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ANALYTIC TORSION FOR CALABI-YAU
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Abstract

After Bershadsky-Cecotti-Ooguri-Vafa, we introduce an invari-
ant of Calabi-Yau threefolds, which we call the BCOV invariant
and which we obtain using analytic torsion. We give an explicit
formula for the BCOV invariant as a function on the compactified
moduli space, when it is isomorphic to a projective line. As a
corollary, we prove the formula for the BCOV invariant of quintic
mirror threefolds conjectured by Bershadsky-Cecotti-Ooguri-Vafa.
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1. Introduction

In the outstanding papers [6], [7], Bershadsky-Cecotti-Ooguri-Vafa
made a deep study of the generating function Fy of genus-g Gromov-
Witten invariants for Calabi-Yau threefolds. One mathematical sur-
prise, which they obtained from physical arguments, is a system of
holomorphic anomaly equations satisfied by the functions F,, g > 1.
From the holomorphic anomaly equations, they obtained a conjectural
explicit formula for some F} of general quintic threefolds in P* and thus
they extended the mirror symmetry conjecture of Candelas-de la Ossa-
Green-Parkes [15].

By focusing on the genus-1 holomorphic anomaly equation, they con-
jectured that Fi of a Calabi-Yau threefold is expressed as a certain linear
combination of the Ray-Singer analytic torsions (cf. [11], [48]) of its
mirror Calabi-Yau threefolds. After Bershadsky-Cecotti-Ooguri-Vafa,
we call the linear combination of Ray-Singer analytic torsions in [7] the
BCOV torsion, which is the main subject of this paper.

By making use of the curvature formula for Quillen metrics [11],
Bershadsky-Cecotti-Ooguri-Vafa obtained a variational formula for the
BCOV torsion of Ricci-flat Calabi-Yau manifolds [7]. Fang-Lu [18] ex-
pressed the variation of the BCOV torsion of Ricci-flat Calabi-Yau man-
ifolds as a linear combination of the Weil-Petersson metric [55] and the
generalized Hodge metrics [38], which led them to some new results on
the moduli space of polarized Calabi-Yau manifolds.

In [27], it was conjectured that the BCOV torsion of certain Ricci-flat
Calabi-Yau threefolds is expressed as the product of the norms of the
Borcherds ®-function [13] and the Dedekind n-function. Their conjec-
ture was proved by Yoshikawa [62]. In his proof, an invariant of K3
surfaces with involution, which he obtained using equivariant analytic
torsion [8] and a Bott-Chern class [11], played a crucial role.

In this paper, we extend the constructions of Bershadsky-Cecotti-
Ooguri-Vafa and Yoshikawa to introduce a new invariant of Calabi-Yau
threefolds, which we call the BCOV invariant, and we get an explicit
formula for the BCOV invariant as a function on the compactified mod-
uli space when it is isomorphic to P'. As a corollary of our formula,
we prove one part of the conjecture of Bershadsky-Cecotti-Ooguri-Vafa
concerning the BCOV torsion of quintic mirror threefolds. Let us ex-
plain our results in more detail in the following.

Let X be a Calabi-Yau threefold. Let g be a Kéhler metric on X
with Kéhler form v. We set X = (X, ). Let (;4(s) be the spectral zeta
function of the Hodge-Kodaira Laplacian of X acting on (p, ¢)-forms.
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We define the BCOV torsion of X as

Tacov(X) =exp [ = Y (=1)PIpq (), ,(0)
P,420
Let {e1,...,ep,(x)} be an integral basis of H?(X,Z)/Torsion. By
the Hodge theory and the Lefschetz decomposition theorem, H?(X,R)

is equipped with the L?-metric (-, -) 12,5], Which depends only on the
Kahler class [y]. We define

V01L2 (Hz(X7 Z)? [’7]) = det (<ei7 eJ>L2’[/y])1§’L,]§b2(X) )

which is independent of the choice of an integral basis of H?(X,Z)/
Torsion.

Let n be a nowhere vanishing holomorphic 3-form on X. Let ¢3(X, )
be the top Chern form of (T'X, g). We set Vol(X,v) = (2m) 3 [, 7* and
X(X) = [y e3(X, 7). We define

x(X)

A(X) = Vol(X,v) iz

1/ (\/—177/\77 Vol(X,’y)) ]
-exp |——= [ lo . c3(X, ,
[ e T, ) oY

which is independent of the choice of n. We define the real number
mecov (X) as

macov(X) = Vol(X,~) ™3 Vol2(H*(X, Z), [7]) ' A(X) Tecov (X).

In Section 4.4, we show that 7pcoy(X) is independent of the choice
of v. Hence tgcov(X) is an invariant of X, which we call the BCOV
invariant. The purpose of this paper is to study 7gcov as a function on
the moduli of Calabi-Yau threefolds.

Let X be a (possibly singular) irreducible projective fourfold. Let
m: X — P! be a surjective flat morphism with discriminant locus D.
Let 1 be the inhomogeneous coordinate of P!, and set Xy := 7~ 1(¢))
for ¢» € P'. We assume the following:

(i) D is a finite subset of P! such that oo € D and D \ {0} # 0;

(ii) Xy is a Calabi-Yau threefold with hZ(Q}%) =1 for ¢ € P\ D;

(iii) Sing X, consists of a unique ordinary double point (ODP) for
¢ €D\ {oo};

(iv) Sing(X) N X =0 and X is a divisor of normal crossing.

Under these assumptions, the relative dualizing sheaf Ky /p1 is locally
free on X, and its direct image sheaf 7. Ky p1 is locally free on P!

For ¢ € P1\ {oo}, let (Def(Xy), [Xy]) be the Kuranishi space of X,.
Since Xy, is Calabi-Yau, dim Def(X,;) = 1. We identify (Def(Xy), [Xy])
with (C,0) by the smoothness of the Kuranishi space (cf. [55], [56],
[57]). Let uy: (P9)) — (Def(Xy), [Xy]) be the map of germs that
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induces the family 7: X — P! near . The ramification index r(z)) of
7: X — P! at 1) € P! is defined as the vanishing order of Hy at 1p. Let
{R;}jes be the set of points of P! with ramification index > 1, and
write D\ {oo} = {Dy}rerx. Weset r; = r(R;) for j € J and ry, = r(Dy)
for k e K.

Outside DU {R;};es, TP! is equipped with the Weil-Petersson met-
ric. Let | - || be the singular Hermitian metric on (m. Ky p1)®“8H0
(TP1)®12 induced from the L?-metric on T Ky p1 and from the Weil-

Petersson metric on TP!.

Main Theorem 1.1. Let = be a meromorphic section of m. Ky /p1
with
div(2) = Zmi P, 4+ Moo Pso, P # Py (i € I).
1€l

Identify the points P;, Rj, Dy, with their coordinates ¢(F;), ¥ (R;), ¥ (Dx)
€ C, respectively. Set x = x(Xy), ¥ € P'\ D. Then there exists
C € Ry such that

BCOV(Xy)

3
=c|l 1 (b — Dy S+ g <8> )
ie[,je],keK(d} — P;)(48+x)mi (¢ — Rj)m(rj*l) ¥ b

As a corollary of the Main Theorem 1.1, we give a partial answer
to the conjecture of Bershadsky-Cecotti-Ooguri-Vafa, which we explain
briefly (cf. Section 12).

Let p: X — P! be the pencil of quintic threefolds in P* defined by

X = {([z],0) € P* x PY; 2§ + 27 + 25 + 23 + 2§ — 5p 2021202324 = 0},
P = pro.

Let Zs be the set of fifth roots of unity and define
G = {(ao,al,ag, as, a4) c (Z5)5; apailazasays — 1}/Z5(1, 1, 1, 1, 1) & Zg.

We regard G as a group of projective transformations of P4. Since G
preserves the fibers of p, we have the induced family p: X /G — P!. Let
D be the discriminant locus of the family p: X — P'. By [4], [14], [41],
there is a resolution ¢: W — X /G such that W, = ¢'(Xy) is a smooth
Calabi-Yau threefold for 1) € P!\ D and such that Sing Wy, consists of a
unique ODP if ¢® = 1. The family of Calabi-Yau threefolds 7: W — P!
is called a family of quintic mirror threefolds.
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After Candelas-de la Ossa-Green-Parkes [15], 7. Kyy p1 and TP! are
trivialized near ¢» = oo as follows. For ¢ € P!\ D, we define a holomor-
phic 3-form on X, by

omv/—=1\ > zidzo Adz Adz
2 = vV 5, 2020 1 N dzp
5 8Fw(z)/8zg

Since f2y is G-invariant, 2y, induces a holomorphic 3-form on X, /G in
the sense of orbifolds. We identify {2, with the corresponding holomor-
phic 3-form on X,/G, and we define a holomorphic 3-form =, on Wy,
as 5y = quQw. We define

o0

S (sw)
Yo(¥) = %WWL, | > 1.

Then . Kyy p1 is trivialized by the local section =, /yo(1)) near ¢ = oo.
Let ¢ be the coordinate of the unit disc in C. We identify the param-

eters 1° and ¢ via the mirror map [15]. Then TP is trivialized by the

local section qd/dq = q (dv/dq) d/dy near ¢p = co. (See Section 12.)
Following [6, (23)], we define an analytic function Flt?g (1) near co €

P! as o
top _ dj 3 _ 5_% dw
F1,3<w>—log[(yow)) (1) dq]

and we set F|°Y(q) = F|°8(1(g)). The conjectures of Bershadsky-
Cecotti-Ooguri-Vafa [6], [7] can be formulated as follows:

Conjecture 1.2.

(A) Let ng4(d) be the genus-g degree-d instanton number of a quintic
P* for g = 0,1. Then the following identity holds: !

d _top Qnd q”d > 2d ¢*
i@ = Z = 2_no(d) 5y

“tag ot 1—q = 12(1 - ¢7)
(B) The following identity holds near ¢ = oo:

(o) (oia)

Conjecture (A) can be found in [6, (24)]. Conjecture (B) is deduced
from [6, (16)] and [7, Section 5.8] as follows. In [7, p. 373, last formulal,
Bershadsky-Cecotti-Ooguri-Vafa conjectured the following identity for
Calabi-Yau threefolds

(1.1) Fy = —log Tgcov,

2
2 3

mecov (Wy) = Const. ‘exp <—Ff0§(ﬂ)))‘

Tn the original conjecture in [6, 7], the Gromov-Witten invariants Ny(d) were
used. The invariants have to be replaced by the instanton numbers. See [65] for
details.
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where F7j is the partition function of the twisted N = 2 theory coupled
to gravity at genus 1 [6, (1)], [7, (2.37)].2 In [6, (16)], they conjectured
an explicit formula for F3 for quintic mirror threefolds, in which Fj is a
function on the moduli space. Since Tgcov does depend on the choice
of a Kahler metric and is not a function on the moduli space, some
corrections are necessary in (1.1). We observe that 7gcoy coincides with
TBCOV Up to a rational constant, if the Kéhler metric is Ricci-flat [60]
and the corresponding Kahler class is integral. After this observation, it
is reasonable to replace 7pcoy by the BCOV invariant mpcoy in (1.1).
Substituting [6, (16)] into F; and replacing Tgcov by TBcov, we get
Conjecture (B) from (1.1).
In Section 12, we prove the following:

Theorem 1.3. The Conjecture 1.2 (B) holds.

Recently, Conjecture 1.2 (A) has been proved by Zinger [36], [65].
In [19], we shall study the BCOV invariant of Calabi-Yau threefolds
with higher dimensional moduli and the BCOV torsion of Calabi-Yau
manifolds of dimension greater than 3.

Let us briefly explain our approach to prove the Main Theorem 1.1.
We follow the approach in [62]. Let Qwp be the Weil-Petersson form
on P!\ D, and let Ric Qwp be the Ricci-form of Qwp. By [38], [39], the
(1,1)-forms Qwp and Ric Qwp have Poincaré growth on P!\ D, so that
they extend trivially to closed positive (1,1)-currents on P! (cf. Section
7.3). We identify Qwp and Ric Qwp with their trivial extensions. For
a divisor D on P!, let §p denote the Dirac §-current on P! associated
to D. Regard tgcov as a function on P!\ D. By making use of the
Poincaré-Lelong formula, the Main Theorem 1.1 is deduced from the
following:

Claim 1.4. Set D* = ), ;7% Dy. Then there exists a € R such
that

1 = X

1.2) —— 991 - <7

(1.2) 2m.88 0g TBCOV D

We shall establish Claim 1.4 as follows:

(a) By making use of the curvature formula for Quillen metrics of
Bismut-Gillet-Soulé [11], we prove the variational formula like (1.2)
for an arbitrary family of Calabi-Yau threefolds. As a result, we get
Eq. (1.2) on the open part P*\ D. More precisely, we introduce a Hermit-
ian line, called the BCOV Hermitian line, for an arbitrary Calabi-Yau
manifold of arbitrary dimension, which we obtain using determinants
of cohomologies [30], Quillen metrics [11], [46], and a Bott-Chern class

1
+ 4) Qwp —Ric QWP+6 Op*+a 0so.

2Fy in [7, (2.37)] is the half of F} in [6, (1)], which explains the difference between
(1.1) and [7, p. 373, last formula]. Since we use the formulae in [6], we follow the
definition of Fi in [6].



ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 181

like A(-). Then the BCOV Hermitian line of a Calabi-Yau manifold
depends only on the complex structure of the manifold. The Hodge di-
amond of Calabi-Yau threefolds are so simple that the BCOV Hermit-
ian line reduces to the scalar invariant Tgcov in the case of threefolds.
Hence Eq. (1.2) on P!\ D is deduced from the curvature formula for the
BCOV Hermitian line bundles. (See Section 4).

(b) To establish the formula for log Tscov near D, we fix a specific
holomorphic extension of the BCOV bundle from P! \ D to P!, which
we call the Kéhler extension. (See Section 5.) Since Tgcov is the ratio
of the Quillen metric and the L?-metric on the BCOV bundle, it suffices
to determine the singularities of the Quillen metric and the L?-metric
on the extended BCOV bundle. We determine the singularity of the
Quillen metric on the extended BCOV bundle with respect to the metric
on TX /P! induced from a Kéhler metric on X. The anomaly formula
for Quillen metrics of Bismut-Gillet-Soulé [11] and a formula for the
singularity of Quillen metrics [9], [63] play the central role. (See Section
5.).

