem 3.1 can be divided into
three separate statements.

We first prove an expansion for the Jα-functional.

Definition 3.9. We introduce the cohomological quantity, depending
on a positive parameter λ,

FJα(λ) =

n−1∑

p=1

(−1)p+1λp+1

2(p + 1)!(n − 1− p)!

∫

M
([α]−c1(M))∪Ωn−1−p∪cp1(O(D)).

Lemma 3.10.

Jα(ωε) = −πFJα(λ) log(ε) + l.o.t.

Proof. We will actually find the limit of ε∂εJα as ε → 0. The inte-
grand for this functional is

(n − 1)!−1ε∂ελψε(Ric(ω)− α) ∧ ωn−1
ε

which by the binomial theorem applied to (1, 1) forms can be rewritten
as

(n−1)!−1(Ric(ω)−α)∧
n−1∑

p=0

(
n− 1

p

)
(ω+ddcu)n−1−p∧λp+1ε∂εψε(dd

cψε)
p.
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By Corollary 3.7 this converges weakly to

π(n− 1)!−1
n−1∑

p=1

(
n− 1

p

)
(−1)p+1λp+1

2(p + 1)

· (Ric(ω)− α) ∧ (ω + ddcu)n−1−p ∧Θp−1 ∧ [D].

Integrating over M proves our claim. q.e.d.

An identical argument applies to the I functional.

Definition 3.11. We introduce the cohomological quantity

FI(λ) =
n∑

p=1

(−1)p+1λp+1

2(p+ 1)!(n − p)!

∫

M
Ωn−p ∪ cp1(O(D)).

Lemma 3.12.

I(ωε) = πFI(λ) log(ε) + l.o.t.

Finally we consider the
∫
log det functional.

Definition 3.13. Define a cohomological quantity by

Flog =

n∑

p=1

(−1)p−1λp

p!(n− p)!

∫

M
Ωn−p ∪ c1(O(D))p.

Lemma 3.14.
∫

M
log

(
ωn
ε

ωn

)
ωn
ε

n!
= −πFlog log(ε) + l.o.t.

Proof. We study the weak limit as ε→ 0 of the sequence of forms on
M

log(ε)−1 log

(
ωn
ε

ωn

)
ωn
ε

n!
.

Note that

ωn
ε = (ω + ddcu+ ddcλψε)

n

=

n∑

k=0

(
n

k

)
λk(ω + ddcu)n−k ∧ (ddcψε)

k.

We can check weak convergence locally as in the proof of Proposition
3.7. Thus we can further decompose using the forms in Lemma 3.6,
namely

ωn
ε =

n∑

k=0

(
n

k

)
λk(ω+ ddcu)n−k ∧ αk,ε+

n∑

k=1

(
n

k

)
λk(ω+ ddcu)n−k ∧ βk,ε.
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To analyse the weak limit we make the change of variable w = εw′ to
compare with a sequence of forms defined for w′ ∈ C. By using Lemma
3.6 we see

n∑

k=0

(
n

k

)
λk(ω + ddcu)n−k ∧ αk,ε|w=εw′ = ε2a(ε) + b(ε)

where a(ε) is uniformly bounded while b(ε) → 0 uniformly as ε → 0.
By the proof of the same Lemma we also have

n∑

k=1

(
n

k

)
λk(ω + ddcu)n−k ∧ βk,ε|w=εw′ ≤ c(ε)

n∑

k=1

s2k−1

(1 + s2)k+1
ds dθ

which is c(ε)O(s−3) ds dθ in polar coordinates for the vertical direction,
where c(ε) is a uniformly bounded form.

It follows that, using polar coordinates,

ωn
ε

ωn

∣∣∣∣
w=εw′

= ã(ε) +
1

ε2
(̃b(ε) +O(s−3))

where ã(ε) is uniformly positive and bounded and b̃(ε) → 0 uniformly

as ε→ 0 (note that a, b are forms while ã, b̃ are functions). Thus

log

(
ωn
ε

ωn

)∣∣∣∣
w=εw′

= log(ε2ã(ε) + b̃(ε) +O(s−3))− log(ε2),

and

1

log(ε)
log

(
ωn
ε

ωn

)
ωn
ε

n!

∣∣∣∣
w=εw′

=
log(ε2ã(ε) + b̃(ε) +O(s−3))

log(ε)

ωn
ε

n!

∣∣∣∣∣
w=εw′

− 2
ωn
ε

n!

