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A GENERALIZATION OF HAMILTON’S
DIFFERENTIAL HARNACK INEQUALITY FOR THE
RICCI FLOW

SIMON BRENDLE

Abstract

In [10], R. Hamilton established a differential Harnack inequal-
ity for solutions to the Ricci flow with nonnegative curvature op-
erator. We show that this inequality holds under the weaker con-
dition that M x R? has nonnegative isotropic curvature.

1. Introduction

In [10], R. Hamilton established a differential Harnack inequality for
solutions to the Ricci flow with nonnegative curvature operator (see [9]
for an earlier result in the two-dimensional case). This inequality has
since become one of the fundamental tools in the study of Ricci low. We
point out that H.D. Cao [4] has proved a differential Harnack inequality
for solutions to the Kéahler-Ricci flow with nonnegative holomorphic
bisectional curvature.

In this paper, we prove a generalization of Hamilton’s Harnack in-
equality replacing the assumption of nonnegative curvature operator
by a weaker curvature condition. Throughout this paper, we assume
that (M, g(t)), t € (0,T) is a family of complete Riemannian manifolds
evolving under Ricci flow. Following R. Hamilton [10], we define

P, = DiRicj, — DjRicgy
and
M;; = ARic;; — % D;Djscal + 2 Ryp.;; Ric™ — Rick Ricjy + % Ricy;.
Here, Ric and scal denote the Ricci and scalar curvature of (M, g(t)),
respectively.

Theorem 1. Suppose that (M, g(t)) x R? has nonnegative isotropic
curvature for all t € (0,T). Moreover, we assume that

sup scal(z,t) < oo
(z,t)eMx(a,T)
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for all « € (0,T). Then,
M(w,w) 4+ 2 P(v,w,w) + R(v,w,v,w) >0
for all points (x,t) € M x (0,T) and all vectors v,w € T, M.

As a consequence, we obtain a generalization of Hamilton’s trace
Harnack inequality (cf. [10]):

Corollary 2. Suppose that (M, g(t)) x R? has nonnegative isotropic
curvature for all t € (0,T). Moreover, we assume that

sup scal(z,t) < oo
(z,t)eM x (o, T")

for all « € (0,T). Then we have
0 1 i .
ascal + 7 scal + 2 9;jscal v* + 2 Ric(v,v) >0
for all points (x,t) € M x (0,T) and all vectors v € T, M.
The condition that M x R? has nonnegative isotropic curvature is
preserved by the Ricci flow, and plays a key role in the proof of the

Differentiable Sphere Theorem [2]. We point out that the following
statements are equivalent:

(i) The product M x R? has nonnegative isotropic curvature.
(ii) For all orthonormal four-frames {ej,es,e3,e4} C T, M and all
A € [—1,1], we have
R(ey,es,e1,e3) + N2 R(e1, eq, €1, e4)
+ 112 R(eg, e3, e, e3) + N2 u? R(ea, €4, €2, €4)
— 2 \pu R(eq, ea,e3,e4) > 0.
(iii) For all vectors vy, ve, vs,v4 € T, M, we have
R(vy1,v3,v1,v3) + R(v1, v4,v1,v4)
+ R(vg,v3,v2,v3) + R(va,v4,v2,v4)
-2 R(Ul, V2, U3, U4) > 0.

The implication (i) = (ii) was established in [2]. Moreover, a careful
examination of the proof of Proposition 21 in [2] shows that (ii) implies
(iii). Finally, the implication (iii) = (i) is trivial.

2. The space-time curvature tensor and its evolution under
Ricci flow

We first review the evolution equations for the various quantities
that appear in the Harnack inequaltiy. The evolution equation of the
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curvature tensor is given by

0
aRijkl — AR
+ RiCZm ijkl + Ri(:;”’ Rimkl + Riczn Rijml + RiClm Rijkm

= gpq grs Rijpr Rqus +2 gpq grs Ripkr Riqls -2 gpq grs Riplr ijks
(cf. [7],[8]). Moreover, Hamilton proved that

0 . . .
¢ ik = ALy + Rici” Prji + RicF P, + Rick” Pijm
=2 gpq grs Ripjr quk +2 gpq grs Ripkr qus +2 gpq grs ijkr Piqs

— 2Ricy' DP Rijim
and
9 My, — AM; + Ric!" My + Ric™ M
o Mis — AMi; + Ric” My + Rici® Mim
= 2917(1 gT’S RipjT qu +2 Rngl (DmeZJ + Dme]Z)
o 1
+ QQPqQTSPiperqs - 49pq9T8Pipersq +2 Rlclp RlcgbRﬂjm N ﬁRlCij

(see [10], Lemma 4.3 and Lemma 4.4).