(c) By the smoothness of Def(Xy) at ¢ € D* [28], [47], [56], the
behavior of the L?-metric on the extended BCOV bundle near D* is
determined by the singularity of Qwp near D*, which was computed by
Tian [56]. (See Sections 6, 7, 8.) To determine the behavior of the L?
metric on the extended BCOV bundle at 1) = oo, one may assume that
7: X — Pl is semi-stable at 1) = oo by Mumford [29]. We consider
another holomorphic extension of the BCOV bundle, i.e., the canonical
extension in Hodge theory [50]. With respect to the canonical extension,
the L?-metric has at most an algebraic singularity at ) = oo by Schmid
[50]. Comparing the two extensions, we show that the L2-metric has
at most an algebraic singularity at v = oo with respect to the Kéahler
extension. (See Section 9.) By the residue theorem and assumption (ii),
the number a in Eq. (1.2) is determined by the degrees of the divisors
D*, div(Z), }_je (rj — 1) R;. (See Section 11.)

This paper is organized as follows. In Section 2, we recall the de-
formation theory of Calabi-Yau threefolds. In Section 3, we recall the
definition of Quillen metrics and the corresponding curvature formula.
In Section 4, we introduce the BCOV invariant and prove its varia-
tional formula. In Section 5, we study the boundary behavior of Quillen
metrics. In Section 6, we study the boundary behavior of Kodaira-
Spencer map. In Section 7, we study the boundary behavior of the
Weil-Petersson metric and the Hodge metric. In Sections 8 and 9, we
study the boundary behavior of the BCOV invariant. In Section 10, we
extend the variational formula for the BCOV invariant to the boundary
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of moduli space. In Section 11, we prove the Main Theorem. In Sec-
tion 12, we study a conjecture of Bershadsky-Cecotti-Ooguri-Vafa. In
Section 13, we study a conjecture of Harvey-Moore.

Acknowledgements. The first-named author thanks Professors Jeff
Cheeger and Gang Tian for helpful discussions. The second-named au-
thor thanks Professors Gang Tian and Duong H. Phong for helpful dis-
cussions. The third-named author thanks Professors Shinobu Hosono,
Shu Kawaguchi, Yoshinori Namikawa and Gang Tian for helpful discus-
sions, and his special thanks are due to Professor Jean-Michel Bismut,
who suggested to him, together with many other ideas, one of the most
crucial constructions in this paper, the Bott-Chern term A(X).

2. Calabi-Yau varieties with at most one ordinary double
point

2.1. Calabi-Yau varieties with at most one ODP and their de-
formations.

2.1.1. Calabi-Yau varieties with at most one ODP. Recall that
an n-dimensional singularity is an ordinary double point (ODP for short)
if it is isomorphic to the hypersurface singularity at 0 € C" defined by
the equation 23 + -+ 4 22 = 0.

Definition 2.1. A complex projective variety X of dimension n > 3
satisfying the following conditions is called a Calabi- Yau n-fold with at
most one ODP:

(i) There exists a nowhere vanishing holomorphic n-form on X,es =
X'\ Sing(X):
(ii) X is connected and H?(X,Ox) =0 for 0 < ¢ < m;
(iii) The singular locus Sing(X) consists of empty or at most one ODP.

Throughout this paper, we use the following notation: For a complex
space Y, let ©y be the tangent sheaf of Y, let Q%/ be the sheaf of Kéahler
differentials on Y, and let Ky be the dualizing sheaf of Y. The sheaf
Q). is defined as AP}.. On the regular part of Y, the sheaves Oy,
Q). Ky are often identified with the corresponding holomorphic vector
bundles TY, AP T*Y, det T*Y, respectively.

We set A(r) :={t € C; |t| < r} and A(r)* := A(r) \ {0} for r > 0.
We write A (resp. A*) for A(1) (resp. A(1)*).

Since an ODP is a hypersurface singularity, the dualizing sheaf of a
Calabi-Yau n-fold with at most one ODP is trivial by (i).

2.1.2. Deformations of Calabi-Yau varieties with at most one
ODP. Let X be a Calabi-Yau n-fold with at most one ODP.

Definition 2.2. Let (S,0) be a complex space with marked point
and let X be a complex space. A proper, surjective, flat holomorphic
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map 7: X — S is called a deformation of X if 7=%(0) = X. If X
and S are smooth and if a general fiber of 7: X — S is smooth, the
deformation 7: (X, X) — (S,0) is called a smoothing of X. If there
exists a smoothing of X, X is said to be smoothable.

We refer to [42, Example5.8] for an example of a non-smoothable
Calabi-Yau threefold with a unique ODP as its singular set.

Since H(X,0x) = 0 (cf. [42, p. 432, 1.23]), there exists by [17],
[23], [34] a deformation germ p: (X, X) — (Def(X), [X]) of X with the
universal property: Every deformation germ 7: (X, X) — (S,0) is in-
duced from p: X — Def(X) by a unique holomorphic map f: (S,0) —
(Def(X), [X]). This local universal deformation of X is called the Kuran-
ishi family of X. The Kuranishi family is unique up to an isomorphism.
The base space (Def(X),[X]) is called the Kuranishi space of X. By
(28], [47], [55], [56], [57], Def(X) is smooth. We denote by Tpef(x),[x]
the tangent space of Def(X) at [X].

For a deformation 7: (X, X) — (5,0), the fiber X (s € 5) is a
Calabi-Yau n-fold with at most one ODP if s € S is sufficiently close to
0 (cf. [42, Prop.6.1], [56, Prop.4.2]).

In the rest of Subsection 2.1, we assume that X is a smoothable
Calabi-Yau n-fold with at most one ODP. Let 7w: (X, X) — (5,0) be a
smoothing. The critical locus of 7 is defined by

Y ={x e X; dm, =0}
The discriminant locus of m: X — S is the subvariety of S defined by
D:=n(X;) = {s € S; Sing(X) # 0}.

Lemma 2.3. Let N +1 =dimS. For p € Sing(X), there exists a
neighborhood V,, & A"+ x AN of p in X such that

7T|Vp(Z,w) = (2(2]+"'+Z7217w1a--'aw1\7)3
z2=1(20y---y2n), w=(wi,...,wWN).
In particular, if Sing(X) # 0, D is a divisor of S smooth at 0.

Proof. The proof is standard and is omitted. q.e.d.

2.1.3. The Kodaira-Spencer map. For a smoothing m: (X, X) —
(S,0), the short exact sequence of sheaves on X

0 — T |x — Q|x — Q% —0
induces the long exact sequence:
g HomOX (W*Qé ‘X) OX) — EXt%’)x (Q%(’ OX)

— EXt%QX(QﬁAx,Ox) — e
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Definition 2.4. The Kodaira-Spencer map of m: (X, X) — (5,0) is
the connecting homomorphism

po: ToS = HomoX(W*Qé\X,OX) — Extggx(Q%(,(’)X).

Proposition 2.5.
The Kodaira-Spencer map pix): Tpet(x),[x] — Extbx (Qk,0x) for
the Kuranishi family of X is an isomorphism.

Proof. See [28], [47], [55], [56], [57]. q.e.d.
Let

r Ext}gx (Q,0x)3a— Q| X,y € Ext%,)x (Q}(reg,OXreg)

— Hl(XregagX)

be the restriction map. Sincen >3, r: EX‘L}QX (Q, Ox)— HY(X1eg, Ox)
is an isomorphism by [49, Th. 2] and [56, Prop. 1.1].

Lemma 2.6. Under the natural identification H°(X eg, T 05| X 0p) =
ToS viaw, the composition ropy: ToS — H'(Xyeq, O x) is the connecting
homomorphism of the long exact sequence of cohomologies associated
with the short exact sequence of sheaves

(2.1) 0— Ox,, — Ox[X,p, — T O5|x,, — 0.

Proof. The proof is standard and is omitted. q.e.d.

Let p: (X,X) — (Def(X), [X]) be the Kuranishi family of X.

Lemma 2.7. Suppose X is smoothable. Then the Kuranishi family
of X is a smoothing of X.

Proof. Since at the ODP point p,
(2.2) Oxp = Ocnia xDef(X),(O,[X])/(Z(Q) ot 20)
by e.g., [35, p. 103, (6.7)], this implies the smoothness of X at p. q.e.d.

Proposition 2.8. There exist a pointed projective variety (B,0), a
projective variety 3, and a surjective flat holomorphic map f: 3 — B
such that the deformation germ f: (3, f~1(0)) — (B,0) is isomorphic
top: (X,X) — (Def(X),[X]). In particular, the map p: X — Def(X)
18 projective.

Proof. See [42, p. 441, 1.7-1.12]. q.e.d.
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2.1.4. The Serre duality for Calabi-Yau varieties with at most
one ODP. Let

() HHX, Q% ® Kx) x Exty, (Q ® Kx, Kx) = H"(X,Kx) = C

be the Yoneda product. Since X is compact, the Yoneda product is a
perfect pairing by [1, Th. 4.1 and Th. 4.2]. Hence, we get by Proposition
2.5

H" (X, 0% ® Kx) = Exty, (U ® Kx, Kx)"
= (Tpet(x),1x1)" = Qer(x),[x]-

If X is smooth, then EX‘U}QX QY ®Kx,Kx) = HY(X,0x) and the Yone-
da product is given by the ordinary Serre duality pairing [1, Th.4.2].
Let H? 1 (Xregs Q}( ® Kx) be the cohomology with compact support.

Lemma 2.9.

The natural map HE 1 (Xieg, Q% ® Kx) — H" H(Xreg, U @ Kx)
is an isomorphism. Under this isomorphism, the Yoneda product (-,-)
coincides with the Serre duality pairing on the reqular part of X :

H N Xyeg, Q% ® Kx) X H' (Xpeg, Ox) — H(Xreg, Kx) = C.

Proof. Since Ext%gx (Q%,0x) = H'(Xyeq,0Ox,.,) by [56, Prop.1.1],
the Serre duality for open manifolds [1, Th. 4.1 and Th. 4.2] yields that

H" (X, Q% ® Kx) = Extp (%, Ox)”
= H'(Xieg, Ox,0,) "
= Hg_l(Xrega Q%( ® KX)
and that the Yoneda product pairing
HY N Xpeg, % ® Kx) x Extéxreg (., @ Kx, Kx) = H(Xreg, Kx)
is perfect. Since X,¢g is smooth,
Ext}gxreg (2., ® Kx, Kx) = H'(Xyeg, Ox)

and the Yoneda product pairing (-,-) coincides with the Serre duality
pairing. q.e.d.

2.2. The locally-freeness of the direct image sheaves: the case
n = 3.Let n > 3. Let X be a smoothable Calabi-Yau n-fold with
at most one ODP. Let 7: (X, X) — (5,0) be a smoothing of X. Set
Q%{/S = QL /7 QL.

Lemma 2.10. The sheaf Q}'(/S s a flat Og-module.

Proof. See [43, p. 13, 1.28-p. 14, 1. 1] and [25, Lemme 2.3].  g.e.d.

Let us consider the case S = Def(X). Let p: (X, X) — (Def(X), [X])
be the Kuranishi family of X.
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Theorem 2.11. If n = 3, the function Def(X) 3 s — h9(X,,Q) ) €
Z 1is constant for all ¢ > 0. In particular, qu*le/Def(X) s a locally
free Opeg(x)-module on Def(X) for all ¢ > 0.

The proof of this theorem is divided into the four lemmas below.

Lemma 2.12. Ifn > 3, the function Def(X) 3 s — h"1(X,, QY ) €
Z is constant. In particular, R"_lp*Q;/Def(X) is a locally free Opep(x)-
module on Def(X).
Proof. Since Kx = Ox, we have
Toet(x),1x) = Exty, (%, Ox) = Extp, (Kx ® Q, Kx)
= H" 1(X,Kx ® Q%)",
where the first isomorphism follows from Proposition 2.5, the second
equality follows from the triviality of Kx, and the third equality follows
from the Serre duality [26, Chap.III Th.7.6 (b) (iii)]. Notice that we
can apply the Serre duality to X, because X has at most one ODP and
hence X is Cohen-Macaulay [26, Chap.II Th.8.21, Prop.8.23|. Since
Kx = Ox, we get k" }(X, Q%) = dim Tper(x),(x]- The smoothness of
Def(X) at [X] implies that the function on Def(X)
Def(X) 3 s — dim Tper(x),s = dim Theg(x, ) (x,] = " (X, Qk,) € Z

is constant, for the Zariski tangent space coincides with the usual
tangent space for smooth varieties. Notice that the first equal-
ity dimTpef(x),s = dimTper(x,),[x,] follows from [17, Section 8.2].
Since Q%e/Def(X) is a flat Opef(x)-module by Lemmas 2.7 and 2.10,

R”’lp*Qée/Def(X) is locally free by [1, Chap. 3, Th.4.12 (ii)]. q.e.d.

Lemma 2.13. If n = 3, then h3(X,, Q) = 0 for all s € Def(X).
In particular, RBF*Q.I%/Def(X) =0.

Proof. See [42, p. 432, 1.23]. q.e.d.

Lemma 2.14. If n = 3, the function Def(X) 3 s — h!(X,,Q% ) €
Z is constant. In particular, Rlp*Q;/Def(X) is a locally free Opet(x)-
module.

Proof. Since QI}Z/Def(X) is a flat Opeg(x)-module, the function Def(X)
> s — x(X, Q%) € Z is constant, where x (X, Q) denotes the Euler
characteristic of Q . Since h?(X,, QY ) is independent of s € Def(X)

for all ¢ # 1 by Lemmas 2.12 and 2.13, this implies that h'(Xj, Q}Q) is
independent of s € Def(X). q.e.d.

Lemma 2.15. If n = 3, then Rlp*Qﬁ€ is locally free. Moreover,
the restriction map Rlp*Qﬁe — Rlp*Qée/Def(X) is an isomorphism of
Obet(x)-modules.



ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 187

Proof. Set N := dim Def(X). The short exact sequence of sheaves on
X

0 — OFN = p* Qppx) — e = L/perx) — 0
induces the long exact sequence of direct images
- — RYpap™ Oppx) — R'9-Qk — R'p.Q% pes(x)
— R Q) —

Since

R'pap™ Qperxy = (R'9:02)"N =0
and

Rzp*p*Q]ljef(X) = (RZP*OX)@N =0
by Definition 2.1 (ii), the second assertion follows from the above exact
sequence.

