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A SHARP ESTIMATE FOR THE BOTTOM OF THE

SPECTRUM OF THE LAPLACIAN ON KÄHLER

MANIFOLDS

Ovidiu Munteanu

Abstract

On a complete noncompact Kähler manifold we prove that the
bottom of the spectrum for the Laplacian is bounded from above
by m2 if the Ricci curvature is bounded from below by −2(m+1).
Then we show that if this upper bound is achieved then either the
manifold is connected at infinity or it has two ends and in this case
it is diffeomorphic to the product of the real line with a compact
manifold and we determine the metric.

1. Introduction

In this paper we consider a complete noncompact Kähler manifold M
with Ricci curvature bounded from below by a negative constant. Our
goal is to prove a sharp upper bound estimate for the bottom of the
spectrum of the Laplacian on M .

For Riemannian manifolds, a sharp upper bound estimate for λ1 is
well known from a theorem of S.Y. Cheng [C]. For Kähler manifolds,
P. Li and J. Wang have recently proved a sharp upper bound estimate
for λ1 provided the more restrictive assumption of bisectional curvature
bounded from below holds. We will improve their result here, using a
different argument. Our technique will also be applied to study Kähler
manifolds with maximal bottom of spectrum.

Let us state the results below. The proofs are given in the following
sections. We first recall Cheng’s upper bound estimate in the Riemann-
ian setting, and a recent result of Li and Wang about the structure of
manifolds with maximal bottom of spectrum.

Cheng’s theorem states that the hyperbolic space H
n has the greatest

bottom of spectrum among all Riemannian manifolds with Ricci curva-
ture at least the Ricci curvature of H

n. Thus, if a complete noncompact
Riemannian manifold Nn of dimension n has Ricci curvature bounded
below by RicN ≥ −(n − 1), then the bottom of the spectrum of the
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Laplacian λ1 (N) satisfies the sharp inequality λ1 (N) ≤ (n−1)2

4 . More-
over, there are many other manifolds for which equality is achieved, e.g.
see [L], [S].

Recently, Li and Wang [L-W2] have proved some remarkable results
about the structure at infinity of manifolds with maximal λ1. Assume
that Nn with n ≥ 3 is a complete Riemannian manifold such that

RicN ≥ −(n − 1) and λ1 (N) = (n−1)2

4 . Then either N is connected at
infinity or it has two ends in which case it must either be

(1) a warped product N = R × P with P compact and metric given
by ds2N = dt2 + exp (2t) ds2P , or

(2) if n = 3 a warped product N = R×P with P compact and metric
given by ds2N = dt2 + cosh2 (t) ds2P .

We should also point out here that similar structure results were
previously proved in [L-W1] for manifolds with infinite volume ends,
where they generalized the work of Witten-Yau [W-Y], Cai-Galloway
[C-G] and Wang [W].

In the Kähler category, a similar theory was developed in [L-W3]
and [L-W], under the assumption of bisectional curvature lower bound.
Consider Mm a complete noncompact Kähler manifold of complex di-
mension m ≥ 2. Denote ds2 = hαβ̄dz

αdz̄β the Kähler metric on M and

let Re
(
ds2
)

be the Riemannian metric on M. Suppose {e1, e2, ..., e2m}
with e2k = Je2k−1 for any k ∈ {1, ...,m} is an orthonormal frame with
respect to this Riemannian metric, then {v1, ..., vm} is a unitary frame

of T 1,0
x M, where

vk =
1

2

(
e2k−1 −

√
−1e2k

)
.

Recall that the bisectional curvature BKM of M is defined by

Rαᾱββ̄ =< Rvαvᾱvβ, vβ̄ >

and we say that BKM ≥ −1 on M if for any α and β

Rαᾱββ̄ ≥ −(1 + δαβ̄).

Note that for the space form CH
m we have BKCHm = −1.

Theorem 1. ([L-W3]) If Mm is a complete noncompact Kähler

manifold of complex dimension m ≥ 2 with BKM ≥ −1, then

λ1 (M) ≤ m2 = λ1 (CH
m) .

Li-Wang proved this result using similar ideas to Cheng’s proof in
the Riemannian case. The bisectional curvature lower bound is used to
deduce a Laplacian comparison theorem for Kähler manifolds. This is
a powerful result that is more general than the upper bound estimate
for λ1 (M) .

While it is not clear whether the Laplacian comparison is true for only
Ricci curvature lower bound, the situation in the compact Kähler case
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motivates us to investigate if the sharp upper bound for λ1 (M) remains
true for Ricci curvature lower bound. Recall that in the compact Kähler
case we have a version of Lichnerowicz’s theorem. Namely, if for a
compact Kähler manifold Nm the Ricci curvature has the lower bound
RicN ≥ 2(m+ 1), then the first eigenvalue of the Laplacian has a sharp
lower bound, λ1 (N) ≥ 4(m+ 1). We are grateful to Lei Ni for pointing
out this result to us, for a simple proof of it see [U].

In this paper, our first goal is to show that indeed there is a sharp
estimate for λ1 (M) under Ricci curvature lower bound. To prove this,
we will develop a new argument, that will prove a sharp integral estimate
for the gradient of a certain class of harmonic functions. In fact, our
argument can be localized on each end of the manifold.

Theorem 2. Let Mm, m ≥ 2 be a complete noncompact Kähler

manifold such that the Ricci curvature is bounded from below by

RicM ≥ −2 (m+ 1) .

If E is an end of M and λ1 (E) is the infimum of the Dirichlet spectrum

of the Laplacian on E, then

λ1 (E) ≤ m2.

In particular, we have the sharp estimate

λ1 (M) ≤ m2.

Note that the condition on the Ricci curvature in Theorem 2 means

Ric(ek, ej) ≥ −2 (m+ 1) δkj

for any k, j ∈ {1, .., 2m}, which is equivalent to

Ricαβ̄ ≥ − (m+ 1) δαβ̄ ,

for the unitary frame {v1, v2, ..., vm} . Let us point out that in the above
theorem the Ricci curvature lower bound can be assumed to hold only
on the end E. Theorem 2 will be proved in Section 2.

We now want to turn our attention to the question of connectedness at
infinity of Kähler manifolds that have maximal bottom of spectrum. Us-
ing a beautiful argument involving the Buseman function Li and Wang
have proved the following.

Theorem 3. ([L-W]) If Mm, m ≥ 2 is a complete noncompact

Kähler manifold with λ1 (M) = m2 and BKM ≥ −1 then either M has

one end or M is diffeomorphic to the product of the real line with a

compact manifold, R ×N with the metric

ds2M = dt2 + e−4tω2
2 + e−2t

(
ω2

3 + ..+ ω2
2m

)
,

where {ω2, .., ω2m} is an orthonormal coframe for N . Moreover N is a

compact quotient of the Heisenberg group and M̃ is isometric to CH
m

in the event that M has bounded curvature.
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Our second goal in this paper is to obtain the same conclusion if
equality is achieved in Theorem 2. This will be done by a more careful
analysis of the estimates in Theorem 2 applied to a harmonic function
that is defined by Li-Tam theory. The following result will be proved in
Section 3.

