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LOWER SEMICONTINUITY OF THE WILLMORE
FUNCTIONAL FOR CURRENTS

Reiner Schätzle

Abstract

The weak mean curvature is lower semicontinuous under weak
convergence of varifolds, that is, if µk → µ weakly as varifolds
then ‖ ~Hµ ‖Lp(µ)≤ lim infk→∞ ‖ ~Hµk

‖Lp(µk). In contrast, if
Tk → T weakly as integral currents, then µT may not have a
locally bounded first variation even if ‖ ~HµTk

‖L∞(µk) is bounded.
In 1999, Luigi Ambrosio asked the question whether lower semi-

continuity of the weak mean curvature is true when T is assumed
to be smooth. This was proved in [AmMa03] for p > n =
dim T in Rn+1 using results from [Sch04]. Here we prove this
in any dimension and codimension down to the desired exponent
p = 2. For p = n = 2, this corresponds to the Willmore functional.

In a forthcoming joint work [RoSch06], main steps of the pre-
sent article are used to prove a modified conjecture of De Giorgi
that the sum of the area and the Willmore functional is the Γ-limit
of a diffuse Landau-Ginzburg approximation.

1. Introduction

The Willmore functional of a surface immersed into Euclidian space
is up to a factor the integral of the square mean curvature. For an
integral 2− varifold µ in Rm this extends to

W(µ) :=
1
4

∫
|~Hµ|2 dµ.

We recall that the mean curvature of a submanifold is given in classi-
cal differential geometry as the trace of second derivatives. Elementary
calculations show that the mean curvature determines the change of the
area of the submanifold under local variations. In presence of singulari-
ties, this variational property is used to define the weak mean curvature,
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more precisely for a rectifiable n-varifold µ the weak mean curvature ~Hµ

is defined by

(δµ)(η) :=
∫

divTµ(η) dµ = −
∫

~Hµη dµ ∀η ∈ C1
0 ,

if such ~Hµ ∈ L1
loc(µ) exists; see [Sim], §16. δµ is called the first variation

of µ.
By this definition, lower semicontinuity of the weak mean curvature

and in particular of the Willmore functional is immediate in the sense
that if µk → µ weakly as varifolds then

(1.1) ‖ ~Hµ ‖Lp(µ)≤ lim inf
k→∞

‖ ~Hµk
‖Lp(µk) .

If in contrast Tk → T weakly as integral currents and the mean curvature
of the underlying integral varifolds µTk

is bounded in Lp(µTk
), then the

first variation of µT need not be locally bounded. Passing to the limits
for a subsequence µTk

→ µ∞, we know µT ≤ µ∞ and can estimate ~Hµ∞
as above.

In 1999, Luigi Ambrosio pointed out that even assuming smoothness
of T lower semicontinuity

(1.2) ‖ ~HµT ‖Lp(µT )≤ lim inf
k→∞

‖ ~HµTk
‖Lp(µTk

) ∀2 ≤ p ≤ ∞
was not proved at that time, but would be a consequence of

(1.3) ~HµT = ~Hµ∞ µT − almost everywhere,

as this implies by µT ≤ µ∞ and (1.1) that

‖ ~HµT ‖Lp(µT )≤‖ ~Hµ∞ ‖Lp(µ∞)≤ lim inf
k→∞

‖ ~HµTk
‖Lp(µTk

),

which is (1.2).
Using the techniques of [Sch01] and [Sch04], Ambrosio and Masnou

proved (1.2) for p > n = dimT, p ≥ 2 in Rn+1 in [AmMa03]. In
this article, we improve the integrability order of the mean curvature in
(1.2) in any codimension down to the desired exponent of p = 2 which
includes the Willmore functional.

Theorem 5.1 (Lower semicontinuity of the weak mean curvature for
currents). Let (Tk)k∈N be a sequence of integral n-currents with locally
uniformly bounded total variation measures µTk

in an open set Ω ⊆ Rm

converging weakly as currents Tk → T . If T is an integral current and
µT is C2-rectifiable with locally bounded first variation δµT = −~HµT µT +
δµT,sing, then

‖ ~HµT ‖Lp(µT )≤ lim inf
k→∞

‖ ~HµTk
‖Lp(µTk

) ∀2 ≤ p ≤ ∞.

We know that the local geometries are contained in each other in
the sense that [θ∗n(µT ) > 0] ⊆ [θ∗n(µ∞) > 0]. But as the definition
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of the weak mean curvature is variational, it is unclear how the local
geometries determine the weak mean curvature, and a proof of (1.3)
is not obvious. Expressions of the weak mean curvature as derivatives
of the local geometry were developed in [Sch01] and [Sch04]. There
strong use was made of estimates for fully non-linear elliptic equations
which restrict these results to p > n so far. Even the case p = n =
2 in Rn+1 is unclear.

Instead, here we observe in §3 via an adaptation of the blow up argu-
ment in [Bra78] in §2 that a quadratic approximation of a significant
part of the support of µ by the tangent plane at a point x ∈ [θ∗n(µ) > 0]
outside a certain null set and ~Hµ ∈ L2

loc(µ) imply quadratic decay of
the height- and tilt-excess

heightexµ(x, %, Txµ) := %−n−2

∫

B%(x)

dist (ξ − x, Txµ)2 dµ(ξ),

tiltexµ(x, %, Txµ) := %−n

∫

B%(x)

‖ Tξµ− Txµ ‖2 dµ(ξ) = Ox(%2).