By the same argument as above, we see that the restriction map
H' (X, Q%|x,) — H' (X, Q) is an isomorphism for all s € Def(X).
Hence h'(X,, Q|x,) is independent of s € Def(X) by Lemma 2.14.
This, together with [1, Chap. 3, Th.4.12 (ii)] proves the first assertion.

q.e.d.

Theorem 2.11 follows from Lemmas 2.12, 2.13, 2.14, and 2.15. q.e.d.

Let H?(X, Z)pet(x) be the constant sheaf on Def(X) with stalk
H?(X,7). By [42, Prop. 6.1], R?p,Z is isomorphic to the constant sheaf
H*(X, Z)pef(x)-

Since R'p.Ox = R?p,Ox = 0 by Definition 2.1 (ii), the exponential
sequence on X induces the exact sequence of direct images

(2:3) 0= R".0Ox — R'p.0% —— R%p.Z — R%p,Ox = 0.

For a holomorphic line bundle £ € H'(X,0%), the Dolbeault coho-
mology class of the Chern form ¢ (£, h) € H'(X,Q%) is independent of
the choice of a Hermitian metric i on £, which we will denote by €;(L).
Since every element of H?(X,7Z) is represented uniquely as the Chern
class of an element of H'(X,0%) by the isomorphism (2.3), we define
the map j: H*(X,Z) — H'(X,QL) by

jaf)x) =¢a(L), LeH(X0%)
We regard €;(L£) as an element of HO(Def(X),Rlp*Qée/Def(X)) after

Lemma 2.15. Since H?(X,Z) is finitely generated, the map j extends
to a homomorphism of Ope(x)-modules

J: HY(X, Z)per(x) ©2 Opet(x) = R PeQ2/per(x)-

Lemma 2.16. The homomorphism j is an isomorphism of Opet(x)-
modules.



188 H. FANG, Z. LU & K.-I. YOSHIKAWA

Proof. Since HQ(X,Z)Def(X) ®7z Opet(x) and Rlp*Q;/Def(X) are lo-
cally free by Lemma 2.15, it suffices to prove that j|x: H?(X,C) —
HY(X,Q%) is an isomorphism. Since h%(X,C) = h%*(Xs,C) by [42,
Prop. 6.1] and since hl(XS,Q}(S) = h1(X,Q%) by Lemma 2.14, we get
h*(X,C) = h'(X,0L). Since j|x is surjective by [42, Lemma 2.2], it is
an isomorphism. q.e.d.

3. Quillen metrics

Throughout Section 3, we fix the following notation: Let X be a com-
plex manifold. Let (F,hp) be a holomorphic Hermitian vector bundle
on X, which we also write F' = (F, hp) for simplicity.

3.1. Analytic torsion and BCOV torsion. In Subsection 3.1, as-
sume that X is a compact Kéhler manifold with Kéhler metric gx and
with Kéhler form vy. We set X = (X, gx). Define Q% to be the holo-
morphic vector bundle ng equipped with the Hermitian metric induced
from gx.

Let ARI(F) be the vector space of F-valued smooth (p, ¢)-forms on
X. Set Sp = D,>0 Agéq(F). Let (-,-) be the Hermitian metric on
(ANT*®DX) ® F induced from gx and hp. The volume form of X is
defined by dvy = y@m¥/(dim X)!. The L%-metric is the Hermitian
metric on Sr defined by

(8,8 )2 = W/X(s(x),s'(x»m dvx (x), s,s € Sp.

Let Or be the Dolbeault operator acting on Sp and let 5} be the
formal adjoint of Op with respect to (+,-)z2. Then Op = (JF + 05)? is
the corresponding d-Laplacian. Let o(Of) be the spectrum of Oy and
let Er(\) be the eigenspace of Op with respect to the eigenvalue .

Let N and € be the operators on Sg defined by N = ¢ and € = (—1)9

on Agéq(F). Then N and € preserve Ep(\).
The zeta function

(r(s) == Z AT Tr [eN| g, ()]
Aeo(Or)\{0}

converges absolutely for s € C with Res > 1. By [11, II, Th.2.16,
(2.98)], (#(s) has a meromorphic continuation to the complex plane,
which is holomorphic at s = 0.

Definition 3.1.
(i) The analytic torsion of (X, F) is defined by

7(X,F) = exp(—(’F(O)).
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(ii) The BCOYV torsion of X is defined by
Tocov(X) = [ r(X, %) VP = exp[- ) "(~1)Pp S ()]
p>0 p>0

We refer the reader to [11], [48] for more details about analytic tor-
sion.

3.2. Quillen metrics.

Definition 3.2.
(i) The determinant of the cohomologies of F is the complex line
defined by

AF) = (X)(det HI(X, F))1",
q>0

(ii) The BCOV line is the complex line A(Q% ) defined by

= ®)\(Q§()(—1)PP — ® (det HI(X, QP ))( Lyrrap

p=>0 2,920

Set K9(X,F) = kerOp N Ag&q(F). Then K9(X, F) inherits a metric
from (-,-)z2. By Hodge theory, we have an isomorphism HY(X, F) =
KX, F). We define hgq(x ) to be the metric on HY(X, F') induced
from the L%-metric on K9(X, F) by this isomorphism.

Let || - |lz2,x(r) be the Hermitian metric on A(F) induced from
{hra(x,F) }g>0-

Definition 3.3.

(i) The Quillen metric on A(F) is defined by

|
(ii) The Quillen metric on A(2%) is defined by

P2 1)P2
I- = Q- g aa) = Tocov(X) - @I 123 ek

p>0 p>0

) (X, F) - HO‘H%Q,)\(F)’ a € A(F).

Let (F1,hr,), -+, (Fi, hr) be holomorphic Hermitian vector bundles
on X, and let || - ||g2 () Pe the Quillen metric on A(Fy). For ®L_ oy €
! !
Qp—1 A(Fk), we set || ®§c=1 ak”g),@k)\(pk) = Jlhes ||O‘k:H2Q7>\(Fk)- When
the line A(F") is clear from the context, we write ||-[|q for || [|g ). We

refer the reader to [11], [12], [46], [52] for more details about Quillen
metrics.
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3.3. The Serre duality. Let n := dim X. By the Serre duality, the
following pairing on the Dolbeault cohomology groups is perfect:

HYX,0%) x H" (X, Q¢ 7?) 3 (o, B) — (5) /Xa/\ﬁ e C.

Let {¢;} be an arbitrary basis of HI(X, Q% ), and let {¢,'} be the
dual basis of H"9(X, 'y ) with respect to the Serre duality pairing.
Then the element of det H?(X, Q%) ® det H" P(X, Q% ?) defined by

(31) 1(p,q),(nfp,nfq) = /\ wz ® /\wz\/

is independent of the choice of a basis {1;} and is called the canonical
element. Similarly, the following element of A\(Q%) @ M(Qy *)("D" is
also called the canonical element:

lpnp= 1p,n—p(X) = ® 1(p,q),(nfp,nfq) € )\(QI;() ® A(Q}_p)(il)n-
q=0

Note that 1(p,q),(n—p7n—q) = 1(_qu),(nfp,nfq) by (3.1).
Let 1¢ be the trivial Hermitian structure on C, i.e., 1¢(a) = |a|? for
acC.

Proposition 3.4. The following identity holds:
(3.2) 11pn—pllrz = [1pn-pllQ = 1.

In particular, the canonical element 1,,,_, induces the following canon-
ical isometries of the Hermitian lines:

(3‘3) ()\(ng) ® )‘(Q?{p)(_l)nv ” ’ HL2,>\(Q§()®>\(Q§—P)(71)") = ((Cv 1@),
(34) (M) @AM g yer@p o ) 2 (€ 1e).

Proof. Let {¢;} be a unitary basis of H?(X, Q%) with respect to the
L?-metric. The dual basis of {¢;} with respect to the Serre duality
pairing is given by {*¢;}, where x: AR? — AL""P is the Hodge *-
operator with respect to the metric gx. By setting ¢; = ¢; in (3.1), we
get the first equality

(3.5) 11(p,0),(n—pin—q) lIL2 = 1,

which yields the isometry (3.3). -
Let ¢, 4(s) be the spectral zeta function of the 9-Laplacian acting on

A% Hence Gop (s) = 3-450(—1)74Gpq(s). Since 10, 0% = Onpn—q
we have ( ¢(s) = (n—pn—q(s), which yields that

(3.6) (X, 0%) = (X, 25 NV

The second isometry (3.4) follows from (3.3) and (3.6). q.e.d.
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For more detail about the Serre duality for Quillen metrics, we refer

o[22, (9)].

3.4. Characteristic classes. In Subsections 3.4 and 3.5, we do not
assume that X is compact Kéahler.

3.4.1. Chern forms.
For a square matrix A, set Td(A) := det (ﬁ@) and ch(A) :=

Tr[e4]. Let R(F) be the curvature of F' = (F, hp) with respect to the
holomorphic Hermitian connection. The real closed forms on X defined
by

TA(F, hp) := Td <— 27T\1/_71R(F)) ,

eh(F, hi) = ch ( 27r\1HR(F))

are called the Todd form and the Chern character form of F, respec-
tively.
Let ¢;(F, hr) be the i-th Chern form of (F, hp).

3.4.2. Bott-Chern classes. Let £ : 0 —» Ey - Fy — -+ — E,, — 0
be an exact sequence of holomorphic vector bundles on X, equipped
with Hermitian metrics h;, ¢ = 0,...,m. We set & := (€,{hi}]%).
By [11, I, Th.1.29 and Egs. (0.5), (1.124)], one has the Bott-Chern
secondary class ch(€) € D,>0 APP(X)/Im 0 + Im @ associated to the
Chern character and £ such that

m
dd°ch(€) =Y " (~1)"'ch(E;, hy).
i=0
Consider the case where m = 1 and Eyg = E; = E. Let k' and h be
Hermitian metrics of Ey and F1, respectively. By [11, I, Th. 1.27] or [21,
Section 1.2.4], one has the Bott-Chern secondary class ch(E; h,h’) €
©D,>0 APP(X)/Im 0 + Im O such that

dd°ch(E; h,h') = ch(E, h) — ch(E, I).

When rk(E) = 1, we have the following explicit formula by [21, I,
(1.2.5.1), (1.3.1.2)]:

(3.7)  ch(E; h,K) = Z Y a(B h)e(E,N) log <Z/)

m=1 'a—l—bml

Similarly, let 'fa(E, h,h') € @D,s0 APP(X)/Im 0+Im 0 denote the Bott-
Chern secondary class associated to the Todd form such that

dd° Td(E; h, 1) = Td(E, h) — Td(E, ).
For more detail about Bott-Chern classes, we refer to [11], [21], [52].
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3.5. The curvature formulas. Let S be a complex manifold and let
m: X — S be a proper surjective holomorphic submersion. Then every
fiber of 7 is a compact complex manifold. The map 7: X — S is said to
be locally Kahler if for every s € S there is an open subset U > s such
that 71 (U) possesses a Kihler metric. We set X, = 7 !(s) for s € S.

Let TX/S :=kerm, C TX be the relative holomorphic tangent bun-

dle of the family 7: X — S Set QZ)?(/S = A\P(T'X/S)" and Kx/g :=
Kx ® (W*KS)_I — Q?;%delmS'

A C®° Hermitian metric on TX/S is said to be fiberwise Kdahler if
the induced metric on X is Kéahler for all s € S. By Kodaira-Spencer
theory, there exists a fiberwise Kéhler metric on 7X/S if and only if
every X, possesses a Kahler metric.

Assume that every fiber X possesses a Kéhler metric. Let gx,g be a

fiberwise Kéhler metric on TX/S. Set g5 = gx/s|x, and X, = (X, gs)

for s € S. We define ﬁ&s to be the holomorphic vector bundle QZ)’(S
equipped with the Hermitian metric induced from gs. When p = 0,

ﬁgcs is defined as the trivial line bundle Oy, equipped with the trivial
Hermitian metric.

Since dim H q(XS,Qg(S) is locally constant, the direct image sheaf
wa*Qg( /s is locally free for all p,q > 0 and is identified with the corre-
sponding holomorphic vector bundle over S. Set

o 1\
A% /s) = ®(dethﬂ'*Q§(/S)( VPP,
P20
Via the natural fiberwise identification A(Q% / s = MQ%,) for all s €
S, )‘(QB(/S) is equipped with the Hermitian metric || - HA(Q;{/S)7Q defined
by
- leas, o (5) = I - laaas,): seSs,

which is smooth by [11, III, Cor. 3.9]. We set A(Q}/S)Q = (A( 3(/5), I|-
losoyok

Since dim K7(X S,ﬁ’;(s) is locally constant, there exists a C*° vector
bundle KP4(X/S) over S such that KP(X/S); = K9(X,, 0y, ) for all
s € S. Then the fiberwise isomorphism HY(X,, Q% ) = K9(X, 0.) via
Hodge theory induces an isomorphism of C*° vector bundles wa*Qg( /s
= KP9(X/S). Let hRqﬂ—*QZ))(/S be the C*° Hermitian metric on RqW*Q’;(/S
induced from the L?-metric on KP4(X/S) by this isomorphism. We
define Rqﬂ'*QI))(/S = (Rqﬂ*Q’)’(/S, hquQg(/s).

Let Tgcov(X/S) be the function on S defined by

Tacov(X/S)(s) := Tecov(Xs) = [[ (X, 0%, ses.

p=>0
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For a differential form ¢, [¢] (»9) denotes the component of bidegree
(p,q) of .
Theorem 3.5. Assume that the map w: X — S is locally Kdhler

and set n = dim X —dim S. Then Tpcov(X/S) lies in C*°(S), and the
following equation of C*° (1,1)-forms on S holds:

c1l(M(Q%/s)Q) = —dd‘log Tncov(X/S) + Y (~1)" per (Rim Q% o)
q=20

1
=~ [e1(TX/S, gx/s) en(TX/S. gxs5)] .

Proof. See [7, p. 374] and [11, Th.0.1]. q.e.d.

4. The BCOYV invariant of Calabi-Yau manifolds

Throughout Section 4, we fix the following notation: Let X be a
smooth Calabi-Yau n-fold. Let p: (X,X) — (Def(X),[X]) be the Ku-
ranishi family of X.