Theorem 4. Let Mm be a complete noncompact Kähler manifold of

complex dimension m ≥ 2 such that the Ricci curvature is bounded from

below by

RicM ≥ −2 (m+ 1) .

If λ1 (M) = m2 then either M is connected at infinity or it is diffeo-

morphic to R ×N with the metric

ds2M = dt2 + e−4tω2
2 + e−2t

(
ω2

3 + ..+ ω2
2m

)
,

where {ω2, .., ω2m} is an orthonormal coframe for the compact manifold

N . Moreover, M̃ is isometric to CH
m and N is a compact quotient of

the Heisenberg group provided M has bounded curvature.

Acknowledgment. The author would like to express his deep grat-
itude to his advisor, Professor Peter Li, for constant help, support and
many valuable discussions.

2. Proof of the sharp estimate

In this section we prove Theorem 2. Let us outline the main steps of
the proof first.

1) We first establish a sharp integral gradient estimate for a class of
harmonic functions on any given end E. These functions have dif-
ferent constructions and properties, depending on the case when E
has infinite or finite volume. We therefore discuss these two cases
separately. We prove the integral gradient estimate in Lemma
1, where the goal is to estimate from above and from below an
integral involving the complex Hessian of a harmonic function.
The estimate from above is more technical and it is based on
repeated integration by parts and use of the Ricci identities for
Kähler manifolds. The estimate from below will be obtained from
the Cauchy-Schwarz inequality.

2) We then prove another integral estimate using the Poincaré in-
equality for λ1 (E). This is the converse to the integral gradient
estimate and will be proved in Lemma 2.

3) Finally, Theorem 2 will follow from the two steps described above.

We now discuss the proof in detail. Let E be an end of M. Without
loss of generality we will henceforth assume that λ1 (E) > 0. Recall that
λ1 (E) is the infimum of the Dirichlet spectrum of the Laplacian on E,
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hence λ1 (E) satisfies the following Poincaré inequality:

λ1 (E)

∫

E
h2 ≤

∫

E
|∇h|2 ,

for all C∞ (E) functions h with compact support in E.
First, consider the case when E has infinite volume. Since λ1 (E) > 0,

this is equivalent to E being nonparabolic, i.e. there exists a positive
symmetric Green’s function on E satisfying the Neumann boundary
condition on ∂E, see [L-W1].

We will use a construction of Li and Tam ([L-T]) that defines a
bounded harmonic function and with finite Dirichlet integral f on E.
This is done as follows.

Let fR be the harmonic function with Dirichlet boundary conditions:
fR = 1 on ∂E, fR = 0 on ∂Ep(R), where Ep(R) = E ∩Bp (R) .

Then it can be showed that fR admits a subsequence convergent
uniformly on compact sets to a harmonic function f, with the properties:
0 < f < 1 on E, f = 1 on ∂E and f has finite Dirichlet integral.
Moreover, since λ1 (E) > 0, we know by a theorem of Li and Wang that
([L-W1])

∫

Ep(R+1)\Ep(R)
f2 ≤ c1 exp

(
−2
√
λ1(E)R

)
.

Integration on the level sets of f and the co-area formula will play an
important role in our proofs, and for this let us recall the following
property of f ([L-W4]).

For t, a, b < 1 let us consider

l (t) = {x ∈ E | f (x) = t}
and define the set

L (a, b) = {x ∈ E | a < f (x) < b} .
Notice that in general L (a, b) or l (t) might not be compact subsets of
E. However, it can be proved that there exists a constant C such that
for almost all t < 1 ∫

l(t)
|∇f | = C <∞

and we have: ∫

L(a,b)
|∇f |2 = (b− a)

∫

l(t0)
|∇f | .

That
∫
l(t) |∇f | is finite and independent of t follows from the fact that

f is harmonic and
∫
E |∇f |2 < ∞, see [L-W4] for details. The second

property follows using co-area formula.
Let us now denote

L = L

(
1

2
δε, 2ε

)
,
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where δ, ε > 0 are sufficiently small fixed numbers to be chosen later.
Since we will use integration by parts on L let us construct a cut-off

φ with compact support in L. Define φ = ψϕ with ψ depending on the
distance function

ψ =





1
R− r

0

on
on
on

Ep (R− 1)
Ep (R) \Ep (R− 1)
E\Ep (R)

and ϕ defined on the level sets of f

ϕ =





(log 2)−1
(
log f − log

(
1
2δε
))

1
(log 2)−1 (log 2ε− log f)

0

on L
(

1
2δε, δε

)

on L (δε, ε)
on L (ε, 2ε)
otherwise.

For convenience, let us assume R = 1
δε . We have the following result:

Lemma 1. The following inequality holds for any ε and δ positive:

1

(− log δ)

∫

L

|∇f |4
f3

φ2 ≤ 4m2

∫

l(t0)
|∇f |+ c

(− log δ)
1

2

,

where c is a constant not depending on δ or ε.

Proof. Note that the gradient and the Laplacian satisfy:

∇f · ∇h = 2 (fαhᾱ + fᾱhα)

∆f = 4fαᾱ.

Everywhere in the paper we use the Einstein summation convention and
the formulas are with respect to any unitary frame {vα}.

Let u = log f, then a simple computation shows that

uαβ̄ = f−1fαβ̄ − f−2fαfβ̄.

Consider now ∫

L
f
∣∣uαβ̄

∣∣2 φ2

which we estimate from above and from below to prove our claim. First,
we pause to explain this choice of function. The goal is to obtain a
gradient estimate for f , and in this sense it is standard to look for
estimates of |∇u|2 from above, where u = log f . Certainly, we want to

use the Kähler structure of M , thus we observe that |∇u|2 = −∆u and
then estimate

(∆u)2 ≤ 16m
∣∣uαβ̄

∣∣2 ,
using Cauchy-Schwarz inequality. This justifies the need to estimate the
norm of the complex Hessian of u from above. Using co-area formula,
it is more convenient to work on level sets of f than on geodesic balls
on M , and this philosophy is used throughout the paper. The quantity
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f
∣∣uαβ̄

∣∣2 is preferred instead of
∣∣uαβ̄

∣∣ because it is more suitable for an
argument based on integration by parts.

We now start our estimates. To begin with, notice that
∫

L
f
∣∣uαβ̄

∣∣2 φ2 =

∫

L
f−1

∣∣fαβ̄

∣∣2 φ2 − 2

∫

L
f−2(fαβ̄fᾱfβ)φ2

+
1

16

∫

L
f−3 |∇f |4 φ2.