Chow and Chu [5] observed that the quantities M;; and P;j;, can be
viewed as components of a space-time curvature tensor (see also [6]).
In the remainder of this section, we describe the definition of the space-
time curvature tensor and its evolution under Ricci flow. Following [6],
we define a connection D on the product M x (0,T) by

D 0505 =

Daii% - —(Ricg + %55) %
Dy o = —(Ricl+ 5,6) 55
Doy =375 5 gy

Here, Ffj denote the Christoffel symbols associated with the metric g(t).
We next define a (0,4)-tensor S by

S = Rjju dot @ da? @ dz* @ dat
+ Pjpdz' @ da’ @ dt @ da” — Py da’ @ da! @ da* @ dt
+ Py dt ® da* @ do' @ da? — Py, da® @ dt @ do' @ da?
+ M;jdo' @ dt ® do? @ dt — M; da’ @ dt ® dt @ da?
— M;jdt ® do' @ do? @ dt + M;;dt @ da* @ dt @ da?.
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The tensor S is an algebraic curvature tensor in the sense that
S({}ly @27 @37 64) = _5(627 ’Dla 637 {)4) = 5(637 ’[)47 ’Dla ,DZ)
and
S(v1, V9, V3, 04) + S(02, V3, 01,04) + S(03,01,0V2,04) =0

for all vectors 01,02, 03,04 € T(g 4 (M x (0,T7)).
Given any algebraic curvature tensor S, we define

QN(S)(?jl? ?727 637 @4)

En: gpqgms@l’”?’a P’ axT)S< 01 g axq 8:ES)

p.a,ms=1

42 En: gpqgms@ 5 U3 air)s( V20 g U 3(35 )
qu’S—l

-9 Z gpquSS< U4, 8 (7127 ; U3, 828)
p,g,rs=1

for all vectors 01, ¥g, 93,04 € T(y)(M x (0,T)). It is straightforward to
verify that

Q(S) (1,02, B3, B4) = —Q(S) (B2, U1, T3, 54) = Q(S) (03, Da, 1, Vo)

and

Q(S) (91,09, U3, 04) + Q(S)(v2, U3, 01, 74) + Q(S)(V3, 01, V2, 04) = 0

for all vectors 91, Ua, 03,94 € T(y4)(M x (0,T')). Therefore, Q(S) is again
an algebraic curvature tensor.

Proposition 3. The tensor S satisfies the evolution equation
- N 9 -
DQS:AS+¥S—I—Q(S).
ot
Here,

AS—ngqD S

ii
=1 oxP’ x4

denotes the Laplacian of S with respect to the connection D.

Proof. For abbreviation, let W = D 2 S —AS— %S . Clearly, W is
an algebraic curvature tensor. We claim that W = Q(S). Note that
~ o o0 o0 0
.D S <—-7 —.7 —7 —>
( 5 ) Oxt’ Oxd’ dxk’ Ol
0 2

= gy ikt + 7 Rijk
+ Ricgn ijkl + Ricgn Rimkl + RiCZL Rijml + RiC?n Rijkm
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and

This implies
( o 9 o0 0 >
Ox'’ Ox’ Oxk’ Ol
= %Rijkl — ARjjk
+ Ric;-” ijkl + Ricgn Rimpr + RiCTkn Rijml + RiClm Rz’jkm
= gpq grs Rijpr Rqus +2 gpq grs Ripkr Riqls -2 gpq grs Riplr ijks

~ o o0 9 0
= Q) (5, 77 70 707
Moreover, we have
- o o0 9 0
(P25 (57 57 30" B
0 1 3
- Epmk + 5 8 Scal Rijmk‘ + ; Pijk

+ RIC?L ijk + Rlcgn Pk + RICZL Pijm

and
< o o0 9 0
AS <—., —., _7 —>
(AS) Oxt’ Ox’ Ot OxF
1
= APijk + DpRiCZL Rz’jmk + 2 Ric;,n DpRijmk + ; DmRijmk
1 1
= APZ]k + 5 0™Mscal Rijmk + 2 RiCZL DpRijmk + ? Pijk-
Using the evolution equation for the tensor F;j;, we obtain

o 9 9 0
(@’ oz’ ot W)
- %szk — APy, — 2Ric! D Ry
+ Ric]" Prji + Ric)" Py + Ricp! Pijm
=209 9" Ripjr Pysk + 2971 9" Riprr Pyjs +2 971 9" Rjpr Pigs
= 9% 9" Rijpr Pysk + 291 9" Ripkr Pyjs + 2977 9" Rjprr Pigs

~ 0 o 0 0
= Q) (53 507 57" 30F )
Finally, we have
- o 0 0 0
(02555 5 307 1)
0

ot t

211

1 4
= _Mij — 5 0™Mscal (le] + iji) + - Mij + RiCZm Mmj + Ric}-ﬂ M
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and

R
(385557 507 5t)
1
= AM;; — 2 (Ric;,” 5 5;,”) (DPPipnj + DPPji)

) ) 1 . 1
— DPRicy! (Pimj + Pjmi) +2 (RlClp + 5 glp) <Rlcpm + 5 5;,“) Ritjm
= AMZ] — 2R1C;n (Dppimj + Dijmi)
— DPRiC; (Pymj + Pjmi) + 2Ric” Ric)' Rijm
1 2. L.
= = (D" Pimj + D™ Pjmi) + — Ric™ Ry + 57z Rici;
= AMZ] — 2R1CIT' (DpPimj + Dijmi)
1 . .
-3 0"scal (Pymj + Pjmi) + 2Ric'? Ric! Rijm
2

1 .
+ ; i ﬁ RlCij.

