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ISOTROPIC JACOBI FIELDS ON COMPACT
3-SYMMETRIC SPACES

JosE CARMELO GONZALEZ-DAVILA

Abstract

We prove that a compact Riemannian 3-symmetric space is
globally symmetric if every Jacobi field along a geodesic vanishing
at two points is the restriction to that geodesic of a Killing field
induced by the isotropy action or, in particular, if the isotropy
action is variationally complete.

1. Introduction

A Jacobi field V' on a homogeneous Riemannian manifold (M, g)
which is the restriction of a Killing vector field along a geodesic is called
isotropic [10]. It means that V is the restriction of an infinitesimal
motion of elements in the Lie algebra of the isometry group I(M,g)
of (M,g). Moreover, if V vanishes at a point o of the geodesic then
it is obtained as restriction of an infinitesimal K-motion, being K the
isotropy subgroup of I(M,g) at o € M. This particular situation was
what originally motivated the term “isotropic” (see [2] and [3]).

The Jacobi equation on a symmetric space has simple solutions and
one can directly show that all Jacobi field vanishing at two points is
isotropic (see for example [4]). In the case of a naturally reductive space,
the adapted canonical connection has the same geodesics and the Jacobi
equation can be also written as a differential equation with constant
coefficients (equation (2.7)). Using this fact, I. Chavel in [2] (see also
[3]) proved that all simply connected normal Riemannian homogeneous
space (M = G/K, g) of rank one with the property that all Jacobi fields
vanishing at two points are G-isotropic, i.e. restrictions of infinitesimal
G-motions along geodesics, are homeomorphic to a rank one symmetric
space. Afterwards, W. Ziller in [10] proposed to examine conjectures
like:

A naturally reductive space with the property that all Jacobi fields
vanishing at two points are isotropic is locally symmetric.
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In this paper, we consider a Riemannian 3-symmetric space (M =
G/K,0,<,>), where G is a compact connected Lie group acting ef-
fectively and the inner product <, > determines an adapted naturally
reductive metric on M, or equivalently, the canonical almost complex
structure J is nearly Kéhlerian [5]. Then, we find geodesics on non-
symmetric spaces (M = G/K,o0,<,>) admitting Jacobi fields vanish-
ing at two points which are not G-isotropic. It allows us to prove the
following theorem:

Theorem 1.1. A compact Riemannian 3-symmetric space (M =
G/K,o0,<,>) with the property that all Jacobi fields vanishing at two
points are G-isotropic is a symmetric space.

When (M = G/K,0,<,>) is moreover simply connected, irreducible
and not isometric to a symmetric space, G coincides with the identity
component I,(M, g) of I(M, g) [8, Theorem 3.6]. Then, we have

Corollary 1.2. A compact irreducible simply connected Riemannian
3-symmetric space is a symmetric space if and only if all Jacobi field
vanishing at two points is isotropic.

R. Bott and H. Samelson introduced in [1] the notion of variationally
complete action and they obtained that the isotropy action, i.e. the
action of an isotropy subgroup K as subgroup of G, on a symmetric
space of compact type is variationally complete (for the definition of
variationally complete action, see section 2). Using Lemma 2.1, we can
conclude

Corollary 1.3. If the isotropy action of K on a compact Riemannian
3-symmetric space (M = G/K,o0,<,>) is variationally complete then
1t 1s a symmetric space.

2. Variational completeness. Isotropic Jacobi fields

Let (M, g) be a connected homogeneous Riemannian manifold. Then
(M, g) can be expressed as coset space G/K, where G is a Lie group,
which is supposed to be connected, acting transitively and effectively on
M, K is the isotropy subgroup of G at some point 0o € M and g is a G-
invariant Riemannian metric. Moreover, we can assume that G/K is a
reductive homogeneous space, i.e., there is an Ad(K)-invariant subspace
m of the Lie algebra g of G such that g = m @ ¢, £ being the Lie algebra
of K. (M = G/K,g) is said to be naturally reductive, or more precisely
G-naturally reductive, if there exists a reductive decomposition g = m®#e
satisfying

(2.1) <[X,Y|m Z >+ < [X,Z]m,Y >=0

for all X,Y,Z € m, where [X,Y];, denotes the m-component of [X,Y]
and <, > is the metric induced by g on m, or equivalently, [X, |y : m —
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m is skew-symmetric for all X € m. When there exists a bi-invariant
metric on g whose restriction to m = £ is the metric <, >, the (naturally
reductive) space (M = G/K,g) is called normal homogeneous. Then,
for all X,Y,Z € g, we have

(2.2) <[X,)Y],Z >+ < [X,Z],Y >=0.