In view of our discussion above, the objective is to estimate the right
hand side in terms only of the gradient of f . The first term is computed
as follows:∫

L
f−1

∣∣fαβ̄

∣∣2 φ2 =

∫

L
f−1(fαβ̄ · fᾱβ)φ2 = −

∫

L
fα

(
f−1fᾱβφ

2
)
β̄

=

∫

L
f−2(fᾱβfαfβ̄)φ2 −

∫

L
f−1fαfᾱββ̄φ

2

−
∫

L
f−1fᾱβfα

(
φ2
)
β̄

and using the Ricci identities and ∆f = 0 we see that fᾱββ̄ = 0. It also
shows that the last integral needs to be a real number.

This proves that we have the following formula

∫

L
f
∣∣uαβ̄

∣∣2 φ2 = −
∫

L
f−2(fαβ̄fᾱfβ)φ2(1)

+
1

16

∫

L
f−3 |∇f |4 φ2 −

∫

L
f−1fᾱβfα

(
φ2
)
β̄
.

We will now use again integration by parts to see that

−
∫

L
f−2(fαβ̄fᾱfβ)φ2 =

∫

L
fα

(
f−2fᾱfβφ

2
)
β̄

= −2

∫

L
f−3fαfᾱfβfβ̄φ

2 +

∫

L
f−2fᾱβ̄fαfβφ

2

+

∫

L
f−2fαfᾱfβ

(
φ2
)
β̄
.

Similarly, one finds

−
∫

L
f−2(fαβ̄fᾱfβ)φ2 = −

∫

L
f−2(fᾱβfαfβ̄)φ2

=

∫

L
fᾱ

(
f−2fαfβ̄φ

2
)
β

= −2

∫

L
f−3fαfᾱfβfβ̄φ

2 +

∫

L
f−2fαβfᾱfβ̄φ

2

+

∫

L
f−2fαfᾱfβ̄

(
φ2
)
β
.
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Combining the two identities we get

−
∫

L
f−2(fαβ̄fᾱfβ)φ2 = −1

8

∫

L
f−3 |∇f |4 φ2(2)

+

∫

L
f−2Re

(
fᾱβ̄fαfβ

)
φ2 +

1

4

∫

L
f−2 |∇f |2Re(fβ̄

(
φ2
)
β
).

Note that the following inequality holds on E:

(3)
∣∣fᾱβ̄fαfβ

∣∣ ≤ 1

4
|fαβ| |∇f |2

We want to include the proof of this inequality because it will matter
when we study the manifolds with λ1 (M) = m2. Since the two numbers
in (3) are independent of the unitary frame, let us choose an orthonormal
frame at the fixed point x ∈ E such that

e1 =
1

|∇f |∇f.

Certainly, we need |∇f | (x) 6= 0 which we assume without loss of gen-
erality because if |∇f | (x) = 0 there is nothing to prove.

Then one can see that

fe1
= |∇f | , fe2

= 0, ...., fe2m
= 0

or, in the unitary frame

f1 = f1̄ =
1

2
|∇f | , fα = fᾱ = 0 if α > 1.

This proves the inequality because

∣∣fᾱβ̄fαfβ

∣∣ = 1

4
|∇f |2 |f11| ≤

1

4
|fαβ| |∇f |2 .

Moreover, we learn that equality holds in (3) if and only if

fαβ = 0 for (α, β) 6= (1, 1) ,

with respect to the unitary frame chosen above.
Since the following holds:

Re
(
fᾱβ̄fαfβ

)
≤
∣∣fᾱβ̄fαfβ

∣∣ ≤ 1

4
|fαβ| |∇f |2 ,

we get using the arithmetic mean inequality that

2

∫

L
f−2Re

(
fᾱβ̄fαfβ

)
φ2(4)

≤
∫

L
2
(
f−1/2 |fαβ|φ

)(1

4
f−3/2 |∇f |2 φ

)

≤ m

m+ 1

∫

L
f−1 |fαβ|2 φ2 +

m+ 1

16m

∫

L
f−3 |∇f |4 φ2.
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Moreover, again integrating by parts we have∫

L
f−1 |fαβ|2 φ2 =

∫

L
f−1fαβfᾱβ̄φ

2 = −
∫

L
fα

(
f−1fᾱβ̄φ

2
)
β

=

∫

L
f−2fᾱβ̄fαfβφ

2 −
∫

L
f−1fαfᾱβ̄βφ

2

−
∫

L
f−1fαfᾱβ̄(φ2)β

and on the other hand∫

L
f−1 |fαβ|2 φ2 =

∫

L
f−1fαβfᾱβ̄φ

2 = −
∫

L
fᾱ

(
f−1fαβφ

2
)
β̄

=

∫

L
f−2fαβfᾱfβ̄φ

2 −
∫

L
f−1fᾱfαββ̄φ

2

−
∫

L
f−1fᾱfαβ

(
φ2
)
β̄

so that combining the two identities we get∫

L
f−1 |fαβ|2 φ2 =

∫

L
f−2Re(fᾱβ̄fαfβ)φ2 −

∫

L
f−1fαfᾱβ̄βφ

2

−
∫

L
f−1Re(fαfᾱβ̄(φ2)β).

Note that the Ricci identities imply

fᾱβ̄β = fβ̄ᾱβ = fβ̄βᾱ +Ricβᾱfβ̄ = Ricβᾱfβ̄

and therefore we have proved that∫

L
f−1 |fαβ|2 φ2 ≤

∫

L
f−2Re(fᾱβ̄fαfβ)φ2 +

m+ 1

4

∫

L
f−1 |∇f |2 φ2

−
∫

L
f−1Re(fαfᾱβ̄

(
φ2
)
β
).

Plug this inequality into (4) and it follows that

m+ 2

m+ 1

∫

L
f−2Re

(
fᾱβ̄fαfβ

)
φ2 ≤ m

4

∫

L
f−1 |∇f |2 φ2

+
m+ 1

16m

∫

L
f−3 |∇f |4 φ2 − m

m+ 1

∫

L
f−1Re(fαfᾱβ̄

(
φ2
)
β
).

Now use this inequality in (2) and obtain

−
∫

L
f−2(fαβ̄fᾱfβ)φ2 ≤

(
−1

8
+

(m+ 1)2

16m(m+ 2)

)∫

L
f−3 |∇f |4 φ2(5)

+
m (m+ 1)

4 (m+ 2)

∫

L
f−1 |∇f |2 φ2 − m

m+ 2

∫

L
f−1Re(fαfᾱβ̄

(
φ2
)
β
)

+
1

4

∫

L
f−2 |∇f |2Re(fβ̄

(
φ2
)
β
).
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Summing up, we have thus proved that

∫

L
f
∣∣uαβ̄

∣∣2 φ2 ≤ 1

16

1

m (m+ 2)

∫

L
f−3 |∇f |4 φ2(6)

+
m (m+ 1)

4 (m+ 2)

∫

L
f−1 |∇f |2 φ2 +

1

4

∫

L
f−2 |∇f |2Re(fβ̄

(
φ2
)
β
)

−
∫

L
f−1fᾱβfα

(
φ2
)
β̄
− m

m+ 2

∫

L
f−1Re(fαfᾱβ̄

(
φ2
)
β
).

