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INTEGRATED HARNACK INEQUALITIES ON LIE

A ol
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BruckE K. DRIVER & MARIA GORDINA

Abstract

We show that the logarithmic derivatives of the convolution
heat kernels on a uni-modular Lie group are exponentially inte-
grable. This result is then used to prove an “integrated” Harnack
inequality for these heat kernels. It is shown that this integrated
Harnack inequality is equivalent to a version of Wang’s Harnack
inequality. (A key feature of all of these inequalities is that they
are dimension independent.) Finally, we show these inequalities
imply quasi-invariance properties of heat kernel measures for two
classes of infinite dimensional “Lie” groups.
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1. Introduction

1.1. Basic setup. Let (M,g) be a connected complete Riemannian
manifold, d : M x M — [0,00) be the Riemannian distance function,
dV be the Riemannian volume measure on M, A be the Laplace—
Beltrami operator acting on the space of smooth differential forms,
Q (M), over M, and Ag := Algo(py), where QY (M) := C* (M) is the
space of compactly supported smooth functions on M. From Gaffney
[26], Roelcke [53], Chernoff [11] and Strichartz [60], we know that
the L? (M, dV)—closure, Ay, of Ay is a non-positive self-adjoint oper-
ator on L% (M,dV). Moreover, there exists an associated smooth heat
kernel, (0,00) x M x M > (t,x,y) — p¢(x,y) € (0,00), such that

pe(7,y) = pe (Y, ),

(1.1) / pe(z,y)dV (y) <1 for all x € M, and
M

(12 (¢22f) @) = [ pla) fo)aViy) for ail § € (00,

We also let “Ric” denote the Ricci curvature tensor of (M, g). For the
bulk of this paper we will be considering the special case, where M = G
is a Lie group equipped with a left invariant Riemannian metric as we
now describe.

Let G be a connected finite dimensional uni-modular Lie group, g =
Lie (G) be its Lie algebra, and suppose that g is equipped with an inner
product, (-,-) = (), Let [A[; := y/(A4, A) for all A € g. We endow
G with the unique left invariant Riemannian metric which agrees with
(-, ')g at e € G, i.e. the unique metric on G such that Ly, : g — TG is
isometric for all g € G. The Riemannian distance between z,y € G will
be denoted by d(x,y) .

For A € g let A denote the unique left invariant vector field on G such
that A(e) = A € g and let L = Z?;r?gfl?, where {Ai}?;r?g is an or-
thonormal basis for g. As is well-known, since G is uni-modular, L
is the Laplace-Beltrami operator (for example, see [22, Remark 2.2]
and Lemma 6.1 below) restricted to C*°(G). Since Ly : G — G is
an isometry for all ¢ € G, if p; (z,y) is the heat kernel on G, then
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pi (92, 9y) = pi(x,y) for all z,y,g € G. Taking ¢ = x~! then im-
plies that p; (z,y) = p; (e,2'y) . Similarly, d (g9z,gy) = d (z,y) for all
x,y,9 € G and therefore d (z,y) = d (e,x‘ly) .

Notation 1.1. By a slight abuse of notation, let p; (x) := p; (e, )
for z € G. We will refer to p; () as the convolution heat kernel on G

and to the probability measure, dv; (x) := py (x) dz, as the heat kernel
measure on G. We also write dz for dV (z) and |z| for d (e, ).

The following lemma is an immediate consequence of the comments
above and the basic properties of p; (x,y) .

Lemma 1.2. For all x,y € G
d (z, ) Eap

o~
( )_pt(x)a

1)
2)
) p
3 pe(z,y) =pe (') = pe (y '),
)

dV is a bi-invariant Haar measure on G,

4
)
6) for f € L?(G,dV),

(et&)/zf) (x) = /Gpt (33_1?4) f(y)dy
=/pt (v™'z) f(y)dy

G
= [t s () an

1.2. The main theorems. We may now state the main theorems of
this paper.

Theorem 1.3. If T > 0 and A € g, then

Apr (2) k)2
(1.3) /Gexp <_pTT7(x)> pr (z) dz < exp <ekT 1 ‘A@) ’

where k € R is a lower bound on the Ricci curvature, i.e. Ric >
kI. (Here and in what follows we will always use the convention that
k/ (e* —1) = 1/T whenever k = 0.)

The proof of this theorem relies on martingale inequalities applied to
the probabilistic representation for Alnpp (x) in Theorem 6.4. We also
have another related integral bound on Alnpp ().

Theorem 1.4. Continuing the notation in Theorem 1.5, for any q €
(1,00) there is a constant, Cy < oo such that

k
= kT _ 1 .
‘ La(wr) Cq T 1 |A| forall Acg

(1.4) Hfllin
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These theorems will be proved in Sections 5 and 6 below. Also see [23,
Theorem 5.11] for a version of this theorem valid on a general compact
Riemannian manifold and Proposition E.1 in Appendix E where we use
a Hamilton type inequality to show that an inequality similar to that
in Eq. (1.3) holds on any complete Riemannian manifolds whose Ricci
curvature is bounded from below. However, as is noted in Remark E.2,
in general, we can not choose the constants appearing in Proposition
E.1 to be independent of dimension.

The following theorem is a corollary of Theorem 1.3 above and The-
orem 2.5 below. The details will be given in Section 3 below.

Theorem 1.5. Let T' > 0 be given and let k € R be a lower bound
on the Ricci curvature, Ric > kI. Then for every y € G and q € [1,0),

q 1/q
pr (zy~1) (g—1k/2
(1.5) </G [T(ﬂf) pr (x) dx) < exp <W [yl ) :

From Theorem 1.5 and Lemma 1.2 we have,

(et

&
| I
=}
=
~
—~
“N
&
QL
IS
\_/
d
=
=}

r “1,,)7¢ 1/q
/G piTp(j{(:U) )] pr (z) da:)

< exp <-7(QQZT1)_IC1/2 !y‘lz\2>

(1.6) = exp <(ch:7,;)_]€1/2(12 (y,z)>

for all ¢,z € G. This form of the integrated Harnack inequality makes
sense on any Riemannian manifold. We will show in Corollary D.3 of
Appendix D below that Eq. (1.6) does indeed hold when G is replaced by
a complete connected Riemannian manifold with Ric > kI for some k €
R. The key point is that the estimate in Eq. (1.6) is equivalent to Wang’s
dimension free Harnack inequality, see [66, 67| and Theorem D.2 below.
We are grateful to Michael Rockner for pointing out the relationship
between Wang’s inequality and the integrated Harnack inequality in
Eq. (1.6).

Remarks 1.6. Some of the key features of Theorem 1.5 are:

1) As seen in Example 1.1) below, the estimate in Eq. (1.5) is sharp
when G = R".



INTEGRATED HARNACK INEQUALITIES 505

2) For T near zero, k/ (e¥T — 1) = 1/T and for T large, k/ ("7 — 1)
= max (0, —k) .
3) The estimate in Eq. (1.5) is dimension independent and there-

fore has applications to infinite dimensional settings, see Section
7 below.

Let Ry : G — G (L, : G — G) be the operation of right (left)
multiplication by y € G, vro R 1 (VT oL, 1) be vp pushed forward by
Ry (Ly), and d (vp o R;') /dvr denote the Radon-Nikodym derivative
of vro Ry 1 with respect to vz. For the infinite dimensional applications
of Section 7, it is convenient to rewrite Eq. (1.5) as

M < exp <Md2( )> )

(1.7) - ohT

Lq(G7VT)
By Lemma 1.2, Eq. (1.5) may be also be expressed as

o (L[ o) s (520

or as

pr ('2) ] e =112
(1.9) (/G [T(x)] pbr (x)dac> Sexp( oF ’ ’)

This last equality is equivalent to the left translation analogue of Eq.
wr () | e

(1.7), namely
k/2
< oxp (L2 ).
ek
1.3. Examples and applications.

Definition 1.7. For A € g and T > 0, let

(1.10) dlvroly’)

(APT) (2)

pr(z)

The significance of W:zf in the above definition stems from the follow-
ing integration by parts identity;
(12) [ Af@)pr(e)ds= [ $@) W] @)pr@)dov £ e C2(6).

G G

Thus W7 is the pr (x) dz — divergence of A as described in Definition
2.3 below.

Example 1.1. Suppose G = R” so that g = R" which we assume
has been equipped with the standard inner product. In this case

1 n/2 |IIJ‘|2
el =\gmr) P "or )

(1.11) W:{ (x) = — (;1 lin> (z) = —
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where |z|? := 32" 2?. For A € g and f € C! (R") we have A = 9,4 and

| Ar@pr (@) ds

fopT () dx

=— [ f@)oapr (x)de= [ f(x)
R R

from which it follows that W1 (z) = %. By simple Gaussian integra-
tions,

e’ AWpr (x) dr = exp o7 |0

RTL

(L[] reas)”

_ e+ 3oy () da 1/q:exp Mlyﬁ :
(L[ ) "= (U701

and
(13 [ W @) e (@) do = [

where

q

A .
z pr (2) dx:Tq/2|A|qC’g,

n

ég ::/ |z|? p1 (x) dz.

The first two results show the estimates in Eqgs. (1.3) and (1.5) are
sharp. The identity in Eq. (1.13) shows the form of Eq. (1.4) is sharp.
We do not know if, in general, the constant Cy appearing in Eq. 1.4 can
be taken to be C’q defined above.

Our main interest in Theorem 1.5 is in its application to proving that
certain “heat kernel measures” on infinite dimensional Lie groups, G, are
quasi-invariant under left and right translations by elements of a certain
subgroup, Gg. We will postpone our discussion of this application to
Section 7. For now let us give a couple of finite dimensional applications
of Theorems 1.5 and 1.4.

Proposition 1.8. Suppose that T > 0, ¢ > 1, and f € L1 (vr) is a
harmonic function, i.e. Af = 0. Then

(1.14) /GpT (y,z) f(x)dz = f(y) forall yeG.

At an informal level we expect

L) @) de = (¢2725) ()

and hence
. o p A
G L f e = 5 (302 1) ) = (22505 ) ) =o.
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Therefore it is reasonable to conclude that
/G pr(y,@) f (@) dz = ("8072f) (y) = (2072 ) (1) = £ (1)

However, this argument is not rigorous as f is only square—integrable
relative to the rapidly decaying measure, v7, rather than to Haar mea-
sure on GG. The rigorous proof of Proposition 1.8 will be given in Section
7.