In the last step, we have used the formula
1
M;; = —D™ Py + Ric!™ Rypjm + 57 Rici;

(see [10], p. 235). Using the evolution equation for M;;, we obtain

o 9 9 9
<%’E’axﬁ§)
9

T ot

1
+ Ric]" My + Ric" My, — 2Ric’ Ric])' Rijm + 57 Rics

Mij — AMW + 2 R,ICZ1 (Dpf)imj + Dijmi)

=2 gpq grs Ripjr qu +2 gpq grs Pipr ijs - 4gpq grs Pipr Pjsq
=2 gpq grs Ripjr qu +2 gpq grs Pipr (ijs - Pjsq) -2 gpq grs Pipr Pjsq
=2 gpq grs Ripjr qu -2 gpq grs Pipr quj -2 gpq grs Pipr Pjsq
=2 gpq grs Ripjr qu + gpq grs Ppri quj -2 gpq grs Pi;m" Pjsq
~ o 0 90 0
= 08) (5 30 507 30)-
Putting these facts together, we conclude that W = Q(S). This com-
pletes the proof.

3. An invariant cone for the ODE %S =Q(9)

We now consider the space of algebraic curvature tensors on R™ X
R. There is a natural mapping () which maps the space of algebraic



HARNACK INEQUALITY FOR THE RICCI FLOW 213

curvature tensors on R™ x R into itself. For each algebraic curvature
tensor S on R™ x R, the tensor Q(S) is defined by

n

Q(S) (01,02, 3,04) = > S(i1, B2, €p, €q) S (03, 04, €p, €g)

p,q=1

n
+2 Z S(f}ly €p, 273, eq) S(’DQ? €p, ,547 eq)
p,g=1

n
—2 ) S(i1,ep, T4, €q) S(B2, €, T3, €9),
D=1
where {ej,...,e,} is an orthonormal basis of R” (viewed as a subspace
of R™ x R).
Let K be the set of all algebraic curvature tensors on R x R such
that

5(271,273,171,273) +S(2~11,1~J4,1~11,1~J4)
+ S(02, 3, U2, U3) + S(02, V4, V2, 04) — 2.5(01, D2, 03,04) > 0

for all vectors 91, v, V3,04 € R™ x R. Clearly, K is a closed convex cone.
Moreover, K is invariant under the natural action of GL(n + 1).

We claim that K is invariant under the ODE %S = Q(S). The proof
relies on the following result:

Proposition 4. Let S be an algebraic curvature tensor on R™ x R,
which lies in the cone K. Moreover, suppose that 01,0y, U3, U4 are vectors
in R™ x R satisfying

S(v1,03,01,03) + S(01, 04, 01, 04)
+ S(y, B3, Ba, U3) + S (B, B4, o, 04) — 2 S(B1, By, U3, 74) = 0.
Then, the expression
S(wy, 03,1, 03) + S(W1, V4, W1, Vs)
+ S(we, U3, We, U3) + S(Wa, Vg, Wa, Uy
+ 5(01, w3, 01, W3) + S(V2, W3, V2, W3

+ S(01, g, V1, W4) + S(02, 104, V2, Wy

82\_/\_/\_/
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is monnegative for all vectors Wi, we, w3, w4 € R™ x R.

Proof. The proof is similar to the proof of Proposition 8 in [2]. Since
S € K, we have

0 < S(v1 + swy, 03 + sws, U1 + s, U3 + sws3)
+ S(01 + sWy, 04 + sWy, U1 + W1, Vg + SWy)
+ S(0g + swg, V3 + sW3, Uy + SWe, U3 + SW3)
+ S(0g + sWa, 04 + Sy, Vg + W2, Vg + SWy)
—25(01 + swy, Uy + sWa, V3 + sWs, Uy + SWy)