More precisely, let us recall the following definition adapted to
[AnSe94].

Definition 1.1. A Hn-measurable set M ⊆ Rm is called countably
C2 − n-rectifiable if

M ⊆ M0 ∪
∞⋃

k=1

Mk

where Hn(M0) = 0 and Mk, k ≥ 1, are C2 − n-submanifolds of Rm.
A rectifiable n-varifold µ = θHnbM, θ > 0 on M , is called C2-rectifi-

able, if M or likewise [θ∗n(µ) > 0] is countably C2 − n-rectifiable.

We prove that the height- and tilt-excess decay quadratically almost
everywhere on countably C2 − n-rectifiable subsets of [θ∗n(µ) > 0], if
~Hµ ∈ L2

loc(µ). As a remarkable consequence, we obtain for ~Hµ ∈ L2
loc(µ)

that µ is C2-rectifiable if and only if the height- and tilt-excess decay
quadratically almost everywhere.

Theorem 3.1. Let µ be an integral varifold in Ω ⊆ Rm open with
weak mean curvature ~Hµ ∈ L2

loc(µ). Then µ is C2 − n-rectifiable if and
only if for µ-almost all x ∈ Ω the height-excess and the tilt-excess decay
quadratically

heightexµ(x, %, Txµ), tiltexµ(x, %, Txµ) = Ox(%2).

Combining with the calculation of the weak mean curvature in [Sch04]
§6, we get the following very general expression of the weak mean cur-
vature as derivatives of the local geometry in §4.
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Theorem 4.1. Let µ0, µ be integral varifolds in Ω ⊆ Rm open with
locally bounded first variation δµ0 = −~Hµ0µ0 + δµ0,sing, weak mean
curvature ~Hµ ∈ L2

loc(µ) and

µ0 ≤ µ.

Further, let Φ : A ⊆ Rn → Rm be Ln-measurable with

Φ(A) ⊆ [θ∗n(µ0) > 0] ⊆ [θ∗n(µ) > 0]

and Φ be twice approximately differentiable with rank DΦ = n almost
everywhere with respect to Ln on A. Then

~Hµ0(Φ) = ∆gΦ =
1√
g
∂i(
√

ggij∂jΦ) Ln − almost everywhere on A,

where gij(DΦ) = ∂iΦ∂jΦ, g = det(gij), (gij)ij = (gij)−1
ij .

Clearly, assuming smoothness of T , this implies (1.3), and hence
proves (1.2).

A conjecture of De Giorgi
In [DG91], De Giorgi made the conjecture that the sum of the area

and the Willmore functional is the Γ-limit of a diffuse Landau-Ginzburg
approximation. In the form modified in [LoMa00] this reads putting
(1.4)

Fε(u) :=
∫

Ω

(ε

2
|∇u|2 +

1
ε
W (u)

)
dLn +

∫

Ω

1
ε

(
− ε∆u +

1
ε
W ′(u)

)2
dLn

for u ∈ W 1,2(Ω) with W (t) := (t2 − 1)2 and

F(E) := σ

(
Hn−1(∂∗E ∩ Ω) +

∫

∂∗E∩Ω

|~H∂∗E |2 dHn−1

)

for E ⊆ Ω with finite perimeter in Ω, σ :=
∫ 1
−1

√
2W , that

(1.5) F(E) = Γ− L1(Ω)− lim
ε→0

Fε(E) for ∂E ∈ C2.

It is well known that the Γ-limit of the first integral in (1.4) is the
perimeter of E times σ, see [MoMor77] and [Mo87]. The term−ε∆u+
ε−1W ′(u) appearing in the second integral is the L2-gradient of the first
integral, and is therefore related in the limit to the mean curvature
which is the first variation of the area or perimeter functional. The Γ−
lim sup-inequality of Γ-convergence of Fε to F for ∂E ∈ C2 was proved
by Bellettini and Paolini in [BePa93], see also in [BeMu05] §5. For
rotationally symmetric data in two dimensions, the full Γ-convergence
Fε to F was proved by Bellettini and Mugnai in [BeMu05].

The lower semicontinuity for p = 2 proved in this article implies that
F is lower semicontinuous at E with ∂E ∈ C2 which is a necessary
condition for F being a Γ-limit in (1.5). In [RoSch06] we prove the
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above modified conjecture of De Giorgi (1.5) for surfaces ∂E in three
dimensions which corresponds to the Willmore functional. There we
define for uε → 2χE − 1 in L1(Ω) the measures

µε :=
(ε

2
|∇uε|2 +

1
ε
W (uε)

)
Ln,

αε :=
1
ε

(
− ε∆uε +

1
ε
W ′(uε)

)2
Ln,

and see for subsequences µε → µ, αε → α that

(1.6) Hn−1b∂∗E ≤ σ−1µ and |~Hµ|2µ ≤ α.

The main difficulty in [RoSch06] is to prove that σ−1µ is an integral
varifold. After this is established, we conclude as in (1.3) with Corollary
4.3 that

~H∂E = ~Hσ−1µ for ∂E ∈ C2,

and (1.5) follows with (1.6).

Acknowledgment. I would like to thank Luigi Ambrosio for leading
me to the above lower semicontinuity problem in a discussion in Ober-
wolfach in 1999. Further, I would like to thank Giovanni Bellettini for
a discussion during my stay at Centro Ennio De Giorgi in Pisa in No-
vember 2003 emphazising the importance of the lower semicontinuity
of the Willmore functional in connection with the above conjecture of
De Giorgi in [DG91] and [LoMa00].