The following corollary is a simple consequence of Proposition 1.8,
Eq. (7.4) in the proof of this proposition, and Theorem 1.5 in the form
of Eq. (1.9).

Corollary 1.9. Suppose that q € (1,00). Under the hypothesis of
Theorem 1.5, if f € L1 (vp) and f is harmonic (i.e. Af =0), then

k
119) 170 = Wl 50 ( s )

g—1ekT —1
In particular, if G is further assumed to be a complexr Lie group and

f € Li(vr) is assumed to be holomorphic, then the pointwise bound in
Eq. (1.15) is still valid.

Remark 1.10. When f is holomorphic, ¢ = 2, T = 1/2, and G = C?,
the inequality in Eq. (1.15) is Bargmann’s pointwise bound in [4, (Eq.
(1.7)] except that the constant in the exponent is off by a factor of
two. More generally, when G is a general complex Lie group and f is
holomorphic, it has been shown in [22, Corollary 5.4] that

£ < 1Fllga(y, ) €72 for all y € .

The reason for the discrepancy in the coefficients in the exponents be-
tween these inequalities is that py /s (x,y) is not the reproducing kernel

Vi/2

for the holomorphic functions in L? (v, /2) in that y — py/2 (z,y) is not
holomorphic. The coefficient in the exponent of Eq. (1.15) is also not
sharp since y — pr (x,y) is not harmonic.

Acknowledgements. We are grateful to Alexander Grigor'yan and
Laurent Saloff-Coste for their comments and suggestions on the heat
kernel bounds used in this paper. The first author would also like to
thank the Berkeley mathematics department and the Miller Institute for
Basic Research in Science for their support of this project in its latter
stages.

2. L9 — Jacobian estimates

Let M be a finite dimensional manifold, i be a probability measure
on M with a smooth, strictly positive density in each coordinate chart.

For r > 0, let || f[l, == ([, [fI" d,u)l/r denote the L (1) — norm of
f:M—C.
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Let X; be a time dependent vector field and let S; denote its flow,
ie. Sy (m) solves,

(2.1) %St (m) = X; 085, (m) with Sy (m) =m for all m € M.

We will assume that X, is forward complete, i.e. S;(m) exists for all
t > 0 and m € M. Define

e = (Se), = poS; .

Since p; also has a strictly positive density in each coordinate chart the
Radon-Nikodym derivative

Jt = d,ut/d,u

exists for all £ > 0. Our goal of this section is to prove Theorem 2.5
below which gives an upper bound on [|.J[|, for ¢ € (1,00). This result
is a slight extension of part of Theorem 2.14 in Galaz-Fontes, Gross,
and Sontz [28] to the setting of time dependent vector fields, X;. For
the readers convenience we will sketch the method introduced in [28,
Theorem 2.14]. In what follows, 01n 0 is to always be interpreted to be
0.

Lemma 2.1. Suppose that (t,m) € (0,T) x M — h; (m) € [0,00) is
a smooth bounded function and r : (0,T) — (1,00) is a C' — function.

Then
d f(t)/ " L
—In ||he]],p = In d'u
dt H tH (t) T‘(t) M HhtH:Eg ||htHr(t)

1 i‘s:thg(t)
(2.2) + /ds ———dy.
r® v h1)

Proof. For the reader’s convenience we will give a formal derivation
of this identity and refer the reader to Gross [33, Lemma 1.1] for the
technical details. For r > 0 and any bounded measurable function,
g: M — R, a straight forward calculation shows

d L[ gl lg]
inlgl, =+ [ 2o (T ) da
ar v S Tal \ " Tl

If we further assume that » > 1 and v : M — R is another bounded
measurable function, then

1 T 1 81) grd/,[/
oy gl, = 0, [— In (/ ol duﬂ _ Ly Bolol d
" M r fM lg|" dp

1 a r r—1
:_/ v\gi duz/ gl 0(9) 0,
T JM HQHT M ngr
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These two identities along with the chain rule,

d d
2 o llhelly = 7 ls=t [thht”r(s) +1thS”r(t)} ;
easily give Eq. (2.2). q.e.d.

Lemma 2.2. Let W € L' (1) and f > 0 be a bounded measurable
function. Then, for all s > 0,

/
(2.3) /M W fdu < S/Mfln ,u(f)d'u + sB(W/s) /M fdu,

where

BOW) =1 (4 (")) = In ( /M erﬂ> .

Proof. Recall that Young’s inequality states, xy < e + ylny — y for
xz € R and y > 0, where 0In0 := 0. Applying Young’s inequality with
x =W and y = f and then integrating the result gives

Jowidns [ Mas [ (g~ pian
M M M
Replacing f by Af with A > 0 in this inequality then shows

/Wfdug/\‘l [/ er,u+/ [Afln(/\f)—/\f]du]
M M M
_ 1 w _
=) /Me du+ln)\/Mfdu+/M[flnf fldu.

The minimizer of the right side of this inequality occurs at A =
(firedu) - ([ falu)_1 and using this value for \ gives

f
(2.4) /M W fdu < /Mfln ,u(f)d'u + B(W) /M fdpu.

(The proof of Eq. (2.4) was predicated on the assumption that B (W) <
oo but clearly Eq. (2.4) remains valid when B (W) = oc.) The estimate
in Eq. (2.3) follows directly from this by replacing W by W/s. q.e.d.

Definition 2.3. The p—divergence of a smooth vector field, X, on
M is the function W = W¥ defined by

/ Xodu = / ©Wdp, for all p € CL(M).
M M

Proposition 2.4. Let X; and Sy be as in Eq. (2.1), Wy := W,
be the p—divergence of Xy, h € C1 (M, [0,00)), hy == ho S;!, and r €
C'((0,7),(1,00)). Then for any s > 0 we have
(2.5)

g i hr ht S —
i S (7 / tr<1n > du— =B (s7'W;) .
ai ™ el ( > w Tl ", ) = B0
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Proof. Differentiating the identity S; 0 S;! (m) = m and making use
of the flow Eq. (2.1) implies

Therefore,

or equivalently,

d
il (S;1(m)) = =X; (foS; ) (m) forall feC(M).
Using this identity along with Eq. (2.2) shows

d f hy h 1 Xihy
20)  gmlly =" [ gt () de-t [ Sk
Mo =5 fy Tl \™ Tl v Tl

where r = r (t) and 7 = 7 (¢) . Combining this identity with the deﬁnition
of Wy and the estimate in Eq. (2.3) with W = W; and f = 0 h ”T then
implies,

d 7 h?
ln h t_(1In / W, d
el = /M Tl < HmH) tuhtu s
Pron < hy )
2_ T ln d,LL
- /M S

s _hi hy }
- - In ———=dpu+ B (W;/s
. [/M Tl ™ g 2 B (W/s)

which is the same as Eq. (2.5). q.e.d.

The following theorem is the extension of Galaz-Fontes, Gross, and
Sontz [28, Theorem 2.14] from time-independent vector fields to time—
dependent vector fields. These results generalize the fundamental results
of Cruzerio [12] — also see [5, 6, 13, 18, 50, 51] for other related results.

Theorem 2.5 (Jacobian Estimate). Let ¢ > 1 andr € C([0,7],[1,00))
N CY(0,7),(1,00)) such that r(0) = 1, (1) = q and 7(t) > 0 for
0<t<rT, then

(2.7) 1T < e,

where ¢’ :== q/ (q — 1) is the conjugate exponent to q and
_ [T @) ()

(2.8) A(r)=Ax(r):= /0 3 (t)B <7,4 0 Wt> dt.

Proof. Taking s = 7/r in Eq. (2.5) gives

d 7 r
7 mllhell@) 2 =3B (;Wt>
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which integrates to

e s, =, = Inlesn (= [ 558 (Fgw) o).

Replacing h by h o S; in this inequality implies

(29) [ b= o Sel, < [l N
M

Let L9(p)" denote the almost everywhere non-negative functions in
L% () . Since Eq. (2.9) is valid for all h € C! (M, [0,00)) and the latter
functions are dense in L7 (u)" (see the proof of Lemma 2.8 in [28]), it
follow that Eq. (2.9) is valid for all h € L7 (u)" . Equation (2.7) now
follows by the converse to Holder’s inequality. Indeed, let K C M be a

compact set and take h = JI 11 = JH D1 in Eq. (2.9) to find
, , 1/q

/ JU 1 edp < HJTl/(q_l)lKH AP = (/ J 1Kdu> A,

M q M

This inequality is equivalent to

, 1-1/q
[EATIPE ( /M Ja 1Kdu> < M),

Now replacing K by K,, with K, compact and K,, T M and passing to

the limit as n — oo in the previous inequality gives the estimate in Eq.

(2.7). q.e.d.
3. Proof of Theorem 1.5

In this section we will give a proof of Theorem 1.5 assuming that
Theorem 1.3 holds. We will use the following notation in the proofs.

Notation 3.1. Let ¢ (t) be defined by ¢(0) =1 and

t
(3.1) c(t) = ] for all ¢ # 0.

Proof. (Proof of Theorem 1.5.) In order to abbreviate the notation,
let ¢ := ¢(kT) /T. Let g € C*([0,1],G) be such that g(0) = e € G
and ¢g(1) = y € G and define A; := L;é)*g(t) € g. If we now let
X; = A; € T(TG), then the flow, S;, of X; satisfies, Sy (x) = zg (t).
Indeed, because X; is left invariant,

d :
7329 () = Laug (t) = Lo Lg(yedt = Lag(rye At = Xe (29 (1)) -
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In order to apply the Jacobian estimate in Theorem 2.5, let du () =
dvy () := pr (x) dz and observe that

/G B (1 (2)) du () = /G h (ey) du () = /G h(ey) pr (2) da

from which it follows that
d(S). 1y T (zy~1)
dp pr ()

Moreover, if W; = W)V(f is the u = vp — divergence of Xy, by Theorem
1.3,

(3.3) BOW,) = In ( /G e’\Wfd,u> < C(’;‘;T) N2 |42,

Hence it follows from Theorem 2.5 that

/ 1/d
pr (ﬂfy_l) ! ) do _ A)
(3.4 {/G (T(:@ ) pr >d] = il < 0,

where

(3.2) Jl (a;) =

. i r* (1) 1 t’g
< /07”2()7”2(75)|At| w=e [ S

and r € C ([0,1],[1,00))NC* ((0,1),(1,00)) such that 7 (0) = 1, r (1) =
g and 7(t) > 0 for 0 <t < 1. We now want to choose 7 (t) so as
to minimize A (r) subject to the constraints r (t) > 0, 7 (0) = 1 and
r (1) = q. To see how to choose r, let us differentiate A () in a direction
v such that v (0) = 0= v (1) and then require

set e (1A e [l A,
=@ )--; L2(L%b(t)dt:—§/oU(¢)%<L2(L23>dt

. . . AR .
Since v (t) is arbitrary, we should require LQES‘ = k"2, where Kk > 0 is a

constant, i.e. 7 (t) =k |A; . Hence we take

t
r(t) = 1+/<a/ |A7|, dr,
0

== ([ 1arlgar)

where
-1
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has been chosen so that r (1) = g. With this choice of r,

C 1 ‘At@ & 1 & 1 2

and using this value for A(r) in Eq. (3.4) along with the identity,
(q—1) 7' =¢ — 1 implies

' 1/q

ay ! !
/[M] pr(z)yde|  =|nl,
G

pr ()
<o (01 ([ag,ar) )

Upon noting that ¢’ := ¢ (¢ — 1)~" ranges over (1,00) as ¢ ranges over
(1,00), the proof of Theorem 1.5 is complete. q.e.d.

