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REGULARIZATION OF CURRENTS WITH MASS

CONTROL AND SINGULAR MORSE INEQUALITIES

Dan Popovici

Abstract

Let X be a compact complex, not necessarily Kähler, manifold
of dimension n. We characterize the volume of any holomorphic
line bundle L→ X as the supremum of the Monge-Ampère masses
∫

X
Tn

ac
over all closed positive currents T in the first Chern class of

L, where Tac is the absolutely continuous part of T in its Lebesgue
decomposition. This result, new in the non-Kähler context, can
be seen as holomorphic Morse inequalities for the cohomology of
high tensor powers of line bundles endowed with arbitrarily sin-
gular Hermitian metrics. It gives, in particular, a new bigness
criterion for line bundles in terms of existence of singular Hermit-
ian metrics satisfying positivity conditions. The proof is based on
the construction of a new regularization for closed (1, 1)-currents
with a control of the Monge-Ampère masses of the approximating
sequence. To this end, we prove a potential-theoretic result in one
complex variable and study the growth of multiplier ideal sheaves
associated with increasingly singular metrics.

1. Introduction

Let ϕ : Ω → R ∪ {−∞} be a plurisubharmonic (psh) function on an
open subset Ω ⊂ C

n, and let z = (z1, . . . , zn) be the standard coordi-
nates on C

n. The Lelong number ν(ϕ, x) of ϕ at an arbitrary point
x ∈ Ω is defined as the mass carried by the positive measure ddcϕ ∧
(ddc log |z − x|)n−1 at x (see, for instance, Demailly’s book [Dem97],
Chapter III). It is a well-known result of Skoda ([Sko72a]) that the
Lelong numbers of ϕ affect the local integrability of e−2ϕ. Indeed, if
ν(ϕ, x) < 1, then e−2ϕ is integrable on some neighbourhood of x. On
the contrary, if ν(ϕ, x) ≥ n, then e−2ϕ is not integrable near x. The
integrability of e−2ϕ is unpredictable when 1 ≤ ν(ϕ, x) < n.

Our first aim is to establish a potential-theoretic result in the case
n = 1 where there is no unpredictability interval. Let U ⊂ C be an
open set, ϕ0 : U → R ∪ {−∞} a subharmonic function, and T = ddcϕ0

the associated closed positive current of bidegree (1, 1). The current T
can be identified with the Laplacian ∆ϕ0 of ϕ0 computed in the sense
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of distributions. It defines a positive measure µ = ddcϕ0 on U . In
one complex variable, the mass of ddcϕ0 at a point x coincides with
the Lelong number ν(ϕ0, x). Let D(x0, r) ⋐ U be an arbitrary disc of
radius 0 < r < 1

2 , and let

γ =

∫

P (x0, 2r)

ddcϕ0

be the mass carried by the measure ddcϕ0 on the square P (x0, 2r) of
edge 2r centred at x0. Consider the decomposition:

ϕ0 = N ⋆∆ϕ0 + h0, on D(x0, r),

where N(z) = 1
2π log |z| is the Newton kernel in one complex variable,

and h0 = Re g0 is a harmonic function expressed as the real part of a
holomorphic function g0.

First, we will be considering a method of neutralizing the −∞-poles
of ϕ0 on a fixed disc in order to make the exponential e−2mϕ0 integrable
and to control the growth rate of its integral as m→ +∞.

Theorem 1.1. Let ϕ0 : U → R ∪ {−∞} be a subharmonic function

on an open set U ⊂ C, and let D ⊂ D(x0, r) ⋐ U be an open subset

contained in a disc of radius 0 < r < 1
2 . Fix 0 < δ < 1. Then, for

every m ≫ 1, there exist finitely many points a1 = a1(m), . . . , aNm =
aNm(m) ∈ D, such that the positive integers mj defined as:

mj = max{[mν(ϕ0, aj)], 1}, j = 1, . . . , Nm, ([ ] is the integer part),

and the holomorphic function fm(z) = emg0(z)
Nm
∏

j=1
(z − aj)

mj defined on

D, satisfy the following properties:

(i)
Nm
∑

j=1
mj ≤ mγ(1 + δ), where γ is the ddcϕ0-mass of P (x0, 2r);

(ii) there exists a constant C = C(r) > 0, independent of m, such that:

|aj − ak| ≥
C

m2
,

for all aj , ak, such that j 6= k and ν(ϕ0, aj), ν(ϕ0, ak) <
1−δ
m ;

(iii)

∫

D
|fm(z)|2e−2mϕ0(z) dλ(z) = o(m), when m→ +∞,

where dλ is the Lebesgue measure in C.

Higher dimensional analogues of this result have yet to be found.
However, the Ohsawa-Takegoshi L2 extension theorem (see [OT87],
[Ohs88]) applied on a complex line enables us to derive geometric ap-
plications of Theorem 1.1 in several complex variables. The first applica-
tion is a global regularization theorem for closed almost positive (1, 1)-
currents in the spirit of Demailly (see [Dem92]), but with an additional
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control on the Monge-Ampère masses of the regularizing currents. Here
is the set-up.

Let T be a d-closed current of bidegree (1, 1) on a compact complex
manifoldX of dimension n. Assume that T ≥ γ for some real continuous
(1, 1)-form γ (i. e. T is almost positive). The current T can be globally
written as T = α+ddcϕ, with a global C∞ (1, 1)-form α and an almost
psh potential ϕ on X (i.e., ϕ can be locally expressed as the sum of a
psh function and a C∞ function). The notation ddc := i

π ∂∂̄ will be used
in all that follows. A variant of Demailly’s regularization theorem (see
[Dem92, Proposition 3.7]) asserts that T is the weak limit of currents
Tm = α + ddcϕm lying in the ∂∂̄-cohomology class of T and having
analytic singularities. These are, by definition, singularities for which
ϕm can be locally written as

(1)
c

2
log(|g1|2 + · · · + |gN |2) + C∞,

with a constant c > 0, and holomorphic functions g1, . . . , gN . Each Tm
can be chosen to be smooth on X \ V I(mT ), where V I(mT ) is the zero
variety of the multiplier ideal sheaf I(mT ) associated with mT (defined
locally as I(mϕ), see (16)). Moreover, for any Hermitian metric ω on
X, Tm can be chosen such that:

Tm ≥ γ − εm ω, for some sequence εm ↓ 0,

and the Lelong numbers satisfy: ν(T, x) − n

m
≤ ν(Tm, x) ≤ ν(T, x),

x ∈ X.
What this theorem does not specify, however, is whether there exist

regularizations Tm → T with analytic singularities having the extra
property that the growth inm of the masses of the wedge-power currents
T km (Monge-Ampère currents) is under control. In other words, we would
like to control the growth rate of the quantities:

∫

X\V I(mT )

(Tm − γ + εm ω)k ∧ ωn−k, k = 1, . . . , n,

as m → +∞, where V I(mT ) = {ϕm = −∞} is the polar set of Tm.
Using Theorem 1.1 we can modify Demailly’s original construction to
settle this question in the following form.

Theorem 1.2. Let T ≥ γ be a d-closed current of bidegree (1, 1)
on a compact complex manifold X, where γ is a continuous (1, 1)-form
such that dγ = 0. Then, in the ∂∂̄-cohomology class of T , there exist

closed (1, 1)-currents Tm with analytic singularities converging to T in

the weak topology of currents such that each Tm is smooth on X\V I(mT )
and:

(a) Tm ≥ γ − C

m
ω, m ∈ N;
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(b) ν(T, x) − εm ≤ ν(Tm, x) ≤ ν(T, x), x ∈ X, m ∈ N, for some

εm ↓ 0;

(c) lim
m→+∞

1

m

∫

X\V I(mT )

(Tm−γ+
C

m
ω)k∧ωn−k = 0, k = 1, . . . , n =

dimCX,

where ω is an arbitrary Hermitian metric on X.

This result can be used to prove a new characterization of big line
bundles in terms of curvature currents. Let us briefly review a few basic
facts. A holomorphic line bundle L over a compact complex manifold
X of dimension n is said to be big if dimCH

0(X, Lm) ≥ Cmn for some
constant C > 0 and for all large enough m ∈ N. This amounts to the
global sections of Lm defining a bimeromorphic embedding of X into
a projective space for m ≫ 0. The compact manifold X is said to be
Moishezon if the transcendence degree of its meromorphic function field
equals n := dimCX, or equivalently, if there exist n global meromorphic
functions that are algebraically independent. A Moishezon manifold
becomes projective after finitely many blow-ups with smooth centres.
There is, moreover, a bimeromorphic counterpart to Kodaira’s embed-
ding theorem: a compact complex manifold X is Moishezon if and only
if there exists a big line bundle L → X. The asymptotic growth of
the dimension of H0(X, Lm) as m → +∞ is actually measured by a
birational invariant of L, the volume, defined as:

v(L) := lim sup
m→+∞

n!

mn
h0(X, Lm).

Clearly, L is big if and only if v(L) > 0. Switching now to the analytic
point of view, recall that a singular Hermitian metric h on L is defined in
a local trivialization L|U ≃ U × C as h = e−ϕ for some weight function
ϕ : U → [−∞, +∞) which is only assumed to be locally integrable.
In particular, the singularity set {x ∈ U, ϕ(x) = −∞} is Lebesgue
negligible. The associated curvature current T := iΘh(L) is a closed
current of bidegree (1, 1) on X representing the first Chern class c1(L)
of L. It is locally defined as T = ddcϕ, where ϕ is a local weight function
of h.

Recall that an almost positive current T can be locally written in
coordinates as T =

∑

j, k

Tj, k dzj ∧ dz̄k for some complex measures Tj, k.

The Lebesgue decomposition of the coefficients Tj, k into an absolutely
continous part and a singular part with respect to the Lebesgue measure
induces a current decomposition as T = Tac + Tsing. By the Radon-
Nikodym theorem, the coefficients of the absolutely continous part are
L1

loc, and thus the exterior powers Tmac are well defined (though not
necessarily closed) currents for m = 1, . . . , n.
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When applied to curvature currents, the current regularization The-
orem 1.2 with controlled Monge-Ampère masses enables us to charac-
terize the volume of a line bundle in terms of positive currents in c1(L).
This gives in particular a bigness criterion for line bundles in terms of
existence of singular Hermitian metrics satisfying positivity assumptions
(and implicitly, a characterization of Moishezon manifolds).

Theorem 1.3. Let L be a holomorphic line bundle over a compact

complex manifold X. Then the volume of L is characterized as:

v(L) = sup
T∈c1(L), T≥0

∫

X
Tnac.

In particular, L is big if and only if there exists a possibly singular

Hermitian metric h on L whose curvature current T := iΘh(L) satisfies

the following positivity conditions:

(i) T ≥ 0 on X; (ii)

∫

X
Tnac > 0.

In the special case when the ambient manifold X is Kähler, this
same result was obtained by Boucksom ([Bou02, Theorem 1.2]). This
strengthens a previous (only sufficient) bigness criterion by Siu ([Siu85])
that solved affirmatively the Grauert–Riemenschneider conjecture
([GR70]). Bigness was guaranteed there under the extra assumption
that the curvature current T (or the metric h) be C∞. Theorem 1.3 falls
into the mould of ideas originating in Demailly’s holomorphic Morse
inequalities ([Dem85]). Its proof hinges on the regularization Theo-
rem 1.2 above, and on Bonavero’s singular version of Demailly’s Morse
inequalities ([Bon98]). It strengthens a bigness criterion in [Bon98]
which required the curvature current T to have analytic singularities.
On the other hand, Ji and Shiffman ([JS93]) proved that L being big
is equivalent to L having a singular metric whose curvature current is
strictly positive on X (i.e., ≥ εω for some small ε > 0). This implies,
in particular, the “only if” part of the above Theorem 1.3. The thrust
of the new “if” part of Theorem 1.3 is to relax the strict positivity
assumption on the curvature current.

Let us finally stress that the main interest of Theorems 1.2 and 1.3 lies
in X being an arbitrary compact manifold. Related results are known
to exist for Kähler manifolds (e.g., [DP04, Theorem 0.4], [Bou02, The-
orem 1.2]). The approach to the non-Kähler case treated here is quite
different. The crux of the argument is modifying the existing proce-
dure for regularizing (1, 1)-currents to get an effective control on the
Monge-Ampère masses (Theorem 1.2). If X is Kähler, the sequence of
masses in the usual Demailly regularization of currents is easily seen
to be bounded by applying Stokes’s theorem and using the closedness
of ω (see [Bou02]). The situation is vastly different in the non-Kähler
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case where a new regularization of currents is needed with a possibly
unbounded sequence of masses.

The paper runs as follows. Section 2 collects the main ingredients for
the proof of Theorem 1.1. The most prominent of these is an atomization
lemma for positive measures in R

2 due to Yulmukhametov ([Yul85]) and
Drasin ([Dra01]). Section 3 goes on to implement the proof of Theorem
1.1 which will be used in subsequent sections.

In order to make the ideas more transparent, we will first prove The-
orem 1.2 in the special case when the Lelong numbers of the original
current T are assumed to vanish everywhere. Section 4 gives the lo-
cal procedure depending on an application of the Ohsawa-Takegoshi L2

extension theorem on a complex line. This is a key idea in the paper.
Section 5 presents the gluing process. This first non-trivial case retains
many of the ideas of the proof stripped of technical details and without
recourse to multiplier ideal sheaves (which are trivial in this case).

The next three sections achieve the proof of Theorem 1.2. Section 6
explains the new regularization technique for psh functions on domains
in C

n based on using derivatives of holomorphic functions in a weighted
Bergman space. Section 7 introduces another key idea of this paper,
namely an effective control, with estimates, of how far multiplier ideal
sheaves are from behaving linearly as the singularities increase. It turns
out that in the case of analytic singularities the growth of multiplier
ideal sheaves is almost linear. This provides a useful complement to
the Demailly-Ein-Lazarsfeld subadditivity theorem. Section 8 combines
ideas of the previous sections to complete the proof of Theorem 1.2.

Finally, Section 9 gives a proof of Theorem 1.3 as a geometric appli-
cation of the new regularization procedure for currents. An appendix,
Section 10, provides a few explanations that have fallen between the
cracks of the previous sections.

Acknowledgments. The author is extremely grateful to Jean-Pierre
Demailly for suggesting the problem and for numerous helpful discus-
sions on the topic. The author would like to thank the referee for
pertinent remarks and comments. A word of thanks is also due to quite
a number of people who showed an interest in this work, of whom Bo
Berndtsson, Sébastien Boucksom and Takeo Ohsawa are only a few.