for all s € R. Taking the second derivative at s = 0, we obtain

(1) 0< S(w1,03,101,03) + (W1, Vg, W1, Vy)
S(w2, U3, w2, V3) + S(Wa, V4, Wa, V4)
S(v1,ws, 01, Ws3) + S(v2, w3, U, W3)
S(01, Wy, 01, Ws) + S(Vg, Wy, U2, Ws)
+ 25(v1, 03, Wy, w3) + 2S(01, w3, Wy, 03) — 25wy, V2, W3, Vyg)
+ 2 .5(01,04,W1,Wq) + 2 S(01,Wyq, W1, 04) — 2 S0y, Vg, V3, 04)
+ 2.5(v9, U3, W, w3) + 2.S(0g, W3, W, V3) — 2 .5(01, W, W3, Vyg)
+ 2 .5(0g, Vg, W, Wq) + 2 S(Da, Wyg, Wa, 04) — 2 S(01, W3, V3,7W4)
— 2 S(Wy, W3, 03,04) — 2 S(01, Vo, W3, Wy).
Replacing {01, U2, U3, 04} by {02, —01, 04, —03} yields
(2) 0< S(wy,0q,1w1,04) + S(W1, 03,01, 03)
+ S(wg, U4, Wa, 0q) + S(W2, U3, Wa, V3)
+ S(02, w3, U2, w3) + S(V1, W3, U1, W3)
+ S(Dg, Wy, U2, W) + S(01, Wy, U1, Wy)
+ 2.5(0g, 04, W1, W3) + 2S(0g, W3, W1,04) — 25 (w1, 01, Ws, U3)
— 2.5(vg, U3, W1, wy) — 2S(Vg, Wy, W1, 03) + 25w, 01,04, Wy)
—25(01,04,Wa,w3) — 2 S(01, W3, W, 0q) + 2 S(02,Wa, W3, V3)
+ 2.5(01,03,Wa, wy) + 2.5(01, Wy, W, U3) — 2S(Vg, Wa, Vg, Wy)
+ 2.5(wn, e, Uy, U3) + 2.5(0g, 01, W3, Wy).



HARNACK INEQUALITY FOR THE RICCI FLOW 215

In the next step, we take the arithmetic mean of (1) and (2). This yields
(3) 0SS(’lZ)l,’Dg,’LZ)l,@g;)+S(1Z)1,’L~)4,’LZ)1,1~14)

+ S('[Z)Q, 273, 152, ’53) + 5(12)2, 274, 152, ’L~)4)

+ S(01,ws, v1,ws) + S(V2, W3, Vg, W3)

+ S(’[)l,’l[)4,2~}1,w4) + 5(62712)47@27@4)

+ |S(01, 03, w1, w3) + S(01, W3, Wi, 03) — S(w1, Va2, W3, Vs)
+ S(0g, Vg, W1, W3) + S(g, w3, W1, 04) — S(W1, 01, W3, V3)

+ | S(01, 04, W1, Ws) + S(01, Wy, W1, 0g) — S(W1, 02, V3, Wy)
— S(0g, U3, W1, Ws) — S(Vo, Wy, W1, 03) + S(W1, 01, V4, Wa)

+ 5(627@3771)2712)3) + 5(62771)3712)27@3) - S(ﬂlyw27w37@4)
— S(01, Vg, W, w3) — S(01, W3, W2, V4) + S(Va, Wa, W3, V3)

+ | S(D2,0q,Wa,wy) + S(Vg, Wy, We, Vy) — S(01, Wa, V3, W)

+ 5(01, 03, W, Wa) + S(01, W4, Wa, U3) — S(V2, We, Vg, Wa)
— 2.5(wy, W, U3, 04) — 2S(01, Vg, W3, Wy).
Since S satisfies the first Bianchi identity, the assertion follows.

Proposition 5. Let S be an algebraic curvature tensor on R™ x R,
which lies in the cone K. Moreover, suppose that 01, Uy, U3, U4 are vectors
in R™ x R satisfying

S(v1, 03,01, 03) + S(01,04, 01, 04)

+ S (D, B3, Ta, T3) + S(Da, Ba, B2, 04) — 25(01, Do, B3, 04) = 0.
Then,
Q(S)(1, T3, 1, T3) + Q(S) (1, B4, b1, Ta)
+ Q(S) (g, B3, T2, U3) + Q(S) (2, B, T2, U4) — 2Q(S) (91, Vo, U3, Tg) > 0.

Proof. Consider the following n x n matrices:

apg = S(01, €p, 01, €q) + S(02,€p, V2, €q),
bpq = S(Us, ep, U3, €q) + S(Us, €p, s, €9),

Cpq = S(T3, €p, V1, €q) + S(04, €p, V2, €4),
dpg = S(Vs, €p, U1, €q) — S(U3, €p, V2, €4),

epq = S(U1, 02, €p, €q),

foq = 5(V3, 04, €p,€q)
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(1 < p,q <n). It follows from Proposition 4 that the matrix
B - -C -D
F B D -C
-ct p¥ A -E
-pT -¢cT E A
is positive semi-definite. This implies

tr(AB) + tr(EF) — tr(C?) — tr(D?) > 0,

and hence
n n n n
(4) E pg bpg — E €pq fpg — E Cpq Cqp — E , dpqdgp > 0
p,q=1 p,q=1 p,q=1 p,q=1