For each X € g, the mapping v : R x M — M, (t,p) € R x M —
Yi(p) = (exptX)p is a one-parameter group of isometries and conse-
quently, v induces a Killing vector field X* given by

d
2.3 X =— tX)p, e M.
(2.3) » dt|t:0(exp o, P
X* is called the fundamental vector field or the infinitesimal G-motion
corresponding to X on M. If G = I,(M, g), then all (complete) Killing
vector field on M is a fundamental vector field X*, for some X € g.
For any a € G, we have

(aexptX)a™t = exp(tAd,X).
This implies
(2.4) (Ada X )z, = asp X,

p?
where a,, denotes the differential map of a at p € M.

The K-orbit O,(K) = {kp | k € K}, for each p € M, is a regular
submanifold of M and, from (2.3), its tangent space T,0,(K) at p is
given by

T,0,(K) = {A} | A€ t}.

A geodesic v = v(t) of (M = G/K,g) is called K-transversal if
for each t € IR the tangent vector 7/(t) is orthogonal to the K-orbit
Oy (K) at y(t). Since a geodesic which is orthogonal to a Killing vec-
tor field at one of its points it is orthogonal to it at all of points, this
condition is equivalent to require only the existence of a t, € IR such
that +'(t,) is orthogonal to O,,)(K) at ¥(t,). A Jacobi field V' along
v is said to be K-transversal if it is derived from a geodesic variation ¢
of v in which all geodesic t — ¢(t, s,) is K-transversal. Any restriction
of a Killing field to a K-transversal geodesic induced by the isotropy
action is K-transversal [1, Proposition 6.6].

The action of K on M = G/K, as subgroup of G, is said to be
variationally complete [1] if every K-transversal Jacobi field V' along a
(transversal) geodesic v with V (tp) = 0, for some t( € IR, and for which
there exists t1 # tg such that V(¢1) is tangent to the K-orbit of v(¢1) is
G-isotropic.

Let K, = {a € G | a(p) = p} be the isotropy subgroup at a point
p € M. In particular, K, = K, where o denotes the origin of G/K.
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Let a € G such that p = a(0). The elements of K, are obtained by
conjugation of elements of K by a, i.e.,

K, = aKa™!
and hence, the Lie algebra £, of K, is given by
(2.5) b, = Ad,t.

From (2.4), a geodesic v on (M, g) is K-transversal if and only if ac~ is
K ,-transversal and V' is a K-transversal (resp. G-isotropic) Jacobi field
along 7 if and only if a,V is Kj,-transversal (resp. G-isotropic) along
ac~y. Hence, taking into account that any Jacobi field V' along a geodesic
7 starting at a point p € M with V(0) = 0 is always K-transversal, we
directly obtain

Lemma 2.1. If the isotropy action of K on M = G/K is variation-
ally complete, then:

(i) the action of the isotropy subgroup K, at p, for all p € M, is
variationally complete;
(ii) all Jacobi field vanishing at two points is G-isotropic.

Next, let T denote the torsion tensor and R the curvature tensor
of the canonical connection V of (M,g) adapted to the reductive de-
composition g = m @ ¢ [7, I, p.110]. Because V is a G-invariant affine
connection, these tensors (under the canonical identification of m with
the tangent space T, M of the origin 0) are given by

(2.6) T(X,Y)=—[X,Y]n , Ro(X,Y)=adixy)

for X, Y € m, where [X, Y] denotes the ¢-component of [X,Y].