2. Preliminaries to Theorem 1.1

In this section we clear the way to the proof of Theorem 1.1. The
set-up is the one described in the Introduction. Fix m ∈ N

⋆ and δ > 0.
As the upper level set for Lelong numbers:

E1−δ(mddcϕ0) := {x ∈ U ; ν(mϕ0, x) ≥ 1 − δ}
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is analytic of dimension 0, its intersection with a relatively compact
subset is finite. Let

E1−δ(mddcϕ0) ∩D := {a1, . . . , ap(m)}.

As ddcψm = mddcϕ0−
p(m)
∑

j=1
[mν(ϕ0, aj)] δaj ≥ 0 as currents, the function

ψm(z) := mϕ0(z) −
p(m)
∑

j=1

[mν(ϕ0, aj)] log |z − aj |

is still subharmonic and ν(ψm, aj) = mν(ϕ0, aj) − [mν(ϕ0, aj)] for
every j.

To ensure the integrability property (iii) in Theorem 1.1, we must
introduce a factor (z − aj)

mj in the definition of the function fm being
constructed for every point aj where mj := [mν(ϕ0, aj)] ≥ 1. To find
the other points, we can assume in all that follows, after replacing mϕ0

with ψm, that:

(2) mν(ϕ0, x) < 1, for all x ∈ D.

Once the point masses of the current mddcϕ0 have been brought down
below 1, we still have to neutralize any diffuse mass scattered over the
domain D that could prevent the integral of |fm|2 e−2mϕ0 from having
the desired slow growth in m. The following lemma gives an upper
bound for e−2ϕ0 in terms of the mass of the associated current ddcϕ0.

Lemma 2.1. With the notation in the introduction, if γ :=
∫

D dd
cϕ0,

the following estimate holds:

e−2(ϕ0(z)−h0(z)) ≤ 1
∫

D

ddcϕ0

∫

D

1

|ζ − z|2γ dd
cϕ0(ζ),

for all z ∈ D.

Proof. Let dµ(ζ) := γ−1 ddcϕ0(ζ) be a probability measure on D. For
all z ∈ D, we have:

(ϕ0 − h0)(z) =

∫

D
log |ζ − z| ddcϕ0(ζ),

or, equivalently,

−(ϕ0 − h0)(z) =

∫

D
γ log |ζ − z|−1dµ(ζ), z ∈ D.

Now, Jensen’s convexity inequality entails:

e−2(ϕ0−h0)(z) ≤
∫

D
e2γ log |ζ−z|−1

dµ(ζ) = γ−1

∫

D

1

|ζ − z|2γ dd
cϕ0(ζ),

which proves the lemma. q.e.d.
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Applying Lemma 2.1 to the function mϕ0, we get:

e−2m(ϕ0(z)−h0(z)) ≤ 1
∫

D

ddcϕ0

∫

D

1

|ζ − z|2mγ dd
cϕ0(ζ), z ∈ D.

The right-hand term above may not be integrable as a function of z
when mγ > 1. To get around this, we will cut D into pieces in such
a way that each piece has a mass < 1 for the measure mddcϕ0 and
the number of pieces does not exceed mγ(1 + δ). We will subsequently
choose a point in each piece, intuitively its “center”, and will define
fm as a holomorphic function on D whose only zeroes are these points.
This will be shown to satisfy the conditions in Theorem 1.1.

Cutting D into pieces relies on the following lemma due to Yul-
mukhametov ([Yul85]) and, in a generalized form, to Drasin ([Dra01,
Theorem 2.1]). It describes an atomization procedure for arbitrary pos-
itive measures µ in one complex variable. This is the main technical
ingredient in the proof of Theorem 1.1.

Lemma 2.2 ([Yul85], [Dra01]). Let µ be a positive measure sup-

ported in a square R ⊂ R
2 with sides parallel to the coordinate axes.

Suppose µ(R) = N > 1, N ∈ Z. Then, there exist a family of closed

rectangles (Rj)1≤j≤N with sides parallel to the coordinate axes, and a

family of positive measures (µj)1≤j≤N , such that:

(a) µ =
N
∑

j=1
µj, µj(R

2) = 1 and Suppµj ⊂ Rj for all j = 1, . . . , N ;

(b) R =
N
⋃

j=1
Rj =

N
⋃

j=1
Suppµj ;

(c) the interiors of the convex hulls of the supports Suppµj of the µj’s
are mutually disjoint;

(d) the ratio of the sides of each rectangle Rj lies in the interval [13 , 3]
(i.e., Rj is an “almost square” in the terminology of [Dra01]);

(e) each point in R
2 belongs to the interior of at most four distinct

rectangles Rj ;
(f) each Suppµj is contained in a rectangle Pj ⊂ Rj, and the distance

between the centres of any two distinct rectangles Pj is ≥ C
N2 ,

where C > 0 is the side of the square R.

Idea of proof (according to [Dra01]). Yulmukhametov originally
proved this result (see [Yul85]) for absolutely continuous measures µ.
The generalization to the case of arbitrary measures is due to Drasin
([Dra01]). We summarize here the ideas of Drasin’s proof. Conclusion
(f) was not explicitly stated, but it can be easily inferred from the
proof given there. The first idea is to reduce the problem to the case of
a measure µ satisfying µ(p) < 1 at every point p ∈ R. This is done by
subtracting from the original measure µ the integer part [µ(p)] of each
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point mass µ(p) > 1. We may also assume, after a possible rotation of
the coordinate system of R

2, that for every line L parallel to one of the
coordinate axes, there exists at most one point p ∈ L such that µ(p) > 0
while µ(L \ p) = 0.

After these reductions, the key step is to prove that if an almost
square R contains the support of a measure µ satisfying these properties,
then there exist almost squares R0 and R1 and a decomposition µ =
µ0 + µ1 such that Suppµj ⊂ Rj , j = 0, 1, which satisfies conclusions
(b) − (d) of the lemma. The masses µj(Rj) are integers. If µj(Rj) > 1,
we repeat this procedure to obtain almost squares Rj, 0, Rj, 1 and a
decomposition µj = µj, 0 + µj, 1. By repeatedly applying this procedure
we get almost squares RI and measures µI , indexed over multi-indices
I = i1, . . . , il made up of digits 0 and 1. The procedure terminates
when all masses µI(RI) = 1. A technical lemma then yields conclusion
(e) and thus clinches the proof of this result. We refer for details to
Drasin ([Dra01, §2, pp. 165–171]). q.e.d.

3. Proof of Theorem 1.1

Building on preliminaries in the previous section, we will now com-
plete the proof of Theorem 1.1. The notation and set-up are unchanged.
Let R be the square of edge 2r centered at x0. It contains D(x0, r) and
implicitly D. By hypothesis (2), we may assume that mν(ϕ0, x) < 1
for all x ∈ D. The positive measure µ := ddcϕ0 has mass γ on R. Fix
0 < δ < 1 and, for m≫ 1, choose an integer Nm such that:

(3)
2

2 − δ
mγ < Nm ≤ mγ (1 + δ).

Such an integer exists if m is so large that mγ (1+δ− 2
2−δ ) = mγ δ(1−δ)

2−δ
> 1. We now apply the atomization Lemma 2.2 to the measure Nm

γ µ =
Nm
γ ddcϕ0 of total mass N := Nm on R. We get a covering of R by

closed rectangles:

R =

Nm
⋃

j=1

Rj(m),

and a decomposition of measures
Nm

γ
µ =

Nm
∑

j=1

νm, j such that every

Rj := Rj(m) is an almost square containing the support of νm, j , and
νm, j(Rj) = 1.

By part (f) of Lemma 2.2, there is a family of possibly smaller rect-
angles Pj(m) ⊂ Rj(m), j = 1, . . . , Nm, still covering R such that each
Pj(m) contains the support of νm, j . Their main feature is the following:
if aj = aj(m) is the center of Pj(m), the mutual distances of the aj ’s
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are ≥ C/N2
m with C > 0 independent of m. Unlike the Rj(m)’s, we do

not know whether the Pj(m)’s are almost squares.
We will prove that the integer Nm and the points aj satisfy the con-

clusions of Theorem 1.1. As by Hypothesis (2) we have

mj = max{[mν(ϕ0, aj)], 1} = 1, for j = 1, . . . , Nm,

we get:
Nm
∑

j=1
mj = Nm ≤ mγ(1 + δ), which is conclusion (i) of Theorem

1.1. The lower bound on the mutual distances of the points aj and
the choice of Nm = O(m) (cf. (3)) ensure that the points aj satisfy
the conclusion (ii) of Theorem 1.1. It remains to check that for the
holomorphic function:

fm(z) := emg0(z)
Nm
∏

j=1

(z − aj), z ∈ D,

the integral
∫

D

|fm|2 e−2mϕ0 dλ has the desired slow growth in m as m→
+∞. Since

∫

D

|fm|2 e−2mϕ0 dλ ≤
Nm
∑

j=1

∫

Rj

|fm|2 e−2mϕ0 dλ,

the analysis is reduced to finding a convenient upper bound for each
integral on Rj . Fix j ∈ {1, . . . , Nm}. Since aj ∈ Rj , we see that Rj is

contained in the disc Dj := D(aj , rj), where rj is
√

2 times the longest
edge of Rj . Conclusion (e) of Lemma 2.2 implies that the sum of the
Euclidian areas of the Rj ’s is bounded above by four times the area of
the square R of edge 2r. As the Rj ’s are almost squares, it follows that
there is a constant C1(r) > 0, depending only on r, such that

(e′)
Nm
∑

j=1

r2j ≤ C1(r), for all m≫ 1.

Lemma 2.1, when applied to the functionmϕ0 onDj = D(aj , rj), gives:

|fm(z)|2 e−2mϕ0(z)

=

Nm
∏

k=1

|z − ak|2 e−2m(ϕ0(z)−h0(z))

≤ (2r)2(Nm−1) |z − aj |2
1

∫

Dj

ddcϕ0

∫

Dj

1

|ζ − z|2
mγ
Nm

ddcϕ0(ζ),

for all z ∈ Dj . We have used the obvious upper bound |z−ak|2 ≤ (2r)2,
for all k 6= j. When integrating above with respect to z ∈ Dj , Fubini’s
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theorem yields:
∫

Dj

|fm(z)|2 e−2mϕ0(z)dλ(z)(4)

≤ (2r)2(Nm−1)

∫

Dj

ddcϕ0

∫

Dj

(
∫

Dj

|z − aj |2

|z − ζ|2
mγ
Nm

dλ(z)

)

ddcϕ0(ζ).

Let us now concentrate on the integral in z on the right-hand side. We
get the following estimate for every ζ ∈ Dj :

∫

Dj

|z − aj |2

|z − ζ|2
mγ
Nm

dλ(z)(5)

=

∫

D(aj , rj)

|z − aj |2

|(z − aj) − (ζ − aj)|2
mγ
Nm

dλ(z − aj)

≤ 4π(|ζ − aj | + rj)
2(1− mγ

Nm
)

(

(|ζ − aj | + rj)
2

2(2 − mγ
Nm

)
+

|ζ − aj |2
2(1 − mγ

Nm
)

)

.

Indeed, if we make the change of variable x = z−aj and set ζ−aj = a,
we are reduced to estimating the integral:

∫

D(0, r)

|x|2
|x− a|τ dλ(x),

where we have set rj := r and τ := 2mγNm
to simplify the notation. By the

choice (3) of Nm, we have: 0 < τ < 2. The change of variable x−a = y,
followed by a switch to polar coordinates with |y| = ρ, implies:
∫

D(0, r)

|x|2
|x− a|τ dλ(x) =

∫

D(−a, r)

|y + a|2
|y|τ dλ(y) ≤

∫

D(−a, r)

(|y| + |a|)2
|y|τ dλ(y)

≤ 2

∫

D(−a, r)

|y|2 + |a|2
|y|τ dλ(y)

= 2

∫

D(−a, r)

|y|2−τdλ(y) + 2|a|2
∫

D(−a, r)

|y|−τdλ(y)

≤ 2π

(

2

∫ |a|+r

0
ρ2−τρ dρ+ 2|a|2

∫ |a|+r

0
ρ−τρ dρ

)

= 4π (|a| + r)2−τ
(

(|a| + r)2

4 − τ
+

|a|2
2 − τ

)

.
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For r = rj , this gives the estimate (5). Now relations (4) and (5) imply:

∫

Dj

|fm(z)|2 e−2mϕ0(z)dλ(z)

≤ 4π
∫

Dj
ddcϕ0

(2r)2(Nm−1)

·
∫

Dj

(|ζ − aj | + rj)
2(1− mγ

Nm
)

(

(|ζ − aj | + rj)
2

2(2 − mγ
Nm

)
+

|ζ − aj |2
2(1 − mγ

Nm
)

)

ddcϕ0(ζ).

Let us now shift to polar coordinates with |ζ − aj | = ρ. This gives
ddcϕ0(ζ) = dn(ρ), where n(ρ) =

∫

D(aj , ρ)
ddcϕ0, for all ρ ≥ 0. Since Dj

is assumed to be D(aj , rj), we get:

∫

Dj

|fm(z)|2 e−2mϕ0(z)dλ(z)

≤ C(r, rj)

∫ rj

0
(ρ+ rj)

2(1− mγ
Nm

)

(

(ρ+ rj)
2

2(2 − mγ
Nm

)
+

ρ2

2(1 − mγ
Nm

)

)

n′(ρ) dρ,

where C(r, rj) =
8π2

∫

Dj
ddcϕ0

(2r)2(Nm−1). The last expression can be

successively written as:

C(r, rj)

2(2 − mγ
Nm

)

∫ rj

0
(ρ+ rj)

2(2− mγ
Nm

)n′(ρ) dρ

+
C(r, rj)

2(1 − mγ
Nm

)

∫ rj

0
ρ2(ρ+ rj)

2(1− mγ
Nm

)n′(ρ) dρ

=
C(r, rj)

2(2 − mγ
Nm

)

(

n(rj)(2rj)
2(2− mγ

Nm
)

− 2

(

2 − mγ

Nm

)
∫ rj

0
n(ρ)(ρ+ rj)

3−2 mγ
Nm dρ

)

+
C(r, rj)

2(1 − mγ
Nm

)

(

n(rj)r
2
j (2rj)

2(1− mγ
Nm

)

−
∫ rj

0
n(ρ)

[

2ρ(ρ+ rj)
2(1− mγ

Nm
)+ 2

(

1 − mγ

Nm

)

(ρ+ rj)
1−2 mγ

Nm ρ2

]

dρ

)

.