(cf. [2], Proposition 9). On the other hand, we have

Q(S) (01, B, B3, 04) = Z S(01, 2, ep, q) S(V3, 04, €p, €g)
P,q=1

n
+ Z S(?le, U3, €p, eq) S(’T)Q, U4, €p, 6q)
p,g=1

n
- Z 5(617 @47 €p, eq) S(’D% ,537 €p, eq)
=1

n
+ 2 Z 5(617 €p, {)37 eq) S(’D47 €p, @27 eq)
p,g=1

n
—2 ) S(b1,ep, T4, €q) S(3, €, T, €9)
p,q=1
since S satisfies the first Bianchi identity. This implies

()

Q(S)(ﬂlvﬁ&ﬁlv{%) + @(S)({)17647617’54)
+ Q(S)(@271~)37,D27,D3) =+ @(S)({)276471~)27’D4) - 2@(5)(@17627@37@4)

= Z [5(61763761776(]) - 5(52764761276(1)]2

p,q=1

n

s ~ s 2
+ Z [S(01, 04, €p, €q) + S (02,03, €p, 4)]
p,q=1
n n n n

+2 E , pq bpg — 2 Z epg fpg — 2 E , Cpg Cqp — 2 E , dpq dgp-

p,q=1 p,q=1 p,g=1 p,q=1

The assertion follows immediately from (4) and (5).
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4. Proof of Theorem 1
We define a Riemannian metric h on M x (0,7) by

n . 1
h = Zgijdx2®dxﬂ+t—2dt®dt.

i,j=1
Lemma 6. Suppose that

sup |Rm| < 0.
(x,t)€M % (0,T)

Then there exists a uniform constant C' such that
~ < 1
Doh—Ah——-h| <C
ot t |n

and
[Duhly < C Jo|
for all points (x,t) € M x (0,T) and all vectors v € T, M.

Proof. By definition of D, we have

~ 1
Do da? = T da* + (Ric] + o o7) dt
D o dt =
ox?
D o dx? = <Ricj + i 54) da + 18jscauldt
o1 L A 2
s 3
Dodt =—dt
[ 2t

This implies

. 1 . .
Do h= <Ricik + 5 gik> (de' @ dt + dt  da?).

azk 2

Moreover, we have

- 1 . .
Dagh =3 Oiscal (dz' @ dt + dt ® dz')
t
1 i |
—I—zgijdx ®d$]+t—3dt®dt
and

_ 1 . .
Ah = 3 Ojscal (dz' @ dt + dt @ dz*)
. g 1 7 -k 1 k
+2 (Rlck + o 5k> (RICZ' + T 0; > dt @ dt.
Putting these facts together, we obtain
~ Ap L, ci L kLo
Doh—Ah——h= Q(Rlck—i- 2t5k> (Rlc,. + 2t(5,~>dt®dt.

9
ot
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Thus, we conclude that
~ P 1
Doh—Ah—=h| =22 Ric? + 2t scal + =
ot t In 2
and .
|Dyh|? = 2t Ric%(v,v) 4 2t Ric(v,v) + 3 g(v,v)
for all points (z,t) € M x (0,T") and all vectors v € T, M.

Lemma 7. Suppose that (M, g(t)) x R? has nonnegative isotropic
curvature for all t € (0,T). Moreover, we assume that

sup |ID™Rm| < 0o
(2,t)€M % (0,T)

form=0,1,2,.... Then there exists a uniform constant C such that
1
S+ 1 CthoheK

for all points (x,t) € M x (0,T). Here, ® denotes the Kulkarni-Nomizu
product.
Proof. There exists a uniform constant C' such that
|S = Rijrda’ @ da’ @ do* @ da'|, < C't

for all (z,t) € M x (0,7"). This implies

I

. . 1
S — Riji do’ @ da? ®da:k®dxl+ZCth®heK

for all (x,t) € M x(0,T). Moreover, since (M, g(t)) xR? has nonnegative
isotropic curvature, we have
Rijn di' @ di? @ dz* @ dat € K

for all points (x,t) € M x (0,T). Putting these facts together, the
assertion follows.

Proposition 8. Suppose that (M, g(t))xR? has nonnegative isotropic
curvature for all t € (0,T). Moreover, we assume that

sup |D™Rm| < co
(2,)eM x(0,T)
form =0,1,2,.... Then, Sy € K for all (z,t) € M x (0,T).
Proof. By Lemma 5.1 in [10], we can find a smooth function ¢ : M —
R with the following properties:
(i) p(z) — o0 as x — o0,
(ii) ¢(z) > 1 for all x € M,
(iii) SUP(z t)e M x (0,T) |V90( )|g(t) < o0,
(iv) supnemx(o,r) Dy ()] < oo.
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Let € be an arbitrary positive real number. We define a (0, 4)-tensor S
by
A 1
S = S+Zse”<p(m)h@h,

where A is a positive constant that will be specified later. Clearly, S
is an algebraic curvature tensor. By Lemma 7, there exists a uniform
constant C7 such that