Let g be a Kahler metric on X with Kahler form ~. We define
Vol(X,v) = (2m)™™ [y ~"/n! = |[1]3.. Notice that our definition
of Vol(X,~) is different from the ordinary one because of the factor
(2m)™™. We set ¢;(X,7) := ¢i(TX,g) and x(X) = [y cn(X,7). Let
ne HO(X,2%)\ {0},

4.1. The BCOV Hermitian line. Recall that the L?norm on
HOY(X, Q%) is independent of the choice of a Kihler metric g because

. 2 _
Il = (2 (V=17 [
After [62, Section 5.1], we make the following:

Definition 4.1.
(i) For X = (X,7), define A(X) = A(X,~) € R by

x(X)

A(X) == Vol(X,v) iz
R I (V=D)"nAn Vol(X,) .
/Xlg< i ) "(X”)]'

(ii) The BCOV metric is the Hermitian structure || - [[ys.) on A(Q2%)
defined by

I Hi(Q;() = AX) - |- |gg,>\(93()'
(iii) The BCOV Hermitian line is defined by

A%) = (A%, |- Ixes))-



194 H. FANG, Z. LU & K.-I. YOSHIKAWA

Remark 4.2. By Yau [60], every Kéhler class on X contains a unique
Ricci-flat Kahler form. If x is a Ricci-flat Kéhler form on X, then

K" /n! ~ Vol(X, k)
V=Dmnpnaqg  nlli.
and hence log A(X, k) = X( ) log Vol(X, k) in this case.

4.2. The Well-Petersson metric and the Hodge metric. To com-
pute the curvature of the BCOV Hermitian line bundles, let us recall
the definitions of the Weil-Petersson metric [55] and the Hodge metric
[37], [38].

By Proposition 2.5, the homomorphism of Opet(x)-modules on
Def(X) induced by the Kodaira-Spencer map

Ppet(x) | Opet(x) — R'P+Ox/Det(x)
is an isomorphism.

Since H" (X, Q) € H"(X,,C) consists of primitive cohomology
classes for all s € Def(X), the L2-metric on Rlp*Q7;€7]:1)ef(X) is indepen-
dent of the choice of a fiberwise-Kéhler metric on 7X/Def(X) by e.g.,
[59, Th.6.32]. We will often denote the L*-metric hp, Rip,qn-! on

X /Def(X)
R'p. 2% bosx) by (-, -) 2. Then

(6,Q)pe = —(2m) " (V=T) /X ENC ECeH(X.QY),

For s € Def(X), let ps: Tpet(x),s — H'(Xs,Ox,) be the Kodaira-
Spencer map, and let n, € H°(X,, Q% )\ {0}. Let ¢(-) be the interior
product.

Definition 4.3. The Weil-Petersson metric gwp on Def(X) is de-
fined by

fX s A eps(v))ns _ (¢(ps(u)ns, t(ps(v))ns) L2
sz Ns N1 Hns”%z
for u,v € Tpep(x),s- Let wwp be the Kahler form of gwp.

gwp (u,v) == —

Let nx/per(x) be a local basis of p« Kx/pe(x)- By e.g., [55, Th. 2], we
have
(41)  wwp = —dd°log||nx/pet(x) 172 = c1(p«Kx/petx)s | - 12)-

Proposition 4.4. The Kodaira-Spencer map ppet(x) nduces an
isometry of the following holomorphic Hermitian wvector bundles on
Def(X):

(Opet(x)s gWP) @ (P« Kx/Det(x)s || || 22)

= (R P % Det(x)r PR1p.Q7 )

X /Def(X)
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In particular, pper(x) induces an isometry of the following holomorphic
Hermitian line bundles on Def(X):

(det Rp, QL

x/D f( ) det thp*Qn 1

X /Def(X)
1,n—1
= (det Opef(x), det gwp) ® (P« Kx/per(x): || - 1p2) " " K.
Proof. The Kodaira-Spencer map is given by
Oper(x) @ P«Kx/Der(x) D U @ N — t(ppe(x)(w))n € RIP*Q?E/E)QH X)"

Hence (¢(ppet(x)(w)) 1, t(ppet(x) (V) M) 12 = gwe(u, v) - ||77||L2 by Defini-
tion 4.3. q.e.d.

Definition 4.5. The Ricci form of the Weil-Petersson metric is the
Chern form of the Hermitian line bundle (det Ope¢(x), det gwp):

Ric WWP ‘= cl(det @Def(X), det gwp).
Proposition 4.6. The following identities hold:

c1(det R" P e oxys T+ lle2)
—WWP (p = 0)
—Ricwwp — A" U X)wwp (p=1)

- Ricwwp + hl’nfl(X) WWP (p=n-1)
WWP (p=mn).

Proof. The assertion for p = 0, n follows from (4.1). The assertion for
p = 1,n — 1 follows from Proposition 4.4 and the Serre duality. q.e.d.

See [18, Section 2] for a generalization of Proposition 4.6. In the case
n = 3, the following positivity result for Ricwwp + (h12(X) + 3) wwp
shall be crucial in Section 7.

Proposition 4.7. When n = 3, the (1,1)-form Ric wwp + (h13(X) +
3) wwp is a Kdhler form on Def(X).

Proof. See [38, Th.1.1]. q.e.d.

Definition 4.8. When n = 3, the Hodge form on Def(X) is the
positive (1,1)-form on Def(X) defined as

wy = Ricwwp + (h1’2(X) + 3) wwp.

The corresponding Kéhler metric on the Kuranishi space Def(X) is
called the Hodge metric on Def(X).

The Hodge metric is related to the invariant Hermitian metric on
the period domain for Calabi-Yau threefolds as follows. Let X be a
polarized smooth Calabi-Yau threefold. Let D be the classifying space
for the polarized Hodge structures of weight 3 on H?(X,Z)/Torsion
defined by Griffiths, e.g., [24, Section 2]. Let F* (i = 1,2,3) be the
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Hodge bundles on D. Let wp be the invariant Hermitian metric of D.
Let f: Def(X) — D be the period map. Then we have

(a) wwp = f*(c1(F?, | - ||z2)) [59];
(b) Up to a constant, wy = f*(wp) [37]. In particular, wy is always
Kahlerian.

We refer to e.g., [24] for more details about the classifying space D.

4.3. The curvature formula for the BCOV Hermitian line bun-
dles. Let 7: (X, X) — (5,0) be a flat deformation of X. Set X, =
7 1(s) for s € S. Let gy/s be a fiberwise-Kéhler metric on TX/S.
Then the line bundle A(€2%, / g) on S is equipped with the BCOV metric

|| . H)‘(Q;(/S) with respect to g/y/s.

Let p: (S,0) — (Def(X),[X]) be the holomorphic map such that the
family 7: (X, X) — (S5,0) is induced from the Kuranishi family by px.
Then we have

ci(mways, || - [l2) = prwwp

near s = 0. Let ny,g be a local basis of T.wy/s and set

wwp, /s = wrwwp = —dd°1og [Ny /sll7. = c1(mwrys, || - [12)-
Theorem 4.9. The following identity of (1,1)-forms on (S,0) holds:
x(X)

(A% /5)) = T WWP,x/s-

Proof. We follow [62, Section 5.2]. Since the assertion is of local
nature, it suffices to prove it when S =2 AY™S Then 7, Ky /s = Og.
Let ny,s € H (S, m Ky /s) be a nowhere vanishing holomorphic section.
For s € S, set s = nx/slx,. Then n, € H(X,, Kx,) \ {0} and ny/g
are identified with the family of holomorphic n-forms {ns}scs varying
holomorphically in s € S. Define ||ny/sl|7. € C*°(S) by

Inx/sllFz(s) = Inslz2, s €.

Set gs = gx/slx,. Then gy /g is identified with the family of Kdhler
metrics {gs}ses. Let 75 be the Kéhler form of hs. Let vx/g = {7s}ses
be the family of Kahler forms associated to gy /g.

Define the C*° functions Vol(X'/S) and A(X/S) on S by

Vol(X'/S)(s) = Vol(Xs,7s), A(X/S)(s) = A(Xs,7s), sebs.

Let ¢;(X/S) be the i-th Chern form of the holomorphic Hermitian
vector bundle (T'X/S, gx/g). Since

- c (\/jl)nan S/\ﬁ
c1(X/S) = —cl(KX/S,deth}S) — dd°log ( / X/ ’

’y;‘(/s/n!
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the following identity of (1, 1)-forms on X holds:
(4.2)
c1(X/S) = =7 {wwp x/s + dd°log Vol(X /S) }

1) A7
vaitog ] TN s Mg (VOX/S)) |
VX/S/”' M /sl72
Then we get
(4.3)
1
— [ (X/S) enlX/S)]
1
= =157 =7 {wwp x5 + dd*log Vol(X/S)} ¢ (X/S)]
1) =
|~ daerog ] D s Aas (W) e /5)
12 VX/S/”! Inx/sll72
X
= % wwp, x/s + ddlog A(X/S),

where the first equality follows from (4.2), and the second one follows
from the projection formula and the commutativity of dd® and 7.

Since the map 7: X — S is locally projective by Proposition 2.8, we
may apply Theorem 3.5 to the family 7: X — S. Then we deduce from
(4.3) that

c1(AQ%/5)) = c1(MQ%/5)Q) — dd®log A(X/S)

_ _%m [1(X/S) e (X /S)] — dd* log A(X/S)

_ X&)
19 WWP,x/s:

This completes the proof of Theorem 4.9. q.e.d.

Theorem 4.10. Let X be a smooth Calabi-Yau n-fold. The Hermit-
ian metric || - [[x@s,) on M%) is independent of the choice of a Kdhler

metric on X. In particular, the BCOV Hermitian line A\(2%) is an
tmvariant of X.

Proof. Let 0 € A(Q%) \ {0}. Let X = X x P! — P! be the trivial
family over P'. Let g, Yoo be arbitrary Kihler forms on X. Let vy /Pl =
{1t }iepr be a C>°-family of Kéhler forms on X connecting vy and 7ec.
Since wyp x/p1 = 0, log ||UH§\(Q. ) isa harmonic function on P! by

X/P
Theorem 4.9. Hence Ha||/\(Q./ .) is a constant function on P!. This
X /P

proves Theorem 4.10. q.e.d.
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4.4. The BCOYV invariant of Calabi-Yau threefolds. In Subsec-
tion 4.4, we fix n = 3. Hence X is a smooth Calabi-Yau threefold. Set
bo(X) := dim H?(X,R). Let cx(,-,-) be the cubic form on H?(X,R)
induced from the cup-product:

ex (o, B,7) :ZQJW),/)(aAﬂA% a, B,y € H*(X,R).

4.4.1. The covolume of the cohomology lattice. Let s be a Kéhler
class on X. Let (-,-)2, be the L?-inner product on H?(X,R) with
respect to k, and let (-,-)2 g, e the induced L2-inner product on
det H?(X,R). Set H*(X,Z)t, := H*(X,Z)/Torsion.

Definition 4.11. For a basis {e1,...,ey,(x)} of H*(X,Z) over Z,
set

Volp2(H*(X,Z), k) : = det ({e;, ;)2 )

= (e1 VANREIVAN ebQ(X),el VANEERIVAN ebQ(X)>L27det,€.

Obviously, Vol;2(H?(X,Z), k) is independent of the choice of a Z-
basis of H?(X,Z)g; it is the volume of the real torus H?(X,R)/H?(X,Z)s
with respect to (-,-)zz2,. We can write Volr2(H?(X,Z), ) in terms of
the cubic form cx as follows:

Let L be the operator on H*(X,R) defined by L(¢) = Kk A ¢ for
¢ € H*(X,R).

Lemma 4.12. The following identity holds

(a,B)p2x = 3ex(a, kK, k) ex (B, K, k)

2 cx (K, Ky K)

In particular, Vol 2(H?*(X,Z),r) € Q if k € H*(X,Q).

Proof. Let ¢ € HY(X,R) = H?(X,R). By [59, Lemma6.31], one
has the orthogonal decomposition H!(X,R) = ker(L?) ® Rx with re-
spect to (-, )2 ,. Since

_CX(Sov@v’{) (SD € ker(Lz))
4.4 : _
4.4 2 0) 12 { sex(p, 0. 8) (9 €Rk)
by [59, Th.6.32], we get the decomposition
@5) o= (p-0mn) ) lOm) 2 6 e
CX(K‘a Ky KV) CX(’{v K, K:)
By (4.4), (4.5), we get
<0475>L2,§ — —¢ex(a— CX(OZ,K/,H)K;7 ﬁ_ CX(ﬁ?'%v’{)H’ &
’ CX(K'a K, '%) CX(Ii?K ’i)

1 (cX(a,n,m)ﬁ Cx(ﬁ,lﬁ},ﬁiﬂ7 n)

+ -cx )
CX(Hv K, ﬁ) CX(H7 Ky, K

—cx(a, B, k), o, 3 € H*(X,R).

2

_3ex(omm)ex(Bimn) g

2 cx (R, Ky K)
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This proves the lemma. q.e.d.

4.4.2. The BCOV invariant. Let us introduce the main object of
this paper.

Definition 4.13. For a Kéahler form « on X, the BCOV invariant of
(X,7) is the real number defined by
mBcov (X, 7)
= Vol(X,7)~3 Vol s (H(X, Z), [y)) ™ A(X, %) Tscov (X, )

= Vol(X,7) 2" 3 Vol (H2(X, Z), []) "

! V=InAn Vol(X,7)
exp |\ =5 [ : X, )| Tecov(X,7).
P [ 12 /X 8 ( 3 /3! H77||%2 c3(X,7) | Tecov(X,7)

In the rest of Section 4, we derive a variational formula for the BCOV
invariant.

4.4.3. The curvature formula for the BCOV invariant. Let
m: (X, X) — (5,0) be a flat deformation of X which is induced from
the Kuranishi family by a holomorphic map p: (S,0) — (Def(X), [X]).
Let wy x/g be the (1,1)-form on S induced from the Hodge form on
Def(X) via pu:
WH,x /8 = K WH.

Let gx /g be a fiberwise-Kéhler metric on TX' /S. Let «5 be the Kéhler

form of gx/s|x,. Let TBcov(X'/S) be the function on S defined by

macov(X/9)(s) = TBoov (Xs, 7s), s €S.
Theorem 4.14. The following identity of (1,1)-forms on (S,0) holds:

X
dd“log Tecov(X/S) = _XX) WWP,X/S — WH,X/S

12
xX(X)

= — <h1’2(X) + BTR + 3) wrwwp — pRicwwp.