The terms appearing above with a “ −” sign are all negative since
1 − mγ

Nm
> 0 (and implicitly 2 − mγ

Nm
> 0). Therefore, they can be
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ignored. We thus get the following upper estimate:
∫

Dj

|fm(z)|2 e−2mϕ0(z)dλ(z)

≤ C(r, rj)n(rj)

(

(2rj)
2(2− mγ

Nm
)

2(2 − mγ
Nm

)
+
r2j (2rj)

2(1− mγ
Nm

)

2(1 − mγ
Nm

)

)

.

Since n(rj) =
∫

Dj
ddcϕ0, the previous upper bound and the formula of

C(r, rj) show that:

(6)

∫

Dj

|fm(z)|2 e−2mϕ0(z)dλ(z) ≤ C

(

r,
mγ

Nm

)

· r2(2−
mγ
Nm

)

j ,

where the constant C(r, mγNm
) is given by the formula:

C

(

r,
mγ

Nm

)

= 8π2 (2r)2(Nm−1)

(

22(2− mγ
Nm

)

2(2 − mγ
Nm

)
+

22(1− mγ
Nm

)

2(1 − mγ
Nm

)

)

.

Since estimate (6) holds for all indices j ∈ {1, . . . , Nm}, we get, after
summing over j, that:

∫

D
|fm(z)|2 e−2mϕ0(z) dλ(z) ≤ C

(

r,
mγ

Nm

)

Nm
∑

j=1

r
2(2− mγ

Nm
)

j .

The choice of Nm was made in such a way that 1−δ < 1
1+δ ≤ mγ

Nm
< 1− δ

2

(cf. (3)), which implies:

δ

2
< 1 − mγ

Nm
< δ and 1 +

δ

2
< 2 − mγ

Nm
< 1 + δ.

Since 0 < 2r < 1, there exists a constant C2(r) > 0 depending only on
r, such that C(r, mγNm

) ≤ C2(r), for all m ∈ N. Since rj ≤ 2r < 1, we
have:

r
2(2− mγ

Nm
)

j < r2j , for 2(2 − mγ

Nm
) > 2.

Thus, estimate (e′) (inferred above from (e) of Lemma 2.2) implies:
∫

D
|fm(z)|2 e−2mϕ0(z) dλ(z) ≤ C(r), ∀m≫ 0,

where C(r) = C1(r)C2(r) > 0 is a constant depending only on the
radius r of the disc D on which we are working. This yields conclusion
(iii) of Theorem 1.1 and completes its proof. q.e.d.
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4. Special case of local regularization with mass control

In this section we use Theorem 1.1 combined with the Ohsawa-Take-
goshi L2 extension theorem (see [OT87], [Ohs88]) to introduce a new
local approximation procedure for psh functions with zero Lelong num-
bers. The main new outcome is an additional control of the Monge-
Ampère masses. This can be seen as a local version of Theorem 1.2
under the extra assumption that all the Lelong numbers vanish.

Let ϕ be a psh function on a bounded pseudoconvex open set Ω ⊂
C
n. A well-known result of Demailly (cf. [Dem92, Proposition 3.1])

asserts that ϕ can be approximated pointwise and in L1
loc(Ω) topology

by psh functions ϕm with analytic singularities (see definition (1) in the
introduction), constructed as:

(7) ϕm =
1

2m
log

+∞
∑

j=0

|σm, j |2,

where (σm, j)j∈N is an arbitrary orthonormal basis of the Hilbert space
HΩ(mϕ) of holomorphic functions f on Ω such that |f |2 e−2mϕ is inte-
grable on Ω. They even satisfy the estimates:

(8) ϕ(z) − C1

m
≤ ϕm(z) ≤ sup

|ζ−z|<r
ϕ(ζ) +

1

m
log

C2

rn
,

for every z ∈ Ω and every r < d(z, ∂Ω). In particular, the sequence
ddcϕm converges to ddcϕ in the weak topology of currents, and the
corresponding Lelong numbers satisfy:

(9) ν(ϕ, x) − n

m
≤ ν(ϕm, x) ≤ ν(ϕ, x), x ∈ Ω.

For analytic singularities, the Lelong number ν(ϕm, x) at an arbitrary
point x equals 1

m min
j≥0

ordxσm, j , where ordx is the vanishing order at x.

The sequence (ϕm)m∈N defined in (7) has come to be referred to as the
Demailly approximation of ϕ.

Let us now suppose that ϕ has zero Lelong numbers everywhere (see
[Dem97, Chapter III] for a comprehensive discussion of Lelong num-
bers). In other words,

ν(ϕ, x) := lim inf
z→x

ϕ(z)

log |z − x| = 0, for every x ∈ Ω.

Psh functions ϕ for which there are points x such that ϕ(x) = −∞ and

ν(ϕ, x) = 0 do exist! For instance, ϕ(z) := −
√

− log |z| has an isolated
singularity with a zero Lelong number at the origin. These singularities,
very different to analytic ones, are usually hard to grasp as the familiar
tools at hand intended to deal with singularities, viz. multiplier ideal
sheaves and Lelong numbers, are trivial at such points.
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We can alter the Demailly approximation to get the following Monge-
Ampère mass control.

Theorem 4.1. Let ϕ be a psh function on a bounded pseudoconvex

open set Ω ⊂ C
n. Suppose, furthermore, that ϕ has a zero Lelong num-

ber at every point x ∈ Ω. Define the sequence of smooth psh functions

(ψm)m∈N on Ω as:

ψm :=
1

2m
log

( +∞
∑

j=0

|σm, j |2 +
+∞
∑

j=0

∣

∣

∣

∣

∂σm, j
∂z1

∣

∣

∣

∣

2

+ · · · +
+∞
∑

j=0

∣

∣

∣

∣

∂σm, j
∂zn

∣

∣

∣

∣

2)

,

where (σm, j)j∈N is an orthonormal basis of HΩ(mϕ), and ∂
∂z1

, . . . , ∂
∂zn

are the first order partial derivarives with respect to the standard coor-

dinates z = (z1, . . . , zn) on C
n. Then ddcψm converges to ddcϕ in the

weak topology of currents as m → +∞, and for any relatively compact

open subset B ⋐ Ω we have:
∫

B

(ddcψm)k ∧ βn−k ≤ C (logm)k, k = 1, . . . , n,

where β is the standard Kähler form on C
n, and C > 0 is a constant

independent of m.

Proof. The sum
∑ |σm, j(z)|2 is the square of the norm of the evalu-

ation linear map f 7→ f(z) on HΩ(mϕ). For any k = 1, . . . , n, the anal-
ogous sum with σm, j replaced by ∂σm, j/∂zk is the square of the norm
of the evaluation linear map f 7→ ∂f/∂zk(z). As ϕ is locally bounded
above, the L2 topology of HΩ(mϕ) is stronger than the topology of uni-
form convergence on compact subsets of Ω. Hence, all the series defining
ψm converge uniformly on compact subsets of Ω and their sums are real
analytic. We can easily infer from Demailly’s estimate (8) combined
with Parseval’s formula that:

(10) ϕ(z) − C1

m
≤ ψm(z) ≤ sup

|ζ−z|<2r
ϕ(ζ) − 1

m
log r +

1

m
log

C3

rn
,

for every z ∈ Ω and every r < 1
2 d(z, ∂Ω). This means that ψm still

converges to ϕ pointwise and in L1
loc(Ω) topology, and thus ddcψm con-

verges to ddcϕ in the weak topology of currents. Moreover, as the Lelong
numbers of ϕ are assumed to vanish at every point, and as, thanks to
(9),

ν(ψm, x) ≤ ν(ϕm, x) ≤ ν(ϕ, x), x ∈ Ω,

for every m, each ψm has zero Lelong numbers everywhere. This means
that the σm, j ’s and their first order derivatives have no common zeroes,
and therefore ψm is C∞ on Ω. (Actually ϕm is also C∞).

Our aim is to control the Monge-Ampère masses of the new regular-
izing smooth forms ddcψm on a given open set B ⋐ Ω. To this end,
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we can apply the Chern-Levine-Nirenberg inequalities (see [CLN69] or
[Dem97, Chapter III, p. 168]) to get:

∫

B

(ddcψm)k ∧ βn−k ≤ C (sup
B̃

|ψm|)k, k = 1, . . . , n,

where B̃ ⋐ Ω is an arbitrary relatively compact open subset containing
B̄, and C > 0 is a constant depending only on B and B̃. Note that
sup
B̃

|ψm| < +∞ since ψm is smooth. We are thus reduced to accounting

for the following:

Claim 4.2. There is a constant C > 0 independent of m such that:

sup
B̃

|ψm| ≤ C logm, for every m.

The upper bound for ψm given in (10) is clearly sufficient for our
purposes. The delicate point in estimating |ψm| is finding a finite lower
bound (possibly greatly negative) for ψm. If B̄m(1) is the closed unit
ball of HΩ(mϕ), it is easy to see, expressing the norms of the evaluation
linear maps

HΩ(mϕ) ∋ f 7→ ∂f

∂zk
(z) ∈ C, k = 1, . . . , n,

at a given point z ∈ Ω in two ways and the fact that a sum of supremums
dominates the supremum of the sum, that:
(11)

ψm(z) ≥ sup
Fm∈B̄m(1)

1

2m
log

(

|Fm(z)|2 +

∣

∣

∣

∣

∂Fm
∂z1

(z)

∣

∣

∣

∣

2

+ · · · +
∣

∣

∣

∣

∂Fm
∂zn

(z)

∣

∣

∣

∣

2)

,

for every z ∈ Ω. Now fix x ∈ Ω. To find a uniform lower bound for
ψm(x), we need to produce an element Fm ∈ B̄m(1) for which we can
uniformly estimate below one of the first order partial derivatives at x.
The Lelong number of ϕ at x is known to be equal to the Lelong number
at x of the restriction ϕ|L to almost every complex line L passing through
x (see [Siu74]). Choose such a line L and coordinates z = (z1, . . . , zn)
centred at x such that L = {z2 = · · · = zn = 0}. Consider, as in the
introduction, the decompostion:

ϕ|L = N ⋆∆ϕ|L + h, on Ω ∩ L,
where N is the one-dimensional Newton kernel, and h = Re g is a har-
monic function equal to the real part of a holomorphic function g. The-
orem 1.1 gives the existence of a holomorphic function fm on Ω∩L such
that:

fm(z1) = emg(z1)
Nm
∏

j=1

(z1 − am, j), z1 ∈ Ω ∩ L,
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with Nm ≤ C0m, for a constant C0 > 0 independent of m, and

Cm :=

∫

Ω∩L

|fm|2 e−2mϕ dVL = o(m),

where dVL is the volume form on L. As the Lelong numbers of ϕ (and
implicitly those of mϕ) are assumed to be zero, the restriction of e−2mϕ

to some complex line L is locally integrable on Ω ∩ L. By Theorem 1.1
(ii) the points am, j can be chosen such that |am, j − am, k| ≥ C1

m2 for
every j 6= k, with some constant C1 > 0 independent of m and L.

The Ohsawa-Takegoshi L2 extension theorem (cf. [Ohs88, Corollary
2, p. 266]) can now be applied to get a holomorphic extension Fm ∈
HΩ(mϕ) of fm from the line Ω ∩ L to Ω, satisfying the estimate:

∫

Ω

|Fm|2 e−2mϕ dVn ≤ C

∫

Ω∩L

|fm|2 e−2mϕ dVL = C Cm,

for a constant C > 0 depending only on Ω and n. Thus the function
Fm√
C Cm

belongs to the unit ball B̄m(1) of the Hilbert space HΩ(mϕ). As
∂Fm
∂z1

(z1) = f ′m(z1) at every point z1 ∈ Ω ∩ L, estimate (11) implies the
following lower bound for ψm:

ψm(z1) ≥
1

m
log |f ′m(z1)| −

1

2m
log(C Cm), z1 ∈ B̃ ∩ L.

Recall that we are interested in estimating ψm below at the origin x of
the local coordinate system (z1, . . . , zn). This is trivial if the points am,j
do not contain the origin. If x = am, j for some j, we get:

ψm(am,j) ≥ h(am,j) +
1

m

∑

k 6=j
log |am, k − am, j | −

1

2m
log(C Cm)

≥ h(am,j) +
Nm − 1

m
log

C1

m2
− 1

2m
log(C Cm).

Since h is C∞ (for it is harmonic), it is locally bounded (by constants
independent of L). Therefore, there exists a constant C2 > 0 indepen-

dent of m and L such that ψm ≥ −C2 logm on B̃ ∩ L for every m. In
particular, ψm(x) ≥ −C2 logm. This proves Claim 4.2 and completes
the proof of Theorem 4.1. q.e.d.

Remark 4.3. Theorem 4.1 constructs a regularization of currents
for which the Monge-Ampère masses have an at most slow (logarithmic)
growth. It is worth stressing that the sequence of these masses may not
be bounded above. To see this, suppose ϕ is C∞ in the complement of
an analytic set V ⊂ Ω. If (ϕm)m∈N is the Demailly approximation of ϕ,
it is shown in [DPS01, pp. 701-702] that the sequence (ϕ2m +2−m)m∈N

is decreasing using an effective version of the subadditivity property of
multiplier ideal sheaves. The same proof shows that the corresponding
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sequence (ψ2m + 2−m)m∈N in the new regularization defined in the pre-
vious theorem is also decreasing. Then the C∞ (1, 1)-forms (ddcψ2m)k

are well-defined on Ω \V and converge in the weak topology of currents
to (ddcϕ)k for every k = 1, . . . , n (see [Dem97, Chapter III, Theorem
3.7]). If K ⋐ B \ V and 0 ≤ χ ≤ 1 is a C∞ function with compact
support in B \ V such that χ ≡ 1 on K, then:

∫

B\V
χ(ddcψ2m)k ∧ βn−k ≤

∫

B\V
(ddcψ2m)k ∧ βn−k, m ∈ N,

and taking lim inf
m→+∞

, the weak convergence implies:

∫

B\V
χ(ddcϕ)k ∧ βn−k ≤ lim inf

m→+∞

∫

B\V
(ddcψ2m)k ∧ βn−k, k = 1, . . . , n.

Clearly
∫

K(ddcϕ)k∧βn−k ≤
∫

B\V χ(ddcϕ)k∧βn−k, and lettingK ⋐ B\V
increase, we get:
∫

B\V
(ddcϕ)k ∧ βn−k ≤ lim inf

m→+∞

∫

B\V
(ddcψ2m)k ∧ βn−k, k = 1, . . . , n.