2. Blow-up

In this section, we reexamine the blow-up procedure used by Brakke
in [Bra78] Theorem 5.6. We fix n < m, θ0 ∈ N and consider a sequence
of integral n-varifolds µj in Bm

8 (0) with generalized mean curvature
~Hµj ∈ L2(µj) and T ∈ G(m,n) with orthogonal projection π : Rm → T
satisfying

(2.1) 0 ∈ [θn(µj) > 0],

(2.2) |(ωn%n)−1µj(Bm
% (0))− θ0| ≤ εj → 0 ∀0 < % ≤ 8,

(2.3) %−nµj(Bm
% (0) ∩ [θn(µj) 6= θ0]) ≤ εj ∀0 < % ≤ 8.

We put

(2.4) αj% :=
(

%2−n

∫

Bm
% (0)

|~Hµj |2 dµj

)1/2

∀0 < % ≤ 8, αj := αj8,
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(2.5) γ2
j% := heightexµj

(0, %, T ) = %−n−2

∫

Bm
% (0)

|π⊥T (x)|2 dµj(x)

∀0 < % ≤ 8, γj := γj8,

(2.6) β2
j% := tiltexµj (0, %, T ) = %−n

∫

Bm
% (0)

‖ Txµj − T ‖2 dµj(x)

∀0 < % ≤ 8,

and assume

(2.7) max(αj , γj) ≤ δj → 0, δj 6= 0.

We get from [Bra78] Theorem 5.5 or [Sim] Lemma 22.2 that

(2.8) β2
j,7 ≤ C(αjγj + γ2

j ) ≤ Cδ2
j .

For j large enough such that εj < 1/2, we get from [Bra78] Theorem
5.4 a lipschitz approximation of µj over T ; that is there exists a θ0-
valued lipschitz map

f = (fj1, . . . , fjθ0) : Bn
1 (0) ⊆ T → T⊥θ0

,

F = (Fj1, . . . , Fjθ0) : Bn
1 (0) ⊆ T → T × T⊥θ0

, Fji(y) = (y, fji(y)),

satisfying

lip fj ≤ 1,(2.9)

‖ fj ‖L∞(Bn
1 (0)) ≤ C(n)γ2/(n+2)

j ,

and there exists a Borel set Yj ⊆ Bn
1 (0) such that

(2.10) θn(µj , (y, z)) = #{i | fji(y) = z}
for all y ∈ Yj ⊆ T, z ∈ Bm−n

1 (0) ⊆ T⊥.

And setting

(2.11) Xj := [θn(µj) > 0] ∩ (Yj ×Bm−n
1 (0)) = ∪θ0

i=1Fi(Yj),

then

(2.12) µj((Bn
1 (0)×Bm−n

1 (0))−Xj) + Ln(Bn
1 (0)− Yj) ≤ Cδ2

j ,

where C = C(n,m, θ0) < ∞.
Selecting an appropriate subsequence (see the proof below), we obtain

for i = 1, . . . , θ0

(2.13)
δ−1
j fji → f̄ weakly in W 1,2(Bn

1 (0)) and strongly in L2(Bn
1 (0)),

(2.14) ‖ f̄ ‖L2(Bn
1 (0))≤ Cn,

(2.15) fji → 0 strongly in W 1,2(Bn
1 (0)).
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After these preliminaries, we estimate the height-excess on balls Bm
σ (0)

with 0 < σ ≤ 1.

Proposition 2.1. There exists C(n, θ0) < ∞ such that for any 0 <
σ ≤ 1

(2.16) lim sup
j→∞

δ−1
j γjσ ≤ C(n, θ0)σ−

n
2
−1 ‖ f̄ ‖L2(Bn

σ (0))

for some f̄ occurring as limit in (2.13).

Proof. First, we justify the limit procedure in (2.13). From (2.10),
(2.11) and the Co-Area formula, we see for Φ ∈ (C0∩L∞)(B×Bm−n

1/2 (0)×
G(m,n)) that

∫

Xj

Φ(x, Txµj)Jµjπ(x) dµj(x) =
∫

Yj

θ0∑

i=1

Φ(Fji(y), im(DFji(y))) dy

and ∫

Xj

Φ(x, Txµj) dµj(x)(2.17)

=
∫

Yj

θ0∑

i=1

Φ(Fji(y), im(DFji(y)))
√

Grn(DFji(y)) dy

where Grn(DFji(y)) denotes the Gram-Determinant of the columns of
DFji(y) ∈ Rn,m.

We establish a W 1,2(Bn
1 (0))-bound on fji. By (2.17),

∫

Yj

θ0∑

i=1

|fji(y)|2 dy ≤
∫

Yj

θ0∑

i=1

|fji(y)|2
√

Grn(DFji(y)) dy

≤
∫

Xj

|π⊥T (x)|2 dµj(x) ≤ 8n+2γ2
j ≤ Cnδ2

j .

Next (2.9) and (2.12) yield

∫

Bn
1 (0)−Yj

θ0∑

i=1

|fji|2 ≤ Cδ2
j θ0Cnγ

4/(n+2)
j ≤ Cδ

2+4/(n+2)
j .