To finish the upper estimate of
∫
L f
∣∣uαβ̄

∣∣2 φ2 we need to estimate the

terms involving
(
φ2
)
β
. We will prove that they can be bounded from

above by a constant multiple of (− log δ)1/2.

Start with

2

∫

L
f−2 |∇f |2Re(fβ̄

(
φ2
)
β
) ≤ 1

2

∫

L
f−2 |∇f |3

∣∣∇φ2
∣∣

≤
∫

L
f−2 |∇f |3 |∇ϕ|ψ +

∫

L
f−2 |∇f |3 |∇ψ|ϕ.

Now it is easy to see that by the gradient estimate and co-area formula

∫

L
f−2 |∇f |3 |∇ϕ| ≤ c2

(∫

L( 1

2
δε,δε)

f−1 |∇f |2 +

∫

L(ε,2ε)
f−1 |∇f |2

)

≤ c3,

while by the decay rate of f2 and the fact that R = 1
δε we get

∫

L
f−2 |∇f |3 |∇ψ| ≤ c4

∫

L∩(Ep(R)\Ep(R−1))
f ≤ 2c4

δε

∫

Ep(R)\Ep(R−1)
f2

≤ 2c1c4
δε

exp
(
−2
√
λ1(E)R

)
≤ c5.

Clearly, the constants so far do not depend on the choice of δ or ε.
To estimate the other terms one proceeds similarly. For example,

−2

∫

L
f−1Re(fαfᾱβ̄

(
φ2
)
β
) ≤

∫

L
f−1

∣∣fᾱβ̄

∣∣ |∇f |φ |∇φ|

≤
(∫

L
f−1 |∇f |2 |∇φ|2

) 1

2

(∫

L
f−1

∣∣fᾱβ̄

∣∣2 φ2

) 1

2

≤ c6

(∫

L
f−1

∣∣fᾱβ̄

∣∣2 φ2

)1

2

.
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However, using an inequality proved above we get∫

L
f−1 |fαβ|2 φ2 ≤

∫

L
f−2Re(fᾱβ̄fαfβ)φ2 +

m+ 1

4

∫

L
f−1 |∇f |2 φ2

−
∫

L
f−1Re(fαfᾱβ̄

(
φ2
)
β
)

≤ 1

4

∫

L
f−2 |fαβ| |∇f |2 φ2 +

m+ 1

4

∫

L
f−1 |∇f |2 φ2

+
1

2

∫

L
f−1 |fαβ| |∇f |φ |∇φ|

≤ 1

8

∫

L
f−1 |fαβ|2 φ2 +

1

8

∫

L
f−3 |∇f |4 φ2

+
m+ 1

4

∫

L
f−1 |∇f |2 φ2

+
1

4

∫

L
f−1 |fαβ|2 φ2 +

1

4

∫

L
f−1 |∇f |2 |∇φ|2 ,

which shows there exists constants c7 and c8 such that:∫

L
f−1

∣∣fᾱβ̄

∣∣2 φ2 ≤ c7

∫

L
f−1 |∇f |2 φ2 + c8

∫

L
f−1 |∇f |2 |∇φ|2

≤ c9 (− log δ) .

We have proved that∫

L
f−1

∣∣fᾱβ̄

∣∣ |∇f |φ |∇φ| ≤ c10(− log δ)
1

2 .

It should be noted that in fact this estimate can be improved to bound
the left hand side simply by a constant, thus eliminating any dependence
on δ. However, the estimate that we proved above is sufficient for our
needs in this paper. Let us gather the information we have so far:∫

L
f
∣∣uαβ̄

∣∣2 φ2 ≤ 1

16

1

m (m+ 2)

∫

L
f−3 |∇f |4 φ2

+
m (m+ 1)

4 (m+ 2)

∫

L
f−1 |∇f |2 φ2 + c(− log δ)

1

2 .

The estimate from below is easier to get:

(7)
∣∣uαβ̄

∣∣2 ≥
∑

α

|uαᾱ|2 ≥ 1

m

∣∣∣∣∣
∑

α

uαᾱ

∣∣∣∣∣

2

=
1

16m
f−4 |∇f |4 .

Hence, this shows that

1

16

m+ 1

m (m+ 2)

∫

L
f−3 |∇f |4 φ2 ≤ m (m+ 1)

4 (m+ 2)

∫

L
f−1 |∇f |2 φ2

+c(− log δ)
1

2 ,

which by co-area formula proves the Lemma. q.e.d.
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In the following Lemma, we will estimate
∫
L f

−3 |∇f |4 φ2 from below.
To serve our purpose, we need this estimate to depend on λ1 (E) and
this is done using the variational principle. Recall that E is an infinite
volume end, λ1 (E) > 0 and we set L = L

(
1
2δε, 2ε

)
for δ, ε sufficiently

small.

Lemma 2. The following inequality holds for any δ and ε positive:

1

(− log δ)

∫

L
f−3 |∇f |4 φ2 ≥ 4λ1 (E)

∫

l(t0)
|∇f | − c0

(− log δ)
1

2

.

Proof. By the variational principle for λ1 (E) ,

λ1 (E)

∫

E
fφ2 ≤

∫

E

∣∣∣∇
(
φf

1

2

)∣∣∣
2
,

which means that

λ1 (E)

∫

L
fφ2 ≤ 1

4

∫

L
f−1 |∇f |2 φ2 +

∫

L
f |∇φ|2 +

∫

L
φ |∇f | |∇φ|

≤ 1

4

∫

L(δε,ε)
f−1 |∇f |2 + c11,

based on estimates similar to what we did in Lemma 1.
This implies that

1

(− log δ)

∫

L
fφ2 ≤ 1

4λ1 (E)

∫

l(t0)
|∇f |+ c11

(− log δ)
.