On naturally reductive spaces, V and V have the same geodesics and,
consequently, the same Jacobi fields (see [10]). Such geodesics are orbits
of one-parameter subgroups of G of type exptu where v € m. Then,
taking into account that VI' = VR = 0 and the parallel translation with
respect to V of tangent vectors at the origin o along ~(t) = (exptu)o,
u € m, ||ul]| = 1, coincides with the differential of exptu € G acting on M,
it follows that the Jacobi equation can be expressed as the differential
equation

(2.7) X'-T,X'+R,X =0

in the vector space m, where T.X = ~T(u,X) = —[u, X]w and R, X =
R(u, X)u = [[u, X]¢, u]. The operator Ty, is skew-symmetric with respect
to <,>, R, is self-adjoint and they satisfy [4]

- 1~
(2.8) R,=R, — ZTf.
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A Jacobi field V' along «(t) = (exp tu)o with V(0) = 0 is G-isotropic if
and only if there exists an A € € such that (see [4])
(2.9) V'(0) = [A,u].

Then, V = A*o~.
We shall need the following characterization for G-isotropic Jacobi
fields on normal homogeneous spaces (M = G/K, g).

Lemma 2.2. A Jacobi field V along v(t) = (exptu)o on a normal
homogeneous space (M = G/K,g) with V(0) = 0 is G-isotropic if and
only if V'(0) € (Ker R,)"*.

Proof. From (2.9), we have to show that
(2.10) (Ker Ryt Nm = [u, €.
For each v € m, using (2.2), we get
< Ryv,v >=< [[w, v]e, ul, v >=<[u, v]g, [u, v]e > .
Hence, v € Ker R, if and only if [u, v]¢ = 0. But,
[u,v]e =0 & 0 =< [u, 0], ¢ >= — < [0, 8,0 >= v € [u, €.

Then, we obtain (2.10) and it gives the result. q.e.d.

Next, we give conditions to obtain Jacobi fields along ~ vanishing at
two points which are or not G-isotropic.

Proposition 2.3. Let u,v be orthonormal vectors in m such that
[[u,v],u] = Av, for some A > 0. We have:
(i) If [u,v]m = 0, then the vector fields V(t) along ~(t) = (exptu)o
given by
V(t) = (exptu)so <A sin \/Xtv) )

for A constant, are G-isotropic Jacobi fields with V(%) =0, for
all p € Z.

(ii) If [u,v] € m\{0}, then the vector fields V (t) along v(t) = (exp tu)o
given by

V(t) = (exp tu)*o<<A sin VAt + B(1 — cos \/Xt))v
+( — A(1 — cos \/Xt) + Bsin \/Xt)’w),

for A, B constants with w = %[u,v], are Jacobi fields such that

V(%) =0, for all p € Z, which are not G-isotropic.
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Proof. (i) From (2.6) we get T,v = 0 and R,v = \v. Then it is easy
to see that X () = Asin VIt s a solution of (2.7) with X(0) = 0.
Because R, is self-adjoint, v € (Ker R,)* and from Lemma 2.2, V (t) =
(exp tu) ., X (t) is G-isotropic.

(ii) Here, we obtain

Tuv = —\/Xw, Tuw = \/Xv, Ruv = ﬁuw =0
and, from (2.2), ||[u,v]| = v/A. Then the solutions X (t) = X'(t)v +
X2(tw of (2.7) satisfy
YV () = VAY2(t) = 0
Y1) + VAV (2) = 0,

where Yi(t) = XV (), i = 1,2. Hence X (t) with X (0) = 0 is given by
X(t) = (A sin VAt+B(1—cos \/Xt)> v+ (—A(l—cos Vt)+B sin \/Xt) w,

for A, B constants. Hence, V (t) = (exp tu).,X (t) are Jacobi fields along
~ verifying V(0) = V(2Z) = 0 and V/(0) = X’(0). Because X'(0) €

VA _
R{v,w} and [u,v]¢ = [u, w]e = 0, we have R, V'(0) = 0 and Lemma 2.2
implies that these Jacobi fields V' are not G-isotropic. q.e.d.