4. Properties of the Hodge — de Rham semigroups

This section gathers a number of technical functional analytic re-
sults needed to establish the representation formula in Theorem 5.4
below. Let (M, g) be a complete Riemannian manifold, dV' denote the
volume measure on M associated to g, V denote the Levi-Civita co-
variant derivative, A¥ = A* (T*M), A = @imMAF Qk (M) (QF (M))
denote the space of (compactly supported) smooth k — forms over M,
and Q (M) = @imMQk (M) be the space of all smooth forms over M.
If o and B8 are measurable k — forms, let

d

(a, B),, = Z (e, - €5) B e €5),

J1yeenJi=1

where {e; }?:1 is any orthonormal frame for 7, M. When m — (o, §),,
is integrable, let

(0, B) = /M (e, B) dV

and let L2 (Ak) denote the measurable k — forms, «, such that (o, o) <
oo. Further let

L2 (A) = @M L2 (AF).

Two measurable k — forms, a and 3, are take to be equivalent if o = 3
a.e.

Let d: Q (M) — Q (M) be the differential operator taking k — forms
to k + 1 — forms, ¢ be the formal L? — adjoint of —d,

A= —(8d + db) = — (d+6)*
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be the Hodge-de Rham Laplacian on 2 (M), and OJ be the Bochner (i.e.
flat) Laplacian on Q (M) . More precisely if « is a k — form, da is the
k — 1 form defined by

d
(4.1) = (Ve,0) (¢,
7=1
and .
Z Vej®e 2:1 <V2Eja - vaj Eja>m )
J

where {Ej}?EM is an local orthonormal frame for 7'M defined in a
neighborhood of m. The next two theorems summarize the properties
about these operators that will be needed in this paper.

Theorem 4.1. The operators, dy := d|qp ) : QF (M) — QF1 (M)
fork=0,1,2...,dim M —1 are L? (Ak) — closable with closure denoted
by di. Let us now further assume that (M, g) is complete. Then:

1) Each of the operators, Ay = Algryyy for k = 0,1,2...,dim M
thought of as unbounded operators on L? (Ak) , are essentially self-
adjoint operators. Let Ay denote the (self-adjoint) closure of Ag.

2) Each operator, Ay, is non-negative. Let etDk denotes the contrac-
tion semi-group on L? (Ak) associated to Ay.

3) For k € {0,1,...,dimM — 1} and t > 0, dpetdr = etBrirdy on

the domain of dy,.
4) SetPrw = etBr-15w for all w € QF (M) with k = 1,2,...,dim M.

Proof. Let &), 1= 6|qk(ar) : QF (M) — Q1 (M) . As —0py1 C d, df is
densely defined and hence dy, is closable. For items 1. and 2., see Gaffney
[26], Roelcke [53], Chernoff [11], [68], and Strichartz [60]. Item 3. is a
simple application of Theorem A.2 of Appendix A below. In applying
this theorem, take W = L? (AF=1) | X = L% (A*), Y = L? (AF*1) and
Z = L? (Ak+2) with A = dj,_q, B = d, and C := dj,. By convention
QN (M) = {0} = QEMFL(AN) and d_; = 0 = dgjm pr- With these
assignments, the self-adjoint operators, L and S, in Theorem A.2 become

(4.2) L= Cik_ldz_l + d,’;Jk and S = Jkdz + dz+1CZk+1.
As Aglorary € —L and —L is self-adjoint (see Theorem A.1 below),
it follows that A, = —L and similarly, Ay, = —S. For item 4., let

w e QF (M) and ¢ € QF1 (M) . Then
(5et5kw, 90) = — (etﬁ’“w, dgp) = — (w, etﬁ’“(ﬂp> = — <w, Jetﬁk*@)
= (5w,et5k*14p> = (etﬁkfldw,cp) .

q.e.d.
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Remark 4.2. With a little more work it is possible to show that
di = —0;,1 and that 5kemk = etBr- 15 on the domain of d;. We will
omit the proof of these results as they are not needed for this paper.

We are primarily concerned with zero and one forms. A key ingredient
in the sequel is the Bochner identity,

(4.3) Aa = Oa — aoRic for all a € Q' (M).

Assumption 1. For the rest of this paper we will assume that (M, g)
is a complete Riemannian manifold such that Ric > k for some k € R,
i.e. Ricy, > kI, pmr for all m € M.

Theorem 4.3 (Semi-group domination). Suppose that (M,g) is a
complete Riemannian manifold such that Ric > k for some k € R. Then
for all f € L? (AO) and o € L? (AI) ,

(4.4) er2op| < 2o f1 < flle ae
and
(4.5) ‘etﬁla‘ < e M etho la] <e ™Mo, ae.,

where || f|| and ||a| o, denote the essential supremums of the functions,
|f| and m — |apn,| respectively.

Proof. The inequality in Eq. (4.4) is an immediate consequence Egs.
(1.2), (1.1) and the positivity of the heat kernel, p; (x,y) . This inequality
may also be proved using the semi-group domination ideas that will be
used below to prove Eq. (4.5). The proof of Eq. (4.5) will be an
application of the results in Simon [57, 58] and Hess, Schrader, and
Uhlenbrock [35] along with a Kato [40] type inequality. The general
Kato inequality we need is given in Theorem B.2 of Appendix B. We
apply Theorem B.2 with E = A! (T"*M) to conclude,

(4.6) (O, psgn, (o)) < (laf, Ap)

for all & € QL (M) and ¢ € C® (M), = C>* (M — [0,00)). In Eq.
(4.6),

sgn, (@) := 1(1750‘ | + la=oe,

where e is any measurable section of E such that (Oa,e) = 0 on M.
This inequality and the Bochner identity in Eq. (4.3) shows

(Ara, psgn, (o)) = (Oa, psgn, (a)) — (e o Ric, psgn, (a))
(4.7) < (Ja|,Ap) — (@ o Ric, psgn, (a)) .
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To evaluate the last term, let Y be the vector field on M such that
a = (Y,-). Then a o Ric = (RicY,-) and

1
(o o Ric,sgn, () = lazo7— ol (avo Ric,a) = 105,,50 (RicY,Y)

1 2
— (YY) =kl, O—Ia\ =klof.
o] #laf

> kloz;é(]
Therefore,

(a0 Ric, psgn, () = [ (oo Ric,sgn, (@) ¢dV = k(lal. ¢)
M
which combined with Eq. (4.7) implies
(4.8) (Ara, psgn, () < (laf, Ap) =k (o], ¢)

or equivalently,

(Hoo, psgn, (@) = (lof, —Ap)
where Hy := (A + k) lo1(ary- In particular, if g € C2° (M), , A > 0,
o= (-Ao+ )\) g,and oy € QL (M) and we define o := @sgn, (a1) €
L? (A'), then (a1, 02) 25, = (Jaa], [@2])12(n,) » laz] = ¢, and

(Hoar, a2) pa(n,) = (loal, —Bo0¢) 12y, -

Hence we have verified the hypothesis of Proposition 2.14 and Theorem
2.15 in [35] and as a consequence,

(4.9) ‘e_tﬁoa‘ < e~t(=20) la| ae. forall ae L*(A).

As Hy = —A; — k and hence, e tHo = ¢tB1tk Eq. (4.9) is equivalent
to the first inequality in Eq. (4.5). q.e.d.

5. A path integral derivative formula

5.1. Brownian motion and the divergence formula. We start with
a filtered probability space, (Q,]—" , {ft}tzo,]P’), satisfying the usual hy-
pothesis. For each x € M, let {¥7 : t < ((z)} be an M — valued Brow-
nian motion on (Q, F A{Fi}t>o0, IP’), starting from x, with possibly finite
lifetime ((x). Recall X7 is said to be an M—valued Brownian motion pro-
vided it is a Markov diffusion process starting at x with transition semi-
group determined by the heat kernel, p; (-, ) . Because of our standing as-
sumption, Ric > k, it is well-known that fM pi(x,y)dy = 1forallz € M
and consequently that ¢ (z) = oo, see [3, 27, 68, 16, 42, 29, 30, 32] and
the books [63, Theorem 8.62], [37, Chapter 4.] and [14, Theorem 5.2.6].
For our purposes it will be convenient to construct X as a solution to
a stochastic differential equation which we will describe shortly.
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Notation 5.1. Given two isometric isomorphic real finite-dimension-
al inner product spaces, V and W, let O (V, W) denote the set of linear
isometries from V to W.

Let //¢ (o) denote parallel translation along a curve o in TM and all
associated bundles. We also introduce the horizontal vector fields on
the orthogonal frame bundle over M as

By (u) = %’0//t (o) u for v € R and u € O (Rd,TxM) ,
where o (t) is a curve in M such that ¢ (0) = uv.

Notation 5.2. Given a semi-martingale, Y;, we will denote its It
differential by dY; and its Fisk-Stratonovich differential by odY;.

Let b; denote a R? — valued Brownian motion, z € M, and ug €
O (Rd,TmM ), then 37 may be defined as the unique solution to the
stochastic differential equation,

od¥} = uy o dby with Xf =z,

odus = Bogp, (ut) with ug.
The stochastic parallel translation along X7 up to time ¢ is taken to be,
/e = wugt € O (T,M, Tss M) . Suppose that f (t,m) (a(t,m)) is a
smooth time dependent function (one form), then the Ito differentials
of f(t,X7) and « (t,XF) //; are

(5.1)
L7 500 = (g5 (0 30)+ 380F (30)) di-+ (grad £ (0,). /s

and

(5.2)

o (t.38) /] = gy .50 + 30050 ) di-+ [9 e (1)) /s

See (for example) [24, 46, 63, 37, 20] for more on the general back-
ground used in this section.