Now, there are examples of psh functions ϕ for which the Monge-Ampère
mass on the left-hand side above is infinite for k = n (see Kiselman’s
example in [Kis84, pp. 141–143] of a ϕ with zero Lelong numbers, or
the Shiffman-Taylor example in [Siu75, pp. 451–453]). Thus the last
inequality shows that for such functions the sequence of Monge-Ampère
masses associated with the above regularization is unbounded.

5. Special case of global regularization with mass control

In this section we patch together the local regularizations constructed
in the previous section to prove Theorem 1.2 under the extra assumption
that the original current T has vanishing Lelong numbers everywhere.
For the sake of simplicity we assume X to be compact. The result
actually holds for any manifold X that can be covered by finitely many
coordinate patches on which the local regularization Theorem 4.1 can
be applied.

Theorem 5.1. Let T ≥ γ be a d-closed current of bidegree (1, 1) on a

compact complex manifold X, where γ is a continuous (1, 1)-form such

that dγ = 0. Assume T has a zero Lelong number at every point in X.

Then, there exist C1 (1, 1)-forms Tm in the same ∂∂̄-cohomology class

as T which converge to T in the weak topology of currents and satisfy:

(a) Tm ≥ γ − C

m
ω;

(b)
∫

X

(Tm−γ+ C
m ω)q ∧ωn−q ≤ C (logm)q, q = 1, . . . , n = dimCX,

for a fixed Hermitian metric ω on X and some C > 0 independent of

m.
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Proof. As the patching procedure is essentially well-known (see, for
instance, [Dem92, Section 3]), we will only point out the new aspects.

We always have T = α + ddcϕ ≥ γ globally on X, with some C∞

(1, 1)-form α and some almost psh function ϕ on X. The set-up is the
one described in the introduction. After possibly replacing T with T−α
and γ with γ − α, we can assume T = ddcϕ ≥ γ. Let us fix δ > 0, and

four finite coverings of X by concentric coordinate balls (B
(3)
j )j , (B′

j)j ,

(B′′
j )j and (Bj)j of radii δ

2 , δ,
3
2δ, and respectively 2δ. Since dγ = 0, γ

is locally exact and we can assume that, for every j, γ = ddchj on Bj
for some C1 function hj . The function:

ψj := ϕ− hj ,

is psh on Bj for every j. As, by assumption, ψj has a zero Lelong
number at every point in Bj , Theorem 4.1 can be applied to each ψj on
Bj to get smooth approximations:

ψj,m :=
1

2m
log

( +∞
∑

l=0

|σj,m, l|2 +
n
∑

r=1

+∞
∑

l=0

∣

∣

∣

∣

∂σj,m, l
∂zr

∣

∣

∣

∣

2)

,

with an arbitrary orthonormal basis (σj,m, l)l∈N of the Hilbert space
HBj (mψj) (see notation in the previous section). Then ϕj,m := ψj,m +

hj converges pointwise and in L1
loc topology to ϕ as m → +∞ on Bj ,

and these local approximations can be glued together into a global ap-
proximation of ϕ defined as:

ϕm(z) := sup
B′′

j ∋z

(

ϕj,m(z) +
C1(δ)

m
(δ2 − |zj |2)

)

,

with a constant C1(δ) > 0 depending only on δ which will be specified
below, and a local holomorphic coordinate system zj centred at the
centre of Bj . The currents Tm := ddcϕm satisfy the conclusions of
Theorem 5.1 if the following patching condition holds:

(12) ϕj,m(z) +
C1(δ)

m
(δ2 − |zj |2) ≤ ϕk,m(z) +

C1(δ)

m
(δ2 − |zk|2),

for z ∈ (B
′′
j \B′

j)∩B
(3)
k . One can then prove the existence of a constant

C1(δ) > 0 satisfying this patching condition by means of Hörmander’s
L2 estimates ([Hor65]). One need only estimate the difference ψj,m −
ψk,m on B′′

j ∩ B′′
k and show that ϕj,m − ϕk,m is uniformly bounded

above on B′′
j ∩B′′

k by O( 1
m) as m → +∞. Now, for every fixed z ∈ Bj ,

the norms of the linear maps f 7→ f(z) and f 7→ ∂f
∂zr

(z), r = 1, . . . , n,

defined on the Hilbert space HBj (mψj), can be expressed in terms of
an orthonormal basis, and we get:

1

2m
log sup

f∈Bj, m

(

|f(z)|2 +
n
∑

r=1

∣

∣

∣

∣

∂f

∂zr
(z)

∣

∣

∣

∣

2)

≤ ψj,m(z)
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≤ 1

2m
log

(

(n+ 1) sup
f∈Bj, m

(

|f(z)|2 +
n
∑

r=1

∣

∣

∣

∣

∂f

∂zr
(z)

∣

∣

∣

∣

2))

,

where Bj,m is the unit ball of HBj (mψj). We also have the analogous
relations for ψk,m on Bk. This means that to compare ψj,m and ψk,m
at a fixed point x0 ∈ B′′

j ∩ B′′
k , it is enough to show that for every

holomorphic function fj on Bj such that
∫

Bj
|fj |2 e−2mψj = 1, there

exists a holomorphic function fk on Bk having an L2-norm under control
and satisfying:

fk(x0) = fj(x0), and
∂fk
∂zr

(x0) =
∂fj
∂zr

(x0), for r = 1, . . . , n.

This is done using Hörmander’s L2 estimates ([Hor65]). Let θ be a
cut-off function supported in a neighborhood of x0 such that θ ≡ 1 near
x0, and solve the equation

(13) ∂̄g = ∂̄(θfj)

on Bk with a weight containing the term 2(n + 1) log |z − x0| which
forces the solution g to vanish to order at least 2 at x0. Specifically, if
hjk is a holomorphic function on Bj ∪Bk such that hj −hk = Rehjk on
Bj ∩Bk, we can find a solution g to the above equation on Bk satisfying
Hörmander’s L2 estimates with the strictly psh weight:

(14) 2m(ψk − Rehjk) + 2(n+ 1) log |z − x0| + |z − x0|2.

Now set fk := θfj − g, which is easily seen to satisfy the requirements.
The precise estimate of the solution g gives the uniform upper estimate
of ϕj,m − ϕk,m on B′′

j ∩ B′′
k by O( 1

m), which implies the existence of a

constant C1(δ) > 0 satisfying the patching condition (12). The details
are left to the reader.

The loss of positivity incurred in Tm with respect to the original T
can be seen to be at most C

m as in [Pop04] thanks to the form γ being
closed. This proves (a). That the approximating currents Tm := ddcϕm
constructed through this patching procedure satisfy the condition (b)
on Monge-Ampère masses follows from the local Theorem 4.1 proved in
the previous section. Theorem 5.1 is thus proved. q.e.d.

6. Modified regularizations in the general case

Let Ω ⊂ C
n be a bounded pseudoconvex open set, and let ϕ be a

strictly psh function on Ω such that i∂∂̄ϕ ≥ C0 β for some constant
C0 > 0 and the standard Kähler form β on C

n. Our goal is to construct
regularizing psh functions with analytic singularities approximating ϕ
for which the Monge-Ampère masses can be controlled. The overall idea
is to modify Demailly’s regularization (7) by adding derivatives of the
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functions σm, j , j ∈ N, which form an orthonormal basis of the Hilbert
space:
(15)

HΩ(mϕ) :=

{

f ∈ O(Ω);

∫

Ω

|f |2 e−2mϕ dVn < +∞
}

, dVn :=
βn

n!
.

We shall repeatedly denote Dα the derivation operator with respect to
any multi-index α = (α1, . . . , αn) ∈ N

n of length |α| = α1+· · ·+αn, and
[ ] the integer part. Unlike Section 4, where it was enough to derive to
order one as ϕ was assumed to have zero Lelong numbers everywhere,
we need to derive more in the general case. Yet we cannot afford to
derive too much, and have to accept singularities in the regularizing
functions as shown below.

Lemma 6.1. For every δ > 0, the psh functions with analytic singu-

larities defined as:

ϕδm =
1

2m
log

+∞
∑

j=0

[δm]
∑

|α|=0

∣

∣

∣

∣

Dασm, j
α!

∣

∣

∣

∣

2

, m ∈ N,

satisfy the estimates below for constants C1, C3 > 0 independent of m
and ϕ:

ϕ(z) − C1

m
≤ ϕδm(z) ≤ sup

|ζ−z|<2r
ϕ(ζ) −

(

[δm]

m
+
n

m

)

log r +
1

m
logC3,

at every point z ∈ Ω and for every 0 ≤ r < min{1
2d(z, ∂Ω), 1}. In

particular, if we choose δm := C εm with εm ↓ 0 and C > 0 a constant

independent of m, ϕδmm converges pointwise and in L1
loc topology to ϕ

when m→ +∞.

Proof. The lower bound follows from the lower estimate in (8) since
ϕδm ≥ ϕm. To get the upper bound, we apply Parseval’s formula to each
function σm, j on the sphere S(z, r) and then sum over j to get:

C

r2n−1

∫

S(z,r)

+∞
∑

j=0

|σm,j(ζ)|2 dσ(ζ) =
+∞
∑

j=0

∑

α∈Nn

∣

∣

∣

∣

Dασm,j
α!

(z)

∣

∣

∣

∣

2

r2|α|

≥ r2[δm]
+∞
∑

j=0

[δm]
∑

|α|=0

∣

∣

∣

∣

Dασm,j
α!

(z)

∣

∣

∣

∣

2

.

It is now enough to take 1
2m log on both sides and to use the upper

estimate in (8) to conclude. q.e.d.

In other words, we still have an approximation of ϕ if we derive the
σm, j ’s up to order ≤ o(m) (e.g. [Cεmm] for some εm ↓ 0, even when
[Cεmm] → +∞). But we would lose control on the upper bound of
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ϕδm if we derived up to removing all the common zeroes of the σm, j ’s
(e.g., up to order [Am] with A := sup

x∈Ω
ν(ϕ, x) assumed to be finite after

possibly shrinking Ω).
Besides taking derivatives, we will further modify Demailly’s regu-

larizing functions (7). A crucial role will be played by multiplier ideal
sheaves I(mϕ) ⊂ OΩ associated with psh functions. They are defined,
for every m ∈ N, as (cf. [Nad90], [Dem93]):
(16)

I(mϕ)x := {f ∈ OΩ, x, |f |2 e−2mϕ is Lebesgue-integrable near x},

at every x ∈ Ω. It is a well-known result of Nadel ([Nad90], see also
[Dem93]) that, for every m ∈ N, the multiplier ideal sheaf I(mϕ) is
coherent and is generated as an OΩ-module by an arbitrary orthonor-
mal basis (σm, j)j∈N of the Hilbert space HΩ(mϕ). By coherence, the
restriction of I(mϕ) to every compact subset has only finitely many
generators (σm, j)1≤j≤Nm . When m → +∞, this local finite generation
property was made effective in [Pop06, Theorem 1.1] in the following
way. It was shown there that for any given relatively compact open
subset B ⋐ Ω, there exist a subset B0 ⋐ B and m0 = m0(C0) ∈ N such
that for every m ≥ m0 one can find an orthonormal basis (σm, j)j∈N

of HΩ(mϕ) and finitely many elements σm, 1, . . . , σm,Nm in it with the
following property. Every local section g ∈ HB(mϕ) admits a decom-
position:

(17) g(z) =

Nm
∑

j=1

hm, j(z)σm, j(z), z ∈ B0,

with some holomorphic functions hm, j on B0 satisfying:

(18) sup
B0

Nm
∑

j=1

|hm, j |2 ≤ C Nm

∫

B

|g|2 e−2mϕ < +∞,

for a constant C > 0 depending only on n, r, and the diameter of Ω.
Furthermore, in the case of a ϕ with analytic singularities, the growth
of the number Nm of local generators needed is at most polynomial of
degree n as m→ +∞, namely

(19) lim
m→+∞

n!

mn
Nm =

2n

πn

∫

B

(i∂∂̄ϕ)nac < +∞,

where (i∂∂̄ϕ)ac denotes the absolutely continuous part of i∂∂̄ϕ in the
Lebesgue decomposition of its measure coefficients into an absolutely
continuous and singular part with respect to the Lebesgue measure. An
immediate corollary of formula (17) and estimate (18) is the following
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comparison relation:

(20)
+∞
∑

j=0

|σm, j |2 ≤ C Nm

Nm
∑

j=1

|σm, j |2 on B0.

Building on these results from [Pop06], we can define a new regular-
ization of ϕ using only finitely many generators of I(mϕ)|B0

to modify
the definition in the previous Lemma 6.1.

Lemma 6.2. The psh functions with analytic singularities:

ψm =
1

2m
log

Nm
∑

j=1

[Cεmm]
∑

|α|=0

∣

∣

∣

∣

Dασm, j
α!

∣

∣

∣

∣

2

, m ∈ N,

satisfy the estimates below for constants C1, C3 > 0 independent of m
and ϕ:

ϕ(z) − logNm + C1

2m
≤ ψm(z)

≤ sup
|ζ−z|<2r

ϕ(ζ) − [Cεmm] + n

m
log r +

1

m
logC3,

at every point z ∈ B0 and for every 0 ≤ r < min{1
2 dist (z, ∂Ω), 1}.

In particular, if εm ↓ 0 and C > 0 is a constant independent of m, ψm
converges pointwise on B0 and in L1

loc(B0) topology to ϕ when m→ +∞.

Proof. It follows immediately from the above considerations. q.e.d.

This regularization is not yet satisfactory from the point of view of
the Monge-Ampère masses as ψm still has singularities and the Chern-
Levine-Nirenberg inequalities cannot be applied as such (see Section 4
where they were applied to smooth psh functions). Building on ideas in
this section, we will construct a new regularization of ϕ in subsequent
sections for which we can control the Monge-Ampère masses.