S—Ficlth@hEK

for all points (x,t) € M x (0,T). Hence, if € eM ¢(x) > Cy t, then S(m)
lies in the interior of the cone K.
We claim that S, ;) € K for all (z,t) € M x (0,7). Suppose this is

false. Then there exists a point (zg,tg) € M x (0,T) such that S(mo,to) S
0K and S(m,t) € K for all (z,t) € M x (0,t0]. Since S(mo,to) € 0K, we
can find vectors 91, Ua, U3, U4 € T(z,49)(M x (0,T)) such that

|51 A D3 + Dy A Dol 4 |01 A g + D2 A T3] >0
and
S(on, B3, 0, T3) + S (D1, 04, 1, 4)
+ (o, D3, Dy, U3) + S(Da, U, Vo, 04) — 2.8(01, g, B3, 04) = 0
at (zo,to). It follows from Proposition 5 that

(6)
Q(S) (01,03, 01,73) — Q(S) (1, bs, 01, 0s)
+ Q(S) (g, 03, Ua, 3) — Q(S)(Vg, Vg, Uy, Ts) + 2Q(S) (1, Ty, T3, Tg) > 0

at (xo,t9). We may extend 01,0, 03,04 to vector fields on M x (0,7)
such that

- - ~ 1

D s v1=0 Doty — A +—71=0
3 ot 2t

Do tp=0 Doy — Ay + — 1y =0
ozt ot 2t

- - ~ 1

D s v3=0 Dov3—Avg+ —103=0
EXy ot 2t

- N ~ 1

D s v4,=0 Doy — Ay +—704=0
dxt ot 2t

at (xo,tp). We now define a function f: M x (0,7) — R by
=801, 03,01, 73) + S(01, 84, 01, 0a)

+ S(6271~)3762763) + S(1~)271~)471~)2764) - 23(@1762763764)’
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Clearly, f(zo,tg) = 0 and f(z,t) > 0 for all (z,t) € M x (0,tp]. This
implies

0

—f—-Af<

atf F=0
at (xo,tp). Hence, if we put

Z=DsS—AS -

SN W)

o S,
ot

then we obtain

(1) Z(01,03,01,03) + Z(01,04,01,0s)

+ Z('[)Q,'l~13,'l~12,'l~13) + 2(52,54,@2,@4) — 22(@1,@2,@3,@4)
0

=_—f-Af<0
I

at (zp,tp). On the other hand, it follows from Proposition 3 that

1 ~ - 1
i cp(a;)h@@%h—m—;h)

for all (z,t) € M x (0,T). In view of Lemma 6, there exists a uniform
constant Cy such that

|Z-Q(8) ~ FAe ¥ p(m) ho|| < Cree (p(a) + Vila)| +A0())

for all (z,t) € M x (0,T). Since Vp(z) and Ap(zr) are uniformly
bounded, it follows that

‘Z —Q(S) - i)\ae)‘t e(x)h ® h‘h < Cze e p(x)

for all (z,t) € M x (0,T).

We next observe that e e p(zg) < Cito. (Indeed, if € eMo p(z0) >
C1 to, then S(aco,to) would lie in the interior of the cone K, contrary to
our choice of (xo,tp).) Hence, there exists a uniform constant Cy such
that

|S|n + |§—S|h < Cy
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at (xo,tp). This implies
Q(S) = Q(S)|n < C5 (IS]n ]S — Sln + 1S — SI7)
< Cs5Cy ’S — S‘h
< Cgee p(x)

at (xo,tp). Putting these facts together, we obtain

1
AeeM o(x)h o h . < CreeM p(z)

Z—Q(S)—Z

at (zo,to). This implies
~ A 1
Z —Q(S) — 1(A—(17)aeM<p(a;)h@h cK

at (zo,to). Hence, if we choose A > C7, then we have
(8)
Z(f}ly @37 271, @3) + Z(ﬂlv ,547 ,Dlv ,54)
+ Z(ZNJQ, U3, Vg, 173) + Z(ZNJQ, V4, V3, ’L~)4) -2 Z(f}l, Vs, U3, ’L~)4)
— Q(S)(B1, 73,01, T3) — Q(S) (91, 04,71, B)
— Q(8) (0,03, T, B3) — Q(S) (B2, T, B, ) + 2 Q(S) (90, 2, Ty, 4)
>0
at (zo,tp). The inequality (8) is inconsistent with (6) and (7). Conse-

quently, we have S, 4 € K for all points (z,t) € M x(0,T). Sincee > 0
is arbitrary, it follows that S(, ;) € K for all points (z,t) € M x (0,T).