5.2. The divergence formula. Let @Q); denote the End (7, M )— valued
process satisfying the ordinary differential equation,

d 1
(5.3) ZQi=—3 Ric//t Q; with Qo = idr, s,
where

(5.4) Ric//* := / /7' Riesy / /4.

Lemma 5.3. If Ric > k for some k € R and |||, denotes the
operator norm on T, M, then

(5.5) 1Qell,, < e 72,
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Similarly if Ric < K for some K € R, then
(56) HQt_IHOp < eKt/2'

Proof. For any v € T, M, we have

d .
7 Qul* = <— Ric//* QtU7QtU> < —k|Qul?
from which Eq. (5.5) easily follows. To prove Eq. (5.6), let R; :=
(Qr 1)* and observe that
d

Y s —1, —1*_l —1n:.//¢ _1*_l . /e
dth_ <Qt Q:Q; ) —2<Qt Ric/’t Q:Q); ) —2R1C R;.

Hence reasoning as above we may conclude that

|, = || (@)

= || Rell,,, < e"/2.
op
q.e.d.

When M is compact, the following result is Theorem 5.10 of Driver
and Thalmaier [23].

Theorem 5.4 (A divergence formula). Assume the Ricci curvature,
Ric, on M satisfies, k < Ric < K for some —oco < k < K < oo. Let
T >0 and ¢ be a C* — adapted real-valued process such that fy = 0,
by = 1, and

(5.7) /0 '

where C' < oo is a non-random constant. Then for every C? — vector
field, Y, on M with compact support the following identity holds

58 By =|(ven. e [ feran)],

where V - Y is the divergence of Y and 0 = %Zt,

L

dr <
dr TG

Proof. The proof will consist of adding some technical details to the
proof of Theorem 5.10 in [23]. Suppose a is a smooth one form on M
with compact support,

(5.9) ap = e TD81/2g

{; is an adapted continuously differentiable real-valued process, and ¢,
is a fixed vector in T, M. Then as shown in [23, Theorem 3.4] (and
repeated below in Lemma C.1 for the readers convenience) the process,
(5.10)

Zyi= (@ (S0 0 /1) Qs [ / o (die) db, + eo] ~ (bar) (55) 4y
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is a local martingale. From Theorems 4.1 and 4.3 we have
jar| < T2 la]| o < "2 ja]|

and B
|5at| = ‘E(T—t)AO/Z(Sa‘ S HCSCZHOO ]

Making use of these estimates along with Lemma 5.3 and Eq. (5.7)
shows that Z; is a bounded local martingale and hence, by a localiza-
tion argument, a martingale. In particular, it follows that ¢ — EZ; is
constant for 0 < ¢ < T and hence

(eTA/2a> (52) 6o — 0 (eTA/za) (52) o = Zo = EZp

_E [(a (£%) 0 //1) Qr ( /0 o <%£> dbr foﬂ

_E [&L (E%)fﬂ :

If we now suppose that ¢y = 0, fo = 0, and ¢7 = 1, the above formula
reduces to

T d -
0=E [(a (7)o //7) QT/O Q;l <E€T> db, — 5&(2%"):| .

This identity is equivalent to the identity in Eq. (5.8) as is seen by
taking a (x)v := (Y (z),v) for all x € M and v € T, M and recalling
that

d d
ba=> ie,Ve (Y} = i, (VeY,) =V Y.
=1 =1

Example 5.5. Taking {, =t/T in Eq. (5.8) shows

G1) BV Y@= g8 (ven. er [ o).

6. Exponential integrability of WZ;

In this section and for the remainder of the paper we will again go
back to the setting where M = G is a connected uni-modular Lie group
equipped with a left-invariant Riemannian metric as described in the
introduction. We are now going to use Theorem 5.4 to estimate W4 :=
W in Definition 1.7. In order to do this we will use Eq. (5.8) to find
a useful path integral expression for W4, see Theorem 6.4 below.

For A,B € g, let DyB := V4B € g where V is the Levi-Civita
covariant derivative on T'G. Observe that V AB is a left invariant vector

field and (VAB> () = V4B = D4B. Hence we have the identity,
VB =DiB.
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Lemma 6.1. Suppose that {Ai}?i:nfg is an orthonormal basis for g
and G is uni-modular. Then

1) Z?i:nfg Dy, A; =0 or equivalently Z?i:nilg VAZ_/L =0.
2) The divergence of B, V - B, is zero for all B € g.
3) Ag = ™8 A2 is the Laplace Beltrami operator on G.

Proof. 1) The formula for Dy B is
1
DsB = 3 (adaB — ady B — adpA)

and hence Dy A = —ad’ A and for any B € g we find

dim g dimg
(Z DAZAZ,B> = — Z (Ai,adAiB)g
g

i=1 i=1
dim g
=— Z (Ai,adpA;)y, = —tr (adp) .
i=1
Since G is uni-modular, det (Ad.s) = 0 for all ¢t and therefore
tr (adp) = 0. .
2) The following simple computation shows V- B =0

dimg dimg
"B = ( ~B,/L-) = D4, B, A;
VB=3 (VaB )= 3 (0aB ),
dim g

= _ Z (B, Da;Ai)y = 0.
i=1

dim
3) Observe that {Ai}‘_ ! is a globally defined orthonormal frame
for TG and that

dim g dim g
Bo= Y [B-v A= A2
1=1 =1

q.e.d.

In Theorem 6.4 below, we will specialize Theorem 5.4 in order to find
a probabilistic representation for Wy of Definition 1.7. This representa-
tion will then be used to estimate [, eadup for all A € g. Let {Z4},5
be a Brownian motion on G such that g = e, b be the g — valued
Brownian motion defined by,

o ! -1
by ._/0 1 (E) " ods,,
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and (; be the g — valued semi-martingale defined by

t t
By = / 0 (cdX;) = / Ly, od¥y,
0 o 7

where 0 (vy) = L,-1,v, for all v, € T)G. As a reflection of the fact

that Z?i:nilg /Nl? is the Laplace—Beltrami operator, 3; is another g—valued
Brownian motion. This will also be evident from the following proposi-
tion.

Proposition 6.2. FizT > 0 and let U; € O (g) be the unique solution
to the stochastic differential equation

(6.1) dU; + Dogp, Uy = 0 with Uy = 1.
Further define Yy := U;Qy, and V; := YTY;_l. Then
(6.2) //t == Ls,« Uy

and

t t t
(6.3) / UT_1 odfB, = / U;ldﬁT = / //T_1 odX, = by.
0 0 0

Proof. The fact that //; := Ly, .Uy is explained in [19, Theorem 6.6]
and hence

t t t
bt:/ Ut‘ngtl*odET:/ Ut‘le(odET):/ U-todB,,
0 0 0

ie. df; = U; odb;. Letting {Ai}?i:nfg be an orthonormal basis for g,

it follows from Lemma 6.1 and the fact that {UtAi}?i:Hllg is also an or-
thonormal basis for g that

1 1
dUsdb; = — 5 Dag, Udby = —5 Du,ay, Usdby

1 dim g
=3 > Dy,a,UtA;dt = 0.
i=1
This allows us to conclude that dg; = U; o dby = Updb; which completes
the proof of the proposition. q.e.d.

Proposition 6.3. Let Y; := U;Q; and for fixed T > 0 let V; =
YTY;_1 and Gy =0 (Br — Bs : t < s,7 <T) — the completion of the o —
algebra generated by {B; — Bs :t < s,7 <T}. Then

1) V; is G — measurable, and

2) Vi is the unique solution to the backwards stochastic differential

equation,

1
AV, =V, <Dod5t + 3 Rice dt) with Vp = 1.
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Proof. Because Ly, is an isometry of G, it follows that
(6.4) Ric//* = /// ' Ricg, //1 = U7 L), Ricy, Ly, Uy = Uy ! Ric, U
Using this identity and the definition of Y; we find, Yy = Id and

AYi = ~Dogs, UiQ — Uy Ric/ " Quit
(6.5) = —Dogp,Yi — %Ut Ric//t U Y,dt
(6.6) — Daus,Yi %Rice Y.
Since dY; ' = =Y, (odY;) Y71, it follows that Y;~! satisfies,
(6.7) dY; b =Y, Dogp, + %Y;l Ric, dt with Y, = Id.
For ">t > 0, let Y7 solve,

1
dTYTJ = _DodBTYT,t — 5 Rice YT7th with Y;f,t = Id,

and observe that Yr; is 0 (8, — Bs : t < 5,7 <T) — measurable. By the
uniqueness of solutions to linear stochastic differential equations we may
conclude

Yr=Yr,Y;as. foral 0 <¢t<T

and hence it follows that V; = YTY;_l = Yr; is also
o(Br — Bs : t < s,7 <T)— measurable. Moreover we have,

dVy = Yrd (Y1) = =YpY, ! (odY) Y,

1
= —Vt <_Dodﬁt - 5 RiCe dt)

1
—V (Dodgt + 5 Rice dt> with Vp = Id.

See [19, Section 4.1] for more on the backwards stochastic integral in-
terpretation of this equation. q.e.d.

Theorem 6.4. If A € g and ¢ € C'([0,T],R) with £(0) = 0 and
¢(T) =1, then

(6.8) Wa(z)=E [ <A, /0 . (7) de<B7> ‘ S — a:] :

. —
where fOT L(T)Vid B+ is a backwards Ité integral and Vi satisfies the
(backwards) stochastic differential equation,

1
dV; = 5‘/2 Ric. dt + WDodBt with Vp = Id.
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Proof. Let f € C° (G) and
Y (2) = f (@) A(2) = f (1) LauA.
As shown in Lemma 6.1, V- A = 0 from which it follows that

V.Y = (gradf,A>TG — Af.

Therefore an application of Theorem 5.4 (with ?; now being denoted by
¢(t)) shows,

£ [(Af) (ET)] =k [f(ET) <A(ET)’//TQT /OTé(T) Q;ldb7>]
T
(6.9) —E [f (=r) <A,LET1* /2 Qr /0 ir) 0! db% |

From Eq. (6.3)
T .
<A, LETl*//TQT/O 14 (T) Q;ldb7->
T .
(At [ i(Q: v as, )

(6.10) = <A,YT /OTE(T) Y;ldﬁT>

(6.11) - <A, /OTe'(T) v7d57>.