7. Additivity defect of multiplier ideal sheaves

Throughout this section we shall suppose that ϕ is a psh function
with analytic singularities on Ω ⋐ C

n of the form:

(21) ϕ =
c

2
log(|g1|2 + · · · + |gN |2) + v,

for some (possibly infinitely many) holomorphic functions g1, . . . , gN ∈
O(Ω), some constant c > 0, and some C∞ function v on Ω. We also
assume that i∂∂̄ϕ ≥ C0 β for some constant C0 > 0 and the standard
Kähler form β on C

n. The results in this section will be subsequently
applied to ϕp in place of ϕ, where (ϕp)p∈N are the Demailly regulariza-
tions (7) of an arbitrary psh function ϕ. We work with general functions
of the form (21) in this section for the sake of generality.
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Fix now a relatively compact pseudoconvex open subset B ⋐ Ω. Our
aim is to find better regularizations of ϕ for which we can control the
Monge-Ampère masses. In so doing, we will still use the ideal sheaves
I(mϕ), but the main idea underlying the argument is to take m = m0q
with m ≫ m0 (though m0 → +∞) and to reduce the study of I(mϕ)
to the study of I(m0ϕ). We shall then get a grip on I(mϕ) as being
“almost” equal to I(m0ϕ)q up to an error that we are able to estimate.
This is made precise in the following.

Proposition 7.1. For any ε > 0, any m0 ≥ n+2
c ε , any q ∈ N, and

any B ⋐ Ω, the following inclusions of multiplier ideal sheaves hold:

(22) I(m0(1 + ε)ϕ)q|B ⊂ I(m0qϕ)|B ⊂ I(m0ϕ)q|B.

The right-hand inclusion actually holds on Ω for every m0 and is the
subadditivity property of multiplier ideal sheaves proved by Demailly,
Ein and Lazarsfeld in [DEL00]. It relies on the Ohsawa-Takegoshi L2

extension theorem ([OT87]). The left-hand inclusion was proved in
[Pop06] using Skoda’s L2 division theorem ([Sko72b]). It can be seen
as measuring the extent to which multiplier ideal sheaves fail to have an
additive growth. These inclusions can be given effective versions, with
estimates, that we are now undertaking to make explicit.

Consistent with the notation in (15), consider the Hilbert spaces:

HΩ(m0(1 + ε)ϕ), HΩ(m0q ϕ), and HΩ(m0 ϕ),

and respective orthonormal bases:

(σm0(1+ε), j)j∈N, (σm0q, j)j∈N, and (σm0, j)j∈N.

The multiplier ideal sheaves in (22) are generated as OΩ-modules by
the above Hilbert space orthonormal bases respectively. Since they are
coherent, their restrictions to the relatively compact subsetB are finitely
generated. Possibly after reordering, we can therefore assume that they
are generated as follows:

I(m0(1 + ε)ϕ)|B = (σm0(1+ε), j)1≤j≤Nm0(1+ε)
,

I(m0q ϕ)|B = (σm0q, j)1≤j≤Nm0q , I(m0 ϕ)|B = (σm0, j)1≤j≤Nm0
.

The results of [Pop06], summarized in the previous section as (17)–
(20), will be made an essential use of in all that follows. We start by
stating the following effective versions of the left-hand (cf. (a)) and
right-hand (cf. (b)) inclusions in (22) when derivatives are also taken
into account.
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Proposition 7.2.

(a) Let ϕ be a psh function on Ω ⋐ C
n of the form (21). Given

B ⋐ Ω, there exist an open subset B0 ⋐ B and an orthonormal

basis (σm0q, j)j∈N of HΩ(m0q ϕ) such that σm0q, j , j = 1, . . . , Nm0q,
generate the OΩ-module I(m0q ϕ) on B0 and the following estimate

holds at every z ∈ B0 for every multi-index α = (α1, . . . , αn) ∈ N
n

and every orthonormal basis (σm0(1+ε), j)j∈N of HΩ(m0(1 + ε)ϕ) :

+∞
∑

j1,...,jq=0

|Dα(σm0(1+ε), j1 . . . σm0(1+ε), jq)|2(23)

≤ CαN
2
m0q C

q
m0

Nm0q
∑

j=1

∑

β≤α
|Dβσm0q, j |2,

for any q ∈ N, any 0 < ε << 1, and any m0 ≥ n+2
c ε . The

constants:

0 < Cα ≤ O

(

|α|2
∑

β≤α

(

α

β

)2)

,

Cm0 := Cn(m0 c (1 + ε) − n) (sup
B
eϕ)2m0ε

are such that Cα depends only on α, n, B0, B, and Cn > 0 depends

only on n, B, Ω;

(b) For any orthonormal bases of HΩ(m0qϕ) and HΩ(m0ϕ), we have:

(24)
+∞
∑

j=0

|Dασm0q, j |2 ≤ Cq−1
n

+∞
∑

j1,...,jq=0

|Dα(σm0, j1 . . . σm0, jq)|2 on Ω,

for every multi-index α = (α1, . . . , αn) ∈ N
n, with a constant

Cn > 0 depending only on n and Ω.

Proof.

(b) Estimate (24) follows from the effective version of the subaddi-
tivity property of multiplier ideal sheaves established in [DEL00] (see
also [DPS01, Proof of Theorem 2.2.1.]). Indeed, for every f ∈ O(Ω)
satisfying

∫

Ω

|f |2 e−2q (m0 ϕ) dVn = 1,

Step 3 in the proof of Theorem 2.2.1. in [DPS01], when applied in this
context, shows by means of the Ohsawa-Takegoshi L2 extension theorem
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applied q−1 times that, at every point z ∈ Ω, there is a decomposition:

f(z) =

+∞
∑

j1,...,jq=0

cj1,...,jq σm0, j1(z) . . . σm0, jq(z),(25)

+∞
∑

j−1,...,jq=0

|cj1,...,jq |2 ≤ Cq−1
n ,

with scalar coefficients cj1,...,jq ∈ C satisfying the above estimate for
some constant Cn > 0 depending only on n and Ω. Applying Dα we
get:

Dαf(z) =

+∞
∑

j1,...,jq=0

cj1,...,jq D
α(σm0, j1 . . . σm0, jq)(z), z ∈ Ω.

The Cauchy-Schwarz inequality and estimate (25) of the scalar coeffi-
cients cj1,...,jq give:

|Dαf(z)|2 ≤ Cq−1
n

+∞
∑

j1,...,jq=0

|Dα(σm0, j1 . . . σm0, jq)(z)|2, z ∈ Ω.

Taking the supremum over all f in the unit sphere of the Hilbert space
HΩ(m0qϕ) gives the desired estimate.

(a) We first briefly recall the use made of Skoda’s L2 division the-
orem in [Pop06, Theorem 4.1] to obtain an effective version of a su-
peradditivity result on multiplier ideal sheaves ([Pop06, Theorem 1.2])
corresponding in the present context to the left-hand inclusion in (22).
Let f ∈ O(Ω) be an arbitrary element in the unit sphere of the Hilbert
space HΩ(m0(1 + ε)ϕ). Combined with assumption (21), this means
that:

1 =

∫

Ω
|f |2 e−2m0(1+ε)ϕ dVn =

∫

Ω

|f |2
(

N
∑

j=0
|gj |2

)m0c(1+ε)
e−2m0(1+ε)v dVn.

Choose m0 ≥ n+2
c ε . We can apply Skoda’s L2 division theorem

([Sko72b]) stated as Theorem 10.1 in Appendix 10 to write f as a
linear combination with holomorphic coefficients of products of s :=
[m0c(1 + ε)] − (n+ 1) functions among the gj ’s. Namely, for all multi-
indices L = (l1, . . . , ls) ∈ {1, . . . , N}s, there exist holomorphic functions
hL on Ω such that:

f =
∑

L

hLg
L on Ω, with gL = gl1 . . . gls ,

with precise L2 estimates on the coefficients hL (see Theorem 10.1).
Combined with the Cauchy-Schwarz inequality for |f |2 and the submean
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value inequality for each |hL|2 on B ⋐ Ω, these L2 estimates yield:

|f |2 ≤ C ′
m0

(
N
∑

j=0

|gj |2)[m0c(1+ε)]−(n+1) on B,

with a constant C ′
m0

> 0 whose dependence on m0 is explicit. Thus:

|f |2 e−2m0ϕ ≤ C ′
m0

(

N
∑

j=0

|gj |2)[m0c(1+ε)]−(n+1)−m0c on B,

and the crucial fact is that the exponent [m0c(1 + ε)] − (n + 1) −m0c
is non-negative by the choice of m0 ≥ n+2

c ε . Therefore, the right-hand

term above is bounded on B and thus the initial L2 condition satisfied
by f on Ω leads to an L∞ property on B for a slightly less singular
weight (i.e., without (1 + ε) in the exponent). The explicit bound we
finally get is:

|f |2 e−2m0 ϕ ≤ Cn (m0c(1 + ε) − n) (sup
B
eϕ)2m0ε := Cm0 ,

on B ⋐ Ω, where Cn > 0 is a constant depending only on n and the
diameters of B and Ω. The details can be found in [Pop06] (taking in
Theorem 4.1. obtained there c = 1 + ε, 1 − δ = 1

1+ε , m = m0). This
readily implies that for any q functions f1, . . . , fq in the unit sphere of
HΩ(m0(1 + ε)ϕ) we have:

|f1 . . . fq|2 e−2m0q ϕ ≤ Cqm0
on B,

and in particular f1 . . . fq is a section on B of the ideal sheaf I(m0q ϕ)
with L2 norm

(26)

∫

B

|f1 . . . fq|2 e−2m0q ϕ dVn ≤ Vol(B)Cqm0
,

where Vol(B) stands for the Lebesgue measure of B. We will now
apply the effective local finite generation theorem for multiplier ideal
sheaves (Theorem 1.1 in [Pop06]). That theorem gives the existence
of an open subset B′

0 ⋐ B and of an orthonormal basis (σm0q, j)j∈N of
HΩ(m0q ϕ) such that finitely many elements of this basis, say σm0q, j ,
1 ≤ j ≤ Nm0q, generate I(m0q ϕ) on B′

0 in such a way that estimates
analogous to (17)–(20) hold. When applied to f1 . . . fq regarded as a
section on B of I(m0qϕ) with local generators σm0q, j , 1 ≤ j ≤ Nm0q,
(17) reads:

(27) f1(z) . . . fq(z) =

Nm0q
∑

j=1

h
(j)
j1,...,jq

(z)σm0q, j(z), z ∈ B′
0, m0, q ≫ 1



308 D. POPOVICI

with holomorphic coefficients h
(j)
j1,...,jq

estimated as (cf.(18), (26)):

sup
B′

0

Nm0q
∑

j=1

|h(j)
j1,...,jq

|2 ≤ C Nm0q

∫

B

|f1 . . . fq|2 e−2m0q ϕ

≤ C Nm0q Vol(B)Cqm0
, m0, q ≫ 1.(28)

Taking derivatives in identity (27) we get:

(29) Dα(f1 . . . fq) =

Nm0q
∑

j=1

∑

β≤α

(

α

β

)

Dα−βh(j)
j1,...,jq

Dβσm0q, j on B′
0.

Applying twice the Cauchy-Schwarz inequality we get at every point in
B′

0:
(30)

|Dα(f1 . . . fq)|2 ≤ C ′
α

∑

β≤α

(Nm0q
∑

j=1

|Dα−βh(j)
j1,...,jq

|2
)(Nm0q

∑

j=1

|Dβσm0q, j |2
)

,

where C ′
α :=

∑

β≤α

(

α
β

)2
. The supremum of the term on the left in the

above estimate (30) over all f1, . . . , fq ranging over the unit sphere of
HΩ(m0(1 + ε)ϕ) equals at every point in Ω the value of the left-hand
term in the inequality we intend to prove. The estimate of the coeffi-

cients h
(j)
j1,...,jq

obtained in (28), combined with the Cauchy inequalities

estimating |Dβh
(j)
j1,...,jq

|2 above on any B0 ⋐ B′
0 in terms of sup

B′

0

|h(j)
j1,...,jq

|2,

gives the desired estimate on B0 . q.e.d.

The main ingredient in the regularization process to be described in
the next section will be the following estimate on derivatives relying on
Theorem 1.1 combined with the Ohsawa-Takegoshi L2 extension theo-
rem applied on a complex line. This strategy was already used back in
Section 4 when the Lelong numbers of ϕ were assumed to vanish. The
extra difficulty in the general case stems from the fact that in Theorem
1.1 the distances between the points aj where the Lelong numbers of ϕ
are ≥ 1

m cannot be estimated when m→ +∞ (they may decrease arbi-
trarily fast to 0). As the derivatives of the functions fm constructed in
Theorem 1.1 depend on these distances, it follows that we cannot control
the growth of these derivatives as m→ +∞ if this procedure is applied
to mϕ to produce sections of I(mϕ). The solution we propose to this
problem is to choose m = m0q and to apply this procedure tom0(1+ε)ϕ
instead in order to construct sections gm0(1+ε) of I(m0(1 + ε)ϕ). Then

the left-hand inclusion in (22) of Proposition 7.1 ensures that gqm0(1+ε)

is a section of I(m0qϕ) = I(mϕ) and we have a complete control on it
and its derivatives by means of the effective estimates of Proposition



REGULARIZATION OF CURRENTS WITH MASS CONTROL ... 309

7.2. The points aj featuring in the definition of gqm0(1+ε) are now the

same as those of gm0(1+ε) (only the exponents mj are multiplied by q,
see notation in Theorem 1.1). Thus their minimum mutual distance δm0

depends only on m0 (though in an uncontrollable fashion). To obtain a
control of the Monge-Ampère masses in the next section, we shall choose
m = m0q with q = q(m0) sufficiently large to neutralize the growth of
δm0 ↓ 0. The main interest of the next proposition is that it gives a
lower bound independent of q.

Proposition 7.3. Let ϕ be any psh function on Ω ⋐ C
n and let

ν(x) = ν(ϕ, x) denote the Lelong number of ϕ at any x ∈ Ω. Then,

for every m0, q ∈ N and every 0 < ε < 1, any orthonormal basis

(σm0(1+ε), j)j∈N of HΩ(m0(1 + ε)ϕ) satisfies the following estimate at

every x ∈ Ω:

1

2m0q
log

+∞
∑

j1,...,jq=0

dm0q(x)
∑

|α|=0

|Dα(σm0(1+ε), j1 . . . σm0(1+ε), jq)(x)|2

≥ C0 log δm0 ,

where dm0q(x) := max{[m0qν(x)(1+ε)], 1} and 0 < C0 ≤ CΩ

∫

Ω dd
cϕ∧

βn−1 with CΩ > 0 depending only on Ω. The constant δm0 > 0 depends

only on m0 in a way that we cannot control.