Combining the two estimates, we obtain

(2.18) lim sup
j→∞

δ−2
j

∫

B

θ0∑

i=1

|fji|2 ≤ Cn.
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(2.9) yields

|∇fji(y)| =‖ π⊥T DFji(y) ‖ ≤‖ imDFji(y)− T ‖ ‖ DFji(y) ‖
≤ Cn,m ‖ imDFji(y)− T ‖,

hence by (2.17)

∫

Yj

θ0∑

i=1

|∇fji(y)|2 dy ≤ Cn,m

∫

Yj

θ0∑

i=1

‖ imDFji(y)− T ‖2 dy

≤ Cn,m

∫

Xj

‖ Txµj − T ‖2 dµj(x)

≤ Cn,mβ2
j,7 ≤ Cn,mδ2

j .

From (2.9) and (2.12), we see

∫

Bn
1 (0)−Yj

θ0∑

i=1

|∇fji|2 ≤ Cδ2
j .

Combining the two estimates, we obtain

(2.19) lim sup
j→∞

δ−2
j

∫

Bn
1 (0)

θ0∑

i=1

|∇fji|2 < ∞.

From (2.10), we see

Yj − [fj1 = · · · = fjθ0 ] ⊆ π(Bm
1 (0)− [θn(µj) = θ0]),

hence by (2.3)

(2.20) Ln(Yj − [fj1 = · · · = fjθ0 ]) ≤ εj .

Combining (2.18)–(2.20), we can select a subsequence converging ac-
cording to (2.13)–(2.15).

Next, we get from (2.9), (2.13), (2.14), and (2.17) that

lim sup
j→∞

δ−2
j

∫

Bm
σ (0)∩Xj

|π⊥T (x)|2 dµj(x)(2.21)

≤ lim sup
j→∞

∫

Bn
σ (0)∩Yj

θ0∑

i=1

|δ−1
j fji(y)|2

√
Grn(DFji(y)) dy

≤ C(n, θ0) ‖ f̄ ‖2
L2(Bn

σ (0)) .
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On the complement of Xj , we estimate for 0 < τ ≤ 1 by (2.12)
(2.22)

δ−2
j

∫

Bm
σ (0)−Xj

|π⊥T (x)|2 dµj(x) ≤ δ−2
j µj

(
Bm

σ (0) ∩
[
|π⊥T | ≥ τ

])
+ Cτ2.

Putting

Bj,τ := Bm
σ (0) ∩

[
|π⊥T | ≥ τ

]
,(2.23)

δ−2
j µj(Bj,τ ) = Mj,τ ,

we obtain with (2.22)

(2.24) δ−2
j

∫

Bσ(0)−Xj

|π⊥T (x)|2 dµj(x) ≤ Mj,τ + Cτ2 ∀0 < τ ≤ 1.

If Mj,τ > 0, there exists by Besicovitch’s covering theorem x ∈ Bj,τ ,
θn(µ, x) ≥ 1 and

∫

Br(x)

|~Hµj |2 dµj ≤ Cn,m

∫
B2(0) |~Hµj |2 dµj

µj(Bj,τ )
µj(Br(x)) ∀0 < r ≤ 1.

With the Hölder inequality, (2.4) and (2.7), we get
∫

Br(x)

|~Hµj | dµj ≤ Cn,mM
−1/2
j,τ µj(Br(x)) ∀0 < r ≤ 1.

The monotonicity formula, see [Sim] 17.6, yields

µj(Bτ/2(x)) ≥ exp(−Cn,mM
−1/2
j,τ τ)ωn(τ/2)n.

Thus, taking into account that |π⊥T | ≥ τ/2 on Bτ/2(x),

γ2
j = heightexµj

(0, 8, T ) ≥ 8−n−2

∫

Bτ/2(x)

|π⊥T (ξ)|2 dµj(ξ)

≥ exp(−Cn,mM
−1/2
j,τ τ)c0(n)τn+2.

Now we choose
τj := γ

1/(n+2)
j → 0

by (2.7), and see

exp(−Cn,mM
−1/2
j,τj

τj) ≤ Cnγj → 0;

hence
M
−1/2
j,τj

τj →∞
or likewise

Mj,τjτ
−2
j → 0.
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Now (2.21) and (2.24) imply

lim sup
j→0

δ−2
j γ2

σj = lim sup
j→0

δ−2
j σ−n−2

∫

Bm
σ (0)

|π⊥T (x)|2 dµj(x)

≤ C(n, θ0)σ−n−2 ‖ f̄ ‖2
L2(Bn

σ (0)) .

q.e.d.

3. C2-rectifiability and quadratic height-excess decay

In this section, we prove the equivalence of C2-rectifiability and qua-
dratic height-excess decay under the assumption of square integrable
weak mean curvature.

Theorem 3.1. Let µ be an integral varifold in Ω ⊆ Rm open with
weak mean curvature ~Hµ ∈ L2

loc(µ). Then µ is C2 − n-rectifiable if and
only if for µ − almost all x ∈ Ω the height-excess and the tilt-excess
decay quadratically

(3.1) heightexµ(x, %, Txµ), tiltexµ(x, %, Txµ) = Ox(%2).

Proof. Quadratic height-excess decay almost everywhere implies eas-
ily C2-rectifiability using the C2-extension lemma A.1, even without the
assumption of square integrable weak mean curvature.