3. Compact irreducible Riemannian 3-symmetric spaces

We recall that a connected Riemannian manifold (M, g) is called a 3-
symmetric space [5] if it admits a family of isometries {6, },en of (M, g)
satisfying

(i) 65 =1,

(ii) p is an isolated fixed point of 6,

(iii) the tensor field © defined by © = (6,)., is of class C*°,

(iv) Opsod = Jobpy,
where J is the canonical almost complex structure associated with the
family {6p}penm given by J = %(2@ + I). Riemannian 3-symmetric
spaces are characterized by a triple (G/K, o, <, >) satisfying the follow-
ing conditions:

(1) G is a connected Lie group and o is an automorphism of G of

order 3,
(2) K is a closed subgroup of G such that G C K C G9, where
G? ={r € G| o(x) = x} and GY denotes its identity component,
(3) <,> is an Ad(K)- and o-invariant inner product on the vector
spacem = (mT @&m~)Ng, where m™ and m™ are the eigenspaces of
o on the complexification gc of g corresponding to the eigenvalues
¢ and €2, respectively, where £ = e2mV=1/3,
Here and in the sequel, ¢ and its differential o, on g and on g¢ are
denoted by the same letter o.
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The inner product <, > induces a G-invariant Riemannian metric g
on M = G/K and (G/K,g) becomes into a Riemannian 3-symmetric
space. Then, it is a reductive homogeneous space with reductive de-
composition g = m® €, where the algebra of Lie ¢ of Kis g7 = {X € g |
oX = X}. Moreover, the canonical almost structure J on G/K is G-
invariant, (M = G/K, g, J) is quasi-K&hlerian and it is nearly Kéhlerian
if and only if (G/K, g) is a naturally reductive homogeneous space with
adapted reductive decomposition g = m @ €. In this case g is said to be
an adapted naturally reductive metric for M.

We shall need some general results of complex simple Lie algebras.
See [6] for more details. Let gc be a simple Lie algebra over C and h¢
a Cartan subalgebra of gc. Let A denote the set of non-zero roots of
gc with respect to he and II = {a,...,q;} a system of simple roots
or a basis of A. Because the restriction of the Killing form B of g¢ to
hc X he is nondegenerate, there exists a unique element H, € hc such
that

B(H, Ha) = a(H)7
for all H € hc. Moreover, we have hc = > A CH, and B is strictly
positive definite on hjg = > ca RHo. Put < o, 8 >= B(H,, Hg). We
choose root vectors {Ey}aca, such that for all o, 5 € A, we have

[Eo, E—o] = Ha, [H,E,| = a(H)E, for H € bg;
(3.1) [Eo, Eg) =0 ifa+pB#0and a+ 0 & A,
[Eo, Eg] = No gEatp ifa+p8ecA,
where the constants N, g satisfy
(3.2) Nap=—N-a,-p, Nas=—Npa
and, if o, 3,7y € A and o+ 8+ v =0, then
(3.3) Nopg=Ng~y=Nyq.
Moreover, given an a-series [+ na (p < n < ¢) containing 3, then
(3.4) (Nop)? = M <a,o>.

For this choice, E, and Ejg are orthogonal under B if o + 3 # 0,
B(E,, E_,) =1 and we have the orthogonal direct sum

gc = h(C + Z (CEa-
aEA

Denote by A™ the set of positive roots of A with respect to some lexi-
cographic order in II. Then the IR-linear subspace g of gc given by

g=b+ > (RU,+RV,)

acAt
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Type o m; II(H)
I Adexp 2ﬂ\?{71Hi 1 {ak ell | k # Z}
11 cxpzﬂﬁ(H7+Hj) mi:mjzl {OékEH|k7é7;, k;’é]}
I1T Ad an/=T gy 2 {Oék ecll | k 7§ Z}
exp —5—H,;
vV Adcxp 2my/—1H; 3 {ak ell | k # Z} U {_/L}
Table I

is a compact real form of g¢, where h = > A IRV—1H, and U, =
E,—E_,and V, = v—1(E4 + E_,). Here, we get

(3.5) [UayV—1Hgl=—<a,B>Va, [Vao,V—1Hgl =< a,B > U,.

Next, we shall describe automorphisms of order 3 on the compact Lie
algebra g (or on gc) which do not preserve any proper ideals. First,
suppose that o is an inner automorphism.