Finally, using the Cauchy-Schwarz inequality and the co-area formula
we get∫

l(t0)
|∇f | =

1

(− log δ)

∫

L(δε,ε)
f−1 |∇f |2

≤ 1

(− log δ)

∫

L
f−1 |∇f |2 φ2

+
1

(− log δ)

∫

L∩(E\Ep(R−1))
f−1 |∇f |2

≤
(

1

(− log δ)

∫

L
f−3 |∇f |4 φ2

) 1

2

(
1

(− log δ)

∫

L
fφ2

) 1

2

+
c12

(− log δ)

1

δε
exp

(
−2
√
λ1(E)R

)

≤
(

1

(− log δ)

∫

L
f−3 |∇f |4 φ2

) 1

2

×

×
(

1

4λ1 (E)

∫

l(t0)
|∇f | + c11

(− log δ)

) 1

2

+
c13

(− log δ)
,

which proves the Lemma. q.e.d.
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The results we proved above hold for any infinite volume end E.
Let us now discuss the case when our end has finite volume. Let F

be a finite volume end with λ1 (F ) > 0. This is known to be equivalent
to F being parabolic.

A theorem of Nakai ([N], see also [N-R]) states that there exists an
exhaustion function f on F̄ which is harmonic on F and f = 0 on ∂F.

In this case we consider for T, γ > 0 fixed

φ =





(log 2)−1
(
log f − log

(
1
2T
))

1
(log 2)−1(log(2γT ) − log f)

0

on L
(

1
2T, T

)

on L (T, γT )
on L (γT, 2γT )
otherwise,

where the level sets are now defined on F. Since f is proper, there is no
need for a cut-off depending on the distance function because now the
level sets of f are compact in F . Our point now is that Lemma 1 and
Lemma 2 hold for this choice of φ also, the proofs are identical. Note
that if

L̃ = L

(
1

2
T, 2γT

)

then the following inequalities hold on L̃:

1

log γ

∫

L̃

|∇f |4
f3

φ2 ≤ 4m2

∫

l(t0)
|∇f |

+
c̃

(log γ)
1

2

,

and
1

log γ

∫

L̃
f−3 |∇f |4 φ2 ≥ 4λ1 (F )

∫

l(t0)
|∇f | − c̃0

(log γ)
1

2

.

We are now in position to prove Theorem 2.

Proof of Theorem 2. We know from Lemma 1 and Lemma 2 that

λ1 (E)

∫

l(t0)
|∇f | ≤ m2

∫

l(t0)
|∇f |+ C

(− log δ)
1

2

,

inequality that holds for any δ > 0. The claim then follows by making
δ → 0 .

This proves Theorem 2 for an infinite volume end E. The proof for
a finite volume end F is similar. q.e.d.

3. Manifolds with maximal λ1

We now prove Theorem 4.
Suppose that M has more than one end. We know ([L-W]) that if

λ1 (M) > m+1
2 the manifold has only one infinite volume end. Hence let
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us denote this infinite volume end by E and, consequently, F = M\E
is a finite volume end.

The construction of Li-Tam implies that there exists a harmonic func-
tion f : M → (0,∞) with the following properties:

1. On E the function has the decay rate
∫

Ep(R)\Ep(R−1)
f2 ≤ c1 exp

(
−2
√
λ1(M)R

)
,

2. On F the function is proper.
3. We have:

sup
x∈F

f (x) = ∞, inf
x∈E

f (x) = 0.

Let us highlight some facts about the proofs of Lemma 1 and Lemma
2. In the two lemmata, the function f was defined only on a single end,
which was first assumed to be of infinite volume, and then we observed
that the proofs still work on a finite volume end. In the framework
of Theorem 4, we know that f is defined on the whole manifold, so
now L = L (b0, b1) = {x ∈M | b0 < f (x) < b1 } makes sense for any
0 < b0 < b1. One can see that the computations proved in Lemma 1 are
true for L and moreover we may replace φ2 with φ3 everywhere. In fact,
the argument in Lemma 1 is based on repeated integration by parts on
a set L where a cut-off function is given, therefore taking φ3 does not
change the argument.

With this in mind, let us fix b0 = δε, b1 = γT, where 0 < δε < ε <

T < γT and for convenience choose γ = 1
δ . Hence, everywhere in this

proof

L = L (δε, γT ) .

The proof of this theorem is based on a more detailed study of the
inequalities in Lemma 1 and Lemma 2. We want to prove that λ1 (M) =
m2 forces all the inequalities to become equalities on L (ε, T ). Since ε, T
are arbitrary, it will follow that we need to have equalities everywhere
on M . Then studying these equalities we infer that the structure of M
is as stated in Theorem 4. Choose φ = ϕψ, where

ψ =





1
R− r

0

on
on
on

Ep (R− 1) ∪ F
Ep (R) \Ep (R− 1)
E\Ep (R)

and

ϕ =





(− log δ)−1(log f − log (δε))
0

(log γ)−1(log(γT ) − log f)
1

on L (δε, ε)
on L (0, δε) ∪ (L (γT,∞) ∩ F )
on L(T, γT ) ∩ F
otherwise.

Let us emphasize again that we need to consider ψ on the infinite volume
end because L ∩ E might not be compact in E, whereas on F we can
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take ψ = 1 because L ∩ F is compact in F as it follows from Nakai’s
theorem.

Recall that by (6) and (7) we have

1

16

m+ 1

m (m+ 2)

∫

L
f−3 |∇f |4 φ3 ≤ m(m+ 1)

4 (m+ 2)

∫

L
f−1 |∇f |2 φ3(8)

+
1

4

∫

L
f−2 |∇f |2Re(fβ̄

(
φ3
)
β
) −

∫

L
f−1fᾱβfα

(
φ3
)
β̄

− m

m+ 2

∫

L
f−1Re(fαfᾱβ̄

(
φ3
)
β
).

On the other hand, Cauchy-Schwarz inequality implies

(9)

(∫

L
f−1 |∇f |2 φ3

)2

≤
(∫

L
f−3 |∇f |4 φ3

)(∫

L
fφ3

)
,

and by the variational principle it follows that

λ1 (M)

∫

L
fφ3 ≤

∫

L

∣∣∣∇
(
f

1

2φ
3

2

)∣∣∣
2

=
1

4

∫

L
f−1 |∇f |2 φ3 +

9

4

∫

L
fφ |∇φ|2

+
3

2

∫

L
φ2∇f · ∇φ.

Our point now is that a careful study of the two ∇φ−terms shows that
they converge to zero as γ → ∞ (and δ = 1

γ → 0) and R→ ∞.

It is clear that 9
4

∫
L fφ |∇φ|

2 ≤ c1
log γ , while

∫

L
φ2∇f · ∇φ =

1

(− log δ)

∫

L(δε,ε)
f−1 |∇f |2 φ2

− 1

log γ

∫

L(T,γT )∩F
f−1 |∇f |2 φ2.

The integral on F is readily found by the co-area formula:

1

log γ

∫

L(T,γT )∩F
f−1 |∇f |2 φ2 =

(∫

l(t0)
|∇f |

)
×

×
∫ γT

T

1

t

(log(γT ) − log t)2

(log γ)3
dt

=
1

3

∫

l(t0)
|∇f | .
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It is clear that the same formula holds on E if we integrate against ϕ2

and therefore:

1

(− log δ)

∫

L(δε,ε)
f−1 |∇f |2 φ2 ≤ 1

(− log δ)

∫

L(δε,ε)
ϕ2 |∇f |2 f−1

=
1

3

∫

l(t0)
|∇f | .