Moreover, we may write the last expression as a backwards Ito integral,
since

dV,dB: = V;Dgp dB: =V, > DaA-dt=0,
AeONB(g)

wherein we have used Lemma 6.1 again for the last equality. Hence we
now have

<A, Lyr,//TQr /OTZ(T) Q;ldb7> — <A, /OTZ(T) VTd<E7>.

These computations may be justified by the same methods introduced
n [19]. This completes the proof because,

E(Wa () f (21)] = E | (4f) ()]

—E [f (1) <A, /0 i) mﬁﬂ

for all f € CX(G). q.e.d.



524 B. DRIVER & M. GORDINA

Our next goal is to bound fG eWadyr for all A € g. In order to do
this it will be necessary to estimate the size of the process V;.

Lemma 6.5. Suppose k € R is chosen so that Ric > kI, then
(6.12) VFAP < AP e *T=0 for all A € g.
Proof. Since
AV = gViRicedt + ViDogs,
we have
dvy = % Rice Vi*dt — Dogp, Vi*
wherein we have used the fact that D4 : g — g is antisymmetric. In
particular it now follows that

d|VFAP? = 2 (odViF A, Vi A) = 2 <% Rice Vi*Adt — Dogp, Vi A, V[‘A)

= (Ric, V;*A, V¥ A) dt > k |V;* A)? dt with |V;A]? = |A]?.
We may write this inequality as
4
dt
which upon integration gives,
AP —In|VFAP =In|V3AP2 —In |[VFAP? > k(T —t).

Hence |A|? / |V A]> > e¥T=1) which is equivalent to Eq. (6.12).
q.e.d.

In |[V;*A? > k with |[V5A|* = |A]?

Lemma 6.6. Let k € R and T > 0, then

T
(6.13) inf { /0 2 (1) e_k(T_T)dT} < eka

-1’

where the infimum is taken over all £ € C* ([0, T],R) such that £ (0) = 0
and ¢ (T) = 1.

Proof. By a simple calculus of variation argument, £ € C! ([0,7],R)
with £(0) =0 and ¢(T") = 1 is a critical point for the function,

(6.14) K (0) = /OT 2 (r)e T g7,

iff ¢ (1) €*7 is constant in 7. This constraint and the boundary conditions
imply that K has a unique critical point at

—kt
e —1
be(m) = —7-
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Plugging this value of ¢, into K then shows K ({.) = k (1 — e‘kT)_l
from which Eq. (6.13) follows. q.e.d.

6.1. Proof of Theorems 1.3 and 1.4. With the above results as
preparation, we are now in position to complete the proofs of Theorem
1.3 and 1.4.

Proof. Proof of Theorem 1.3. Let £ € C' ([0, T],R) such that £ (0) =
0 and ¢(T) = 1. From Theorem 6.4, Lemma 6.5, Jensen’s inequality for
conditional expectations, and a standard martingale argument (see the
proof of Lemma 7.6 and especially Eq. 7.17 in [18]) we have

froam=z[o (= {a. [ #0645 o))
e (o s ]
(o o)

< exp (% / P2 () |V A dr Lw(})))

< exp ( / 62 —k(T T)d > 7

where P is the underlying probability measure. Since ¢ was arbitrary,
it follows from Lemma 6.6 that,

T
eVadyp < iré}fexp <%/ 2 (1) A2 e (T T)d7'>
0

1 k 1
é exXp <§m |A|2> = exp <ﬁc (ka) |A|2> .
q.e.d.

Proof. (Proof of Theorem 1.4.) From Theorem 6.4, Lemma 6.5,
Jensen’s inequality for conditional expectations, and Burkholder-Davis-
Gundy inequality (see for example [61, Corollary 6.3.1a on p.344], [49,
Appendix A.2|, or [48, p. 212] and [39, Theorem 17.7] for the real case),
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there exists C; < oo such that

/G|WA|quT:E 'IE [<A, OTé(T) VTd%T> a(z:T)} q]

q

q/2]
T a/2
<cu <\A\2 /0 & (r) e—k<T—T>dT> |

Using Lemma 6.6, we may optimize this last estimate over the admissible
¢ to find,

2 k a/2 QC(I{TT) a/2
[l < g (148 =) = cp (1ap <50

which is equivalent to Eq. (1.4). q.e.d.

=E

T e
/0 i) (v Ad5,)

T
‘/ 2 (7) [V* AP dr
0

< CUE

7. Applications

Lemma 7.1. Suppose that T >0, ¢ > 1, and f € L4 (vy) N C?(G)
such that Af € LY (vr). Then f,Af € L1 (1) for 0 <t <T and
(7.1)

5 [raniwa=3 [ menarway jorai 0<e<t,

ot

Proof. Since the Ricci curvature is left translation invariant, it is
bounded on G. Applying the Li — Yau Harnack inequality (see Eq. (D.6
below), we have for any v > 1/2 that there exists K = K (v,T) < oo
such that

dy
(7.2) pi(x) < K <§> pr(z) ¥ (x,t) € G x (0,T].

In particular it follows that

T

dv/q
(73 Il §K<7> sy ¥ 0<t<T.
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Using ¢ —1=(¢—1)"" and Eq. (1.6), it follows that

[ ol @lde= [ 20217 @) an 0)
G G

pe (x)
et I
< sy 0 ( “E2L = )
(r.4) <l 50 (s o)

Therefore the integrals in Eq. (7.1) are well defined. Moreover,
/ e (y, ) f(z)de = / Dy (y_la:) f(z)de = / pt (z) f (yx) dx
G G G
— [ foL,@m@)da
G

and for any r € (1,q),
I o Lllr = [ @l @) do = [ 17 @ (57'0) da

133
/!f o’ 4 ))dw)

c(kt)q(qg—r -1
S”f”Lq(Vt)eXp< ata —r) W)

wherein we have used Holder’s inequality and Eq. (1.9) for the last
inequality. From these remarks and the fact that A (f o Ly) = (Af)oL,,
it suffices to prove Eq. (7.1) in the special case when y = e. From Eq.
(7.2) and the dominated convergence theorem, the function

- / f(z)dv (z) forall te (0,7
G

is continuous. Our goal now is to show F' is differentiable and that
=1 Jo Af () dy () for all 0 < ¢ < T. To prove this suppose that
h € C* (G) and consider,

- / f (@) h(z) py () do.

To simplify notation in the computatlon below, let {4; }dinfg be an or-
thonormal basis for g, Vf = (A f) L and V-U = ZAZ-UZ-, where
U= (Ui)?i:nfg with U; € C* (G) . Using 8tpt (z) = 3Ap; (z), and a few
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integration by parts we find
=5 I @h@ A () da

1
:§/GA(fh) pthZQ/G(fAh—i—ZVf-VthhAf) pedV

1

za/G(fAthhAf) pth—/va'[VhPt] av

:%/(M“Mf) Pth—/f[Ahthth.th] dv

:——/fAhdut /th Edmﬂ— /hAf du;.

Therefore,
: 1 1 1
Fy (t) — 5/ Af dve =5 Ry (t) = S (1) + 5U (1),
G
where, making use of Egs. (7.3) and (1.4), we have

Ru (1< [ 111AR] d < Ly 1A,

T\
(76) <K () 1Dt 188

S () =Z/

(7.7) < C’q\/TK <?>dw§i:(

U001 < 1S 0= 1] do < 1Ay 11 = Bl

)

Li(vr)

T\
(7. <K () 18 11 = Bl -

From [22, Lemma 3.6], we may choose {h,},—; C C°(G,[0,1]) such
that h,(z) = 1 whenever |z| < n and sup,, Sup,cq ‘ ([1,-1 . flikhn> (az)‘

< oo for all 41,...,i, € {1,2,...,dimg} and k& € N. It then follows from
Egs. (7.3), (7.5), (7.6), (7.7), and (7.8) and the dominated convergence
theorem that, as n — oo,

Pro (0= [ AF | <5 Ra, (O] % 151, (0] + 5 1V, (0] =0

N =

<
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uniformly on compact subsets of (0,7"). Moreover, by the dominated
convergence theorem, Fy, (t) — F'(t) as n — oo and therefore we may
conclude that F'(t) = 3 [, Af dy, for t € (0,T). g.e.d.

7.1. The proof of Proposition 1.8.

Proof. Now suppose, as in Proposition 1.8, T' > 0, ¢ > 1, and f €
L% (vp) such that Af = 0. As in the proof of Lemma 7.1, we may reduce
the proof to the case where y = e. Let F (t) := [, fdv;. By Lemma 7.1
and the mean value theorem, F'(T) = F (t) for all t € (0,7) and in
particular, F'(T") = limy o F'(t). We are going to finish the proof by
showing limy o F' (t) = f (e) . To do this, let h € Cg° (G, [0,1]) be chosen
so that h (z) =1 if |z| < 1. Then

F(t)=/Gf<x>h<x>pt<x>dx+r<t>,

where
|r<t>|gL|f<x>||1—h<x>|pt<x>dxg/x>1|f<x>|pt<x>dx
= T P (2) vy (x su P (2)
a9 = [ i) B L

Since limy g [, f (z) h(x)pi (x)dx = f(e)h(e) = f(e), it suffices to
show limy o |7 (t)] = 0. To estimate r (¢) we will make use of some crude
upper and lower bounds on the heat kernel, p; (z), for example see [65,
Theorem V.4.4 or Theorem IX.1.2.] for more precise bounds. According
to either of these theorems, there exists a constant ¢ > 0 such that

ct=42 exp (—c || /t)

c~T=4/2 exp (—c‘l || /T)

- (5) e (1)),

From this estimate it follows that limgjosupjy>1 (Pt (z) /pr (7)) = 0
which combined with Eq. (7.9) shows limy g |r ()| = 0. q.e.d.

<

7.2. Applications to infinite—-dimensional groups. For this sec-
tion, suppose that G is a topological group, B is the Borel o — algebra
over (G, and Gy is a dense subgroup of G which is endowed with the
structure of an infinite-dimensional Hilbert Lie group. Further assume
that go := Lie (Gp) = TGy is equipped with a Hilbertian inner product,
(-, ) 0o We will also assume that (G, B) is also equipped with a proba-
bility measure, v, to be thought of as the “heat kernel” measure at some
time T' > 0 associated to the given inner product on gg. We will now
give two theorems which guarantee that v is quasi-invariant under both
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left and right translations by elements of Gg. The two cases considered
are where GG can be thought of as either a projective or inductive limit
of finite—-dimensional Lie groups.