The converse is a consequence of the following more precise lemma
recalling that quadratic height-excess decay almost everywhere implies
quadratic tilt-excess decay almost everywhere under the assumption of
square integrable weak mean curvature using the Cacciopoli-type esti-
mate in [Bra78] Theorem 5.5 or [Sim] Lemma 22.2. q.e.d.

Lemma 3.1. Let µ be an integral varifold in Ω ⊆ Rm open with
weak mean curvature ~Hµ ∈ L2

loc(µ). Further let Φ : A ⊆ Rn → Rm be
Ln-measurable with

Φ(A) ⊆ [θ∗n(µ) > 0]

and Φ be twice approximately differentiable with rank DΦ = n almost
everywhere with respect to Ln on A. Then

lim sup
%→0

%−2heightexµ(x, %, Txµ)(3.2)

≤ C(n, θn(µ, x))
(
|~Hµ(x)|2 + |AΦ(x)|2

)
< ∞

for Ln-almost all y ∈ A and x = Φ(y), where AΦ denotes the second
fundamental form given by Φ.

Proof. As the conclusion of the lemma is almost everywhere, we may
assume by the C2-extension Lemma A.1 that Φ ∈ C2(U,Rm) for some
open A ⊆ U ⊆ Rn. As the conclusion is local and DΦ has full rank on
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A, and by continuity on all of U . For µ-almost all x ∈ Ω, and for x

being a Lebesgue point of ~Hµ ∈ L2
loc(µ),

θ := θn(µ, x) ∈ N,(3.3)
Txµ = θT exists,

θn(µ) is approximately continuous with respect to µ in x,

Dµ(|~Hµ|2µ)(x) := lim
%→0

µ(B%(x))−1

∫

B%(x)

|~Hµ|2 dµ = |~Hµ(x)|2 < ∞.

By Area formula and since DΦ has full rank on A, we see that for
Ln-almost all y ∈ A the image x = Φ(y) satisfies (3.3). Moreover,
Ln-almost all y ∈ A satisfy

(3.4) θn(LnbA, y) = 1.

We prove (3.2) for such y. After a translation, we may assume y =
0,Φ(y) = 0, and after a rotation T = Rn × {0}. Moreover, after a C1-
parameter change, we may write Φ in the form Φ(y)=(y, ϕ(y)) with ϕ ∈
C2(U,Rm−n, ϕ(0) = 0,∇ϕ(0) = 0.

If (3.2) does not hold, then there is a sequence %j → 0 and

(3.5) Λ2 > θωn8n|~Hµ(0)|2 + |AΦ(0)|2/4

such that for µj := (x 7→ %−1
j x)#µ in the notation of §2 for

(3.6) γj = γ8%j ≥ Λ%j .

Clearly by (3.3), we have αj < Λ%j for j large, hence putting δj :=
max(αj , γj) in (2.7), we obtain

(3.7) δj = γj for j large, and τ := lim sup
j→∞

γ−1
j %j ≤ 1/Λ.

Putting Aj := %−1
j A,Uj := %−1

j U,ϕj : Uj → Rm−n, ϕj(y) := %−1
j ϕ(%jy),

we see
graph (ϕj |Aj) ⊆ [θ∗n(µj) > 0];

hence by (2.10)

ϕj(y) ⊆ {fj1(y), . . . , fjθ0(y)} ∀y ∈ Yj ∩Aj .

Since Ln(Bn
1 (0)−Aj) → 0 by (3.4), we see from (2.20)

Ln(Yj − [ϕj = fj1 = · · · = fjθ0 ]) → 0

and from (2.13) for appropriate subsequences

(3.8) δ−1
j ϕj → f̄ locally in measure.

As ϕ is twice differentiable and ϕ(0) = 0,∇ϕ(0) = 0, we get putting

Q(y) :=
1
2
yT D2ϕ(0)y for y ∈ Rn,
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that

ϕj → 0, %−1
j ϕj → Q uniformly on compact subsets of Rn,

in particular by (3.7)

lim sup
j→∞

|δ−1
j ϕj | = lim sup

j→∞
|(γ−1

j %j)%−1
j ϕj | ≤ τ |Q|.

With (3.8), we get

|f̄ | ≤ τ |Q|.
2Q = AΦ(0) represents the second fundamental form of Φ, as∇ϕ(0) = 0,
in particular

|f̄(y)| ≤ τ |AΦ(0)| |y|2/2.

Then Proposition 2.1 yields by (3.7) for 0 < σ ≤ 1

lim sup
j→∞

γ−1
8%j

γσ%j = lim sup
j→∞

γ−1
j γjσ(3.9)

≤ C(n, θ)σ−n/2−1 ‖ f̄ ‖L2(Bn
σ (0))

≤ C(n, θ)Λστ.

Further assuming γ8%j ≥ ΓΛ8%j for some Γ > 2C(n, θ), we see τ ≤
1/(8ΓΛ), hence lim supj→∞ γ−1

8%j
γσ%j < σ/16 =: η/2, and conclude

(3.10) (η%)−1γη% ≤ 1
2
%−1γ% if %−1γ% ≥ ΓΛ and % ≤ %0

for some %0 > 0 small enough.
Now if (η%)−1γη% ≥ η−νΓΛ for ν = 1+(n+2)/2 and some 0 < % ≤ %0,

then ΓΛ ≤ ην(η%)−1γη% ≤ %−1γ%, hence by (3.10)

(η%)−1γη% − η−νΓΛ ≤ 1
2
%−1γ% − η−νΓΛ ≤ 1

2

(
%−1γ% − η−νΓΛ

)

and in any case

max
(
(η%)−1γη% − η−νΓΛ, 0

)
≤ 1

2
max

(
%−1γ% − η−νΓΛ, 0

)

for all 0 < % ≤ %0.