Proof. We follow [62, Th.5.6]. Let A(X/S) and Tpcov(X/S) be the
C® functions on S defined by

A(X/S)(s) == A(Xs,7s),  Tecov(X/S)(s) := Tacov(Xs; Vs)
for s € S. By Theorems 3.5 and 4.9, we get

— dd®log[A(X/S) Tacov (X /S)]

X(X) .
+ 3 (1 e (det RIm Gy g1 N2 gy s ) = XX .

12
,q>0
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Since Rqﬂ*ﬂi/s # 0 if and only if p4+ ¢ = 3 or p = ¢, we deduce from
Proposition 4.6 that

(4.6)
— dd°1og[A(X/S) Tecov(X/S)] + Y pei(det RPm,QF, sl 2 g )
p>0
— (w*Ricwwp + V2 (X) p*wwp) — 3p*wwe
_ x(X) W
192 WP

Define a function Vol2(H?(X/S,Z)) on S by
Volp2(H*(X/S,Z))(s) := Vol 2(H*(Xs,Z), [s)),  s€S.

Recall that the notation €;(£) was introduced just before Lemma
2.16. Since m: X — S is induced from the Kuranishi family, there exist
holomorphic line bundles Ly, ..., Ly,(x) on X by Lemma 2.16 such that
Q:l(,cl)’)( = € for 1 < 7 < bQ(X), and such that Ql(ﬁl)/\' . '/\cl(ﬁbg(X))
is a nowhere vanishing holomorphic section of RIW*Q}Y /s Then

(4.7) 1€1(L1) A A€1(Lyy(x) = Vol 2(H*(X/S,7)).

2
HL279X/S

By the Serre duality and (3.5), 1(11),(2,2)®(€1(L1)A- - -A& (CbQ(X)))*l
is a nowhere vanishing holomorphic section of RQW*Q%( /s such that

(4.8) 11(1,1),22) @ (C1 (L) A=+ A 931(51)2()()))_1”%2,%/5
= Vol 2 (H*(X/S, 7))~ .
Let Vol(X'/S,~vx/s) be the function on S defined by
Vol(X'/S)(s) := Vol(Xs,7s).

3
Then % is a nowhere vanishing holomorphic section of R?’mQ:fY /s
such that
3 2
Tx/s

(4.9) 3IVol(X'/S)

= Vol(x/S)~L.

9x /s

L2

Substituting (4.7), (4.8), and (4.9) into (4.6), we get the equation:

(4.10)  — dd°log[A(X/S) Tacov(X/S)] + dd°log Vol 2(H*(X /S, Z))
+ 3dd®log Vol(X/S)

X
= <h1’2(X) + X(12) + 3) wrwwp + pRicwwp.
The theorem follows from the definition of the BCOV invariant and

(4.10). q.e.d.
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Remark 4.15. If we follow mirror symmetry and if XV is the mir-
ror Calabi-Yau threefold of X, the coefficient of p*wwp in (4.10) is
compatible with that of [6, Eq.(14)] since AM(XY) = hM2(X) and
X(XY) = —x(X).

For a higher dimensional analogue of Theorem 4.14, we refer to [18].

Theorem 4.16. The BCOV invariant tgcov(X,7y) is independent
of the choice of a Kdéhler metric on X. In particular, Tcov(X,y) is
an invariant of X.

Proof. Let X = X x P! — P! be the trivial family over P'. Let
Y0, Voo be arbitrary Kéhler forms on X. Let yy/p = {V}iepr be a
C*>°-family of Kéhler forms on X connecting vg and vo,. Since p*wwp
and p*Ric(wwp) are independent of ¢, log Tscov (X /P!) is a harmonic
function on P! by Theorem 4.14. Hence 7gcov (X /P!) is a constant
function on P!, q.e.d.

We shall write mpcov(X) for Tscov (X, ) in the rest of this paper.

Recall that birational Calabi-Yau threefolds X and X’ have the same
Hodge numbers hP4(X) = hP4(X'), p,q > 0. As an analogue, we
propose the following:

Conjecture 4.17. Let X and X’ be birational Calabi-Yau threefolds.
Then the ratio Tcov(X)/mcov(X’) depends only on the topological
types of X and X'.

5. The singularity of the Quillen metric on the BCOV bundle

In Section 5, we fix the following notation: Let X be a compact
Kéhler manifold of dimension n + 1 and let S be a compact Riemann
surface. Let m: X — S be a surjective holomorphic map, and we do not
assume that a general fiber of 7 is Calabi-Yau.

Let X be the critical locus of 7, and set

D :=mn(Xs), S?:=S5\D, X° = 11(89), 70 1= 7| xo.

Then 7%: X° — §¢ is a holomorphic family of compact complex mani-
folds, and Qico /50 is a holomorphic vector bundle of rank n over X°.

As in Sections 3 and 4, we have the holomorphic line bundles on S°:

Mo/ g0) = @g_p(det R, Q8 o)V,

A0 /50) = ®Z:ok(ﬂ’;’(o/so)(’”pp-

In this section, we construct holomorphic extensions of )\(Ql)’(o / go) and
A%, / go) from S? to S, and we study the singularity of the correspond-

ing Quillen metrics.
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5.1. The Kahler extension of the determinant line bundles.
Since 0} X/s = = Q! X/T Q g, we have the following complex of coherent

sheaves on X', which is acyclic on X (cf. [35, p. 94 1.12-1.16]):
0 — 7*Qf — QY — Q}/S — 0.
Definition 5.1.

(i) For p > 0, let Eg,/s

on X defined by

be the complex of holomorphic vector bundles

5§(/S: (T*Q5)®P — QL © (7 Q)PP
—_— Qg;l ® 7T*Q}9 —_— ng’
where the maps QZX ® (w*Q}g)@(P—i) N QZH & (W*Q}g>®(p—i—1) are
given by
For p =0, set 59(/5: 0— Oy — 0.
(ii) For p > 0, let .7-'/.1{, /s be the complex of coherent sheaves on X

defined by
Frpgi 0 —— &g —— Yy —— 0,

where r: O, — QX/S is the quotient map for p > 0 and the

identity map for p = 0.
Since tk(m*Q}) = 1, Fh

v/ 18 acyclic on X \ X for p > 1 and on X
for p=0,1.

Definition 5.2.

(i) Let A(&L / ) be the holomorphic line bundle on S defined by

p )
ME, 5) = QM @ (rak) =)D
=0

) be the holomorphic line bundle on S defined by
) = @k )

p>0
We call )\(Si,/s) and )\(Q;(/S) the Kdhler extensions of )\(QXD/SO) and

)\(Q;(o/so) from S° to S, respectively.

(i) Let A2} g

Since .7-"§, /s is acyclic on X'\ X, we have the canonical isomorphisms
of holomorphic line bundles on S°:

)‘(Qg(o/so) = X X/S)|SO Al ;(0/,5‘0) = )‘(Q;(/S)|S°'
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Let gx be a Kéhler metric on X. Let gy/s := gx|rx/s be the Her-
mitian metric on TX'/S|x\x,, induced from gx. Then gy /g (resp. gx)
induces the Hermitian metric gor s (resp. gor, ) on QF, /S| x\x, (resp.
OFf,) for all p > 0.

Following Bismut [9] and Yoshikawa [63], we determine the singu-
larity of the Quillen metric on A(Q,, /SO) near D with respect to the
Kébhler extension and with respect to the metrics gy /g, 9o,

5.2. Three Quillen metrics on the extended BCOV bundles.
Let 0 € D. Let (U,t) be a coordinate neighborhood of 0 in S centered
at 0 such that Y = A and U ND = {0}. Weset U° :=U\D =U\ {0}.

Let kg be a Hermitian metric on Q}g such that kg(dt,dt) =1 on U.
Then *kg is a Hermitian metric on 7*Q%. Let gn=q), be the Hermitian

metric on W*Q§|X\EW induced from ga, by the inclusion W*Q}g c QL.
Since

kg (dm, dr) = 7 {ks(dt,dt)} = 1,
gw*ﬂé(dw,dw) = Jay, (dr,drm) = ||d7"||2

on 7~ (U), the following identity holds on 7= (f):
reay = |ldm® 7*ks.

We define three Quillen metrics on the Kéhler extension )\(é’fc / S)|uo
as follows.

Definition 5.3.

(i) Let || - be the Quillen metric on /\(QQO/SO)WO

be the

2
H>\(Q§(O/SO)1Q79X/S

. . 2

with respect to gy/g and 9e%, ¢ Let || HA(£§5/5)7Q79X/S
. . p . . 2

Quillen metric on A((SX/S)\UO induced from || HA(QQO/S()),Q,Q;«/S by

the canonical isomorphism )\(Qio/so)mo = )‘(Efg/sﬂu‘)‘

2 =12
W, 0.00xs = 1IN0 500 Qx5

(ii) Let || - be the Quillen metric on A(Q4 " @

”)\(QP 7«®(71_*Ql )®7,) Q 71'*k’
(m*QE)®")[ygo with respect to gy s and gop-i © ¥ kg. Set
X

(-1)?
I 13cez o @mks = ®H MO 0L)59,Qrks
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(iii) Let ||-[|?

O (r QLYo Q) be the Quillen metric on A(Qg/_i ®

W*Q‘ls,

(W*Q}g)@)i”uo with respect to gy,s and Jar- ® Greql - Set

p
2 ~1)°
H H)\(gfc'/s)’Q’g‘/r*Ql ' @ Qp Z *le)®i):ngﬁ*Qé'

When p = 0, we have the following relations
2 RTINS EERTITD)
|| . H)‘(g.())(/s)zQ’gX/S - || ”)\(58(-/5),Q,7T*k5 - || H)\(SB(/SLQ»Q,\.*Q%

_ 2
- || ' H)‘(OX)7Q79X/S'

We shall prove that log || - || has logarithmic singularities

ey /S)quQX/S
at 0 € D, whose coefficients are determined by the resolution data of
the Gauss map.

5.3. The Gauss maps and their resolutions. Let IT: P(Q}) — X
be the projective bundle associated with the holomorphic cotangent
bundle Q. Let ITV: P(TX) — X be the projective bundle associated
with the holomorphic tangent bundle TX. Then the fiber P(T,X)Y
is the set of all hyperplanes of T, X containing 0, € T,X. We have

P(QY) = P(TX)".

We define the Gauss maps v: X \ 8, — P(Q4) and p: X\ &, —
P(TX)Y by

v(z) = [dr,] = [Z 3 x) dz;
Zi

Then v = p under the canonical isomorphism P(Q2},) 2 P(TX)V.

Let L := OP(Q%«)( 1) C II*Q% be the tautological line bundle over
P(QL), and set Q := IT*Q% /L. Then we have the following exact
sequences S of holomorphic vector bundles on P(2}):

S:0— L — "y — Q — 0.

) p(x) = [Tsz(x)]'

Let p < n. Since rk(L) = 1, this induces the following exact sequence
of holomorphic vector bundles on P(Q}.):

KP:0 — LP — IT*QY @ LP71 —
p
—>H*Q§(_1®L—>H*Q§( —>/\Q — 0,

where Qb — AP Qs the quotient map and H*QQ@LP_Z' — IO ®
[P~ 1 s given by w ® 0®P~) s (WA 0) @ e®P=7D for w € IT*QY, and
o € L. Then

fp

X5 = VP,
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Similarly, let H := OP(%{ )(1), and let U be the universal hyperplane
bundle of (ITV)*TX. Then the dual of S is given by

SV:0—U— (IIV)'TX — H — 0.
Since T, X /S = {v € T, X; dry(v) = 0}, we have
TX/S = p*U.

Let gy be the Hermitian metric on U induced from (IIV)*gy, and
let gy be the Hermitian metric on H induced from (ITV)*gy by the
C™-isomorphism H = U+,

Let gr, be the Hermitian metric on L induced from I7 *g%{ by the
inclusion L C IT*Q},. Let gg be the Hermitian metric on @ induced from
n *g%( by the C*®-isomorphism @Q = L+. We consider the Hermitian
metric g gi gre—i ON Q% ® LP~" induced from H*g%(, gz, and we
consider the Hermitian metric garg on AP @ induced from gg. We define
K’ to be the exact sequence KP equipped with the Hermitian metrics
{gU*Qﬁy orp—i} and garg. Then we have the following isomorphisms of
Hermitian vector bundles over X' \ X,:

(5.1) Fres=vK',  (TX/S,gxss) = (U, gv).

Since dm is a nowhere vanishing holomorphic section of v*L|y\x , we
get the following equation on X \ X

—dd®log ||dr||® = v*e1 (L, g1).

Since X, is a proper analytic subset of X, the Gauss maps v: X'\
Yy — P(QY) and p: X\ S — P(TX)Y extend to meromorphic maps
v: X --» P(QY) and p: X --» P(TX)Y by e.g., [45, Th.4.5.3]. By
Hironaka, there exist a projective algebraic manifold X , a divisor of
normal crossing £ C X, a birational holomorphic map q: X — X , and
holomorphic maps 7: X — P(QY) and p: X — P(TX)V satisfying the
following conditions:

(1) q|£\q_1(2ﬂ): X\ ¢ (2,) — X\ & is an isomorphism;

(i) ¢~ '(2r) = E;
(iii) 7 =vogand i=poqon X \ E.

By (iii), we have 7 = i under the canonical isomorphism P*(Q}) =
P(TX)V.

We set 7 := 1oq and X; := 77L(t) for t € S. Similarly, we set Ej, :=
ENX, for b€ D. Then E = yepEy, because E = ¢~ 1(S,) € 7~ 4(D).

5.4. The singularity of Quillen metrics. To understand the regu-
larity property of the BCOV invariant near the boundary of the moduli
space of Calabi-Yau threefolds, we recall the function space B(U) intro-
duced by Barlet [3]. The reader who is not interested in the asymptotic
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expansions of the BCOV invariant near the boundary of the moduli
space can replace B(U) by the space of continuous functions C°(2/) in
the rest of Section 5.

We define a subspace of C°(U) by

Bu)=cxue @ @ ogl) ).

reQn(0,1] k=0

A function ¢(t) € B(U) has an asymptotic expansion at 0 € D, i.e.,
there exist r1,...,r, € QN (0,1] and fo, fix € C°WU), I =1,...,m

k =0,...,n, such that p(t) = fo(t) + Y1ty Yoo [t17 (log [t fir(t)
as t — 0. In what follows, if f(t), g(t) € C*°(U°) satisfies f(t) — g(t) €
B(U), we write

f=Bg

It is obvious that f =g ¢ implies f — g € CO(U).
The purpose of Section 5 is to prove the following:

Theorem 5.4. Let 0, be a nowhere vanishing C* section of the
Kahler extension A( X/S)|L1 Then

log HUPH)\ &P

X/S) QQX/S
(/EO j= 0

1P {Td(U)
. q*ch(Q&)) log [t|%.