Theorem 7.2 (Projective Limits). Suppose that T > 0, A is a di-
rected set, {Ga}ocq 15 a collection of finite dimensional uni-modular
Lie groups, and {mq : G = Ga}ocq 15 a collection of continuous group
homomorphisms satisfying the following properties.

1) B is equal to the o — algebra generated by the projections, {Ta} e 4 -

2) malg, 1 Go — Gq is a smooth surjection. Let dmy : go — 8a be the
differential of m, at e.

3) Vo = (ma), v =vom, ! is the time T heat kernel measure on G,
determined by the unique inner product. (-,-), on go which makes

d7ra|Nul(7ra) : Nul (Wa)l — fa

an isometric isomorphism of inner product spaces.

4) There exists k € R such that Ricy > kgq for all o € A, where Ric,,
is the Ricci tensor on G, equipped with the left invariant metric
determined by (-, )

o
Under these assumptions, to each h € Gg, v o R;l 18 absolutely con-

tinuous relative to v. Moreover, if Jy = d (1/ o R;l) /dv is the Radon-

Nikodym derivative of v o R;l with respect to v and 1 < q < oo, then

(710) il < exp <%dc: (e, h)) ,

where dg, is the Riemannian distance function on Go.

Proof. Since the estimate in Eq. (7.10) holds for ¢ = 1, we may
assume without loss of generality that 1 < ¢ < oco. Let H denote the
linear space of bounded measurable functions of the form f = u o m,,
where o € A and v : G, — R is a bounded measurable function on G.
Because of assumption 1., H is dense in L? (G, v). (An easy proof may
be given using a functional form of the monotone class theorem, see for
example [38, Theorem A.1 on p. 309].) By Theorem 1.5 in the form of
Eq. (1.7),

Va (dm - Ta (h_l))

Jo (@)= ——0

for x € G,

satisfies

kT)(g—1
1ol La(Ga ) < €XP <%d2@a (e, o (h))) for all 1 < g < 0.
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Using this result and assumption 3, if f = u o 7w, € H, then
/\f (h)| dv (= /\uowa (wh)| dv (z)
/ (70 (&) 7o (1)) i ()
—/ oy - 7 (1)) v (1)
Ga
- /G ot ()] (9) e (1)

An application of Holder’s inequality then implies,

/G 1F @h) v () < o, - 1ol o

(7.11) S e )

Now suppose that & € O ([0,1],Go) such that k (0) = e and k (1) = h.
Then the length of t — 7, (k (1)) € G, is given by

1 .
EGQ (ﬂ-a @] k) = /0 Lwa(k(t))il*ﬂ-a (kf (t)) o dt
Since
. d ~
Ly 1o (B (8)) = —loma (k (£)) ™ 7 (k (£ 4 5))
d _ .
= loma (KO k(t+9)) = dma (L. (1)

and

L k()14 T (k‘ (t)>
it follows that

1
des. (6,70 (B)) < Lo, (Ta o k) < / Lygyn.e ()
0
Taking the infimum over all such k implies
da, (€,ma (h)) < dg, (e,h) .
Combining this inequality with Eq. (7.11) gives the estimate,

112) [ 1f @l (@) < Ul exn ( “EHEat, (o).

The afore mentioned density of H in L?(G,v) along with Eq. (7.12)
shows the linear functional ¢ : H — R, defined by

- /G f (xh) dv ()

)

do

= ‘dwa (Lk(t)fl*/%(t)> .

dt =g, (k).
go
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extends uniquely to a continuous linear functional, @y, on L?(G,v)
satisfying

c(kT) (¢ = 1)

Tdéo (e,h) ) V feLi(G,v).
Since LI (G, v)* = LY (G, v), there exists J;, € LY (G,v) such that

c(kT)(qd —1
HJhHLq’(G,V) < exp <%déo (6, h))

|@UN9mm@wm{

and
— /Gf(a:) Jp(x)dv (x) forall fe L9(G,v).

Restricting this formula to H shows,

L r@viany = [ @ =)
(7.13) = / f(x)Jy (x)dv(z) forall feH.
G

Another monotone class argument (again use [38, Theorem A.1 on p.
309]) shows that Eq. (7.13) remains valid for all bounded measurable
functions, f : G — R. Therefore, we have shown that Jj := dVORgl/ dv
exists and satisfies the bound in Eq. (7.10). q.e.d.

We now turn to the inductive limit quasi-invariance theorem. The
following result is an abstraction of the quasi-invariance result in [18].
For related results of this type see, Fang [25] and Airault and Malliavin

[1].

Theorem 7.3 (Inductive Limits). Again, let T > 0, Gy C G, and
(G,B,v) be as described at the start of this section. Further assume
there exists, {Ga}toca» where A is a directed set and for each a € A,
G is a finite dimensional uni-modular Lie subgroup of Gy such that
Go CGg ifa<f. Letiq : Go — Go denote the smooth injection map.
The following properties are assumed to hold.

1) UaeaGq is a dense subgroup of Gj.
2) For all f € BC (G,R) (the bounded continuous maps from G to
R),

a—0o0

/fdy— lim (fOia)dVa,

where v, is the time, T, heat kernel measure on G, associated
to inner product, (-,-) defined to be the restriction of (-, ')go to
9o X fa-

3) There exists k € R such that Ricy, > kg, for all a € A, where Ric,

and g, are the left invariant Ricci and the metric tensors on Gg
induced by (-,-),,

o’
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4) For each o € A, there exits a smooth section, s, : Go — G, (i.e.
Sq ©tq = idg,) satisfying the following property. Given agy € A,
and k € C'([0,1],Gy) with k(0) = e, there exists an increasing
sequence, {on}oo C A (ie. ap < a1 < ag <...), such that

(7.14) lgy (k (1) = lim lg, (Sa,ok).
n—oo

(We do not assume that s, : Go — G, is a homomorphism.)

Under these assumptions, to each h € Gy, v o R;l 1s absolutely con-
tinuous relative to v and the Moreover, the Radon-Nikodym derivative,
Jp i=d (1/ o Rgl) /dv, again satisfies the bounds in Eq. (7.10).

Proof. As in the proof of Theorem 7.2 it suffices to assume ¢ € (1, 00)
throughout the proof. Let ag € A, h € G4, and ap < a1 < ag < -+ <
Qp < ... be as in item 4. above. By Theorem 1.5 in the form of Eq.

(1.7), the Radon-Nikodym derivative, J,, (), of vq,, (dm “San (h)_1> =

Va, (dz - h™1) relative to v, (dz) satisfies the estimate,

c(kT) (¢ ~ 1) _
1ot 2 (Gt ) < €XP (Td2 o (&177)

d2 (e, h))

o (T
p( q b gcan (San00)>7

where o is any path in C!([0,1], G, ) such that o (0) = e and o (1) =
h. Assuming the f € BC (G), by the definition of J,, and Holder’s
inequality,

/ 1f (@ )| v, () = / Jon (0)1f (@)] dva,, (2)

c(kT) (¢ —1
< ”‘f”Lq(GanWan) - €Xp <%€2Gan (Som ° U)) :

Using the assumptions in items 2. and 4. of the theorem, we may pass
to the limit (n — 00) in this inequality to find,

119) [ 1f (oWl ) < 1l o (S0, ).

Optimizing this inequality over o € C! ([0,1],Go) joining e to h gives
(7.16)

c(kT)(¢d —1
1l @) < 1 oo (P, e

Up to now we have verified Eq. (7.16) for any h € Uae 4G4 . As the latter
set is dense in Gg, the dominated convergence theorem along with the
continuity of d2G0 (e,h) in h allows us to conclude that the estimate in

| /\

n
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Eq. (7.16) is valid for all h € Gg. Since BC (G,R) is dense in L? (G, v)
(again use [38, Theorem A.1 on p. 309]) and because of Eq. (7.16), the
linear functional, ¢y, : BC' (G) — R defined by

(7.17) on () = /G f (ah) dv (x)

has a unique extension to an element, @y, of L (G, v)* satisfying

(7.18)
60 (] < 1l ainy -ep (%dé (e h)) v feLiG).

As in the latter part of the proof of Theorem 7.2, the estimate in Eq.
(7.18) implies the existence of a function, J, € LY (G,v), such that

(7.19) on () = /G £ (@) Ty () dv (x)
and

c(kT) (¢ —1
HJhHLq’(Gﬂ,) < exp <%déo (e, h)) .

Furthermore, from Eqs. (7.17) and (7.19) it follows that

(7.20) /th )dv (z /f ) Jp () dv (z) for all f € BC(G).

Another monotone class argument [38, Theorem A.1 on p. 309] then
shows Eq. (7.20) is valid for all bounded measurable functions, f : G —
R. Hence v (dzh™') = Ji (z) v (dz) and J, (z) satisfies the estimate in
Eq. (7.10). q.e.d.

Corollary 7.4. Under the hypothesis of either Theorem 7.2 or 7.3,
the heat kernel measure, v, is quasi-invariant under left translations by
elements of h € Gy. Moreover, the Radon-Nikodym derivative, J,ll =
d (VOLﬁl) /dv satisfies the same bound as d (VORgl) /dv which is
given in Eq. (7.10).

Proof. Since the heat kernel measures {vq},.4 on the Lie groups,
{Ga}oea » are invariant under inversion, z — x =1, it follows that v also
inherits this property. Hence if f : G — R is a bounded measurable
function, then

/f (hz) dv (z /f (ha™Y) dv (z) = /f((:z:h‘l)_l) dv (z)
= [ e @@ = [ 1@ 5 @ @),

from which it follows that J} (x) = J,-1 (z71) for v — a.e. x. Therefore,

c(kT)(g—1 _
sy = Wi lsny < o (S, (eon))
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which completes the proof since d200 (e,h™!) = d200 (h,e) = déo (e, h)d
q.e.d.

See Driver [18] for an explicit application of the projective limit The-
orem 7.2 in the setting of loop groups and see Driver and Gordina [21]
for an application of the inductive limit Theorem 7.3 to an infinite di-
mensional Heisenberg group setting.

Appendix A. A commutator theorem

In this section we will develop the abstract functional analytic results
which were used in the proofs of Theorems 4.1 and 4.3. Results similar
to the next theorem may be found in Briining and Lesch [7], Xue-Mei
Li [44, 45] and in Bueler [8].