This yields max(%−1γ% − η−νΓΛ, 0) → 0 for % → 0 and

lim sup
%→0

%−1γ% ≤ η−νΓΛ,

which proves (3.2). q.e.d.
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4. Locality of the mean curvature

Theorem 4.1. Let µ0, µ be integral varifolds in Ω ⊆ Rm open with
locally bounded first variation δµ0 = −~Hµ0µ0 + δµ0,sing, weak mean
curvature ~Hµ ∈ L2

loc(µ) and

µ0 ≤ µ.

Further, let Φ : A ⊆ Rn → Rm be Ln-measurable with

Φ(A) ⊆ [θ∗n(µ0) > 0] ⊆ [θ∗n(µ) > 0]

and Φ be twice approximately differentiable with rankDΦ = n almost
everywhere with respect to Ln on A. Then
(4.1)

~Hµ0(Φ) = ∆gΦ =
1√
g
∂i(
√

ggij∂jΦ) Ln − almost everywhere on A,

where gij(DΦ) = ∂iΦ∂jΦ, g = det(gij), (gij)ij = (gij)−1
ij .

Proof. As in the proof of Lemma 3.1, we may assume that Φ(y) =
(y, ϕ(y)) for all y ∈ U and some ϕ ∈ C2(U,Rm−n). Then M := graphϕ
is a C2-submanifold of Rm, and we have to prove

(4.2) ~Hµ0(., ϕ) = ~HM (., ϕ) Ln − almost everywhere on A.

Let π : Rm → Rn be the orthogonal projection and Σ ⊆ [θ∗n(µ) > 0] be
the set of points x such that

θ := θn(µ, x), θ0 := θn(µ0, x) ∈ N,(4.3)
Txµ = Txµ0 exist, JTxµπ > 0,

θn(µ), θn(µ0) are approximately continuous with respect to µ, µ0 in x,

Dµ(|Hµ|2µ)(x) < ∞,

Dµ0(δµ0)(x) = −~Hµ0(x),
~Hµ0(x) ⊥ Txµ0,

and

(4.4) lim sup
%→0

%−2heightexµ(x, %, Txµ) < ∞.

By Co-Area formula, the differentiation theorem for measures, see [Sim]
Theorem 4.7, [Bra78] Theorem 5.8 and Lemma 3.1

(4.5) Ln(π([θ∗n(µ) > 0]− Σ)) = 0.

We consider y ∈ A satisfying

y ∈ A− π([θ∗n(µ) > 0]− Σ)),(4.6)

θn(LnbA, y) = 1.

By (4.5), this includes almost all y ∈ A.
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[Bra78] Theorem 5.5 or [Sim] 22.2 imply for x = (y, ϕ(y)), y ∈ A by
(4.3) and (4.4)

lim sup
%→0

%−2tiltexµ(x, %, Txµ) < ∞.

As µ0 ≤ µ and Tξµ0 = Tξµ for Hn − almost all ξ ∈ [θ∗n(µ0) > 0] ⊆
[θ∗n(µ) > 0], we get for x = (y, ϕ(y)), y ∈ A

(4.7) lim sup
%→0

%−2tiltexµ0(x, %, Txµ0) < ∞.

Now we follow the proof of [Sch04] Proposition 6.1. (4.2) will be proved
when we establish

(4.8) ~Hµ0(x)ν = ~HM (x)ν ∀ν ⊥ Txµ0 = TxM =: T.

We put
Σ0 := [θn(µ0) = θ0] ∩M ⊆ [θ∗n(µ0) > 0] ∩M

and see for µM := θ0HnbM
(4.9) µbΣ0 = µMbΣ0.

As x = (y, ϕ(y)) ∈ Σ0, we may add to our assumptions (4.3) that

(4.10) %−n
(
µ0(Bm

% (x)− Σ0) + µM (Bm
% (x)− Σ0)

)
≤ ω(%),

where ω(%) → 0 for % → 0. We choose χ ∈ C∞
0 (Bm

1 (0)) rotationally
symmetric with

0 ≤ χ ≤ 1 and χ ≡ 1 on Bm
1/2(0)

and put χ%(ξ) := χ(%−1(ξ − x)).
We calculate by (4.3)

lim
%→0

(ωn%n)−1δµ0(χ%)

= ω−1
n θ0Dµ0(δµ0)(x)

∫

T∩Bm
1 (0)

χ dLn

= −ω−1
n θ0

~Hµ0(x)
∫

T∩Bm
1 (0)

χ dLn,

and, as ϕ ∈ C2(U),

lim
%→0

(ωn%n)−1δµM (χ%)

= − lim
%→0

(ωn%n)−1

∫

Bm
% (x)

χ%
~HM dµM

= −ω−1
n θ0

~HM (x)
∫

T∩Bm
1 (0)

χ dLn.
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(4.8) will follow when we prove

(4.11) I% := %−n(δµ0(χ%)− δµM (χ%))ν → 0 for % → 0.

We recall for µ̃ = µ0, µM that

δµ̃(χ%)ν =
∫

Bm
% (x)

Dχ%(ξ) Tξµ̃ ν dµ̃(ξ)

and abbreviate

R%,µ̃ := %−n

∫

Bm
% (x)−Σ0

Dχ%(ξ) (Tξµ̃− Txµ̃) ν dµ̃(ξ).