Td(e1(H)) — e~ P-dler(H)
1(H)

c

The proof of Theorem 5.4 is divided into the following three interme-
diary results, whose proofs shall be given in the subsections below:

Proposition 5.5. The following identity of functions on U holds

2 _
log([[ - ||,\(5§€/S),Q7gx/s/|| H)\(gx/s) Qg”*ﬂls) =g 0.

Proposition 5.6. The following identity of functions on U holds

2

” HA(EQ‘/SLQ)QW*Q}S _B
2 =

[RPe—

p ke ]_ — 6—(p—j)c1(H) x ] 9
|y Ta) e (%) | g
0

J=0

log
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Proposition 5.7. The following identity of functions on U holds

log ||Up(t)H§(g§( $),Qurks —B
T H)) -1 ;
/ iz {ma(e) THAED =LY ey | g
Eo

Proof of Theorem 5.4. By Propositions 5.5, 5.6, and 5.7, we get

2
log HUPHA(sff/S),ny/S
I 113

T e o oms
X/S s S

12
|| |’)‘(8§(/5)7Q79X/S i/s)vagﬂ.*Q}S

+ log

= log 5
B, 000,01

+10g||‘7p”)\ 7 $) Qi ks

_ 7 1 — e~ (P—der(H)
=5 (/onz;(1 — {Td(U) o' () }

: q*ch(ﬂj;})> log [t]*

(/1on > 1)7- J~*{Td(U)Td(cl(H))—1}

C1 (H)
: q*ch(9§)> log [t

_ (1) Td(ea(H)) — et
:B( > {Td(U) e }

: q*ch(Q{;{)> log |¢|%.

This proves the theorem. q.e.d.

5.5. Proof of Proposition 5.5. Let 9, @ (r*QL)®0—i) be the Hermitian
metric on Q% @ (7*QL)®P~) induced from gy, r-qy- We define ?I;(/S
to be the complex of holomorphic vector bundles .7-"§, /s equipped with
the Hermitian metrics goi g (r-oL)em-i on Q@ (r*Q5) 2P~ and 9e%, ¢
on QX/S

Let 7, (resp. 7x) be the integration along the fibers of 7 (resp. 7).

For a C* differential form 1 on X, one has 7. (¥)%9 € BU) by [3,
Th. 4bis].
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Since ]:f( /s is acyclic on X°, the following identity of C'*° functions
on S° holds by the anomaly formula [11, Th.0.3]:
(5.2)

112
|| H)‘(gi'/s)vagX/S (070)

log — <Td(TX/S, 9x/5) cNh(f?c/s))

2
H ||A(5§/S)7Q’QW*Q§
By (5.1), the following identity of C*° differential forms on X'\ X, holds:
TA(TX/S, gx/s) h(Fhss)| s, = w*Td(U, gu) v*ch(K").

Since ¢, = (¢71)* on X \ ¢~1(2,), this yields the following identity on
X\ X

TA(TX/S, gx/5) (Fe 5|, = (0)e { A TAW, g0) 7 ()}

Hence we get the following equation of C*° functions on S°:

~ (0,0)
(5.3) 7. (TA(TX/S, g3 5) () L,

_ [%* {ﬁ*Td(U, a) a*éh(fp)H oo

Since {*Td(U, i) v*ch(K7)}™™ is a C* (n,n)-form on X and since
the projection 7: X — S is proper and holomorphic, the right hand side
of (5.3) lies in B(U) by [3, Th. 4bis|, which, together with (5.2), (5.3),

yields the result. q.e.d.

5.6. Proof of Proposition 5.6. For 0 < i < p, we deduce from the
anomaly formula [11, Th. 0.3] that

2
[ - HA(ngeg(w*g}q)@@—i)),Q,gﬁmg

(5.4) log 5
H . HA(Q?X®(W*Qé)®(p7i))7Q’7r*ks

" (0,0)
™ k:57 gw*ﬂé))
= Tx (Td(TX/Sv gX/S) Ch(Q.ZXv .gX) C’B((F*Q}S«)@)(p—l)j

)
ks, ||dr||*7 kg)) .
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Since v*e1(L, gr)|x\x, = —ddlog |dr||? and ¢1(Q}, ks) = 0 on U, we
deduce from (3.7) that

(5.5)

* RN 2l _x7.®l
(x4 kG, xR L
- 1 * * @
= Z — Z c1 ((w Q5% o k‘?l>

m=1 " atb=m—1

b
o (7 Q8)®, |dm |7 kS ) log a1

Wwrei(Lgr) _q
e
log ||dx|?.

=1
= —(—dd®log ||dx|PHY™ log ||dr||? = ——————
Z ( g lldr||*) g || drl|] vrer (L gn)

By substituting (5.5) and Td(T'X/S, gx/g) = p*Td(U, gv) into (5.4),
we get
(5.6)

|| ||)\(Q Q(mT*QE)®P=1),Q,9, « *ol
log
|| ||>\(Ql Q(m*QE)®P=9),Q,m*ks

uo
- L elp—iv ei(Lgr) _ s g2 (0,0)
= Tx {,U, ( agU)C ( ngX) V*Cl(L,gL) Og” 7TH }
o ce(Q e(P—i)"c1(Lgr) _ q ‘ol g2 (0,0)
—w*{u (U, g9v) ¢"ch(Qy, gx) oo ¢ (log [|dr|] )} ;
which yields that
1 1B
Qvgﬂ.* 1
(5.7)  log LR
I Bey, amss ),
113 s ;
Ld A(QJX@)(W*Q};)@(’””),Q,gﬂm}g
- Z(_l) -2
j=0 M @(rQL)®P=1)),Q,m kg
P
— 7. [q (log [|dr|*) Z 1P Td(U, gv) 7°
=0
e(P=iei(Lgr) _ 1 . h(Qj | (0,0)
: qc ygx .
Cl(LagL) *

Lemma 5.8. Let ¢ be a O and 0-closed C> differential form on X.
Let (E,|| - ||) be a holomorphic Hermitian line bundle on X. Let s be a
holomorphic section of F' with div(s) C Uyep Xp. Then the following
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identity of functions on U holds

7 ((log ||s]1%) ) =5 (/ _ @) log [t[*.
div(s)NXo

In particular,

%, (q" (log [ dx]2) ) @Oy =5 ( /E @) log |t
(0]

Proof. See [63, Lemma4.4 and Cor. 4.6] q.e.d.

Since Y2/_o (=17 5" TA(U, gu) 7" {70 5 7= ) 0" ch (Y, )

— C1 (ngL)
is a O differential form on X and since v*ci(L) = —p*ci(H) in
H?(7Y(U),Z), Proposition 5.6 follows from (5.7) and Lemma 5.8.

q.e.d.

5.7. Proof of Proposition 5.7. We need the following result:

Theorem 5.9. Let £ — X be a holomorphic vector bundle on X
equipped with a Hermitian metric he. Let A\(§) = det Rm,§ be the de-
terminant of the cohomologies of & equipped with the Quillen metric
Il - H?\@)Q with respect to gxss and §. Let s be a nowhere vanishing
holomorphic section of A(§)|y. Then

log 1513, xe) = < / k {Td(U) T‘“%{};‘l} q*ch@)) log 1]

Proof. See [63, Th.1.1]. q.e.d.

Let o, ;) be a nowhere vanishing C* section of A(Q%@(W*Q}g)éé(l?—j)) .
Then

P (=PI
Tp = ®jm00(p.j)

is a nowhere vanishing C* section of A(é’f{/sﬂu. Since m*Qk is trivial
near Fy and since

p

2 _ —7 2
IOg H ' ||A(€§./S)7Q7ﬂ*ks — Z(_l)p J log ” ’ ||)\(Q];.Y®(7F*Q_lg)®(p7j>)7Q7ﬂ'*ks’
=0
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we deduce from Theorem 5.9 that

log HUpHi &r, S),Qﬂr*ks‘u

: 2
Z D7 og 106.) 1\ 1,0 rv0 20-0),Qureks

—p ([ED ﬁ*{Td(U)Td(Ccll((fI?))—l}

(@ © (7Y log

Td(e1(H)) — 1 ;
=5 / P {Td(U) (c1(H)) } g*ch(Q%) | log [t|*.
Eo = 0 ci1(H)
This completes the proof of Proposition 5.7. q.e.d.

5.8. An extension of Theorem 5.4. Let h -1, be a Kéhler metric

on 7 (U), and let hy /g be the Hermitian metric on T'X /S induced from
hr-1@)- We do not assume that hr-1) extends to a Kéhler metric on

Theorem 5.10. Let 0, be a nowhere vanishing C* section of the
Kdhler extension A( X/S)’u Then

log ||UpH>\(5P/S) Q, hX/S‘Z/( =B

p 7 ~* Td(Cl (H)) — ef(P*j)Cl(H) i ; ,
(/Eo] 0 {Td( ) c1(H) } q Ch(Qx)) log [t[*

Proof. By the anomaly formula [11, Ths. 0.2 and 0.3], we have on U°
(5.8)

log (H . Hi@;/sw,hws/\l : Hi(zs;/s),Q,gX/s>
(0,0)
:Z )q . (Td(T?(/S gx/S;hX/S) Ch(QX/S’h /s))
q
- (0,0)
Z )9q s (Td(TX/Sa QX/S) Ch(QX/S; 99, /5 )> .
q

Let hy be the Hermitian metric on U induced from (ITY)*hr-14. Let
hgi, be the Hermitian metric on Qﬁ(|ﬂ_1(u) induced from f -1y Let

Bess

th( s be the Hermitian metric on Q% /s induced from hq1 . Let hreq be
the Hermitian metric on AY(Q) induced from I1*hg1 . Then we have the

following isomorphisms of holomorphic Hermitian vector bundles over
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X\ X
(5.9)
(TX/S, hX/S) = ,LL*(Ua hU), (Qg(/s,hgqx/s) = y*(/\qQ,h/\qQ).

By (5.1), (5.8), (5.9), we get
(5. 10)

13 /I 13 er
A(SX/S QhX/S A(gx/s)7Q7gX/S

(0,0)
Z )q T (u Td(U gu, hy) v*ch(A1Q, h/\qQ)>
q

(0,0)
+ > (1) 7, (7 TAU, u) 7 R(ANQ: grog.hraq)) =80
q

Here the right hand side of (5.10) lies in B(U) by [3, Th. 4bis|, because
U TAW: by, gu) 7 eh(A1Q, hrag),
A TA(U, gu) 7*ch(NQs hpags graq)

are C™ differential forms on #~1(U). The result follows from Th. 5.4
and (5.10). q.e.d.

5.9. The case of ODP. In Subsection 5.9, we assume that >, N Xy
consists of non-degenerate critical points. Hence Sing(Xy) consists of
ODP’s. For y € &, let my, be the maximal ideal of the local ring
Ox,y. Then there exists a neighborhood of X in X on which Zy, =
DyeSing(xo)My- Let ¢: X — X be the blowing-up of the discrete set 3, N
Xy, and set E, := ¢ 1(y) for y € Sing(Xy). Then Ey = Iy eSing (x0) By
and E, = P".

Since ¥, is discrete, we may identify P(Q}) and P(TX) with the
trivial projective bundle on a neighborhood of N X{ by fixing a system
of coordinates near >, N Xg. Under this trivialization, we consider the
Gauss maps v and p only on a small neighborhood of ¥, N Xy. Then
we have the following on a neighborhood of each y € ¥ N Xj:

o) =) = (o) e o).

Since 7 is non-degenerate at every y € X N Xy, we may assume by
Morse’s lemma that 7(z) = 22 + .-+ + 22 near % N Xo. Hence, the

composition v o q: X \ Ep — P" extends to a holomorphic map v :=
vogq: X — P" such that

E|E:mE = idg.
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ForneNand 0 <p <n, set

B p n4+1 ( _j+1)n+2 (p ])n+2
o(n.p) _Zo ( > (n+2)! '

For a formal power series f(z) € C[[z]], we define f(z)|zm to be the
coefficient of 2™ of f(z). Recall that the metric hy /g is defined only on
TX/S|r1un\s

Theorem 5.11. Let 0, be a nowhere vanishing C* section of the

Kahler extension /\(Sg,/s)\u. Then the following identity of functions
on U holds

(—1)Plog Hap(t)Hi(Sf(/S),Q,hX/s =5 (—1)"(n,p) #Sing(Xo) log |t|2-

Proof. In Theorem 5.10, we can identify U (resp. L) with the uni-
versal hyperplane bundle (resp. tautological line bundle) on P". Then
H = L' Set z:=ci(H). Hence [, z" = 1. From the exact sequence
0—U — C""!' - H — 0, we get Td(U) = Td ! (x ) (1—e%)/z.
Since q(Ep) consists of a point, we get q*QJ |E, = =C® 1). By substi-
tuting this and the equation ¢ ch(Q] e, = (”;1) into the formula in

0
Theorem 5.10, we get
(5.11)

P R Td(cy(H)) — e~ w=erH) .
L2 {Td(U) v }q ch(%)

=0

_ 4Sing(X,) Zp:(_l)p,j 1 Td(z) —xe—(p—j)a: , (n;r 1)

xn

_ <nj+1) {(w—i);ww . é }

T

(=1)P~ <n;i— 1> {e= =itz _ o=(p=i)zy .,

= #Sing(Xo)

= #Slng(Xo)

17 117-

&:

=0
= (=1)"774(n, p) #Sing(Xo).
The result follows from Theorem 5.4 and (5.11). q.e.d.
Lemma 5.12. The following identities hold:

3
19
0(3.p)+0B3.3-p) =1 (0<p<3), > pd@B.p) =
p=0

Proof. By the definition of §(n, p), we get

1 27 93 119

0(3,0) = 550 0B 1) =55 B2 =155, 63,3) = 155,
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which yields the result. q.e.d.

Set
o= ®g:001()_1)pp.

Then o is a nowhere vanishing C'*° section of A(£2%, / g) near D.

Theorem 5.13. When n = 3,

19 .
log HU(t)Hi(Q;(/S),Q,hX/S =5 — #Sing(Xo) log 1t]?.