Theorem A.1. Let W, X, and Y be Hilbert spaces and A : W — X
and B : X — 'Y be densely defined closed (unbounded) operators such
that Ran(A) C Nul(B). Let Q : X — W @Y be the unbounded linear
operator defined by: D(Q) = D(A*) N D(B) and for z € D(Q), Qz =
(A*z, Bx). Let us also define R: WaY — X by D(R) = D(A)&D(B*)
and R(w,y) := Aw + B*y. Then

1) Ran(A) and Ran(B*) are orthogonal.

2) R is closed.

3) @ = R* is a closed densely defined operator.

4) The operator, L := AA* + B*B, on X is densely defined, non-
negative, and self adjoint operator. Moreover, L := Q*Q.

Proof. We will denote all of the inner products on these Hilbert spaces
by (-,-). Let w € D(A) and y € D(B*). Since Ran(A4) C Nul(B), 0 =
(BAw,y) = (Aw, B*y) which proves item 1. For item 2., suppose that
(wn,yn) € D(R) are such that there exists (w,y) € W @Y and x € X
such that

(Wn, yn) = (w,y) as n — oo and
R(wn, yn) = x as n — oo.
We must show that w € D(A), y € D(B*) and that x = Aw + B*y. We
are given that Aw,,+ B*y, — x as n — oco. But by the first item and the
Cauchy criteria, this implies that both lim, ., Aw, and lim, ., B*y,
exist. Because both A and B* are closed, this implies that w € D(A),
y € D(B*) and that
Aw+ B*y = lim Aw, + lim B*y, = lim (Aw, + B*y,).
n—oo n—oo n—o0

Hence we have proved item 2. To check item 3, note that as R is
closed, it follows that R* is densely defined. Therefore we need only
show that R* = @. For this, let us recall that x € D(R*) and R*z =
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(w, ) i (w,y), (W, y)) = (z, R@w',y)) for all (w',y) € D(R). This is
equivalent to the following statements:
o (w,wY+(y,y) = (x, Aw'+B*y) for allw’ € D(A) andy’ € D(B*).
o (w,w') = (z, Auw') and (y,y') = (z, B*y') for all v’ € D(A) and
y' € D(B*).
e x € D(A*), x € D(B*) =D(B), A*z = w and Bx = Bz = y.
e £ € D(Q) and Qz = (w, y).

Thus we have proved item 3. of the theorem. Item 4. By a Theorem
of Von-Neumann, [52, Theorem X.25], Q*Q is a non-negative densely
defined self adjoint operator on X. So it suffices to show that Q*Q) =
AA* + B*B. By items 2. and 3., Q* = R** = R. Therefore, Q*Q = RQ.
Now the following are equivalent:

e z € D(RQ) and RQz = «'.
e x € D(A*) ND(B), Qx := (A*z,Bzx) € D(R), and R(A*x, Bx) =
x'.
e x € D(A*)ND(B), A*x € D(A), Bx € D(B*) and AA*z+B*Bx =

f]}'/

e x € D(AA*) ND(B*B) and AA*x + B*Bx = 2.
e x € D(AA* + B*B) and AA*z + B*Bx = 2/.
This shows Q*Q) = AA* + B*B and thus completes the proof.
q.e.d.

Theorem A.2 (Commutator Theorem). Let W, X, Y, and Z be
Hilbert spaces and A: W — X, B: X =Y, and C :Y — Z be densely
defined closed (unbounded) operators such that Ran(A) C Nul(B) and
Ran(B) C Nul(C). Let L := AA*+ B*B and S := BB* + C*C. Then
Be 'y = e 9Bz for all x € D(B) and any t > 0.

Proof. Let A > 0. Observe that BL = BB*B on D(BL) = D(AA*)N
D(BB*B) and that SB = BB*B on D(SB) = D(BB*B). In particular

we have shown

(A1)  SB=BB*B = BL on D(BL) = D(AA*) N D(BB*B)

and hence,

(A.2) (1+AS)B = B(1+AL) on D(BL).

If 2 € D(B) and 2’ := (1 + AL) 'z, then 2/ € D (L) € D (B) and
L' =(1+AL)2' — X2’ =2 — X2’ € D(B).

Therefore z' € D (BL) and so by Eq. (A.2) applied to 2/ = (1+ AL)
we discover that,

(1+XS)B(1+AL) '2=B(1+AL)(1+ L)'z = Ba.
Applying (1 4+ A\S )_1 to both sides of this equation shows
(A.3) B(14+ ML) =1+ AS)"'Bon D(B).
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Multiplying Eq. (A.3) on the right by (1+ AL)™" gives
BA+A)2=(1+AS)'B1+AL)"'=(1+AS)2Bon D(B),

wherein we have used Eq. (A.3) again in the second equality. Continuing
this way inductively allows us to conclude.

(A4) B(1+AL)™™ =(14+XS)""Bon D (B) forall n € N.

To complete the proof the theorem recall et = s—1lim,,_ o0 (1 + %L) -
and that e = 5 — lim,_y 00 (1 + %S) ~" . Hence, taking \ = t/n in Eq.
(A.4) and then passing to the limit allows us to conclude

lim B (1 + 3L> z = lim (1 + 35) Bz =e¢ "Bz
n—00 n n—00 n
for all x € D (B).
Since B is closed, it follows that, for all x € D (B), that

n—oo

e"rr = lim (1 + iL> x € D(B)
n
and

Be 'z = lim B <1 + %L) r=e Bz,

n—oo

q.e.d.

Appendix B. A Kato type inequality

Let E be a real Euclidean vector bundle over a Riemannian manifold,
M, T (FE) (T (E)) be the smooth (compactly supported) sections of
E, and H := L?(E) be the space of square integrable sections of E.
Further assume that F is equipped with a metric compatible connection,
VE and that O = OF is the associated Bochner Laplacian on '™ (E) .

To be more explicit, if {ei}ﬁinlk(E) is a local orthonormal frame, then

Of =t (VIMOEVEF) = 37 (VEVEf =V, f).

(2

To simplify notation in the computations below, we will drop the super-
scripts, £ and T'M from the symbols since they can be deduced from
the context.

Notation B.1. Given a measurable section, e : M — E, and f € H,
let

sgn, (f) = 1f¢o‘—§, + 1p=0e = {

With this notation we have the polar decomposition, f = |f| sgn, (f),
which is valid no matter what the choice of e.
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Theorem B.2 (Kato’s Inequality). Let e > 0, f € ' (E), |f|. =

\/ |fI° + €2, and f.:= f/ |fl.-Then

dlfl. = <fe,Vf> and
By dolslo= e S (19 [ ven)[) + (50)

(B.2) > (f..0f).
Moreover if p € C* (M), and f € CF (E), then
(B.3) (Of wsgn. () < (If], Aow)

where e is any measurable section of E such that (Of (z),e(x)), =0
and |e(x)|, =1 on the set where f = 0.

Proof. This theorem is mostly a straightforward computation. (See
[35], where a local coordinate version of this calculation is done.) We
start by computing the gradient of |f|_ as

1 2
d|f]. = ——=——==d|f" = (f,V.f).
211" + &2 \/\f\ + €2
With this in hand we have the following formula for the Hessian of |f|_;

valfl. =~ (11 +2) " v
b= (VY N+ {7 52,5)).

VI +e?

Taking the trace of this result gives

olflo=— (17 +2) ULV

e <Z Vo P+ (. Df>)
VIFP+e2 \

which is equivalent to Eq. (B.1). Equation (B.2) follows by the Cauchy-
Schwarz inequality which implies

Ve P = [{ Vs >

If we now assume that f € I'°(E) and ¢ € C*(M,[0,00)), then
multiplying Eq. (B.2) by ¢ and integrating gives,

(B.4) / <Df, - ><,odvs /MA0|f|ESDdV: /M|f|EA090dV

~ 12 9
fg * |V62f| 2 0.

€
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where we have done two integrations by parts to get the last equality.
Letting € | 0 in Eq. (B.4) then implies

(B.5) / (Of seno () pdV < / 1| AodV
M M
which is to say

(B.6) (Of,seng (f)) < Aol|f] (in the distributional sense).

If we now choose e to be a measurable section of F such that |e| = 1 and
(Of,e) = 0, then (Of,sgng (f)) = (Of,sgn. (f)) and we may rewrite
Egs. (B.5) and (B.6) as,

/<Df,sgne(f)>sodV§/ | f] DopdV
M M

and
(Of,sgn, (f)) < Ag|f| (in the distributional sense).
These last two equations are equivalent to Eq. (B.3). q.e.d.

Appendix C. A local martingale

In this appendix we will continue to use the notation in Section 5.1
unless otherwise stated.

Lemma C.1 (Local martingale lemma). Let l; € R be an adapted
continuously differentiable real valued process, by € T, M,

t ~
(C.1) b= Qy [/0 Q! (%@) db; + 50] )

ac QL (M), and
(C.2) Zy o= (ag (30) 0 //¢) b — day (Z4) by,
be as in Eq. (5.10). Then Z; is a local martingale whose Ito differential

s given by

07, = (V) juanyae) (S4) o /s + (ar (51) 0 /) (%@) b,

(C3) — (V//tdbtat) (Et) Zt.

Proof. The proof of this lemma is purely a computation. For the sake
of the reader’s understanding we will give a slightly inefficient proof
designed to motivate the form of Z; in Eq. (5.10). Let a; be as in Eq.
(5.9) and then set

Ny :=a; (E4) 0/ /4.
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Then by It6’s lemma in Eq. (5.2), Theorem 4.1, and Bochner identity
in Eq. (4.3), we find

dNy = (V//tdbtat) (X¢)o /)t + % (O —=A)ay (X4)) o //edt
(C4) = (V//tdbtat) (Et) o //t + % [at (Et) o Ric O//t] dt

Also by It6’s lemma in Eq. (5.1) and item 4. of Theorem 4.1,

d[day (30)] = d [(e@—ﬂﬁo/%a) (zt)]

(C.5) = (v//tdbt [G(T_t)&’/zfsab (30) = (V) )an, [0ae]) ().