Proof. Let x ∈ Ω be an arbitrary point. The case ν(x) = 0 was
settled in Section 4. Assume that ν(x) > 0. For every multi-index
α = (α1, . . . , αn) ∈ N

n, the linear map of evaluation at x:

HΩ(m0(1 + ε)ϕ)⊗̂ . . . ⊗̂HΩ(m0(1 + ε)ϕ) ∋ u 7−→ Dαu(x) ∈ C

of the derivatives of elements u in the completed tensor product of the
Hilbert space HΩ(m0(1 + ε)ϕ) by itself q times defines a continuous
linear map whose squared norm can be expressed in two ways as:

+∞
∑

j1,...,jq=0

|Dα(σm0(1+ε), j1 . . . σm0(1+ε), jq)(x)|2 = sup
u

|Dαu(x)|2,

since (σm0(1+ε), j1 . . . σm0(1+ε), jq)j1,...,jq∈N defines an orthonormal basis
in the completed tensor product Hilbert space, and the supremum on
the right is taken over all u in the unit ball of this space. To find the
desired lower bound for the term on the right side, we shall produce an
element in the unit ball of the completed tensor product Hilbert space
HΩ(m0(1 + ε)ϕ)⊗̂ . . . ⊗̂HΩ(m0(1 + ε)ϕ) (q times) for which one of the
partial derivatives up to order [Am0(1+ ε)q] can be estimated below in
absolute value at x. This element will be chosen as the qth power of an
element in the unit ball of HΩ(m0(1 + ε)ϕ).

Let L be a complex line through x such that the restriction of ϕ to L
has the same Lelong number at x as ϕ. This is the case for almost all
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lines passing through x ([Siu74]). After possibly changing coordinates,
we can assume that x = 0 and L = {z2 = · · · = zn = 0}. As in the
Introduction, we have a decomposition:

ϕ|L = N ⋆∆ϕ|L + Re g on Ω ∩ L,

for some holomorphic function g and the one-dimensional Newton kernel
N . Theorem 1.1 applied to (1 + ε)ϕ|L gives the existence, for every
m0 ∈ N, of a holomorphic function of one variable gm0(1+ε) on Ω ∩ L of
the form:

gm0(1+ε)(z1) = em0(1+ε) g(z1)

Nm0
∏

j=1

(z − aj)
mj , z1 ∈ Ω ∩ L,

such that
Nm0
∑

j=1
mj ≤ C0 (1 + ε)m0 with a constant C0 =

∫

Ω∩L
ddcϕ|L > 0

independent of m0. It further satisfies:

Cm0 :=

∫

Ω∩L
|gm0(1+ε)|2 e−2m0(1+ε)ϕ dVL = o(m0),

where dVL is the volume form on L. We can now apply the Ohsawa-
Takegoshi L2 extension theorem ([Ohs88, Corollary 2, p. 266]) to get
a holomorphic extension Gm0(1+ε) ∈ HΩ(m0(1 + ε)ϕ) of gm0(1+ε) from

Ω ∩ L to Ω which satisfies the L2 estimate:
∫

Ω

|Gm0(1+ε)|2 e−2m0(1+ε)ϕ dVn

≤ Cn

∫

Ω∩L

|gm0(1+ε)|2 e−2m0(1+ε)ϕ dVL = CnCm0 ,

with a constant Cn > 0 depending only on n. Thus, 1
(C Cm0 )1/2 Gm0(1+ε)

belongs to the unit ball of HΩ(m0(1 + ε)ϕ). Then the holomorphic
function defined on Ω as:

Fm0q :=
1

(CnCm0)
q/2

Gqm0(1+ε)

belongs to the unit ball of the completed tensor product Hilbert space
HΩ(m0(1+ ε)ϕ)⊗̂ . . . ⊗̂HΩ(m0(1+ ε)ϕ) (q times). Let δm0 := min

j 6=k
|aj −

ak| > 0. It is enough to get a lower bound for our expression at the
points ak. Suppose, for example, that x = ak for some k. As, by
construction, the derivatives D(l, 0..., 0)Gm0(1+ε)(x) in the direction of

the line L coincide on L with the derivatives g
(l)
m0(1+ε)(x), l ∈ N, we get,
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for an appropriate l ≤ dm0q(x):

∣

∣

∣

∣

F (l)
m0q(x)

∣

∣

∣

∣

≥ eqm0(1+ε)Re g(z1)

(CnCm0)
q/2

δ
q
(

PNm0
j=1 mj

)

m0

≥ eqm0(1+ε)Re g(z1)

(CnCm0)
q/2

δC0(1+ε)qm0
m0

.

Then 1
2m0q

log |F (l)
m0q(x)| ≥ C0(1+ε) log δm0+O(1), and the stated lower

bound follows after we absorb (1 + ε) in C0 and the O(1) term in the
first term. The estimate of the constant C0 follows from the following
averaging argument. Suppose, for simplicity, that Ω = B(0, r) for some
r > 0. Then:

∫

L∈Pn−1

(
∫

B(0, r)∩L

ddcϕ|L

)

dv(L) =

∫

B(0, r)

ddcϕ ∧
∫

L∈Pn−1

[L] dv(L)

=

∫

B(0, r)

ddcϕ ∧ (ddc log |z|)n−1 =
1

r2(n−1)

∫

B(0, r)

ddcϕ ∧ βn−1,

where [L] denotes the (n−1, n−1)-current of integration on the line L,
dv denotes the unique unitary invariant measure of total mass 1 on pro-
jective space, the second equality above follows from Crofton’s formula
(see e.g., [Dem97, Chapter III, p. 196]), and the third equality is a
well-known formula of Lelong (see e.g., [Dem97, Chapter III, Formula
5.5.]). In particular, for L in a subset of P

n−1 of positive dv-measure,
C0 =

∫

B(0, r)∩L
ddcϕ|L ≤ 2

r2(n−1)

∫

B(0, r)

ddcϕ ∧ βn−1, and it is enough to

choose such a line L to have the stated estimate on C0. q.e.d.

The estimates obtained in Proposition 7.2 (a) and in Proposition 7.3
combine to achieve the main purpose of this section: a lower estimate for
derivatives in the following sense. Given pseudoconvex open sets B ⋐

Ω ⋐ C
n and a psh function ϕ on Ω of the form (21), let ν := sup

x∈B
ν(ϕ, x).

As the case ν = 0 was treated in Section 4, suppose now that ν > 0. If
(σm, j)j∈N is an orthonormal basis of HΩ(mϕ) such that finitely many
elements (σm, j)1≤j≤Nm generate I(mϕ) effectively on some B0 ⋐ B with
properties (17)—(20) satisfied, we obtain a lower estimate on B0 for the
psh functions:

(31) um :=
1

2m
log

Nm
∑

j=1

[mν(1+ε)]
∑

|α|=0

∣

∣

∣

∣

Dασm, j
α!

∣

∣

∣

∣

2

as m → +∞ in the following form summing up the discussion in this
section.
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Corollary 7.4. For all q ∈ N, 0 < ε << 1, and m0 ≥ n+2
c ε , there

exists an orthonormal basis (σm0q, j)j∈N of HΩ(m0qϕ) satisfying, for

m = m0q, the estimate:

um :=
1

2m
log

Nm
∑

j=1

[mν(1+ε)]
∑

|α|=0

∣

∣

∣

∣

Dασm, j
α!

∣

∣

∣

∣

2

≥ C0 log δm0 −Am on B0.

Crucially, δm0 depends only on m0 (though in an uncontrollable way)
and not directly on m. The other constants satisfy: 0 ≤ C0 ≤ CΩ

∫

Ω

ddcϕ

∧βn−1, 0 ≤ Am ≤ 1
m log(Cn (mν)nN2

mC
q
m0), with Cm0 = Cn (m0c(1 +

ε) − n)(sup
B
eϕ)2m0ε, and Cn depending only on n, B0, B, Ω.

Proof. This is done in two steps. First, apply Proposition 7.2 (a) for
every α ∈ N

n, sum over 0 ≤ |α| ≤ [m(1 + ε)ν], and take 1
2m log to get

the following lower estimate on um = um0q for any orthonormal basis
(σm0(1+ε), j)j∈N of HΩ(m0(1 + ε)ϕ) :

um ≥ 1

2m
log

+∞
∑

j1,...,jq=0

[m0qν(1+ε)]
∑

|α|=0

∣

∣

∣

∣

Dα(σm0(1+ε), j1 . . . σm0(1+ε), jq)

α!

∣

∣

∣

∣

2

−Am

on B0. To estimate Am we notice, with the notation of Proposition

7.2(a), that:
[m(1+ε)ν]
∑

|α|=0

Cα ≤ C ′
nm

n(1 + ε)nνn ≤ 2nC ′
n (mν)n, for some

C ′
n > 0. Second, apply Proposition 7.3 to get the desired lower bound

for the term appearing on the right above. q.e.d.

The above functions um modify Demailly’s regularization of ϕ (cf.
(7)) by taking into account derivatives up to order [m(1 + ε)ν] and
only finitely many σm, j ’s. The upshot is that the functions um can be
estimated below by finite constants. This is a major improvement of
the situation described in Lemma 6.2 where the lower bound for ψm in
terms of ϕ was unsatisfactory owing to the −∞ poles of ϕ. The present
functions um are thus candidates to defining better regularizations of ϕ.
However, the shortcoming of such a definition would be that um may not
converge to ϕ as m → +∞ owing to the derivation order [m(1 + ε)ν]
being too large (the limit of [m(1 + ε)ν]/m is > 0 instead of zero as
required by Lemma 6.1 for convergence).

We will overcome this obstacle in the next section by applying this
procedure after we have removed enough singularities to lower substan-
tially the necessary derivation order.

8. Regularization with mass control: the general case

Let ϕ be an arbitrary psh function on a bounded pseudoconvex do-
main Ω ⋐ C

n such that i∂∂̄ϕ ≥ C0 β for some C0 > 0. As usual, β
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is the standard Kähler form on C
n. For every fixed p ∈ N, we will

approximate Demailly’s regularizing function ϕp (cf. (7)):

ϕp =
1

2p
log

+∞
∑

j=0

|σp, j |2, (σp, j)j∈N an orthonormal basis of HΩ(pϕ),

by a sequence of psh functions (ψm, p)m∈N with analytic singularities for
which we can control the Monge-Ampère masses. In the last step of
the proof, the desired approximation of the original ϕ will be obtained
by letting p → +∞. The results of the previous Section 7 will now be
applied to ϕp (which is of the form (21) with c = 1

p) in place of ϕ. The

notation is the same as in Section 7 with an extra p in the indices (e.g.,
(σm0(1+ε), p, j)j∈N denotes an orthonormal basis of HΩ(m0(1 + ε)ϕp),
Nm0q, p is the number of local generators of I(m0qϕp), etc).

The mth regularization ψm, p of ϕp will be constructed using the ideal
sheaf I(mϕp). As already explained, the main idea is to write m = m0q
with q ≫ m0 and to make full use of the inclusions (22) of Proposi-
tion 7.1 which show intuitively that I(mϕp) and I(m0ϕp)

q are “almost”
equal when m0 → +∞ (and ε ↓ 0 with m0 ≥ p n+2

ε ). Considering a
log-resolution of the ideal sheaf I(m0ϕp), we shall “almost” get a log-
resolution of I(mϕp) with m = m0 q ≫ m0 up to a small loss which can
be controlled explicitly in terms of 0 < ε≪ 1 by means of the estimates
of Propositions 7.2 and 7.3. The advantage of this method over consid-
ering right away a log-resolution of I(mϕp) is that the blow-up does not
depend explicitly on m but only on m0. Thus, the mass estimates of
the mth regularization ψm, p will only depend on m0 (and p) and can be
neutralized by choosing m = m0q with q = q(m0) large enough. This
idea ties in with the explanation given before Proposition 7.3.

Let Ω̃ = Ω̃m0 be a smooth variety and let µ = µm0 : Ω̃ → Ω be a
proper modification (i.e., a holomorphic bimeromorphic map) such that

µ⋆I(m0(1 + ε)ϕp) = O(−Em0(1+ε), p), µ⋆I(m0ϕp) = O(−Em0, p),

where Em0(1+ε), p, Em0, p are effective normal crossing divisors on Ω̃. If
V I(m0(1+ε)ϕp) denotes the zero variety of I(m0(1+ε)ϕp), the restric-
tion

µ : Ω̃ \ Em0(1+ε), p −→ Ω \ V I(m0(1 + ε)ϕp)

defines a biholomorphism. The inclusion µ⋆I(m0(1+ε)ϕp) ⊂ µ⋆I(m0ϕp)
also implies the existence of an effective divisor Dm0(1+ε), p such that

Em0(1+ε), p = Em0, p +Dm0(1+ε), p.

Let (Ũl)1≤l≤N be a finite collection of open coordinate balls covering Ω̃
such that the restrictions of µ⋆I(m0(1 + ε)ϕp) and µ⋆I(m0ϕp) to each
of these have a unique generator. Let (Ul)1≤l≤N be a corresponding

collection of open balls covering Ω such that Ũl \Em0(1+ε), p = µ−1(Ul \
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V I(m0(1 + ε)ϕp)). The modification µ is a simultaneous log-resolution
of the ideal sheaves I(m0(1+ε)ϕp) and I(m0ϕp) whose existence follows
from Hironaka’s theorem on the resolution of singularities.

In the sequel, we shall need the following comparison lemma in pass-
ing from the global to the local picture on coordinate patches and vice-
versa.

Lemma 8.1. Let ϕ be a psh function on a bounded pseudoconvex

open set Ω ⊂ C
n, and let B ⋐ Ω be a relatively compact open subset.

For every m, p ∈ N, the expressions analogous to the Bergman kernels

associated with the weight mϕ on Ω and respectively B which take into

account derivatives up to order p:

B
(p)
mϕ,Ω :=

+∞
∑

k=0

p
∑

|α|=0

|Dασm, k|2, B
(p)
mϕ,B :=

+∞
∑

k=0

p
∑

|α|=0

|Dαµm, k|2,

defined by orthonormal bases (σm, k)k∈N and (µm, k)k∈N of the Hilbert

spaces HΩ(mϕ) and respectively HB(mϕ), can be compared as:

B
(p)
mϕ,Ω ≤ B

(p)
mϕ,B ≤ Cn, d, r (d/r)pB

(p)
mϕ,Ω on any B0 ⋐ B ⋐ Ω,

where Cn, d, r > 0 is a constant depending only on n, the diameter d of

Ω, and the distance r > 0 between the boundaries of B0 and B.

Proof. It is by a standard application of Hörmander’s L2 estimates
([Hor65]) and it is given in Appendix 10. q.e.d.