Proposition 9. Suppose that (M, g(t))xR? has nonnegative isotropic
curvature for all t € (0,T). Moreover, we assume that

sup scal(z,t) < oo
(z,t)eM x (o, T")

for all a € (0,T). Then, S,y € K for all (x,t) € M x (0,T).
Proof. Fix a real number a € (0,7"). By assumption, we have

sup |IRm| < oo.
(z,t)EM x (e, T")

Using Shi’s interior derivative estimates, we obtain

sup |D™Rm| < 0o
(z,t)EM x (o, T')
for m = 1,2,... (see e.g., [12], Theorem 13.1). Hence, we can apply
Proposition 8 to the metrics g(t + «), t € (0,7 — «). Taking the limit
as a — 0, the assertion follows.
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Theorem 1 is an immediate consequence of Proposition 9. To see this,
we consider a point (x,t) € M x (0,7) and vectors v,w € T, M. By
Proposition 9, we have

5(61763761763) +S(®17®47®17®4)
+ S(0g, U3, U2, U3) + S(U2, V4, U2, 4) — 25(01, U2, 03,04) > 0

for all vectors 01,72, 03,04 € T(5 4 (M x (0,T)). Hence, if we put

U] = — + v, vg =0, U3 = W, vg =0,

ot

then we obtain
M(w,w) + 2 P(v,w,w) + R(v,w,v,w) > 0.

This completes the proof of Theorem 1. In order to prove Corollary 2,
we take the trace over w. This yields

1 .
Ascal 4 2 [Ric|* + 7 scal + 2 0;scal v + 2 Ric(v,v) > 0
Hence, Corollary 2 follows from the identity %seal = Ascal + 2 |Ric|?.

5. The equality case in the Harnack inequality

In this section, we analyze the equality case in the Harnack inequality.
Let (M, g(t)), t € (0,T"), be a family of complete Riemannian manifolds
evolving under Ricci flow. As above, we assume that (M, g(t)) x R? has
nonnegative isotropic curvature for all ¢t € (0,7'). Moreover, we require
that

sup scal(z,t) < oo
(z,t)eMx(a,T)
for all a € (0,7).

Let E be the tangent bundle of M x (0,7"). We denote by P the total
space of the vector bundle E® E @ E @ E. The connection D defines a
horizontal distribution on P. Hence, the tangent bundle of P splits as
a direct sum TP = H® V, where H and V denote the horizontal and
vertical distributions, respectively.

Let m be the projection from P to M x (0,7T). For each t € (0,7),
we denote by P, = 7~ 1(M x {t}) the time t slice of P. We define a
function v : P — R by

w : (01, g, 03,04) — S(01,03,01,03) + S(01, 04, 01, 04)
+ S (02, U3, U2, 03) + S(02, U4, U2, Us)
—285(01, 09,03, 04).
By Proposition 9, u is a nonnegative function on P. Let F = {u = 0}

be the zero set of the function u. We claim that F' is invariant under
parallel transport:
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Proposition 10. Fiz a real number ty € (0,T), and let 7 : [0,1] —
P, be a smooth horizontal curve such that 5(0) € F. Then, 4(s) € F
for all s € [0,1].

Proof. Without loss of generality, we may assume that the projected
path m o4 :[0,1] — M X {to} is contained in a single coordinate chart.
Let € M x (0,T) be a coordinate chart such that 7(5(s)) € § for all
s € [0,1]. We can find smooth vector fields X7, ..., X, on £ such that

ZXk@Xk_Zg &T’ i

7.7_

Moreover, we define a vector field Y on €2 by

B)
Y=o+ ; Dy, Xp.

Let X1,...,X,,Y be the horizontal lifts of X1, ..., X,,,Y. At each point
(?71,?72,?73,?74) S 7T_1(Q), we have

3

Y (u) - }(Xe(u))
=1
= (Da@S — AS (1)1,1)3,?71,?73) + (D%S — AS) (?71,?]4,?)1,?)4)
+ (D%S - AS) (D2, 03,02, 03) + (D%S - AS) (D2, Dy, Do, Vy)
- (D%S . AS) (81, Ta, B3, 54).

Using Proposition 3, we obtain

)~ 3Rl

=Q(S )(01703701703) (8) (01, 04, 01, Dy)

+Q(S

+Q( )(’Ug,vg,vg,vg)—l- ( )(’02,?74,?72,?74)
1)
)-

H~|l\3

- 2@( )(U17U27U37

for all points (91,02, 3,74) € 7 1(Q). Moreover, it follows from the

calculations in Section 3 that

Q(S)(ﬂlvﬁ&ﬁlv{%)+©(S)({)17647617’D4)
+ Q(S) (2, B3, D2, U3) + Q(S) (2, B4, Vo, Ba) — 2Q(S)(01, V2, U3, U4)
>C _inf (D*u)(¢,€)

£eV, [€|<1
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for all points (@1, 72, 73,74) € 7 1(2). Here, D?u denotes the Hessian
of u in vertical direction. Putting these facts together, we obtain

y — - %X U —gu in 2y
V)= 3 Rl ~Guz € jnt (D(E0

on 71(2). Hence, the assertion follows from J.M. Bony’s version of the
strong maximum principle (see [1] or [3], Proposition 4).

For each point (x,t) € M x (0,T), we denote by N, the set of all
vectors of the form ¢ = % +v € Tz (M x (0,T)), where v € T, M
satisfies

1 .
%seal + n scal + 2 0;scal v' + 2 Ric(v,v) = 0.