Since Tξµ0 = TξM for almost all ξ ∈ Σ0 ⊆ [θ∗n(µ0) > 0]∩M , (4.9) and
Tν = 0, as ν is normal to T , we obtain that

I% = R%,µ0 −R%,µM .

We estimate

|R%,µ̃|

≤ C%−n−1

∫

Bm
% (x)−Σ0

‖ Tξµ̃− Txµ̃ ‖ dµ̃(ξ)

≤ C%−1

(
%−nµ̃(Bm

% (x)− Σ0)
)1/2(

%−n

∫

Bm
% (x)

‖ Tξµ̃− Txµ̃ ‖2 dµ̃(ξ)
)1/2

≤ C%−1ω(%)1/2 tiltexµ̃(x, %, Txµ̃)1/2,

where we have used (4.10).
Now for µ̃ = µ0, we have quadratic decay of the tilt-excess at 0 for

% → 0 by (4.7), whereas such decay is immediate for µ̃ = µM , since
D2ϕ ∈ C0(U). Therefore,

|R%,µ̃| ≤ Cω(%)1/2,

which proves (4.11); hence (4.8) and (4.2). q.e.d.

We get two immediate corollaries.

Corollary 4.2. Let µi be integral varifolds in Ω ⊆ Rm with Hµi ∈
L2

loc(µi), i = 1, 2. If

(4.12) [θ∗n(µ1) > 0] ∩ [θ∗n(µ2) > 0] is countably C2 − rectifiable,

in particular if µ1 or µ2 is C2-rectifiable, then
(4.13)
~Hµ1 = ~Hµ2 Hn − almost everywhere on [θ∗n(µ1) > 0] ∩ [θ∗n(µ2) > 0].
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Corollary 4.3. Let µ1, µ2 be integral varifolds in Ω ⊆ Rm open with
locally bounded first variation δµ1 = −~Hµ1µ1 + δµ1,sing, weak mean
curvature ~Hµ2 ∈ L2

loc(µ2) and

µ1 ≤ µ2.

If

(4.14) µ1 is C2 − rectifiable,

then

(4.15) ~Hµ1 = ~Hµ2 µ1 − almost everywhere.

5. Lower semicontinuity of the weak mean curvature for
currents

Corollary 4.3 implies the lower semicontinuity in (1.2) down to the
desired exponent of p = 2 for the integrability order of the mean curva-
ture which corresponds in two dimensions to the Willmore functional.
Still we have to assume that the limit current is smooth or at least
C2-rectifiable and has locally bounded first variation.

Theorem 5.1 (Lower semicontinuity of the weak mean curvature for
currents). Let (Tk)k∈N be a sequence of integral n-currents with locally
uniformly bounded total variation measures µTk

in an open set Ω ⊆ Rm

converging weakly as currents Tk → T . If T is an integral current and
µT is C2-rectifiable with locally bounded first variation δµT = −~HµT µT +
δµT,sing, then

‖ ~HµT ‖Lp(µT )≤ lim inf
k→∞

‖ ~HµTk
‖Lp(µTk

) ∀2 ≤ p ≤ ∞.

Remark. The compactness theorem for integral currents, see [Sim]
Theorem 27.3, implies that T is an integral current, if the boundary
masses of Tk are locally uniformly bounded.

Proof. We may assume that µTk
→ µ∞ weakly as Radon-measures

after passing to an appropriate subsequence. By lower semicontinuity
of the masses and the weak mean curvature, we know

µT ≤ µ∞,

‖ ~Hµ∞ ‖Lp(µ∞)≤ lim inf
k→∞

‖ ~HµTk
‖Lp(µTk

) ∀2 ≤ p ≤ ∞.

We may assume that the liminf is finite for some 2 ≤ p ≤ ∞, which
implies that µ∞ is an integral varifold by Allard’s integral compactness
theorem, see [All72] Theorem 6.4 or [Sim] Remark 42.8, and ~Hµ∞ ∈
L2

loc(µ∞). As the integral varifold µT is C2-rectifiable and has locally
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bounded first variation δµT = −~HµT µT + δµT,sing by assumption, we
conclude by Corollary 4.3

~HµT = ~Hµ∞ µT − almost everywhere,

and hence

‖ ~HµT ‖Lp(µT )≤‖ ~Hµ∞ ‖Lp(µ∞) ∀2 ≤ p ≤ ∞,

and the theorem is proved. q.e.d.

Appendix A. C2-extension lemma

The following C2-extension lemma is an easy consequence of the tech-
nique used in [F] 3.1.8 and Whitney’s extension theorem. Unfortunately,
we were not able to find it in literature and include therefore its proof
for the reader’s convenience.

Lemma A.1. Let ϕ : A → Rm be approximately differentiable on the
Ln-measurable set A ⊆ Rn which has full density in all its points and

(A.1) aplim sup
z→y,z∈A

|ϕ(z)− ϕ(y)−∇ϕ(y)(z − y)|
|z − y|2 < ∞ ∀y ∈ A

or
(A.2)

lim sup
%→0

%−n−2

∫

B%(y)∩A

|ϕ(z)− ϕ(y)−∇ϕ(y)(z − y)| dz < ∞ ∀y ∈ A.