∣∣∣∣
w=εw′

.

In the notation above for the volume at ε, the first term has the form

1

n! log ε
log(ε2ã(ε) + b̃(ε) +O(s−3))(ε2a(ε) + b(ε) +O(s−3)ds dθ).

The integrals of

log(ε2ã(ε) + b̃(ε) +O(s−3))(ε2a(ε) + b(ε) +O(s−3)ds dθ)

in the vertical direction are uniformly bounded, thus the first term con-
verges weakly to 0.

The weak limit of the second term, namely −2 ωn
ε

n!

∣∣∣
w=εw′

, is computed

exactly as for the integrands of the I and Jα functionals. q.e.d.

Thanks to the integration by parts formula Lemma 3.8 our asymptotic
expansions for the I, Jα and

∫
log det functionals imply the asymptotic

expansion

Mα(ωε) = −π(Flog + FJ − ŜαFI) log(ε) + l.o.t.
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Now Theorem 3.1 follows since

Fα = Flog + FJ − ŜαFI ,

which in turn follows from the identities

Lemma 3.15.
∫ λ

0
(λ− x)α2(x)dx +

λ

2
α1(0) = Flog(λ) + FJα(λ);

∫ λ

0
(λ− x)α1(x)dx = −2FI .

This is a lengthy check. It is fully performed in [22], proof of Theorem
5.2 in the case Ω = c1(L). The extension to any Kähler class Ω is purely
formal.

Remark 3.16. Our proof of Theorem 3.1 is a metric analogue of
the deformation to the normal cone used by Ross-Thomas. In other
words we compute the twisted K-energy along a sequence of metrics
on M which converge to the Fubini-Study metric on the fibres of the
projective bundle P(ν(D)⊕O) → D locally after rescaling (at least near
smooth, reduced points of D).

4. The K-energy of a holomorphic submersion

In this Section we relate our obstruction for the twisted cscK equation
to the problem of constant scalar curvature on a holomorphic submer-
sion, as described in the Introduction.

Let π : M → B be a holomorphic submersion. For the rest of this
section n denotes the relative dimension, while m is the dimension of
the base.

We suppose there is a class Ω0 ∈ H1,1(M,C) ∩H2(M,R) whose re-
striction to any fibre Mb is a Kähler class containing a cscK metric ωb,
depending smoothly on b. Fitting together these forms gives a repre-
sentative ω0 ∈ Ω0 whose fibrewise restriction is cscK. By adding ddc

of some function pulled back from the base we can ensure that ω0 is
actually Kähler.

The fibrewise scalar curvature and volume are fixed constants Sb,
vol(Mb) respectively.

Choosing a Kähler form ωB ∈ ΩB on the base, we are interested in
the existence of a cscK metric in the adiabatic classes Ωr = Ω0+rπ

∗ΩB ,
r ≫ 0.

We describe the aforementioned result of Fine in more detail. Note
that the forms ωb give a metric on the vertical tangent bundle V and
so on the line det(V ). Taking the curvature we get a (1, 1)-form FV

representing c1(V ). We denote by FV H the purely horizontal component
of FV with respect to the horizontal-vertical decomposition induced by
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ω0. Define a (1, 1)-form a by FV H = −vol(Mb)a. The choice of sign
is to follow our convention that α (as defined below) is a semipositive
rather then seminegative form. Taking the fibrewise average of −FV H

with respect to ω0 yields a (1, 1)-form α on the base, in other words

αb =

∫

Mb

aωn
b =

∫
Mb

−FV Hω
n
b

vol(Mb)

where the integrals are form-valued. Semipositivity of α is granted
by the following result. See the Introduction to [14] for a detailed
discussion.

Theorem 4.1 (Fujiki-Schumacher [15], Fine [14]). The form α is
semipositive. If the fibres have no nontrivial holomorphic vector fields
and the submersion does not induce an isotrivial fibration on any curve
in B the form α is strictly positive.

Fine assumes that that the fibres Mb have no nontrivial holomorphic
vector fields and that the equation

(4.1) S(ωB)− ΛωB
α = Ŝα

is solvable for a Kähler metric ωB ∈ ΩB on the base. Moreover ωB must
admit no nontrivial cohomologous deformations which are still solutions.
The conclusion is the existence of a cscK metric in all adiabatic classes
Ωr for r ≫ 0.