(A) o is an inner automorphism
Because g decomposes into a direct sum of an abelian ideal and simple
ideals, we can assume that g is simple. Let p = Zi-:l m;a; be the

maximal root of A and consider H; € hc, i =1,...,1, defined by

1 .
aj(Hi) = Eéij, 1,] = 1, v ,l.

Following [9, Theorem 3.3], each inner automorphism of order 3 on
gc is conjugate in the inner automorphism group of gc to some o =
Adyp o y=THs Where H = %mZHZ with 1 <m; <3 or H= %(HZ + Hj)
with m; = m; = 1. Then there are four types of o = Ad,, o, /=1y With
corresponding simple root systems II(H) for g given in Table I. Denote
by AT(H) the positive root system generated by II(H). Then, we have
hCt=g’ and

t=b+ > (RU,+RV,).
aEAT(H)
Because B(Uy,Ug) = B(Va, Vg) = —2643 and B(U,, V3) = 0, it follows
that {U,,Vy | @ € AT N AT(H)} becomes into an orthonormal basis
for (m, <, >= —%B|m) .

(B) o is an outer automorphism
Let o be an outer automorphism of order 3 on a compact Lie algebra
g such that there is no proper o-invariant ideal in g. Then g must be
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semisimple [9, Theorem 5.10]. First, suppose that g is simple. Then the
1
1 9 / as
04: a1 (%) \ 1
oy
and the complex Lie algebra g, the set of fixed points of o on gc, is
either of type go, where a Weyl basis is given by [9, Theorem 5.5]

complexification g¢ of g is of type

{HO!27 He, + Ha3 + Hoys Fta,, E:I:(a1+a2+a3+a4)7 E:I:(a1+2a2+a3+oc4)7
Eﬂ:al + Eia:’, + E:I:a47 E:I:(al-i-az) + E:I:(a2+a3) + E:I:(oa2+o¢4)7
Ei(a1+az+a3) + Ei(a2+a3+a4) + Eﬂ:(a1+a2+a4)}v

or of type as, being a Weyl basis {Hgl,H52;F151,F152,Fi(51+52)},
where

Hg, = H, +Hqy + Hy,,

Hag, = —3H,., —2(Hu, + Ha, + Hy,y),

Fip, = Fiq +Eig; + Eiqa,,

Fp, = E_(aitastas) T EE_(astastas) T EE_(a1+astas)s
Fop, = Faitortas T €Bartas+ou + € Bartastas

Fg, 13, = E _(aitan) t E2E_(a2+a3) +eE_(aytaq)s

F_g48) = FPartas +Eas+as + €2Fny+tay-

Finally, if g is semisimple but not simple then g = £ & £ ® £ with £
simple and ¢ = g7 is £ embedded diagonally.

4. Proof of Theorem 1.1

This will require some previous propositions and lemmas. We start
considering, as in above section, Riemannian 3-symmetric spaces (M =
G/K,o0,<,>) where G is a compact connected Lie group acting effec-
tively, the automorphism ¢ on the Lie algebra g of G does not preserve
any proper ideals and <, > determines a naturally reductive Riemannian
metric adapted to g = m®¢. According with [5], the inner product <, >
is then the restriction to m of a bi-invariant product on g. Because g is
semisimple, we take <, >= —%B|m, where B denotes the Killing form of
g. Then, we have

Lemma 4.1. (M = G/K,0,<,>) is a normal homogeneous space.

Proof. We only have to prove that g = m @ ¢ is orthogonal with
respect to B. Let By, be the Killing form of g¢. Because By, is invariant
under automorphisms, we get that the subspaces g%, m™ and m~ are
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orthogonal in (gc, Bg.). Then the result follows taking into account that
Bg.(X,Y)=B(X,Y), for all X,Y € g. q.e.d.

In the following, we look for geodesics on (M = G/K,o0,<,>) with
non-G-isotropic Jacobi fields vanishing at two points.