For later use, observe that a converse of the latter inequality also holds:

1

(− log δ)

∫

L(δε,ε)
f−1 |∇f |2 φ2 ≥ 1

(− log δ)

∫

L(δε,ε)
f−1 |∇f |2 ϕ2

− 1

(− log δ)

∫

L(δε,ε)∩(E\Ep(R−1))
f−1 |∇f |2 ϕ2

≥ 1

3

∫

l(t0)
|∇f | − c2

(− log δ)
.

In particular, from the above estimates it follows that
∫

L
φ2∇f · ∇φ ≤ 0.

We have thus proved that

λ1 (M)

∫

L
fφ3 ≤ 1

4

∫

L
f−1 |∇f |2 φ3 +

c1

log γ
,

which plugged into (9) yields

∫

L
f−3 |∇f |4 φ3 ≥ 4λ1 (M)

(∫
L f

−1 |∇f |2 φ3
)2

∫
L f

−1 |∇f |2 φ3 + c3
log γ

= 4λ1 (M)

∫

L
f−1 |∇f |2 φ3 − c4

log γ

∫
L f

−1 |∇f |2 φ3

∫
L f

−1 |∇f |2 φ3 + c3
log γ

≥ 4λ1 (M)

∫

L
f−1 |∇f |2 φ3 − c4

log γ
.

Now let’s return to (8) and use this lower bound and that λ1 (M) = m2.
It follows that

0 ≤ c5

log γ
+

1

4

∫

L
f−2 |∇f |2Re

(
fβ̄

(
φ3
)
β

)
(10)

−
∫

L
f−1fᾱβfα

(
φ3
)
β̄
− m

m+ 2

∫

L
f−1Re

(
fαfᾱβ̄

(
φ3
)
β

)
.

We will argue now that, as γ → ∞, the right hand side of (10) is
convergent to zero.

Claim: There exists a constant c ≥ 0 such that
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1

4

∫

L
f−2 |∇f |2Re

(
fβ̄

(
φ3
)
β

)
−
∫

L
f−1fᾱβfα

(
φ3
)
β̄

− m

m+ 2

∫

L
f−1Re

(
fαfᾱβ̄

(
φ3
)
β

)
≤ c

(log γ)
1

2

.

Proof of the claim. Let us study each of the three terms in the left
hand side.

I. We have:
1

4

∫

L
f−2 |∇f |2Re

(
fβ̄

(
φ3
)
β

)
=

3

16

∫

L
φ2f−2 |∇f |2 ∇f · ∇φ

=
3

16

1

(− log δ)

∫

L(δε,ε)
f−3 |∇f |4 φ2

− 3

16

1

log γ

∫

L(T,γT )∩F
f−3 |∇f |4 φ2.

As we stressed above, the estimates in Lemma 1 and Lemma 2 are
true on any end. We want to apply Lemma 1 to estimate from above

1

(− log δ)

∫

L(δε,ε)
f−3 |∇f |4 φ2.

We can extend φ on L (ε, 2ε) as in Lemma 1, and notice that there
is no need to consider a cut-off ϕ on L

(
1
2δε, δε

)
, because φ already is

zero there. Let us denote φ̃ this new cut-off, hence φ̃ = ϕ̃ψ, where ψ is
the same as in Lemma 1 and

ϕ̃ =





(− log δ)−1 (log f − log δε)
(log 2)−1(log 2ε− log f)

0

on L (δε, ε)
on L (ε, 2ε)
otherwise.

We can apply the computations in Lemma 1 to our setting here, and it

is easy to see that formula (6) holds true if we replace φ with φ̃. We
want to prove that

1

4

∫

eL
f−2 |∇f |2Re

(
fβ̄

(
φ̃2
)

β

)
−
∫

eL
f−1fᾱβfα

(
φ̃2
)

β̄

− m

m+ 2

∫

eL
f−1Re

(
fαfᾱβ̄

(
φ̃2
)

β

)
≤ C̃(− log δ)

1

2 ,

where L̃ = L(δε, 2ε). Observe that
∫

L(δε,ε)
f−2 |∇f |2Re

(
fβ̄

(
ϕ̃2
)
β

)
≤ 1

2

∫

L(δε,ε)
f−2 |∇f |3 |∇ϕ̃|

≤ c̃2

(− log δ)

∫

L(δε,ε)
f−1 |∇f |2

= c̃3,



180 O. MUNTEANU

where in the second line we used the gradient estimate for f . A similar
argument works to bound the other terms on L (δε, ε) . Clearly, the
estimates on L (ε, 2ε) involving ∇ϕ̃ or the estimates involving ∇ψ follow
as in Lemma 1. Consequently, using (6) and (7) we get that:

1

(− log δ)

∫

L(δε,ε)
f−3 |∇f |4 φ2 ≤ 4m2 1

(− log δ)

∫

L(δε,ε)
f−1 |∇f |2 φ2

+
c6

(− log δ)
1

2

≤ 4

3
m2

∫

l(t0)
|∇f |+ c6

(− log δ)
1

2

.

Similarly, applying Lemma 2 for L(T, γT ) ∩ F it follows that

1

log γ

∫

L(T,γT )∩F
f−3 |∇f |4 φ2 ≥ 4

3
m2

∫

l(t0)
|∇f | − c7

(log γ)
1

2

.

Combining the two estimates, it results

1

4

∫

L
f−2 |∇f |2Re(fβ̄

(
φ3
)
β
) ≤ c8

(log γ)
1

2

.

II. Start with

−
∫

L
f−1fᾱβfα

(
φ3
)
β̄

= − 3

(− log δ)

∫

L(δε,ε)
f−2(fᾱβfαfβ̄)φ2

+
3

log γ

∫

L(T,γT )∩F
f−2(fᾱβfαfβ̄)φ2.