Remark 4.2. It follows from our discussion of the K-energy in Sec-
tion 1 that the condition about deformations of ωB is certainly satisfied
if either B has no nontrivial holomorphic vector fields or α is strictly
positive at a single point.

Note that it is not known if solving (4.1) is necessary for the existence
of adiabatic cscK metrics. We expect this to be a very difficult question.
We will use instead the K-energy to provide an obstruction.

The variation of the twisted K-energy in this case is best written in
the form

δMα(φ) = −
∫

B
δφ(S(ωB,φ)− ΛωB,φ

α− Ŝα)
ωm
B,φ

m!

where ωB,φ = ωB + ddcφ.
We will show that vol(Mb)Mα is the leading order term when we

expand the genuine K-energy M on M in the adiabatic limit. Thus if
the adiabatic classes admit a cscK representative the twisted K-energy
on the base must be bounded below. In turn Theorem 3.1 gives an
obstruction to the existence of these metrics. More precisely, let

ωr = ω0 + rωB.
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We are concerned with the variation of the K-energy on M with respect
to

δωr = δ(ω0 + rωB,φ) = r ddcδφ,

that is

δM = −
∫

M
rδφ(S(ωr)− Ŝ(ωr))ω

n+m
r .

Lemma 4.3.

δM = vol(Mb) δMαr
m +O(rm−1).

Corollary 4.4. If the class Ωr admits a cscK representative for r ≫ 0
then the twisted K-energy Mα is bounded below in the class ΩB on the
base.

An expansion for the K-energy along an adiabatic submersion may
be also found in [27] Section 6. However since that does not quite cover
our case we prefer to give a proof. We need a preliminary computation
of scalar curvature. This is implicit in [13] Theorem 8.1, but we need
to write it down in full for our purposes.

Introduce the vertical Laplacian ∆V , characterised by

∆V uω
n
b = n(ddcu)V V ∧ ωn−1

b ,

where (ddcu)V V denotes the purely vertical component. The Kähler
form ω0 onM gives rise to a horizontal-vertical decomposition of forms;
in particular

ω0 = ωb + ωH .

Lemma 4.5.

S(ωr) = S(ωb) + r−1(S(ωB)− vol(Mb)ΛωB
a+∆V (ΛωB

ωH)) +O(r−2).

Proof. We need to compute the Ricci form of ωr. By the exact se-
quence of holomorphic vector bundles

0 → V → TM → H → 0

this is the sum of the curvatures of the induced metrics on the line
bundles det(V ), det(H), say FV , FH . By definition of a

FV = Ric(ωb)− vol(Mb)a.

For det(H), we get

FH = ddc log(ωH + rωB)
m

= ddc log ωm
B

(
1 + r−1m

ωH ∧ ωm−1
B

ωm
B

+O(r−2)

)

= Ric(ωB) + ddc log(1 + r−1ΛωB
ωH +O(r−2))

= Ric(ωB) + r−1ddcΛωB
ωH +O(r−2).
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Taking traces,

ΛωrFV = S(ωb)−m
vol(Mb)a ∧ (ωH + rωB)

m−1

(ωH + rωB)m

= S(ωb)−m
rm−1vol(Mb)a ∧ ωm−1

B +O(rm−2)

rmωm
B +O(rm−1)

= S(ωb)− r−1vol(Mb)ΛωB
a+O(r−2),

ΛωrFH = m
Ric(ωB) ∧ (ωH + rωB)

m−1

(ωH + rωB)m

+ r−1∆V ΛωB
ωH +m

ddc(r−1ΛωB
ωH) ∧ (ωH + rωB)

m−1

(ωH + rωB)m

= r−1(S(ωB) + ∆V ΛωB
ωH) +O(r−2).

q.e.d.

Proof of Lemma 4.3. Note that

π∗ω
n+m
r = vol(Mb)(ωH + rωB)

m

= vol(Mb)r
mωm

B +O(rm−1),

−vol(Mb)π∗ΛωB
aωn+m

r = −vol(Mb)ΛωB
α rmωm

B +O(rm−1),

π∗∆V ΛωB
(ωH)ωn+m

r = 0.

As a consequence

π∗S(ωr)ω
m+n
r =

(
Sb + r−1 (S(ωB)− ΛωB

α)
)
vol(Mb)r

mωm
B +O(rm−2).

The average of S(ωr) can be computed using this pushforward. We find

Sb + r−1

(
Ŝ(ωB)− vol(B)−1

∫

B
ΛωB

αωm
B

)
+O(r−2)

= Sb + r−1Ŝα +O(r−2).