We will now concentrate attention on an arbitrary Ũl that we generi-
cally call Ũ . Let gm0(1+ε), p (respectively gm0, p) be the unique generator

on Ũ of µ⋆I(m0(1 + ε)ϕp) (respectively µ⋆I(m0ϕp)). By pull-back, the
inclusions (22) become:

(32) µ⋆I(m0(1 + ε)ϕp)
q

|Ũ ⊂ µ⋆I(m0qϕp)|Ũ ⊂ µ⋆I(m0ϕp)
q

|Ũ .

The analogous inclusions to (22) of Proposition 7.1 applied to ϕp ◦µ on

Ũ ⋐ Ũ ′ in place of ϕp on B ⋐ Ω read:

(33) I(m0(1 + ε)ϕp ◦ µ)q|Ũ ⊂ I(m0qϕp ◦ µ)|Ũ ⊂ I(m0ϕp ◦ µ)q|Ũ ,

with the three ideal sheaves in (33) above generated respectively on Ũ
by:

(σ̃m0(1+ε), p, j1 . . . σ̃m0(1+ε), p, jq)j1,...,jq∈N,

with σ̃m0(1+ε), p, j := Jµ σm0(1+ε), p, j ◦ µ
(σ̃m0q, p, j)j∈N, with σ̃m0q, p, j := Jµ σm0q, p, j ◦ µ,
(σ̃m0, p, j1 . . . σ̃m0, p, jq)j1,...,jq∈N, with σ̃m0, p, j := Jµ σm0, p, j ◦ µ,
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where Jµ is the Jacobian of µ. On the other hand, the ideal sheaves

I(m0(1 + ε)ϕp ◦ µ) and I(m0ϕp ◦ µ) have on Ũ unique generators:

g̃m0(1+ε), p := Jµ gm0(1+ε), p and respectively g̃m0, p := Jµ gm0, p.

Thus, on Ũ , we get:

σ̃m0(1+ε), p, j = g̃m0(1+ε), p µ̃m0(1+ε), p, j , σ̃m0, p, j = g̃m0, p µ̃m0, p, j ,

with holomorphic functions (µ̃m0(1+ε), p, j)j∈N without common zeroes
and holomorphic functions (µ̃m0, p, j)j∈N without common zeroes as well.
Moreover, by the right-hand inclusion in (33) there are holomorphic

functions (µ̃m0q, p, j)j∈N on Ũ such that:

σ̃m0q, p, j = g̃qm0, p µ̃m0q, p, j , j ∈ N.

The functions (µ̃m0q, p, j)j∈N may still have common zeroes to the ex-
tent to which the right-hand inclusion in (33) fails to be an equality.
However, the conjunction with the left-hand inclusion in (33) limits the
amount of common zeroes which we are now proceeding to estimate.

By virtue of Lemma 8.1, replacing HΩ(m0qϕp) with its counter-
part HU (m0qϕp) defined on a smaller set U ⋐ Ω can only change the
Bergman kernel estimates and their analogues with derivatives by in-
significant constants. We can thus suppose, without loss of generality,
that (σm0q, p, j)j∈N is an orthonormal basis of HU (m0qϕp) (and the anal-
ogous assumptions for the weights m0(1+ ε)ϕp and m0ϕp.) The change
of variable formula shows that:

1 =

∫

U

|σm0q, p, j |2 e−2m0qϕp dV =

∫

Ũ

|Jµ|2 |σm0q, p, j ◦ µ|2 e−2m0qϕp◦µ dṼ

=

∫

Ũ

|µ̃m0q, p, j |2 e
−2m0q(ϕp◦µ− 1

m0
log |g̃m0, p|) dṼ .

If we denote: ψ̃m0, p := ϕp ◦ µ− 1

m0
log |g̃m0, p| on Ũ ,

we see that ψ̃m0, p is a psh function on Ũ and (µ̃m0q, p, j)j∈N defines an

orthonormal basis of HŨ (m0q ψ̃m0, p). The same argument shows that
(σ̃m0, p, j)j∈N defines an orthonormal basis of HŨ (m0ϕp◦µ) and implicitly

a system of generators for the ideal sheaf I(m0ϕp ◦ µ) on Ũ . Demailly’s
inequality on Lelong numbers (9) applied to HŨ (m0ϕp ◦ µ) shows that
the unique generator g̃m0, p of I(m0ϕp ◦ µ) (which concentrates all the
common zeroes of the σ̃m0, p, j ’s) satisfies:

ν(ϕp ◦ µ, x) −
n

m0
≤ 1

m0
ν(log |g̃m0, p|, x) ≤ ν(ϕp ◦ µ, x), x ∈ Ũ ,

and implicitly

0 ≤ ν(ψ̃m0, p, x) ≤
n

m0
, x ∈ Ũ .
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By the same inequality (9) applied to HŨ (m0q ψ̃m0, p), the minimum of
the vanishing orders of the µ̃m0q, p, j ’s satisfies:

(34) 0 ≤ min
j∈N

ordxµ̃m0q, p, j ≤ m0q ν(ψ̃m0, p, x) ≤ nq, x ∈ Ũ .

Thus all the common zeroes of the µ̃m0q,p,j ’s can be removed by deriving
them up to order ≥ nq. With a view to constructing regularizing func-
tions, we set the following analogue of the functions um defined in (31)
for which we obtained a lower bound in Corollary 7.4. While m = m0q,
HΩ(m0qϕ) is now replaced with HŨ (m0qψ̃m0,p) having (µ̃m0q,p,j)j∈N as
an orthonormal basis. By (34), mν can be replaced with nq.

Definition 8.2. For every m0, q ∈ N and ε = p n+2
m0

, we let m = m0q
and

ψ̃m0q, p :=
1

2m0q
log

Nm0q, p
∑

j=1

[nq(1+ε)]
∑

|α|=0

∣

∣

∣

∣

Dαµ̃m0q,p,j

α!

∣

∣

∣

∣

2

+
1

m0
log |g̃m0,p|.

The advantage over the situation summed up in Corollary 7.4 is that
the maximal derivation order [nq(1 + ε)] is now small compared with
m0q appearing in the denominator (i.e., [nq(1 + ε)]/m0q → 0 when
m0 → +∞). In view of Lemma 6.1, this is a significant improvement
leading to a new regularization of ϕp.

Lemma 8.3. The functions ψm0q, p := ψ̃m0q, p ◦ µ−1 defined on U \
V I(m0(1+ε)ϕp) extend to psh functions on U which converge pointwise

and in L1
loc topology to ϕp when m0, q → +∞. In particular, ddcψm0q, p

converges to ddcϕp as currents.

Proof. Lemma 6.2 applied to the orthonormal basis (µ̃m0q, p, j)j∈N of

HŨ (m0q ψ̃m0, p) with m = m0q, εm = n+2
m0

(1 + ε), and C = n
n+2 gives:

ϕp ◦ µ(w) − logNm0q, p + C1

2m0q
(35)

≤ ψ̃m0q, p(w)

≤ sup
|v−w|<2r

(

ψm0, p(v) +
1

m0
log |g̃m0, p(w)|

)

− [nq(1 + ε)] + n

m0q
log r +

1

m0q
logC3,

for every w ∈ Ũ and every 0 ≤ r < min{1
2 dist(w, ∂Ũ), 1}. As every

w ∈ Ũ \ Em0(1+ε), p is the image of a unique z ∈ U \ V I(m0q(1 + ε)ϕp)

under µ−1, the conclusion follows. q.e.d.

We can now estimate the growth of the Monge-Ampère masses of
(ddcψm0q, p)

k, k = 1, . . . , n, regarded as well-defined smooth forms on
their smooth locus U \ V I(m0(1 + ε)ϕp), as m0, q → +∞.
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Lemma 8.4. For every k = 1, . . . , n, the following mass estimate

holds:
∫

U ′

(ddcψm0q, p)
k
ac ∧ βn−k ≤ Cm0 (− log δm0)

k, m0 ≫ 1, q ∈ N

on every U ′
⋐ U , with a constant Cm0 > 0 independent of p, q. In partic-

ular, if q = q(m0) is chosen so big as to have 1
q(m0) Cm0 (− log δm0)

n → 0

when m0 → +∞, we get:

lim
m0→+∞

1

m0 q(m0)

∫

U ′

(ddcψm0q, p)
k
ac ∧ βn−k = 0, k = 1, . . . , n,

which, in view of the result expected in Theorem 1.2 (c) with m = m0q,
is satisfactory.

Proof.

As the singularities of ψm0q, p are analytic, the mass of (ddcψm0q, p)
k
ac

on U ′ equals the mass of (ddcψm0q, p)
k outside the singular locus (i.e.,

on U ′ \ V I(m0(1 + ε)ϕp). Let Ũ ′
⋐ Ũ be the inverse image of U ′ under

µ. If we single out the C∞ part of ψ̃m0q, p as:

(36) ũm0q, p :=
1

2m0q
log

Nm0q, p
∑

j=1

[nq(1+ε)]
∑

|α|=0

∣

∣

∣

∣

Dαµ̃m0q,p,j

α!

∣

∣

∣

∣

2

,

we have:
∫

U ′

(ddcψm0q, p)
k
ac ∧ βn−k =

∫

Ũ ′\Em0(1+ε), p

(ddcψ̃m0q, p)
k ∧ µ⋆βn−k

=

∫

Ũ ′

(ddcũm0q, p)
k ∧ µ⋆βn−k.

The latter equality above follows from the fact that ddc( 1
m0

log |g̃m0, p|)
equals the current of integration on div g̃m0, p whose support is included
inEm0(1+ε), p. As the mass is calculated in the complement of Em0(1+ε), p,

ddc( 1
m0

log |g̃m0, p|) has no contribution. By the Chern-Levine-Nirenberg

inequalities ([CLN69]) we get:

(37)

∫

Ũ ′

(ddcũm0q, p)
k ∧ βn−k ≤ C ′

m0
(sup
Ũ

|ũm0q, p|)k, k = 1, . . . , n,

with a constant C ′
m0

> 0 depending only on Ũ ′
⋐ Ũ ⋐ Ω̃m0 (and

implicitly on m0). The supremum above is finite since ũm0q, p is C∞.
Thus, controlling the Monge-Ampère masses comes down to controlling
the growth of sup

Ũ

|ũm0q, p| as m0, q → +∞.
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Claim 8.5. There are constants C ′′
m0
, Am0 ≥ 0 independent of p, q

such that for q ≫ m0 ≫ p we have:

|ũm0q, p| ≤ C ′′
m0

(− log δm0) +Am0 on Ũ ′
⋐ Ũ .

As (µ̃m0q, p, j)j∈N defines an orthonormal basis of HŨ (m0qψ̃m0, p), we
will make use of the results in Section 7 to get the desired control. To
prove the claim, we need to find upper and lower bounds for ũm0q, p.
We first settle the upper bound question. We can use the effective
version of the subadditivity property of multiplier ideal sheaves involv-
ing derivatives. Proposition 7.2 (b), applied to the orthonormal bases

(µ̃m0q, p, j)j∈N and (µ̃m0, p, j)j∈N of HŨ (m0qψ̃m0, p) and HŨ (m0ψ̃m0, p),
gives:

+∞
∑

j=0

|Dαµ̃m0q, j |2

≤ Cq−1
n

+∞
∑

j1,...,jq=0

|Dα(µ̃m0, j1 . . . µ̃m0, jq)|2

≤ Cq−1
n

+∞
∑

j1,...,jq=0

∣

∣

∣

∣

∑

β1+···+βq=α

Cαβ1,...,βq
Dβ1 µ̃m0, j1 . . . D

βq µ̃m0, jq)

∣

∣

∣

∣

2

≤ Cq−1
n Cα

( +∞
∑

j=0

∑

β≤α
|Dβµ̃m0, j |2

)q

,

for every α ∈ N
n, where Cα :=

∑

β1+βq=α

(Cαβ1,...,βq
)2. This implies that:

ũm0q, p ≤ ũm0, p +
logNm0, p

2m0
+

Cq
m0q

on Ũ ,

where Cq > 0 is a constant depending only on q and n such that Cq/q
is bounded as q → +∞. This means that the sequence (ũm0q, p)m0, q∈N

is non-increasing up to constants independent of q. It is in particular
bounded above if we choose m0 ≫ p.

For the much subtler problem of finding a lower bound for ũm0q, p (cf.
(36)), we use Corollary 7.4 to get an orthonormal basis (µ̃m0q, p, j)j∈N of

HŨ (m0qψ̃m0, p) such that the derivatives up to order [n(1 + ε)q] satisfy:

ũm0q, p ≥ C
(m0,p)
0 log δm0 −Am0q on Ũ ′

⋐ Ũ .

As ε = p n+2
m0

(cf. Definition 8.2), the estimates of Corollary 7.4 give,
for q ≫ m0 ≫ p:

Am0q ≤
log(Cnq

nN2
m0q, p)

m0q
+ 2(n+ 2)

p

m0
sup
Ũ ′

ψ̃m0, p ≤ Am0 ,
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with Cn > 0 depending on Ũ ′, Ũ and implicitly on m0. We also have:

0 ≤ C
(m0,p)
0 ≤ CŨ

∫

Ũ
ddcψ̃m0, p ∧ µ⋆βn−1 ≤ CŨ

∫

U
ddcϕp ∧ βn−1.

Since ddcϕp converges weakly to ddcϕ on Ω as p → +∞, the sequence

(
∫

U dd
cϕp ∧ βn−1)p∈N is bounded. As Ũ ⋐ Ω̃m0 , CŨ depends on m0.

Thus, the constants C
(m0,p)
0 are bounded by a constant depending only

on m0 and independent of p. Moreover, δm0 depends a priori on p as the
minimum mutual distance of points where ϕp◦µ has large enough Lelong
numbers (see the proof of Proposition 7.3 for the definition of δm0), but
it can actually be taken independent of p since the singularities of all
ϕp’s are among those of ϕ and the Lelong numbers of ϕp are within n/p
of those of ϕ (see (9)).

This completes the proof of Claim 8.5. Lemma 8.4 follows from esti-
mate (37) and Claim 8.5 by taking Cm0 = C ′

m0
C

′′k
m0

and absorbing Am0

in Cm0 . q.e.d.