From (1) and (7) we have:

1

log γ

∫

L(T,γT )∩F
f−2(fᾱβfαfβ̄)φ2 ≤

(
1

16
− 1

16m

)
1

log γ
×

×
∫

L(T,γT )∩F
f−3 |∇f |4 φ2 +

c9

(log γ)
1

2

≤
(

1

16
− 1

16m

)
4

3
m2

∫

l(t0)
|∇f |+ c10

(log γ)
1

2

,
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while from (5) we know that

− 1

(− log δ)

∫

L(δε,ε)
f−2(fᾱβfαfβ̄)φ2 ≤

(
−1

8
+

(m+ 1)2

16m (m+ 2)

)
×

× 1

(− log δ)

∫

L(δε,ε)
f−3 |∇f |4 φ2

+
m (m+ 1)

4 (m+ 2)

1

(− log δ)

∫

L(δε,ε)
f−1 |∇f |2 φ2 +

c11

(− log δ)
1

2

≤
((

−1

8
+

(m+ 1)2

16m (m+ 2)

)
4

3
m2 +

m (m+ 1)

4 (m+ 2)

1

3

)∫

l(t0)
|∇f |

+
c12

(− log δ)
1

2

= − 1

12
m (m− 1)

∫

l(t0)
|∇f |+ c12

(− log δ)
1

2

,

using the estimates in I. Adding the two estimates proved above it fol-
lows that

−
∫

L
f−1fᾱβfα

(
φ3
)
β̄
≤ c13

(log γ)
1

2

.

Note also that in a similar fashion it can be proved that
∫

L
f−1fᾱβfα

(
φ3
)
β̄
≤ c14

(log γ)
1

2

.

III. Finally, by (2) one has:

−
∫

L
f−1Re

(
fαfᾱβ̄

(
φ3
)
β

)
= − 3

(− log δ)

∫

L(δε,ε)
f−2Re(fᾱβ̄fαfβ)φ2

+
3

log γ

∫

L(T,γT )∩F
f−2Re(fᾱβ̄fαfβ)φ2

≤ − 3

8(− log δ)

∫

L(δε,ε)
f−3 |∇f |4 φ2 +

3

(− log δ)

∫

L(δε,ε)
f−2(fαβ̄fᾱfβ)φ2

+
3

8 log γ

∫

L(T,γT )∩F
f−3 |∇f |4 φ2 − 3

log γ

∫

L(T,γT )∩F
f−2(fαβ̄fᾱfβ)φ2

+
c15

(log γ)
1

2

.

By I and II it can be showed that
∫

L
f−1Re

(
fαfᾱβ̄

(
φ3
)
β

)
≤ c16

(log γ)
1

2

.

This proves the claim. q.e.d.
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Using this result in (10) we infer that

0 ≤ c5

log γ
+

1

4

∫

L
f−2 |∇f |2Re

(
fβ̄

(
φ3
)
β

)
(11)

−
∫

L
f−1fᾱβfα

(
φ3
)
β̄
− m

m+ 2

∫

L
f−1Re

(
fαfᾱβ̄

(
φ3
)
β

)
≤ C

(log γ)
1

2

.

Since γ (and δ = 1
γ ) is arbitrary it follows that, for ε and T fixed, the

above inequality becomes an equality as γ → ∞.

From (11) we are able to draw the conclusion that the following for-
mulas are valid on M :

Ric11̄ = −(m+ 1)

|∇f | = 2
√
λ1 (M)f(12)

uαβ̄ = −mδαβ̄

uαβ = mδ1αδ1β

with respect to the frame

vα =
1

2

(
e2α−1 −

√
−1Je2α−1

)
,

e1 =
1

|∇f |∇f, Je2k−1 = e2k.

Note that in view of (12) this frame is globally defined on M.

Let us prove that indeed we have these relations on M.

Suppose that there exists a point x0 ∈M and a positive η0 such that:

Ric11̄(x0) ≥ −(m+ 1) + η0.

Let us choose ε and T such that x0 ∈ L (ε, T ) .
Recall that L = L (δε, γT ), for arbitrary γ and for δ = 1

γ . Then one

can see that there exists η1 > 0 such that

−
∫

L
f−1fαfᾱβ̄βφ

3 ≤ m+ 1

4

∫

L
f−1 |∇f |2 φ3 − η1.

It is easy to check that (11) gives

0 < η1 ≤ c5

log γ
+

1

4

∫

L
f−2 |∇f |2Re

(
fβ̄

(
φ3
)
β

)

−
∫

L
f−1fᾱβfα

(
φ3
)
β̄
− m

m+ 2

∫

L
f−1Re

(
fαfᾱβ̄

(
φ3
)
β

)

≤ C

(log γ)
1

2

,

which leads to a contradiction if we let γ → ∞.
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Next, let us focus on the Cauchy-Schwarz inequality (9). Suppose for
contradiction that there exists no constant a 6= 0 such that

|∇f | (x) = af (x) for any x ∈ U,

where U ⊂ L (ε, T ) is a fixed open set. It is clear that if

h = f−
3

2 |∇f |2 φ 3

2 , g = f
1

2φ
3

2 ,

then there exists no a ∈ R such that g = ah on U, which implies that

η0 := min
a∈R

∫

U
(g − ah)2 > 0.

This shows that

η0 ≤ a2

∫

U
h2 − 2a

∫

U
gh +

∫

U
g2,

0 ≤ a2

∫

L\U
h2 − 2a

∫

L\U
gh+

∫

L\U
g2,

for any a ∈ R. As a consequence, the following inequality is true for any
a ∈ R :

0 ≤ a2

∫

L
h2 − 2a

∫

L
gh+

(∫

L
g2 − η0

)
.

It follows that (∫

L
gh

)2

≤
(∫

L
h2

)(∫

L
g2 − η0

)
.

Similarly, one can see that there exists an η1 > 0 such that
(∫

L
gh

)2

≤
(∫

L
g2

)(∫

L
h2 − η1

)
.

Adding these two inequalities and using the arithmetic mean inequality
we get that there exists η2 > 0 with the property

(∫

L
gh+ η2

)2

≤
∫

L
g2

∫

L
h2.

We have thus proved that there exists a constant η2 > 0 depending on
U but not on γ (and δ) such that

(∫

L
f−1 |∇f |2 φ3 + η2

)2

≤
(∫

L
f−3 |∇f |4 φ3

)(∫

L
fφ3

)
.

This inequality will be used instead of (9) in the argument that followed.
Consequently,

∫

L
f−3 |∇f |4 φ3 ≥ 4λ1 (M)

(∫
L f

−1 |∇f |2 φ3 + η2

)2

∫
L f

−1 |∇f |2 φ3 + c3
log γ

≥ 4λ1 (M)

∫

L
f−1 |∇f |2 φ3 + 8λ1 (M) η2 − c17

1

log γ
.
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However, using the same reasoning as in the proof that Ric11̄ − (m+ 1)
one can see that this yields a contradiction.

Summing up, we have proved that there exists a constant a > 0 such
that |∇f | = af on M. Using Lemma 1 and Lemma 2 one can see that
a = 2m.

The proofs for the remaining two formulas use the same ideas. Note
that in (7) we need to have equality everywhere on M, therefore there
exists a function µ on M such that

uαβ̄ = µδαβ̄ .

However, taking the trace and using that f is harmonic one can show
that µ = −m.