So we see that for the K-energy

δM = −
∫

B
π∗(rδφ(S(ωr)− Ŝ(ωr))ω

n+m
r )

=

∫

B
(rδφ) r−1(S(ωB,φ)− ΛωB,φ

α− Ŝα)(vol(Mb)r
mωm

B +O(rm−1))

= vol(Mb)δMα r
m +O(rm−1).

q.e.d.

We are finally in a position to prove our obstruction to adiabatic cscK
submersions, Theorem 1.5.
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Proof of Theorem 1.5. By Corollary 4.4 the result follows immediately
from the asymptotics of the twisted K-energy, Theorem 3.1, once we
know the cohomology class of α. This is computed in the Lemma below.

q.e.d.

Lemma 4.6. Suppose Ω0 = c1(L) for a relatively ample line bundle
L. Then

[α] = c1(π∗KM |B) +
Sb

n+ 1
c1(π∗L).

Proof. By definition

[α] = [π∗(aω
n
0 )] = vol(Mb)

−1[π∗(Ric(ωb) ∧ ωn
0 )− π∗(FV ∧ ωn

0 )]

=
Sb

n+ 1
π∗c1(L) + π∗(c1(KM |B)),

and the pushforwards π∗L, π∗KM |B are locally free. q.e.d.

5. Examples

In this Section we give some applications of our obstruction for the
(twisted) cscK equation.

5.1. General type 3-folds. We begin with a simple adaptation of a
result of Ross-Panov [21].

Recall that an effective divisor D =
∑

imiDi (Di irreducible compo-
nents) is exceptional if [Di.Dj ] is negative definite. Let pa(D) be the
arithmetic genus of D, given by χ(OD) = 1− pa(D).

Lemma 5.1. LetM be an algebraic surface containing an exceptional
divisor D, α a semi-positive form. If the inequality

(5.1) 2pa(D)− 2 +D.[α] > 0

holds, there exists a Kähler class Ω for which Fα(λ) < 0 for all small
positive λ.

Proof. This is essentially the argument in loc. cit. Theorem 3.2. We
adapt this to our case for the sake of completeness.

On surfaces the stability condition (1.7) in its slope formulation is
best rewritten as

(5.2)
3(2Ω.D − λ((KM + [α]).D +D2))

2λ(3Ω.D − λD2)
≥ −(KX + [α]).Ω

Ω2

when Ω−λD is a positive class. If we were allowed to choose Ω so that
Ω.D = 0, by adjunction we could simplify this inequality to

(5.3)
3(2pa(D)− 2 +D.[α])

2λD2
≥ −(KX + [α]).Ω

Ω2
.

Since D2 < 0, whenever 2pa(D) − 2 + D.[α] > 0 the left hand side
diverges to −∞ as λ→ 0, thus violating (1.7).
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Of course this argument is not quite rigorous since Ω is positive.
What we do instead is to construct a sequence Ωs of Kähler classes
degenerating to a big class Ω0 such that Ω0.D = 0. Then (5.3) must
hold by continuity, provided we also have a strictly positive lower bound
on the Seshadri constants ǫ(Ωs,D) in order to be able to substitute some
positive value for λ.

Let K be any reference Kähler form. We claim there is a choice of
strictly positive numbers ri such that the sequence

Ωs = (1 + s)K +
∑

i

riDi

satisfies our requests.
The symmetric matrix [Di.Dj ] is negative definite, so by diagonalising

we see that we can find strictly positive numbers ri with∑

i

Di.Djri = −K.Dj

for all j. This settles Ω0.D = 0.
The lower bound on ǫ(Ωs,D) is more delicate. If we make the extra

assumption
D.Di ≤ 0

for all i, a lower bound is simply given by mini{ ri
mi

} > 0. One can
prove that the extra assumption causes no loss of generality for algebraic
surfaces, see loc. cit. Corollary 3.4 for details.

Remark 5.2. This complication only arises if D has more than one
irreducible component. We can avoid it in any example when D can
be chosen irreducible, but not in our examples later on, since a key
ingredient is to take finite coverings.

Finally Ω0 is big since it is obtained by adding an effective divisor to
an ample divisor. q.e.d.

Corollary 5.3. If an algebraic surface M contains an exceptional
divisor D with arithmetic genus pa(D) ≥ 2 then there exists a class Ω
for which Mα is unbounded below for all α ≥ 0. If pa(D) ≥ 1 the same
holds for all α > 0.