(A) o is an inner automorphism

Lemma 4.2. If o is of Type I then (M = G/K,0,<,>) is one of
the following irreducible Hermitian symmetric spaces of compact type:

SUM)/(SUr) x Uln—1)),  SOm)/(SO(n — 2) x SO(2)),
Sp(n)/U(n), S50(2n)/U(n),
Es/(SO(10) x SO(2)), Ex/(Eg x SO(2)).

Proof. (i) Put H = %H;, for some i € {1,...,1} with m; = 1. Then
each « € AT L AT(H) may be written as

l
o = E njog,
j=1

where n; € Z, n; > 0, and n; = 1. It implies that o + 3 € A and
a—f0¢& ANA(H), for all o, € AT~ AT(H). Hence, using (3.1)
and (3.2), we get that [U,, Ug] and [V,, V] are collinear with U,_g and
[Ua, V3] with V,_g. Then, [m,m] C ¢ and consequently (M = G/K,g)
must be locally symmetric. Because rank G = rank K and the center of
G is trivial, it follows from [9, Theorem 6.4] that it is moreover globally
symmetric. For the list of these spaces, we use [9, Theorem 3.3].

q.e.d.

Remark 4.3. Notice that on above compact symmetric spaces M =
G/ K, the action of G is almost effective but not necessarily effective.

As a consequence of the following results, we will prove that a compact
irreducible Riemannian 3-symmetric space (M = G/K,0,<,>) is a
Hermitian symmetric space if and only if ¢ is an inner automorphism
of Type L.

Proposition 4.4. Let o, 5 € ANA(H) such that a—(3 # 0, a—0 ¢ A
and 2a+ 8 # 0, 2a+ B € A. We have:
(i) If a+ B € A(H) then y(t) = (exptUy)o on (M = G/K,0,<,>)
admits G-isotropic Jacobi fields V with V(\ﬁﬁ"r) =0,peZ.

(ii) Ifa+ B € AN A(H) then v(t) = (exptUy)o on (M = G/K,0,<
,>) admits Jacobi fields V' with V(z\/i;mr) =0, p € Z, which are

lladl

not G-isotropic.
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Proof. Since a4 8 € A, we get from (3.1) and (3.2)
Ua,Ug] = No gUq+ 3.

Then, taking into account that the a-series containing (3 is {3, 8 + o},
(3.3) and (3.4) imply
<a,a>

[Ua, Usl, Ua) = NasN_(a18),aUs = (Nays)*Us = 5 Us:
Hence, taking u = Uy, v = Ug and A = =% in Proposition 2.3, we
obtain the result. q.e.d.

Next, we put
l
Qij = Qj + -+ Q5 (1§Z§]§l)v [L:Z(mj_l)aj‘
j=1

It is easy to see by a case-by-case check the following.
Lemma 4.5. We have:
(a) aij € A except if (i,7) = (I —1,1) in

1

o

/Oq
1 2

2
0] (l > 4) : 0?1 Cﬁg o 0410_2
\ )
(7]
or (i,7) = (1,2), (1,3) and (2,3) in
as
eg, €7, €8 : cee 0 ()?4 &)3 Cﬁl

(b) i € A for gc # a;. In a;, fu is zero.
Then, we can conclude

Proposition 4.6. Let (M = G/K,o0,<,>) be a Riemannian 3-
symmetric space where G is a compact simple Lie group acting effec-
tively on M and o is an inner automorphism on the Lie algebra g of G.
If all Jacobi field vanishing at two points is G-isotropic then (M, g) is a
symmetric space.

Proof. From Lemma 4.2, we only need to show that there exist o, 3 €
AN A(H) satisfying the hypothesis of Proposition 4.4 (ii) for o of Type
II, IIT and IV.



284 J.C. GONZALEZ-DAVILA
If o is of Type II then m; = m; = 1 (H = 3(H; + H;)), for some

i,7 € {1,...,1l}, i < j. So, the complex simple Lie algebra gc is
(1>2),0, (I >4) or ¢g. Take

a=oay, B=—a@p-

Then a + 8 = ay,. Because i # | — 2 for g¢ of type 9; and (i, j) = (1,6)
for

2

a

N

2 3 2 1
[¢] [¢] e] e]
€ . Qg Qs (67} Qa3 a1

it follows from Lemma 4.5 that «, 8 and « + 3 belongs to A~ A(H).
Moreover, taking into account that m; = m; = 1, we easily see that
a — 3 and 2o + § are not roots.