Estimate (35) satisfied by ψ̃m0q, p (cf. the proof of Lemma 8.3), com-
bined with estimate (8) satisfied by ϕp, implies that ψm0q, p converges
pointwise and in L1

loc topology to ϕ as m0, q, p → +∞. Now Lemma
8.3 defines a function ψm0q,p on each open set of the covering (Ul)1≤l≤N
of Ω (take U = Ul). Taking m = m0q with q ≫ m0 ≫ p, we can patch
together the psh functions:

ψm, p

defined on various open subsets Ul ⊂ Ω, 1 ≤ l ≤ N, into regularizing
functions for ϕ on Ω. The following is a local version of Theorem 1.2.

Proposition 8.6. Let ϕ be an arbitrary psh function on a bounded

pseudoconvex domain Ω ⋐ C
n. There exists a sequence of almost psh

functions (ψm)m∈N with analytic singularities such that ψm converges

pointwise on Ω and in L1
loc topology to ϕ as m → +∞, each ψm is

smooth on Ω \ V I(mϕ), and the following hold:

(a) ddcψm ≥ −C
m β for some constant C > 0 independent of m;

(b) ν(ϕ, x) − εm ≤ ν(ψm, x) ≤ ν(ϕ, x), x ∈ Ω, m ∈ N, for some

εm ↓ 0;

(c) lim
m→+∞

1

m

∫

B

(

ddcψm +
C

m
β

)k

ac

∧ βn−k = 0, k = 1, . . . , n,

for every relatively compact open subset B ⋐ Ω.

Proof. For any x0 ∈ Ω, adding |z − x0|2 to ϕ if necessary, we can
achieve that i∂∂̄ϕ ≥ β and thus the results of this section apply. Let
(ϕp)p∈N be the Demailly regularization (cf. (7)) of ϕ. For every l =

1, . . . , N , we define ψ
(l)
m0q, p on Ul like in Definition 8.2 and Lemma

8.3 with U in place of Ul. We can consider finite covers (U ′
l )1≤l≤N ,
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(U ′′
l )1≤l≤N and (Ul)1≤l≤N of Ω by concentric balls of radii δ, 3

2δ and
respectively 2δ. We then use the (essentially well-known) patching pro-
cedure recalled in Section 5 to set:

ψm0q, p(z) := sup
U ′′

l ∋z

(

ψ(l)
m0q, p(z) +

C(δ)

m0q
(δ2 − |z(l)|2)

)

,

and show, by means of Hörmander’s L2 estimates, that there is a con-
stant C(δ) > 0 depending only on δ for which the patching condition

(12) holds. Here z(l) is a coordinate system centred at the centre of U (l)

and Hörmander’s L2 estimates are applied with the analogous weight to
(14) in which log |z− x0| has now the coefficient n+ [n(1 + ε)q] to force
the solution of the equation (13) to vanish at x0 to order [n(1+ε)q]. For
every m0, we choose q = q(m0) ≫ m0 like in Lemma 8.4. For m = m0q,
we choose an increasing sequence of integers pm → +∞ with pm << m0

and set:
ψm := ψm, pm ,

which is easily seen to satisfy the requirements thanks to the results
obtained in the present section. q.e.d.

End of Proof of Theorem 1.2. Theorem 1.2 stated in the Introduction
now follows by patching together functions analogous to ψm obtained
in the above Proposition 8.6 on various open sets contained in coordinate
patches covering X. The patching procedure, recalled in Section 5 and
applied there and in the above proof, can be repeated. A word of expla-
nation is in order here. This patching procedure, based on Hörmander’s
L2 estimates, was used in [Dem92] to patch together regularizing func-
tions of type (7) when no derivatives are involved (see Proposition 3.7.
in [Dem92]). In order to obtain smooth regularizations, derivatives
(or jets) had to be introduced and a new patching procedure, based on
Skoda’s L2 estimates, was devised in [Dem92, Section 5] to handle this
situation. It is worth stressing that this latter, more powerful patching
procedure was necessary there to handle derivatives of order up to [cm]
in the definition of the mth regularizing function. In our present case,
we only derive up to order [Cεmm] with εm ↓ 0 (see Lemma 6.2 and
Definition 8.2) and the former patching procedure can be used with mi-
nor modifications as explained in Section 5 when the derivation order
was the constant 1. q.e.d.

9. Singular hermitian metrics and big line bundles

We are now in a position to prove the analytic characterization of
the volume of a line bundle spelt out in Theorem 1.3 as a geometric
application of our current regularization Theorem 1.2 with controlled
Monge-Ampère masses. As mentioned in the Introduction, the case of
a non-Kähler compact manifold X is new.
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We first briefly review the set-up (cf. [Dem85], [Bon98], [Bou02]).
Let (L, h) be a holomorphic line bundle over a compact Hermitian man-
ifold (X, ω) equipped with a possibly singular Hermitian metric h. Let
T := iΘh(L) be the curvature current associated with h. There is a
global representation of T as T = α + ddcϕ with a global C∞ (1, 1)-
form α on X. For every q = 0, 1, . . . , n, define the q-index set of T as
the open subset X(q, T ) of X consisting of those points x such that
Tac(x) has precisely q negative and n − q positive eigenvalues. Let
X(≤ q, T ) := X(0, T ) ∪ · · · ∪X(q, T ). For every m ∈ N

⋆, consider the
singular metric hm on Lm induced by h. This means that if h = e−ϕ on
an open subset U ⊂ X on which L is trivial, hm is defined as hm = e−mϕ

on U . Now suppose that T := iΘh(L) ≥ −C ω for some constant C > 0
(i.e., T is almost positive and ϕ is almost psh). Then the associated mul-
tiplier ideal sheaf I(hm) is the coherent subsheaf of OX defined locally
as I(hm)|U = I(mϕ) (see (16)).

Demailly’s holomorphic Morse inequalities ([Dem85]) for smooth
metrics h were generalized by Bonavero ([Bon98]) to the case of singular
metrics h with analytic singularities in the form of the following asymp-
totical estimates for the cohomology group dimensions of the twisted
coherent sheaves OX(Lm) ⊗ I(hm):

q
∑

j=0

(−1)q−j hj(X, OX(Lm) ⊗ I(hm)) ≤ mn

n!

∫

X(≤q, T )

(−1)q Tnac + o(mn),

as m→ ∞, for all q = 1, . . . , n. For q = 1, we get:

h0(X, OX(Lm) ⊗ I(hm)) − h1(X, OX(Lm) ⊗ I(hm))

≥ mn

n!

∫

X(≤1, T )

Tnac + o(mn).

As h0(X, OX(Lm)) ≥ h0(X, OX(Lm) ⊗ I(hm))

≥ h0(X, OX(Lm) ⊗ I(hm)) − h1(X, OX(Lm) ⊗ I(hm)),

we infer the following lower bound for the volume of L:

(38) v(L) ≥
∫

X(≤1, T )

Tnac,

for every almost positive closed current T with analytic singularities (if
any) in c1(L).

Proof of Theorem 1.3. Clearly, it is enough to prove the equality char-
acterizing the volume, as the bigness criterion is an immediate conse-
quence of it. The inequality “≤” bounding the volume above can be
proved as in [Bou02] since X is Moishezon when v(L) > 0 and can be
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modified into a projective manifold. If v(L) = 0, the inequality “≤” is
obvious.

Thus proving Theorem 1.3 boils down to obtaining a lower bound
for the volume of L in terms of curvature currents. In the light of the
above explanations, this can be seen as singular Morse inequalities for
arbitrary singularities. Let T := iΘh(L) ≥ 0 be the curvature current
associated with a singular Hermitian metric h with arbitrary singular-
ities on L. If no positive current exists in c1(L), there is nothing to
prove. By Theorem 1.2, there exist regularizing currents with analytic
singularities Tm → T in c1(L) such that Tm ≥ −C

m ω for some constant
C > 0 independent of m which satisfy the Monge-Ampère mass condi-
tion (c). Furthermore, Theorem 2.4 in [Bou02, p. 1050] asserts that
we can modify our sequence (Tm)m∈N in such a way that besides all its
properties it also satisfies:

(39) Tm(x) → Tac(x) as m→ +∞, for almost every x ∈ X.

A word of explanation is in order here. Property (39) is achieved in
[Bou02] by combining the potentials ψm of the currents Tm with those
of another regularizing sequence αm of smooth forms constructed in
[Dem82]. For tubular neighbourhoods Wm ⋐ Um of the singular locus
of ψm, and for arbitrary sequences δm ↓ 0 and Cm ↑ +∞, ψm is replaced
with (1−δm)ψm−Cm on Um, and with a regularized maximum function
of (1 − δm)ψm − Cm and the smooth potential of αm on X \Wm. In
the proof of Theorem 1.2 above, we have constructed the potentials
ψm of Tm to be “not too small” (after removing their singularities on a
modification) and hence their moduli, which control the Monge-Ampère
masses by the Chern-Levine-Nirenberg inequality, to be “not too large”.
It is clear that this property is preserved by the regularized maximum
construction of [Bou02] and hence so is the Monge-Ampère mass control
of Theorem 1.2 (c).

As explained above, by the Morse inequalities applied to L with Tm ∈
c1(L) as curvature current with analytic singularities, we get (cf. (38)):

v(L) ≥
∫

X(≤1, Tm)

Tnm, ac

=

∫

X(0, Tm)

Tnm, ac +

∫

X(1, Tm)

Tnm, ac for every m ∈ N.

On the other hand, the proof of Proposition 3.1. in [Bou02, pp. 1052–
53] uses the Fatou lemma to derive the following inequality from Prop-
erty (39):

lim inf
m→+∞

∫

X(0, Tm)
Tnm, ac ≥

∫

X(T, 0)
Tnac =

∫

X
Tnac.
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Thus, to prove the Morse-type inequality “≥” it is enough to show that
lim

m→+∞

∫

X(1, Tm)

Tnm, ac = 0. Note that on the open set X(1, Tm) we have:

0 ≤ −Tnm, ac ≤ n
C

m

(

Tm,ac +
C

m
ω

)n−1

∧ ω.

It is thus enough to show that

lim
m→+∞

C

m

∫

X

(

Tm, ac +
C

m
ω

)n−1

∧ ω = 0.

Since
∫

X

(Tm, ac + C
m ω)n−1 ∧ ω =

∫

X\V I(mT )

(Tm + C
m ω)n−1 ∧ ω, this is

precisely the Monge-Ampère mass property obtained in Theorem 1.2
(c). The proof is thus the same as in the Kähler case settled in [Bou02]
once we have obtained Theorem 1.2, which is new in the non-Kähler
context. q.e.d.

10. Appendix: auxiliary results

For the sake of perspicuity and completeness, we spell out in this
Appendix two results related to the L2 estimates that were used in the
foregoing sections. In Section 7, an essential use was made of Skoda’s
L2 division theorem in the following form.

Theorem 10.1 (Skoda [Sko72b]). Let ϕ be a psh function on a

pseudoconvex open set Ω ⊂ C
n, and let g1, . . . , gN be (possibly infinitely

many) holomorphic functions on Ω. Set r := min{N − 1, n} and |g|2 =
N
∑

j=1
|gj |2. Then, for every holomorphic function f on Ω satisfying:

∫

Ω

|f |2 |g|−2(r+s+α) e−2ϕ dVn < +∞, α > 0, s ∈ N
⋆,

there exist holomorphic functions hL on Ω for all L = (l1, . . . , ls) ∈
{1, . . . , N}s such that:

f =
∑

L

hL g
L on Ω, with gL = gl1 . . . gls ,

∫

Ω

∑

L

|hL|2 |g|−2(r+α) e−2ϕ dVn ≤ α+ s

α

∫

Ω

|f |2 |g|−2(r+s+α) e−2ϕ dVn.

This statement, in which the original function f is divided by prod-
ucts of s functions gl if it satisfies an appropriate L2 condition depend-
ing on s ∈ N

⋆, follows straightforwardly by induction on s from Skoda’s
original statement given in [Sko72b] for s = 1. (See e.g., [Dem92,
Corollary A.5., p. 407] for the present statement).
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The other ingredient listed in this Appendix is the proof of Lemma
8.1 used in Section 8.

Proof of Lemma 8.1. The restriction to B clearly defines an injection
HΩ(mϕ) →֒ HB(mϕ) and the image of the unit ball of the first space is
contained in the unit ball of the second space. Thus, the first inequality
holds on B. For the second inequality, let x ∈ B0 be a fixed point,
and suppose, for instance, that B0 = B(x, r/2). Let θ be a C∞ cut-off
function such that

Supp θ ⋐ B(x, r) ⋐ B, θ ≡ 1 on B(x, r/2), 0 ≤ θ ≤ 1 on C
n.

Let f ∈ O(B) such that
∫

B |f |2 e−2mϕ = 1 is an arbitrary element in
the unit sphere of HB(mϕ). We need to produce a global holomorphic
function on Ω all of whose derivatives up to order p assume the same
values at x as those of f . We can use Hörmander’s L2 estimates (cf.
[Hor65]) to solve the equation:

∂̄u = ∂̄(θ f) on Ω

with the strictly psh weight mϕ + (n + p) log |z − x| + |z − x|2. There
exists a C∞ solution u satisfying the estimate:
∫

Ω

|u|2
|z − x|2(n+p)

e−2mϕ e−2|z−x|2 ≤ 2

∫

Ω

|∂̄θ|2 |f |2
|z − x|2(n+p)

e−2mϕ e−2|z−x|2 .

The non-integrability of |z − x|−2(n+k), k = 0, 1, . . . , p, near x implies
that Dαu(x) = 0, 0 ≤ |α| ≤ p. If we set:

F := θ f − u ∈ O(Ω),

we have DαF (x) = Dαf(x), 0 ≤ |α| ≤ p, and

∫

Ω

|F |2 e−2mϕ ≤ 2

(

1 + Cn
d2n e2d

2

r2(n+1)

)

(d/r)p
∫

B

|f |2 e−2mϕ

= Cn, d, r(d/r)
p,

since
∫

B |f |2 e−2mϕ = 1, with a constant Cn > 0 depending only on n
and Cn, d, r denoting the double of the parenthesis above. This means

that F/
√

Cn, d, r(d/r)p belongs to the unit ball of HΩ(mϕ). The second
inequality follows from the following expressions holding at every x ∈ B:

B
(p)
mϕ,Ω(x) =

p
∑

|α|=0

sup
g∈B̄m, Ω(1)

|Dαg(x)|2,

B
(p)
mϕ,B(x) =

p
∑

|α|=0

sup
f∈B̄m, B(1)

|Dαf(x)|2,
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where B̄m,Ω(1) and B̄m,B(1) are the closed unit balls of HΩ(mϕ) and
respectively HB(mϕ). The calculation details are left to the reader.

q.e.d.
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