Thus in the first case we know a priori that (M,Ω) cannot be the base
of an adiabatic cscK submersion.

We will show how this can be applied to construct classes which do not
admit a cscK representative on some threefolds of general type. The
idea is to start from a Kodaira surface S with a suitable exceptional
divisor D. By a result of Morita we obtain a threefold holomorphic
submersion X → S′ upon taking a finite covering S′ → S.

Theorem 5.4 (Morita [17]). Let S be a surface with a holomorphic
submersion to a smooth curve, with base and fibres of genus at least 2.
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There exists a finite covering S′ → S and a non-isotrivial holomorphic
submersion X → S′ whose fibres are curves of genus at least 2.

Remark 5.5. Fine [14], Section 4 uses Morita’s result to give new
examples of cscK metrics. We will do the converse, using it to obstruct
some particular classes.

Then we use Corollary 5.3 and Corollary 4.4 to obstruct the adiabatic
classes on X. Let us do a few cases in detail.

5.1.1. Let C be a smooth curve of genus g at least 2. Consider the
product S = C×C with diagonal δ and fibre-classes f1, f2. S has ample
canonical bundle KS = (2g− 2)(f1 + f2) and δ is an exceptional divisor
(of genus genus g) since δ2 = 2− 2g.

If S′ → S is any finite covering then KS′ > 0 and the preimage δ′ is
again an exceptional divisor of genus at least 2.

So choose a finite covering S′ → S as in 5.4 to get a 3-fold X → S′.
Fix any Kähler class H on S′. Define Kähler classes Ωs = (1 + s)H +∑

i riδi as in the proof of 5.1.

Lemma 5.6. The general type 3-fold X admits no cscK metrics in
the classes

a c1(KX|S′) + rπ∗Ωs

for a ∈ R+, s≪ 1, r ≫ 0.

Remark 5.7. The original surface example of Ross [18] is in fact the
self-product of a nongeneric curve C.

5.1.2. Let C be a smooth curve with genus g at least 2 and a free
action of a group G of order d on it. This provides a finite d-fold
covering π : B → C. Let Σ ⊂ B × C be the union of the graphs
of g ◦ π, g ∈ G. It is well known that there exists a d-fold branched
covering π1 : S → B × C, branched precisely along Σ, and that S
is smooth. The canonical bundle KS is ample, and the pre-image Γ1

of the graph Γ ⊂ B × C of π is an exceptional divisor of genus at
least two, since Γ2 = d(2 − 2g). Moreover, the natural map S → C

is a holomorphic submersion. This means that we can apply Morita’s
construction: there is a finite covering π2 : S′ → S such that S′ is the
base of a non-isotrivial holomorphic submersion Y → S′ whose fibres
are smooth curves of genus at least 2. Again KS′ > 0 and the preimage
Γ2 of Γ1 under π2 is an exceptional divisor of genus at least 2. Setting
Ωs = (1 + s)H +

∑
i riΓ2,i as before (for any Kähler class H on S′) we

find

Lemma 5.8. The general type 3-fold Y admits no cscK metrics in
the classes

a c1(KY |S′) + rπ∗Ωs

for a ∈ R+, s≪ 1, r ≫ 0.



688 J. STOPPA

Remark 5.9. Before the general results of [21] obstructed classes on
Atiyah-Hirzebruch surfaces had been constructed by Shu [25].

5.1.3. Another class of examples can be derived from a recent con-
struction of Catanese-Rollenske [1]. Let C be a smooth curve of genus
g at least 2 and choose a nonempty subset S ⊂ Aut(C) (note that S
is not necessarily a subgroup). An element s ∈ S determines the graph
Γs ⊂ S = C × C. Assume that Γs ∩ Γt = ∅ for s 6= t; this trans-
lates into a group-theoretic condition in Aut(C) which holds for many
choices. This disjoint union gives a divisor D = ∪s∈SΓs ⊂ S. Choose
a fibre F ⊂ S for the projection p1, and fix the topological type of a
ramified cover F ′ → F , that is a surjection ψ : π1(F \D) → π1(F ) → 0.
Catanese-Rollenske prove that after a base change induced by a finite
covering f : C ′ → C, there exists a ramified cover r : S′ → f∗S, rami-
fied exactly along f∗D, which is a Kodaira fibration for the projection
p1 ◦ f ◦ r, and such that the class of the induced ramified cover of fibres
is the prescribed ψ.