If o is of Type III then m; = 2 (H = %HZ), for some i = 1,...,0. It
implies that gc is one of the following: by, (I > 2), ¢;, (1 > 2),0;, (I > 4),
g9, f4, ¢, ¢7 and eg. Here, we put

Then o + 8 = «ay; and from Lemma 4.5, § and « + § are non-zero
roots of gc. Moreover, a, 3, a+ (3 belong to A\ A(H). Because p is the
maximal root, we have that o — 8 and 2« 4+ 3 are not roots.

Finally, we consider o of Type IV. Then, m; = 3, for somei =1,...,1,
and gc is one of the exceptional Lie algebras go, {4, ¢g, 7 or eg. Except
for go, in each one of these algebras we can find, using again Lemma
4.5, o and ( satisfying Proposition 4.4 (ii). Concretely, for the case

2 3 4 2
faor o o =—— o o , we take a = ay + 2a9 + 4as + 2ay
aq (&%) ag Qg
and f = —(a1 + ag + 2a3 + 2a4). In e, we can choose @ = i and
ﬂ = —Q24. In
2
o
g
1 2 3 4 3 2
o [} o [} o o
e7 ! [0%4 Qg a5 (e %]} asg aq
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we take « = 1 and = —ag5 and, « = i — g = a1 + 200 + 3as + 4oy +
das + 3ag + 2a7 + ag and = —ao7, in

3
(o]
Q2
2 3 4 5 6 4 2
[} (o] [} [} (o] o [}
€g - asg (0%4 Qg Qs QY Qs aq .
The corresponding Riemannian 3-symmetric space for gc = go :
3 2
o= is the sphere S = G5/SU(3) equipped with the usual
1 2
metric of constant curvature. q.e.d.

Remark 4.7. There exist geodesics on (M = G/K,o0,<,>) with
isotropically conjugate points and admitting Jacobi fields vanishing at
these points which are not isotropic. This is the case of the geodesic
v(t) = (exptU,)o in M = G/K, where gc = a; (I > 2) and a = ay;.
From the proof of above Proposition, v admits Jacobi fields vanishing
227

el
B = —aqj, j <1, it follows from Proposition 4.4 (i) that o and p are
moreover G-isotropically conjugate points.

at the origin and at p = (

) which are not G-isotropic and, taking

(B) o is an outer automorphism

Proposition 4.8. Let (M = G/K,o0,<,>) be a Riemannian 3-
symmetric space where G is a compact Lie group acting effectively on
M and o is an outer automorphism on the Lie algebra g of G such that
there is no proper o-invariant ideal in g. Then there exist Jacobi fields
vanishing at two points which are not G-isotropic.

Proof. Suppose that g is simple. If g is of type g2, then the corre-
sponding real form ¥ = g7 is generated by

{V=-1Ho,,v=1(Ha, + Ha, + Ha,); Uay, Vas,
Ular +az+astas)s Viar tastastaa)s
Ular+2a0+a3+as)s Viar42astas+as) Uar + Uas + Uays Vay + Vag + Vay,
Ular+az) T Ulaztas) T Vlaz+as)s Vias+az) T Viaz+as) + Viaz+aa)s
Ulai+az+as) T Ulas+as+as) T Ular+az+as)

Via+az+as) T Viaz+astas) + V(01+062+a4)}'
Since the set AT of the positive roots of 94 is given by
AT = {a; (1<i<4),0q +ag, 00+ 3,00 + g, 01 + a2 + 03,
a1 + o + g, 0 + a3 + a4, 1 + Qo + a3 + Qy,

,u:a1+2a2+a3+a4}
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and the simple roots aq, ..., ay satisfy
1 1
(4.1) < oy, 0 >= 6, <y, >=< qg,03 >=< (9,4 >= —E,

where 1 < ¢ < 4, and the other inner products are zero, we obtain the
following basis for m = (g°)+ in g :