Finally, we pointed out that if equality holds in (3) then

fαβ = 0 for (α, β) 6= (1, 1) ,

and, on the other hand, equality holds in (4) if and only if

|fαβ| =
m+ 1

m

|∇f |2
4f

= m(m+ 1)f,

Re(f11) = |f11| .
This means that

f11 = m(m+ 1)f,

or in terms of u one has

uαβ = mδ1αδ1β

as claimed.
Now we are ready to complete the proof of Theorem 4. Let us com-

pute the real Hessian of

B :=
1

2m
u.

We have:

Be1e1
= B11 +B1̄1̄ + 2B11̄ = 1 − 1 = 0,

Be2e2
= − (B11 +B1̄1̄ − 2B11̄) = −2,

Be2k−1e2k−1
= Bkk +Bk̄k̄ + 2Bkk̄ = −1,

Be2ke2k
= −Bkk −Bk̄k̄ + 2Bkk̄ = −1,

Bekej
= 0 if k 6= j,

for k ∈ {2, ...,m}. Also, notice that |∇B| = 1 on M.

Since all the computations from now on will be done in the real frame
{e1, ...., e2m} with Je2k−1 = e2k and e1 = 1

|∇f |∇f, we will drop the ek
index for convenience and use only k in the formulas for the real Hessian
and the curvature.

Also, let us make the convention that Roman letters i, j, k run from
1 to 2m and Greek letters α, β, γ run from 3 to 2m.
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We have proved that there exists a smooth function B on M with
real Hessian

(Bij) =




0 0 0 0 . . 0
0 −2 0 0 . . 0
0 0 −1 0 . . 0
0 0 0 −1 . . 0
. . . . . . .

. . . . . . .

0 0 0 0 . . −1




and with unit length gradient, |∇B| = 1 on M.

Note that our function B satisfies the same properties as the Buseman
function β in [L-W]. The advantage of our argument is that we are able
to deduce this information using just the Ricci curvature lower bound.
For the rest of the proof, we use the same argument as in [L-W].

Denote the level set of B by

Nt = {x ∈M | B (x) = t} .
Since |∇B| = 1, M is diffeomorphic to R × N0 and e1 = ∇B is the

unit normal to Nt for any t. If N0 is noncompact, then M will have one
end, which contradicts our assumption that M has more than one end.

Consequently, N0 is compact, and this implies that M has two ends.
For the remainder of this proof M has two ends, and we want to find
the metric of Nt depending on the metric of N0.

Knowing Bij is equivalent to knowing the second fundamental form
of Nt, which implies that if

∇ei = ωikek,

then one can find

ωi1 (ej) =





0 for i 6= j

2 for i = j = 2
1 for 3 ≤ i = j ≤ 2m.

Also, using the Kähler property we know that

ω1kJek = J∇e1 = ∇Je1 = ∇e2 = ω2kek,

which implies

ωα2 (ej) =





0 for j = 1 or j = 2
−1 for α = 2p+ 1, j = 2p+ 2
1 for α = 2p + 2, j = 2p+ 1.

It is clear that the flow φt : M →M generated by e1 is a geodesic flow.
Since

∇e1
e2 = ∇e1

Je1 = J∇e1
e1 = 0



186 O. MUNTEANU

we can conclude that e2 is parallel along the geodesic τ defined by e1.
We will consider the rest of the frame so that it is also parallel along
this geodesic.

The next step is to prove that

V2 (t) = e−2te2

Vα (t) = e−teα

are the Jacobi fields along the geodesic τ with initial conditions

V2 (0) = e2, V ′
2 (0) = −2e2

Vα (0) = eα, V ′
α (0) = −eα.

This is true because the information on ωi1 and ωα2 allows to find suffi-
cient values for the curvature tensor. Using the second structural equa-
tions one can show that

R1212 = −4, R121α = 0,

R1α1β = −δαβ ,

and this indeed shows that Vk (t) are Jacobi fields for k ∈ {2, ..., 2m}.
However, dφt (ek) for k ≥ 2 are also Jacobi fields with the same initial

conditions as Vk (t) , so they must coincide.
The conclusion is that the metrics on Nt viewed as one parameter of

metrics on N0 are

ds2t = e−4tω2
2 (0) + e−2t

(
ω2

3 (0) + ....+ ω2
2m (0)

)
,

where {ω1, ..., ω2m} is the dual frame of {e1, ..., e2m}.
This shows that indeed the manifold is diffeomorphic to R ×N with

the metric described in Theorem 4.
The last part in Theorem 4 to be proved is that M̃ is isometric to CH

m

if M has bounded curvature. This follows from the following argument.
Since we know the metric, we can use the structural equations and the
Gauss formula to compute the curvature of M. The curvature of M
will depend exponentially in t on the curvature of N0, so if we ask that
it is bounded, this implies that M must have constant holomorphic
bisectional curvature, hence covered by CH

m. The details of this proof
can be found in [L-W] and will not be included here. q.e.d.

References

[C-G] M. Cai & G.J. Galloway, Boundaries of zero scalar curvature in the
ADS/CFT correspondence, Adv. Theor. Math. Phys. 3 (1999), 1769–1783,
MR 1812136, Zbl 0978.53084.

[C] S.Y. Cheng, Eigenvalue comparison theorems and its geometric application,
Math. Z. 143 (1975), 289–297, MR 0378001, Zbl 0329.53035.

[K-L-Z] S. Kong, P. Li & D. Zhou, Spectrum of the Laplacian on quaternionic Kähler
manifolds, J. Differential Geom. 78 (2008), no. 2 295–332, MR 2394025,
Zbl 1140.58014.



A SHARP ESTIMATE FOR THE BOTTOM OF SPECTRUM 187

[L] J. Lee, The spectrum of an asymptotically hyperbolic Einstein mani-
fold, Comm. Anal. Geom. 3 (1995), no 1–2, 253–271, MR 1362652,
Zbl 0934.58029.

[L-T] P. Li & L.F. Tam, Harmonic functions and the structure of com-
plete manifolds, J. Differential Geom. 35 (1992), 359–383, MR 1158340,
Zbl 0768.53018.

[L-W] P. Li & J. Wang, Connectedness at infinity of complete Kähler manifolds, to
appear, American Journal of Mathematics.

[L-W1] P. Li & J. Wang, Complete manifolds with positive spectrum, J. Differential
Geom. 58 (2001), 501–534, MR 1906784, Zbl 1032.58016.

[L-W2] P. Li & J. Wang, Complete manifolds with positive spectrum II, J. Differential
Geom. 62 (2002), 143–162, MR 1987380, Zbl 1073.58023.

[L-W3] P. Li & J. Wang, Comparison theorem for Kähler manifolds and posi-
tivity of spectrum, J. Differential Geom. 69 (2005), 43–74, MR 2169582,
Zbl 1087.53067.

[L-W4] P. Li & J. Wang, Weighted Poincaré inequality and rigidity of complete man-
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