Now we take one more finite covering ρ : S′′ → S′ in order to apply
Morita’s Theorem and get a Kodaira fibration Z → S′′ with smooth
curve fibres of genus at least 2. For all t ∈ S, Γ′′

t = ρ∗f∗r∗Γt is an
exceptional divisor of genus at least 2. Write Γ′′

t,i for the irreducible

components. For any Kähler class H on S′ we form the classes Ωs =
(1 + s)H +

∑
i riΓ

′′
t,i as in the previous examples.

Lemma 5.10. The general type 3-fold Z admits no cscK metrics in
the classes

a c1(KZ|S′′) + rπ∗Ωs

for a ∈ R+, s≪ 1, r ≫ 0.

5.2. Slope unstable non-projective manifolds. One might try to
prove Theorem 1.6 by a deformation argument. For example it is a
classical result of Kodaira that any compact Kähler surface admits ar-
bitrarily small deformations which are projective. If we could perturb
the cscK metric at the same time this would give an alternative proof
of 1.6 for surfaces.

This motivates us to look for a genuinely non-projective example in
higher dimensions. This is based on Voisin’s manifold, combined with
the following result for projective bundles.

Lemma 5.11. Let E → B be a vector bundle on the Kähler manifold
(B,ΩB). Let OP(1) denote the relative hyperplane line bundle. If E is
Mumford-destabilised by a corank 1 subbundle F ⊂ E then P(E) admits
no cscK metrics in the classes

Ωr = c1(OP(1)) + rπ∗ΩB

for r ≫ 0.
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Proof. This is the Kähler version of a special case of [22] Theorem
5.12.

Since P(F ) ⊂ P(E) is a divisor, all the computions in loc. cit. hold in
NE1(P(E)) and therefore carry over without any change to our situa-
tion, with the care of replacing the line bundle L⊗r there with the form
rΩB. Note in passing that a large part of the proof in loc. cit. is de-
voted to prove that ǫ(P(F ),Ωr) = 1 for r ≥ r0 where r0 does not depend
on F (using boundedness of quotients). This is required to establish a
general correspondence with Mumford-stability. However for our weak
statement we only need to prove ǫ(P(F ),Ωr) = 1 for r ≥ r0(F ). This is
trivial since c1(OE(1)) − x c1(OF (1)) is relatively ample for 0 < x < 1.

q.e.d.

Voisin [30] constructed Kähler manifolds in all dimensions≥ 4 which are
not homotopy equivalent to projective ones. The simplest example in
dimension 4 is obtained by a torus T with an endomorphism f : T → T .
Consider the product T ×T with projections pi, i = 1, 2. There are four
sub-tori in T ×T given by the factors Ti = p∗iT , the diagonal T3 and the
graph T4 of f . Blow up the intersections of all Tk, that is a finite set
Q ⊂ T ×T . Then blow up once more along the proper transforms of the
Tk’s. The result of this process is of course a Kähler manifoldM . Voisin
proves that for a special choice of (T, f), M is not homotopy equivalent
to (and so a fortiori not deformable to) a projective manifold.

For any q ∈ Q, let Eq be the component of the exceptional divisor for

BlQ(T × T ) → T × T

over q ∈ Q. We write OM (−Eq) for the pullback of O(−Eq) to M . The
rank 2 vector bundle OM (−Eq) ⊕ OM is Mumford-destabilised by the
line bundle OM (−Eq). Fix a Kähler class ΩM on M . By Lemma 5.11
the projective bundle

π : P(O(−Eq)⊕OM ) →M

admits no cscK metric in the classes OP(1) + rπ∗ΩM for r ≫ 0.
Note that by taking a projective bundle we have changed to homo-

topy type of M so Voisin’s Theorem does not immediately imply that
P(O(−Eq)⊕OM ) does not have projective deformations. However this
is guaranteed by the following result on deformations of projective bun-
dles [6].

Theorem 5.12 (Demailly-Eckl-Peternell). Let X be a compact com-
plex manifold with a deformation X ∼= X0 →֒ X → ∆. If X = P(E)
for some vector bundle E → Y then Xt = P(Vt) for some deformation
Vt → Yt.
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Corollary 5.13. The Kähler manifold X = P(OM (−Eq) ⊕ OM ) is
slope unstable (and so has no cscK metrics) with respect to the classes

c1(OP(1)) + rπ∗ΩM

for r ≫ 0. Moreover X has no projective deformations.
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