In view of Theorem 1, we can characterize the set N, (z,t) as follows:

0
E + AS '/\/’(SCJ,)
0 1 i .
= aseal + n scal + 2 0;scal v + 2 Ric(v,v) =0

— M(w,w)+2Pw,w,w)+ R(v,w,v,w) =0 foral weT,M
<— (%—1—0,0,10,0)6}7 for all w € T, M.

By Proposition 10, the set F' is invariant under parallel transport.
Therefore, we can draw the following conclusion:

Corollary 11. Fiz a smooth path v : [0,1] — M x {to}. We denote
by Py = Ty0) (M % (0,T)) — Tyqy(M x(0,T)) the parallel transport along
~ with respect to the connection D. If ¥ € N0), then P € Nyqy-

Proposition 12. Let (M, g(t)), t € (0,T), be a family of complete
Riemannian manifolds evolving under Ricci flow. For each t € (0,T),
we assume that (M, g(t)) x R? has nonnegative isotropic curvature and
(M, g(t)) has positive Ricci curvature. Moreover, suppose that there
exists a point (xo,tg) € M x (0,T) such that

to - scal(z,tg) = sup t-scal(z,t).
(z,t)€M x (0,T))
Then there exists a smooth vector field V = V7 % such that
.0 1 0
D = Ric] —/— + — —
o =R G T o

for all (x,t) € M x {to}. In particular, (M, g(ty)) is an expanding Ricci
soliton.

Proof. Since (M, g(t)) has positive Ricci curvature, there exists a
unique vector field V = V7 % such that J;scal + 2Ric;; V7 = 0. We
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claim that

9 Mooy € {04 Vi)

for all points (z,t) € M x (0,7). In order to prove this, we consider
an arbitrary vector o € N, (z,t)- The vector ¥ can be written in the form

U= % + v, where v € T,, M satisfies

%Scal + % scal 4+ 2 d;scal v* + 2 Ric(v,v) = 0.
Using Corollary 2, we conclude that 9;scal + 2Ric;;v/ = 0. Since
(M, g(t)) has positive Ricci curvature, it follows that v = V(4. This
completes the proof of (9). In particular, the set Af(w,t) contains at most
one element.

By assumption, the function ¢ - scal(z,t) attains its global maximum
at (zg,tp). This implies

1—1—1 1=0
ge5cal + J scal =

at (xg,tp). Consequently, the set /\/(wo,to) is non-empty. Hence, it follows
from Corollary 11 that the set /\/(x,t) is non-empty for all points (z,t) €
M x {to}. Using (9), we obtain

0
(10) Nagy = {E + V(:c,t)}
for all points (x,t) € M x {to}. Hence, by Corollary 11, we have
~ 70 0
Pv(g + V’Y(O)) ~ ot +V
for every smooth path v : [0,1] — M x {to}. Thus, we conclude that
~ 0
Do (5+V)=0
for all points (z,t) € M x {to}. From this, the assertion follows.

6. Ancient solutions to the Ricci flow

In this final section, we consider ancient solutions to the Ricci flow. In
this case, we are able to remove the 1/t terms in the Harnack inequality:

Proposition 13. Let (M,g(t)), t € (—o0,T), be a family of com-
plete Riemannian manifolds evolving under Ricci flow. We assume that
(M, g(t)) x R? has nonnegative isotropic curvature for all t € (—oo,T).
Moreover, we assume that

sup scal(x,t) < oo
(z,t)eM x (o, T")
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for all « € (—o0,T). Then we have
%scal + 2 9;scal v' + 2 Ric(v,v) >0
for all points (x,t) € M x (—o00,T) and all vectors v € T, M.

Proof. We employ an argument due to R. Hamilton [11]. To that
end, we fix a real number o € (—o0,T), and apply Corollary 2 to the
metrics g(t + «), t € (0,7 — «). This implies

0 1

ascal + r—
for all points (x,t) € M x (a,T) and all v € T, M. Taking the limit as
o — —o00, the assertion follows.

scal 4+ 2 9;scal v* + 2 Ric(v,v) > 0

Our last result generalizes Theorem 1.1 in [11]:

Proposition 14. Let (M, g(t)), t € (—o0,T), be a family of complete
Riemannian manifolds evolving under Ricci flow. For eacht € (—o0,T),
we assume that (M, g(t)) x R? has nonnegative isotropic curvature and
(M, g(t)) has positive Ricci curvature. Moreover, suppose that there
exists a point (xg,to) € M x (—o0,T) such that

scal(xo, tg) = sup scal(zx, t).
(z,t)eM X (—00,T)

Then there exists a smooth vector field V = V7 % such that
j 0

D s V =Ri .
% < oxJd

for all (x,t) € M x {to}. In particular, (M,g(tg)) is a steady Ricci
soliton.

The proof of Proposition 14 is analogous to the proof of Proposition
12 above. The details are left to the reader.
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