{V=1(Ha, — Hoy),V—1(Ha, + Hay — 2Ho,); Uay — Uay, Vay — Vay,
Ua, + Usy —2Uu,, Voy + Vs — 2V,
Ular+az2) = Ulaztas) Viar+az) = Viaz+as)s
U(al +az) T U(a2+013) - 2U(a2+a4)’ V(al +az) T V(a2+03) - 2v(042+0¢4)7
Ulor+as+as) — Ulas+as+as) Viar+astas) = Viea+as+as)s
Ulor+as+as) T Ulast+as+as) = 2U(ar +as+as)s

Viar+ag+az) + Viag+ast+as) = 2Vias+aztas) J -
We put,
1
Y

Then, u and v are orthonormal vectors in m and using (3.1), (3.5) and
(4.1), we obtain

U (Uay + Uny —2U,,), v=+vV—6(Hy — Ha,).

0,0] = —5(Vay = Va)y [[:2],0] = 7.

Hence, Lemma 4.1 and Proposition 2.3 (ii) imply that ~(¢) = (exp tu)o
admits Jacobi fields vanishing at the origin and at v(6v/2pr), p € Z,
which are not G-isotropic.

Next, we suppose that g is of type az. Then, a basis for £ = g7 is
given by

{ \ _1H517 \ _1H52; [7517‘7517 [7527 ‘7527 (jﬁl-i-ﬁw ‘7514-52} )

where

Ug, = I, — F_p,, Vﬁ':V_l(Fﬁi+F—5i)7 i=1,2,

k3

Usi6, = Forapy — F-(grpa)yr  Vartpe = V=1 (Fpiipy + F_(8,48,))-

Put,
1
u=vV—6(Ha, — Ha), v= E(Um — Uay)-
Then, using (3.1) and (4.1), we can check that u,v € m and they are
orthonormal. Moreover, we get
V3

w0 = L2V + Vi), [l = g
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and V,,, + V,, € m. Hence, u, v satisfy the hypothesis of Proposition 2.3
(ii).

Finally, suppose that g is semisimple but not simple, then g = £ ®
£ @ £ with £ simple and £ = g7 is £ embedded diagonally. Let o be a
root of £¢. Take in g,

1 v—1
u=—=Uqy, Uy, —2U,), v=—-——(Hy,—H,,0).

V6
Then u, v are orthogonal to ¢ and, from (3.1) and (3.5),

el
V6

and, consequently they again satisfy the hypothesis of Proposition 2.3
(ii). q.e.d.

<o, >
= —

[u,v] = Vo, =Va,0),  [[u,v],u] = 3

The proof of Theorem 1.1 is now easy. Following [9, Theorem 6.4],
compact 3-symmetric spaces (M = G/K,0,<,>) are given by

M= (Myx My x---x M)/ T ={(Go x Gy x---xG,)/T}/K,

where

(i) My is a complex Euclidean space, G is its translation group and
Ko ={I} C Go;

(i) M; = G;/K;, 1 <i <, is a simply connected 3-symmetric space,
G; is a compact connected Lie group acting effectively and o; =
0|g; does not preserve any proper ideals;

(iii) T is any discrete subgroup of Gy x Z1 X -+ X Z,, being Z; the
center of G; and I' N Gy a lattice in Go;

(iv) K is the image of (Ko x K1 X+ X K,)in (Go x Gy x -+- x G,.)/T.

Hence, the subspace m = £ of g can be expressed as
m=godm .- dmy,

where m; = & on (g;, Bi), i = 1,...,7. Then (exptu)o with u € m; is
geodesic on (M = G/K, g) and we can again apply Propositions 4.6 and
4.8 to obtain that (M = G/K,g) must be locally symmetric. In this
case, rank G; = rank K; and Z; is trivial, for ¢ = 1,...r, which implies
that (M = G/K, g) is moreover symmetric. Concretely, (M, g) is given
by
M=TxM; X x M,,

where (T, go) is a complex flat torus and (M;, g;), is one of the irreducible

symmetric spaces given in Lemma 4.2 and the metric g on M is the
product metric g = go+ g1 + - + gr-
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