Now suppose ¢4 € T, M and gt € R are arbitrary continuous Brownian
semi-martingales such that

dl; = oy db, + By dt and dl; = Gy db, + By dt

with oy, B¢, @&, and B; being continuous adapted processes with values
in End(T, M), T,M, T, M*, and R respectively and let

(C6) Zt = Ntft — (5at) (Et) Zt-

Making use of Egs. (C.4) and (C.5), the It differential of Z in Eq.
(C.6) is,

dZy = (V) ,ap,at) (Be) 0 /[ele + 1 [a¢ (3¢) o Rico/ /by dt
+ (a¢ (X¢) o //¢) [owdby + By dt] (v//teiat) (X4) o //rape;dt
(Ve [0as]) (Et) 0y — Say (5y) [dtdbt n /idt]

(V//te 5(115)
= (Vv ar) (Z¢ ) //tft + (ar (Z¢) 0 //¢) cvpdby
- (v//tdbt 5(115]) ( t) ¢ — day (Et) G dby
(©.7)

3 [ae (B0) o Rico//uli] + (ar (30) 0 / /1) Be
i < + (V//teijt) (3t) o //vawei — 8ay (2¢) Br — (V) fre, [0as]) auei ) .

Our goal is to choose ay, By, &, and B; in such as way that Z; is a local
martingale. To do this we need to make the term in the parenthesis
in Eq. (C.7) vanish. Grouping the terms according to the number
of derivatives on a;, the term in parenthesis in Eq. (C.7) will vanish
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provided
L a0 (20) o Rico/ /o] + (ar (Si) o /1) B = O,

2
(V//teiat) (X4) o //rawe; — day (54) B, =0,
and (V//tei [5at]) are; = 0.
Moreover because of Eq. (4.1), these equations may be satisfied by
choosing @ = 0 (so that ¢, is differentiable and %t =f,),

1 1
Br = _5//;1 Ric //ely = —5 Ric//* 4y,
and ~
~ dl
ay = Belr,m = d_ttITxM-
Thus we have shown,
Zt = (at (Et) 9} //t) Et — 5(115 (Et) gt,
is a local martingale provided /, is an adapted C! — process and ¢ solves
dly 1.,
) = - — t.
(C 8) dft dt dbt 5 Ric Et d
To solve this equation for ¢, let @Q; solve the ODE in Eq. (5.3) and
write ¢ = Q¢ky where Ky := Q; ¢,. Plugging this expression for ¢; into
Eq. (C.8) using,

de, = —% Ric//t Qikydt + Qudky,
implies,
L Rie// db g Lpiss
—5 Ric//t Qikidt + Qidky = Edbt — 5 Ric//t Qiky dt

from which we learn, dk; = @, ldd—ggdbt. Integrating this equation and
multiplying the result on the left by Q; gives Eq. (C.1). Equation (C.3)

now follows from Eq. (C.7) with @ =0 and oy = %ITZM- q.e.d.

Appendix D. Wang’s dimension free Harnack inequality

Suppose that pr(-,-) > 0 is the heat kernel at time 7" > 0 on a
complete connected Riemannian manifold (M) and for measurable f :
M — [0,00), let

<&mm:@mmmmwww

Hence if f € L? (V) , then Prf = eTBo/2 f- The following lemma reflects

the fact that (L9)* and L7 are isometrically isomorphic Banach spaces
for 1 < g < oo and ¢ =¢q/(q— 1) — the conjugate exponent to gq.
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Lemma D.1. Let z,y € M, T > 0, q € (1,00), and C € (0,00].
Then

(D.1) [(Prf)(x)]? < CU(Prf?) (y) forall f >0
if and only if

(D.2) < /M [M} . pr (y, 2) dV (z)) " <c

pr (Y, 2)

Proof. Since

_ [ pr(@2) z z z
(Pef) (@) = [ P G pr ()Y (2),
if du(2) :=pr(y,2)dV (z) and g (x) := %, then
(0.3) (Prf) () = [ 1@)9@)dua).

Since g > 0 and L7 (u)* is isomorphic to L¢ (x)* under the pairing in
Eq. (D.3), it follows that

z) dp () Prf)(z
loll gy = sup 227 _up LD
£20 ”fHL‘I(;L 120 [(Prf9) (y)]
The last equation may be written more explicitly as,
1/d

(/ [pT(x,Z)r/pT(y,z)dV(z)> — sup (Prf) (x)

w Lpr (y:2) 720 [(Prfa) (y)'/*

and from this equation the lemma easily follows. q.e.d.
The following theorem appears in [66, 67] — see also [2].

Theorem D.2 (Wang’s Harnack inequality). Suppose that M is a
complete connected Riemannian manifold such that Ric > kI for some
keR. Then forallg>1, f >0, T >0, and x,y € M, we have

D) Pr) ) < ) e (o g 02)).

where ¢ = q/ (¢ — 1) is the conjugate exponent to q.

In applying Wang’s results the reader should use £k = —K, V = 0,
and replace T by T'/2 since Wang’s generator is A rather than A /2.

Corollary D.3. Let (M, g) be a complete Riemannian manifold such
that Ric > kI for some k € R. Then for every y,z € M and q € [1,0),
(D.5)

(] [y ayav @) < e (WD D, )

M LPT (27 LE)
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where ¢(+) is defined as in Eq. (3.1), pt (z,y) is the heat kernel on M
and d (y, z) is the Riemannian distance from x to y for x,y € M.

Proof. From Lemma D.1 and Theorem D.2 with

g k 1 koo,
C =exp <E kT _ 1d (y,z)> = €xp <q——1ﬁd (y,2) |,

it follows that it follows that

(, [22] st ra <z>)”q' com (0.

Using ¢ — 1 = (¢ — 1)_1 and then interchanging the roles of ¢ and ¢’
gives Eq. (D.5). q.e.d.

For comparison sake, recall that the classical Li - Yau Harnack in-
equality (see Li and Yau [43] and Davies [14, Theorem 5.3.5]) states if
a>1,s>0, and Ric > —K for some K > 0, then

(D6) (y’:”)) < <t+8>da/2exp (ad? (y.2) | d-akKs >

Prys (2, @ t 2s 8(a—1)

for all z,y,2 € M¢ and t > 0. However when s = 0, Eq. (D.6) gives no
information on p; (y,z) /p¢ (2, ) when y # z.

Remark D.4. Since our heat equation is determined by A(/2 rather
than Ag, the reader should replace ¢t and s by ¢/2 and s/2 when applying
the results in [43, 14].

Appendix E. Consequences of Hamilton’s estimates

Let T € (0,00), M (d = dim (M)) be a complete Riemannian mani-
fold with Ric > —KT for some K > 0, and let V (z,r) := Vol (B (x,r))
be the volume of the ball, B (z,r), centered at x € M with radius r > 0.
Suppose, for 0 < ¢ < t1, that u (¢,x) is a positive solution to the heat
equation, %u = %Au. The Hamilton type gradient bounds [34, 59, 41]
state that if

m:=sup{u(t,z):0<t<t;, z€ M},

then
(E.1)
t|Vlog(u (t,z))|* < 2(1 4+ Kt)log(m/u (t,z)) for all (t,z) € [0,t1] x M.

The standard heat kernel bounds (see for example Theorems 5.6.4, 5.6.6,
and 5.4.12 in Sallof-Coste [55] and for more detailed bounds see [43,
14, 54, 15, 31]) state that there exist constants, ¢ = ¢(K,d,T) and
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C=C(K,d,T), such that,

c d*(z,y)
v (evin) (o) |
C d*(x,
(E2) S p(t,ﬂf,y) S W exp <—C¥> ,

for all z,y € M and t € (0,T].
Let s € (0,7],0€ M, t; = s/2 and u (t,7) = ps/24+ (0, z) . Combining
Egs. (E.1) and (E.2) then shows,

ﬂvx logps/Z—i-t (07 .Z'))P
(E.3)

< 21+ Kt)log oV (0V5ATTR) ( d2<o,y>>

c V(O7 3/4> s/2+t

Taking t = s/2 in Eq. (E.3) and then replacing s by ¢ in the resulting
inequality implies,

t
§\Vx log p; (0,3:))]2

R

Using the volume estimate (see [10] and [55, Theorem 5.6.4]),
V(x, o) o\ d
=\3 - <
Viz,s) = <s) eXP( (d 1)KO‘> VreMand 0<s <o,

it follows that
(E.5)

V(x,\/t/2)
V(x,\/t/4)

§2d/2exp< (d—l)Kt/Z)de/zexp< (d—l)KT/Q).

Combining Eqs. (E.4) and (E.5) then allows us to conclude that there
exist constants, c¢; and ¢y depending on T', K, and d such that
(E.6)

|V logp: (0,2))| < <c_1 d(o,z)

+c
\/% 2

For this estimate in the compact case with its relations to stochastic
analysis, see [17, 47, 62, 64, 36|.

> for all ¢t € (0,7] and o,z € M.
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Proposition E.1. Continuing the notation and assumptions used
above, there exist constants, C1 (d, K) and Co (d, K,t) such that,
(E.7)

/ exp (A |V logpt (0,2))|) pr (0,2) dx < C (d, K, t) exp (C (d, K) \?/t)
M
for allo e M and t € (0,T).

Proof. Let v (r) := Vol(B(o0,r)),k:=+/K/(d—=1),v:=(d—1)k =
K (d — 1), and wg—1 be the volume of the standard d—1 sphere. Using
Bishop’s comparison theorem (see [9, 56]) which states,

. d—1
(E.8) dv (r) < wa_y sinh Kkr dr < <wd—1>d—1 er(d=1)r ..
- K ~\ 2 ’

along with the estimates in Eqgs. (E.2) and (E.6), we have

| exp A9 10 s (0,2))) 1 (0,2) da
M

—age 7 e T 0o
core [ en (3 (Gof)oo (-5

(E.9)

% -t —d/2 = C_l z _g 2 yr
§C< 2/{) t ; exp | A \/%—l—CQt exp 5 )€ dr
(E.10)

_ —d/2 al) [~ &) C,
=C(d,K,T)t exp()\\/%>/0 exp<<7+)\t)r>exp< 2t7‘>d7‘.

Equation (E.7) follows easily from Eq. (E.10) and the following two
estimates
i < 1 2 )‘_2
Cl\/% =5 (Cl + 2t>
and

[ (Gea) ) (-5)
< [Lew(ra5))on (-5 o

oo

(E.11) — \/27t/C exp (i (v+ AC—2>2> .

2C t
q.e.d.

Remark E.2. When M = R? using Laplace asymptotics, one may
show;

lim ¢ Vi d_l/ exp (A |Vglogp: (0,))|) pt (0, z) dz = MMy N> 0.
Rd

d—o0
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In particular, this implies that we can not take both C'(d,0,t) and
C (d,0) in Eq. (E.7) to be independent of the dimension, d = dim (M) .
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