Then there exist countably many ϕk ∈ C2
loc(Uk), Uk ⊆ Rn open, satisfy-

ing

(A.3) Ln
(
A−

∞⋃

k=1

(
[ϕ = ϕk] ∩ [∇ϕ = ∇ϕk]

))
= 0,

in particular graph ϕ is countably C2−n-rectifiable in the sense of Def-
inition 1.1.

Proof. For the proof of (A.3) it suffices to consider m = 1. Clearly,
the approximate differentials ∇ϕ : A → Rn are Ln-measurable. We put

ly(w) := ϕ(y) +∇ϕ(y)(w − y) for y ∈ A,w ∈ Rn,

Q(y, %, k) := {w ∈ B%(y) | w 6∈ A or |ϕ(w)− ly(w)| ≥ k|w − y|2}
and for ε > 0 small enough

Ak := {y ∈ A | ∀0 < % ≤ 1/k : Ln(Q(y, %, k)) ≤ ε%n}.
Ak is Ln-measurable by Fubini’s theorem; more precisely, see [F] 3.1.3,
and

(A.4) A =
∞⋃

k=1

Ak
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by (A.1). The same is true for (A.2) when we observe that (A.2) implies

lim sup
%→0

%−n

∫

B%(y)∩A

|ϕ(z)− ϕ(y)−∇ϕ(y)(z − y)|
|z − y|2 dz < ∞ ∀y ∈ A.

For y, z ∈ Ak, 0 < 2% := |y − z| < 1/k, z̄ = (y + z)/2,

w, w′ ∈ Bn
% (z̄)−

(
Q(y, 2%, k) ∪Q(z, 2%, k)

)
=: W ⊆ Bn

2%(y) ∩Bn
2%(z),

we calculate∣∣∣(∇ϕ(z)−∇ϕ(y))(w′ − w)
∣∣∣

≤ |ϕ(w′)− ly(w′)|+ |ϕ(w)− ly(w)|+ |ϕ(w′)− lz(w′)|+ |ϕ(w)− lz(w)|
≤ k(|w′ − y|2 + |w − y|2 + |w′ − z|2 + |w − z|2) ≤ 16k%2.

Integrating yields

cn|∇ϕ(z)−∇ϕ(y)|%

≤ −
∫

Bn
% (z̄)

−
∫

Bn
% (z̄)

|(∇ϕ(z)−∇ϕ(y))(w′ − w)| dw dw′

≤ −
∫

Bn
% (z̄)

−
∫

Bn
% (z̄)

|(∇ϕ(z)−∇ϕ(y))(w′ − w)| χW (w) χW (w′) dw dw′

+ 4|∇ϕ(z)−∇ϕ(y)|%
(
(ωn%n)−1Ln(Q(y, 2%, k) ∪Q(z, 2%, k))

)

≤ 16k%2 + 2n+2ω−1
n ε|∇ϕ(z)−∇ϕ(y)|%.

For ε < ε0(n) small enough, we get

(A.5) |∇ϕ(z)−∇ϕ(y)| ≤ Cnk|z − y| ∀y, z ∈ Ak, |y − z| < 1/k.

Observing
Ln(W ) ≥ ωn%n − 2n+1ε%n > 0

for ε < ε0(n) small enough, there exists w ∈ W 6= ∅, and we get using
(A.5)

|ϕ(z)− ly(z)|
(A.6)

≤ |ϕ(w)− lz(w)|+ |ϕ(w)− ly(w))|+ |(∇ϕ(z)−∇ϕ(y))(w − z)|
≤ k(|w − z|2 + |w − y|2) + |∇ϕ(z)−∇ϕ(y)| |w − z|
≤ Cnk|z − y|2 ∀y, z ∈ Ak, |y − z| < 1/k.

Next we put Ak(y0) := Ak ∩Bn
1/(2k)(y0) for y0 ∈ Ak, and see from (A.5)

and (A.6) for all y ∈ Ak(y0)

|∇ϕ(y)| ≤ |∇ϕ(y0)|+ Cn,(A.7)

|ϕ(y)| ≤ |ϕ(y0)|+ (|∇ϕ(y0)|+ Cn)/(2k).
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Therefore
ϕ|Ak(y0) ∈ Lip(2, Ak(y0))

in the sense of [St] VI.2.3. Then by [St] VI.2.3 Theorem 4 and [F]
Theorem 3.1.15, there exist ϕkj ∈ C2(Ukj) satisfying

Ln
(
Ak −

∞⋃

j=1

[ϕ = ϕkj ] ∩ [∇ϕ = ∇ϕkj ]
)

= 0.

Recalling (A.4), we see that (ϕkj)k,j∈N satisfy (A.3).

Putting Qk := Ak−
⋃∞

j=1

(
[ϕ = ϕkj ]∩[∇ϕ = ∇ϕkj ]

)
, we see recalling

(A.4)

graphϕ ⊆
∞⋃

k=1

graph (ϕ|Qk) ∪
∞⋃

k,j=1

graphϕkj .

Since ϕ is approximately differentiable on all of A, we can decompose
A into countably many Ln-measurable sets on which ϕ is lipschitz, see
[F] Theorem 3.1.8; hence

Hn
(
graph (ϕ|Qk)

)
= 0,

as Ln(Qk) = 0 by (A.3). Since graphϕkj are C2 − n-submanifolds, we
see that graphϕ is countably C2 − n-rectifiable. q.e.d.
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