Proof. By Theorem 5.11, we get
3

2 2
log o1} (s, 0).Qux/stt = > (—1)Pp 10%HUpHA(g;/S),Q,gX/S!u
p=0

3
=5 (-1)*>_pd(3,p) #Sing(Xo) log|t[*.
p=0
This, together with the second identity of Lemma 5.12, yields the result.
q.e.d.

Remark 5.14. In our subsequent paper [19], we shall determine

the behavior of log ||G(t)”?\(93(/5)7Q:hx/s as t — 0 for arbitrary relative

dimension n.

6. The cotangent sheaf of the Kuranishi space

Let X be a smoothable Calabi-Yau n-fold with only one ODP as its
singular set. Let p: (X, X) — (Def(X), [X]) be the Kuranishi family of
X with discriminant locus ©. Then X, Def(X), and ® are smooth by
Lemmas 2.3 and 2.7.

Lemma 6.1. The dualizing sheaf Kx of X is trivial. In particular,
the relative dualizing sheaf Kx/pet(x) = Kx ® (p*KDef(X))—l is trivial.

Proof. By the same argument as in [62, p. 68 1.25-1.28], we see that
Kx|x, = Ox, for all s € Def(X). Since Def(X) = AN+ we get the
triviality of Ky by the same argument as in [62, p. 68 1.29-1.33]. q.e.d.

Recall that the Kodaira-Spencer map

Pt (X)\D: Opet(x)\® — RB'P+Ox/Det(x)IDet(x)\®

was defined in Subsection 4.2. By considering the dual of pper(x)\®;
the relative Serre duality induces an isomorphism of Opet(x)-modules
on Def(X) \ ©:

Phetxon B (3 per(x) © Ka/pet(x)) e (x1\® = Qber(x) IDet(x)\0-
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Theorem 6.2. The isomomorphism p]\sef(X)\Q extends to an isomor-
phism
Phoi(x) B0 ( R per(x) © Kx/bet(x)) = Derx)
of Opet(x)-modules over Def(X).

The isomorphism p%ef( X) is again called the Kodaira-Spencer map.

Before proving Theorem 6.2, we first prove an intermediate result in the
next subsection.

6.1. Blowing-up and the regularity of differential forms. Set

Artl = {(2,[¢]) € A" X P 2i(j—2;G=0 0<i,j<n}, q:=pr.

Then q: Ant1 — A™FL ig the blowing-up at the origin. Set E := ¢~1(0)
and

Ul {(Zv [C]) € AnJrl; CZ 75 0}7 OZ = {Z € An+1; Zq 7é O},
Wi L= {(CO?' . 'aCi717Zi7<i+la v 7(71) € CTH_I; |Z’L| < 17
2l <1 (G #0)}-

Then U; =2 W; C C™*! via the map
Wi 3 (Cos-vsCim1y 2iy Citly -+ -5 Cn)
- ((ZiCOa co vy 2iGim15 Ziy 2iGit 15 - -+ 2iCn),
ot Gt Gyrs '”2Cn]> cU;.

By construction, we have Antl = Ui Ui and

ENU; 2 {(¢os--+,Gi—1,2i,Cit1s- -, Cn) € Wi 23 = 0}, q(Ui) D O;.
Let wj; be the C* (n,0)-form on O; defined by
’Zj’z .dZO/\'”/\dZi_l/\dZZ‘_;,_l/\-"/\dzn

— |20’2+"'+|2n‘2 Z;leZj

wij :

Lemma 6.3. For all 0 < 4,5 < n, the C* (n,0)-form q¢*w;; on
¢ H0;) = U; \ E eatends to a C™ (n,0)-form on U; and satisfies
¢*wij|Enu, = 0.

Proof. Since
qlw; (Cos - -+ Gim15 215 Gt 15 - -+ Gn) = (2iC05 - - -5 2iGim15 Zis 2iGit 1, - - - 2iCn)
under the identification U; =2 W;, we get the following two formulas:

] Els _LIGPA+et) ™ (G #9)
! <|zo\2+-~+ |Zn|2) _{ 3+ l¢?) (=),
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q" (z;(nfl)dzo A ANdzi—1 Ndzigr A+ A dzn>
=z

;(nil)d(ZiCD) A A d(ZiCi—l) A d(ZiCi+1) AERIA d(ZzCn)

:ZidCO/\"'CE"'/\an‘i‘dZi /\Z(_l)j—ldco/\...@...@.../\an
i<t
+dzi N (=1 dGo A dG - dGy - AdGy € AU,
7>
which yields that ¢*w;; € A™O(U;) and q*wii|gry, = 0. Since Cwij =
lﬁw ¢*w;; when j # 4, the assertion for ¢*w;; (i # j) follows from the
assertion for g*wy;. q.e.d.

6.2. Proof of Theorem 6.2. For simplicity, we set

X=X, S:=Def(X), m:=p, 0:=[X], Xo:=X, N+1=dim§.
Hence (S,0) = (AN*1,0) and 7: (X, Xy) — (S5,0) is the Kuranishi
family of Xg.

Let s = (sp,...,sn) be a system of coordinates of S such that © =
div(sg). We set ' = (s1,...,sn). Then 9/0s, is a nowhere vanishing
holomorphic vector field on S for 0 < a < N.

(Step 1)

The Kodaira-Spencer map pg\p: O5\p — R1W*®X/5|S\® yields holo-
morphic sections p(0/0s.) € H(S\ D, R'm.0y/5). Let ()5 be the
Yoneda product between H"'(X,,Q% ® Kx,) and Exty (Q% ©
Kx,, Kx,).

Since h" (X, Q) = N 41, there exist

¢07"' 7¢N c Hn_l(ng‘g(/S ®KX/S)

such that
(i) {¢0,...,¢nN} is a basis of R”_lm(Q},(/S ® Ky/g) as a free Og-
module;
(i) {dolx,,---,®n|x,}is a basis of H" 71 (X, Q§<S®KXS) forall s € S,
(ill) (Palxosp0(0/0sg))o = dap for 0 < a, 3 < N.
Let py: H" 1(X,, Q% ® Kx,) — Q% be the dual of the Kodaira-
Spencer map. For s € S, set

9ap(8) = (Palx,, ps(0/0sp))s = <<P<\s/(¢a|Xs>va/83ﬁ>>7

where ((-,-)): Qé’,s x TSy — C is the natural pairing. Then g3 is a
function on S, which is holomorphic on S\ ® but which may not be
continuous on S, such that

ga;@(o) = 5046-
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It suffices to prove gog € C°(9); if it is the case, (gag(s)) is a family
of invertible matrices depending holomorphically on s € S, so that
R”_lw*(Q;/S ® Ky/g) is the holomorphic dual bundle of ©g via the

extension of pg\g.
(Step 2)
Let Ax be the sheaf of germs of C*° functions on X, and let AR? be
the sheaf of germs of C*° (p, q)-forms on X. Set
APA( X, Qk/s ® Kyg) :=T(X, A @0, Q}\,/S @ Ky/s)-

Then AP(X, Q%{/s ® Kx/g) is the vector space of C*° (p, q)-forms on
X with values in Q},(/S ® Ky/s. By Malgrange [40, p. 88, Cor.1.12],
Oy is a flat Ay-module. Hence, we have the Dolbeault isomorphism
[1, Chap. VII, Prop.4.5]
H" 1(X, Qs @ Kx/s)
ker{9: A1 (X, Qf g ® Ky yg) — A™(X, Q)5 ® Kx)s)}
- Im{0: AOn—2(X, V%5 ® Kays) — ADn=H(X, Q% 6 ® Kxys)}

Let &, € AO’"*l(X,Q}WS ® Ky/g) be a 0O-closed differential form
representing ¢, i.e., ¢po = [Pq].

(Step 3)

To study the behavior of g,g(s) near ©, we compute a representative
of the Kodaira-Spencer classes p(0/0s,) in the Dolbeault cohomology.

Near the critical locus ¥ C X, there is a neighborhood V = A"*1 x
AN of ¥, in X such that 7(z0,...,2n,8") = (28 + -+ 22, 51,...,5N).
Hence, we have £, NV = {0} x AN, For i =0,1,...,n, we set

Vii= AT A x AP AN = {(2,5)) € A" x AN 2, £ 0}

and Vi(3) == {(2,¢) € Vi |51 < 5( = 0,...,n)}. Then {V;}1 is an
open covering of V\ X, i.e.,, V\Xr = J, Vi. Let {Vi} e be an open
covering of X'\ Ui, Vi(3) such that Vy = A" x ANFL and 7|y, = pr,.
Then U := {V;}; U{V)} is an open covering of X' \ .

First let us construct a representative of the Kodaira-Spencer class
p(0/0s4) in the Cech cohomology with respect to the covering 0.

On V;, set

. 10 @W_ 9

vy = v = —
0 ’ a
22; 0z 05q

Then v(()i),...v%) € H°(V;,0x) and m(v&i)) = % (¢ =0,...,N). We

also fix a holomorphic vector field ’U,(;\) such that m, (U&/\)) = % on every

V. We get in Cech cohomology

0
P (85) = {0 —vN v tvv.ew € HH(X \ 2, Oy 5: D).

(a=1,...,N).
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Let {xi}i U {xx}r be a partition of unity of X \ X, subject to the
covering ¥ such that on VZ(%)7

Then the following differential form &, € A% (X \ X, Oy /g) represents
p(0/0s4):

_ 0
o= S () =) (5] <] €512

In particular, we get on V' \ 3

1 0

272;1-8721:’ 506“/\277:0 (a:l,,N)

Solns, =06 ®
i=0

(Step 4)

Let us study the behavior of gasls\o(s) as s — D. Let o(z) €
C§e(A™1) be a cut-off function with ¢ = 1 near 0 € A™™!. Recall
that +(-) denotes the interior product. There exists hog(s) € C*(S5)
such that for s € S\ D,

G05(5) = (Bl 9s(0/3))s = /X (€5) 2
— / 0(2) - 1(Ep)Bac + s (5).
XNV

Since {g = 0 on V\X; for 8 # 0, gapls\o(s) extends to a C*° function on
S if B # 0. Let us prove that gao|s\p extends to a continuous function
on S.

Since P, is a (0,n — 1)-form on X with values in Q}Y/S ® Ky,g, we
can write

Caly =) 0a(2,5) [dz] @1
=0
with [dz;] = dz; mod Oxm*dsg + -+ + Oxm*dsy, 08, € AY"~L(V), and

i1 dzg N -+~ ANdzi—y Ndzjp1 N -+ Ndzy

v == (=1)

dzg N\ -+ Ndzp,
=Res| 57—
z5+ -+ 2

Vi



ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 219

Hence, we have the following formula on V;

(6.1)

n_o 1 9 n
L(&))(pah/i =1 Zaxj & Ec‘)iz] ZQQ [de] & 77|Vi
j k=0

n

1= x; A0 1 .
== % Anly, = ZZ(—UHZ 27200, N Owij,
j=0 I j=0

where we used the following relations to get the second equality:

n

~ 1 0 X

L Zaxj(g)%aizj stk‘:Ov k:O,,N
7=0

Let ¢: X — X be the blowing-up along the submanifold >, C V with
exceptional divisor E := ¢~ !(3;) = P(Ny, /x). Then ¢|g: P(Ny, )v) —
¥, is the standard projection. Since n > 3 and since {U; x AN}, is an
open covering of Vo= q 1 (V), we deduce from Lemma 6.3 and (6.1)
that ¢*(0(&0) o) € A (X).

Set 7 = mogq. By King [32, Th.3.3.2], we have T.q*(¢(¢0)Pq) €
C°(S). Since

9oo|s\o = T (L(§0)Pa) = =g (¢(€0) Par),

gao|s\o extends to a continuous function on S.

(Step 5)

Let sp € ©. We must prove limg\ 5,5, Jasls\o(5) = gas(s0). Let
Ys, be the proper transform of Xg,. Since ¢71(Xj,) = Y5, UE and since
9apls\ extends to a continuous function on S, we get

lim gosls\o(s) = / ¢ (1(5) %)
S—S0 qil(Xso)

:/ q*(b(fg)‘I’a)+/Eq*<b(§ﬁ>@a)'

Yso

Since ¢*(1(¢8)®q)|E = 0 by Lemma 6.3 and (6.1), we get

tn guslsio(s) = [ @) = [ e,

YSO (XSO )reg

0
= <¢O¢|Xsovpso <(98ﬁ>> = gaﬁ(30)7

where we used Lemma 2.9 to get the third equality. This proves gs(s) €
C(S), completing the proof of Theorem 6.2. q.e.d.
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7. Behaviors of the Weil-Petersson metric and the Hodge
metric

In this section, we study the boundary behavior of the Weil-Petersson
metric and the Hodge metric for one-parameter families of Calabi-Yau
threefolds that shall be used later. We first recall some basic notions
about positive (1, 1)-current and give two lemmas on harmonic functions

on A*.

7.1. Positive (1,1)-currents and their trivial extensions. Let u
be a (1,1)-current on A. Then u is positive if u is real and if the
inequality u(¢p) > 0 holds for all non-negative functions ¢ € C5°(A).
For real (1,1)-currents u, v on A, u > v if w — v is a positive (1,1)-
current on A. For a divisor H on A, let 6 be the current of integration
over H. A real-valued function f € L{ (A) is subharmonic if f is upper
semi-continuous and if ddf > 0 as currents on A.

Let wa+ be the Kahler form of the Poincaré metric on A*:

V—=1dt Ndt .

A C* real (1,1)-form T on A* has Poincaré growth if there exists
C > 0 with

wA*

(7.1) —Cuwpr <T < Cwpx.

In that case, the coefficient of T lies in L{ _(A). The (1,1)-current on
A defined by

() = /A OT, e CP(A)

is called the trivial extension of T from A* to A. We have wpx =
—dd®log(— log [t|?) as currents on A.

7.2. Two lemmas on harmonic functions on A*. The following
two lemmas about harmonic functions are standard. So we omit the
proofs.

Lemma 7.1. Let H(t) be a real-valued harmonic function on A*
such that H(t) = O(log(—log|t|)) as t — 0. Then H(t) extends to a
harmonic function on A.

Lemma 7.2. Let A\(t) be a positive, locally L™-integrable function
on A for some m > 0. Let x(t) be a function on A* satisfying x(t) <
C (—log|t|+2), where C € R is a constant. Iflog A(t)+x(t) is harmonic
on A*, then there exists ¢ € R such that

log A(t) = ¢ log [t|* + O(|x(t)| + 1) (t —0).



ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 221

7.3. The boundary behaviors. In Subsection 7.3, we fix the follow-
ing notation. Let X be a (possibly) singular complex fourfold and let
m: X — A be a proper surjective holomorphic function. Assume that
X; := 7 1(t) is a smooth Calabi-Yau threefold for t € A*. We do not
assume that the central fiber Xy has only ODPs as its singular set. Re-
call that the Weil-Petersson form wwp x/4 and the Hodge form wy x4
for m: X — A were defined in Sections 4.3 and 4.4.3, respectively.

Proposition 7.3. There exists a positive constant C such that
(72) OSWWP,X/ASCWA*a OSWH,X/ASCWA*'

In particular, the positive (1,1)-forms wwp x/a and wy x/a on A* ex-
tend trivially to closed positive (1,1)-currents on A.

Proof. We follow [39, Proof of Th.5.1]. Since (7.2) is obvious when
wi,x/a = 0, we assume that wy x4 does not vanish identically on A*.
Shrinking A if necessary, we may assume that wy x4 is strictly positive
on A*. Let b € A*. Since wy x4 is non-degenerate at b, the deformation
germ 7: (X, Xp) — (A,b) is induced from the Kuranishi family by an
immersion of germs (A, b) < (Def(X3), [Xp]). Let wy be the Hodge form
on Def(X3). By [38, Th.1.1.2], the holomorphic sectional curvature of
(Def(X3),wn) is bounded from above by o := —(5 + 2v/3)~'. Since
b € A* is an arbitrary point, the holomorphic sectional curvature of
(A%, wy x/a) is bounded from above by a (cf. e.g., [31, Prop.2.3.9]).
The second inequality of (7.2) follows from the Schwarz lemma [31,
Th.2.3.5]. The first inequality of (7.2) follows from the second one
because 2wWP,X/A < WH,X/A by [38, p. ].07, 117]

Since (A(r)*,wa~) has finite volume when r < 1, the positive (1,1)-
forms wywp x/a and wy x4 extend trivially to closed positive (1,1)-
currents on A. q.e.d.

Definition 7.4. Define Qwp x4 and {1 x4 as the trivial extensions
of wwp x/a and wy x4 from A* to A, respectively.

Lemma 7.5. Let A,B € R. Let A(t) be a positive, locally L™-
integrable C*° function on A* for some m > 0 such that —dd®log A\ =
Awp x/a + Bwwp x/a-

(1) There exists ¢ € R such that ast — 0,

log A(t) = ¢ log |t|* + O(log(— log [t])).

(2) With the same constant ¢ as above, the following equation of cur-
rents on A holds:

—ddclog)\ = AQH,X/A +BQWP,X/A — C(So.

Proof. We follow [62, Prop. 3.11]. By [51, Proof of Lemma 5.4], there
exist subharmonic functions ¢ and # on A such that

(7.3) Qwp,x/a = dd°p, Qnx/n = dd0
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as currents on A. Since ¢ and 6 are subharmonic, there exists Cy € R
with

(7.4) p(t) <Co,  0(t) <Co,  te A(1/2).
Since wa- = —dd®log(—log |t|) as a current on A, we deduce from (7.2)
that

dd®{—Clog(—log|t|) — v} = Cwar — Qwp x/a > 0,
dd®{—Clog(—log t]) — 0} = Cwar — Qg x/a 2 0.

Hence —C'log(—log [t|) — ¢ and —C'log(—log|t|) — 6 are subharmonic
functions on A, so that there exists C7 € R with

(7.5) —C'log(—loglt|) — p(t) < Cy, —C'log(—log[t]) — 0(t) < C4,
Vte A(1/2).

By (7.4) and (7.5), there exists Cy € R such that for all ¢t € A(1/2),

(7.6) — C log(—log t]) — C1 < ¢(t) < Co,

— C log(—loglt]) — C1 < 6(t) < Cp.
Set x(t) := A0(t) + Bp(t) and H(t) := logA(t) + x(t). Since
dd°H = 0, H(t) is a harmonic function on A*. Since A(t) € Lj?.(A4),
the existence of ¢ € R with

(7.7) H(t) = clog \t\z + O(log(—log t]))

follows from Lemma 7.2 and (7.6). Since log A\(t) = H(t) — x(t), the first
assertion follows from (7.6) and (7.7). Since H(t) — clog [t|? extends to
a harmonic function on A by Lemma 7.1 and (7.7), we get the equation
of currents dd°(H (t) — clog [t|?) = 0 on A, which, together with H(t) =
log A(t) + A0(t) + B ¢(t) and (7.3), implies the second assertion. q.e.d.

Let gwp,x/a be the Kéhler metric on A* whose Kéhler form is
WWP,X/A-

Proposition 7.6. Assume that h'?(X;) = 1 for all t € A*.
(1) There exists a € R such that as t — 0:

o 0
log w0 ( ) — o log |t + O(log(~ log |1]).

ot’ ot
(2) With the same constant v as above, the following equation of cur-
rents on A holds:
o 0

dd®log gwp,x /A (&t’ 8t> = adp — Qg x/a +4Qwp x/a-

(3) If Xy is a Calabi- Yau threefold with at most one ODP and if m: X —
A is the Kuranishi family of Xg, then a = 0.
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Proof.

(1) Set A(t) := QWP,X/A(%aa%) and A = 1, B = —4 in Lemma
7.5. By the definition of Hodge form, we have —dd“log A = wy x/a —
dwwp x/a on A*. Since A(t) € L] (A) by Proposition 7.3, the result
follows from Lemma 7.5 (1).

(2) The result follows from Lemma 7.5 (2).

(3) The result follows from [56, Cor.5.1]. This completes the proof.
q.e.d.

If X is smooth, 7, Ky is locally free by [54, p. 391, Th. V]. Since K
is trivial and since h(Xy, Kx|x,) = 1 for t € A%, Ky = m(Kx ®
T K ;') = 1, Ky is an invertible sheaf on A in that case.

Lemma 7.7. Assume that Xy is Calabi-Yau for all t € A*. If X is
smooth, there exists ¢ € H(X, Ky) such that div(£) C Xg.

Proof. Since m,Ky is an invertible sheaf on A, there exists £ €
HY(X,Ky) = HY(A,m.Kx) that generates m.Kxy as an Ox-module,
ie, mKy = Op- & Since H'(X;, Kx|x,) & H'(Xt,Kx,) = C for all
t € A*, we get HO(Xy, Kx|x,) = C¢|x, in that case by [1, Chap. 3,
Th.4.12 (ii)]. Since Ky|x, = Kx, = Ox, for t € A*, £|x, is nowhere
vanishing on X;, t € A*. This proves the lemma. q.e.d.

If X is smooth, there exists ¢ € H(X, Ky) by Lemma 7.7 such that
div(§) C Xo. In that case, we define a section x4 € HO(X,KX/A) by
Nx/a =&® (m*dt)~!. We identify Nx/alx, with the Poincaré residue
n := Resx,&/(m —t) € HY(X;, Kx,) for t € A*. Then

(7.8) lx, = n @ dm,

and 7y is regarded as a family of holomorphic 3-forms. We also regard
Nx/a as the corresponding element of HO(A, Ky /A)-

Proposition 7.8. Assume that X is smooth. Let nx;a be a nowhere
vanishing holomorphic section of T, Kx/a-

(1) There exists 5 € R such that ast — 0:

10g |12/ a(t)[172 = 5 log [t|* + O(log(— log [¢])).
(2) With the same constant 3 as above, the following equation of cur-
rents on A holds:
dd*1og||nxa ()72 = B8 — Qwp,x/a-

(3) If Xo is a Calabi-Yau threefold with at most one ODP and if £ is
nowhere vanishing on X, then log HnX/A(t)H%Q extends to a con-
tinuous function on A. In particular, 3 = 0.
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Proof.
(1) Set A(t) := ||77X/A(t)||%2 and A =0, B=1in Lemma 7.5. Since

/ )\(t)\/—ldt/\dt_:/ T (V' =1nx /A Nl ja)V—1dt A dt
A(1/2) A(1/2)

= / ENE < Ho0
m1(A(1/2))

by (7.8), we get A(t) € Ll _(A). Since —ddlog\ = wwp,x/a by the
definition of the Weil-Petersson form, the result follows from Lemma
7.5 (1).

(2) The result follows from Lemma 7.5 (2).

(3) The result follows from e.g., [61, Proof of Th. 8.1]. This completes
the proof. q.e.d.

7.4. The boundary behavior of the anomaly term. In Subsection
7.4, we fix the following notation. Let m: X — A be a proper surjective
holomorphic function on a smooth Ké&hler fourfold with critical locus
Y5, so that 7 has relative dimension 3. Assume that X, C Xg and that
X, is a smooth Calabi-Yau threefold for all ¢t € A*.

Let gy be a Kéhler metric on X. Let vy be the Kahler form of gy and
set ¢ := yx|x,. Recall that the anomaly term A(Xy, ;) was defined
in Definition 4.1. The following result is a generalization of [62, (6.17),
(6.19)].

Proposition 7.9. (1) There exists ¢ € R such that ast — 0:
log A(X;, ) = c log [t|* + O(log(— log [¢])).

(2) If ¥, consists of a unique ODP and if Xq is Calabi-Yau, then as
t

— 0

1
log A(X¢,7t) = T log [t|* + O(1).

Proof.

(1) Let gx/a be the Hermitian metric on T'X' /A induced from gy,
and let x4 be the corresponding (1,1)-form on TX /A. Then we may
identify vy, with the family of Kéhler forms {v;}ica. Let N%, /x
be the conormal bundle of X; in X for ¢ € A*. Then dr = ©*dt €
HO(Xt,N}t/X) generates N o for t € A%, so that Ny, is trivial in
that case. Since the Hermitian metric on Q}Q is induced from gy via

the C* identification QY = (Ng, /X) and since (Vg’(/A/?)!)\Xt is the

volume form on Q} X,» We get

4 o
o ’YX/A ( dm )
7.9) T _ Vs Py
( 4l HdWH " Tln
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By Lemma 7.7, there exists £ € H(X, Ky) such that div(¢) C Xo.
As before, define ny/a € HO(X,KX/A) by nxja =@ (m*dt)~!, and
identify nx/alx, with the Poincaré residue 7; := Resx,§/(m —t) €
H°(X;, Ky,) for t € A*. Then Nx/a is regarded as a family of holomor-
phic 3-forms {n;}. By (7.8) and (7.9), we get

(7.10)
VoInaaAeja - (F1)3V=TENE  ene 1 g
Vasal3! (Vi a/3) Ndr Adr Yy a/A lldxl® o ldr?

Let X denote a general fiber of m: X — A. Let A(X/A) be the
function on A* defined by A(X/A)(t) := A(X¢, ). Then
(7.11)

log A(X/A) = —%W* [log (

V=1nx/A NTx/a
'yf’y/A/B!

) CS(TX/AagX/A)]

X(X

) o el

_|_

We use the notation in Subsection 5.3. Hence g¢: X — X is the
resolution of the Gauss maps p and v. Substituting (7.10) into (7.11)
and using (5.1), we get

(7.12)
log A(X/A)

_ 1 €)% xX(X) 2
= 5™ [10g(”d7r”2 c3(TX /A, gx/a)| + 15 log [|nx/allz2

1. PN x(X) 2
:—EW* [1qu (\|d77||2 wres(U,gu)| + 19 10g||77X/AHL2'

Since div(g*¢) € 71(0) by the condition div(¢) C Xp, the assertion
follows from Lemma 5.8 and Proposition 7.8 (1) applied to the second
line of (7.12).

(2) Assume that ¥, consists of a unique ODP and that X is
Calabi-Yau. We use the notation in Subsection 5.9. We may assume by
Lemma 6.1 that & is nowhere vanishing on X'. Hence div(¢*¢) = (), and
To{q* log ||€]|* i es(U, gu)} and log [|[nx 4|3 are bounded as t — 0 by
the first equation of Lemma 5.8 and by Proposition 7.8 (3). We deduce
from (7.12) that

(7.13)  log A(X/A) = %%*{q*(log ld||*) & e3(U, gu)} + O(1).
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Since F =P3 and ¢ = (—1)3/i*c3(U) in the second equation of Lemma
5.8, we get

(7.14)

—_1)\3
log A(X /A)(t) = <112 /PS 03(U)> log [t|*+0(1) = (1;)10g|t|2+0(1).
This proves (2). q.e.d.

7.5. The Weil-Petersson and Hodge metrics on the Kuranishi
space. In Subsection 7.5, we fix the following notation. Let X be a
smoothable Calabi-Yau threefold with only one ODP as its singular
set, and let p: (X,X) — (Def(X),[X]) be the Kuranishi family with
discriminant locus . Assume that dim Def(X) = h1?(X) = 1.

By Lemma 6.1, there exists a nowhere vanishing holomorphic 4-form &
on X. Then nx/pef(x) = § ®@n*(ds)~! is a nowhere vanishing holomorphic
section of p.Kx/per(x)- St s := Nx/pef(x)|x.. We identify ns with the
corresponding holomorphic 3-form on (X)reg such that n, ® (ds) =
§|x, under the canonical isomorphism Kx, ® p*Kper(x)|x, = Kzx|x.-
Then {ns}scs is regarded as a holomorphic family of nowhere vanishing
holomorphic 3-forms.

For p = 0,1 and ¢ > 0, the direct image sheaves qu*Q’;/Def(X) are
locally free by Definition 2.1 (ii) and Theorem 2.11. For p =0, 1, let o),
be a nowhere vanishing holomorphic section of A(2%. /Def( X)).

By Proposition 2.8, there exists a Kahler metric gx on X. Let gx/pet(x)
be the Hermitian metric on 7X/Def(X)|x\y, induced from gx. Set
gs = gx|x, for s € Def(X).

Theorem 7.10. The following formula holds for p =0,1:
log lop(5) 30 1o s, = Ollos(— log ).

X /Def(X)

Proof. Let p = 0. Let 1 be the section of p,Ox such that 1 =

1 € H(X,,0x,). Regard Nx/Def(x) @ a nowhere vanishing holomor-

phic section of (R3p.Ox)Y by the relative Serre duality. Set op :=
1® n%/Def(X)' Since

log [lo0(s) 72,4, = log Vol(Xs, gs) +log [[ns]72 = log s 72 + O(1),

the assertion for p = 0 follows from Proposition 7.8 (3).

Let p=1. Let ey, ..., ey, x) be a Z-basis of H*(X, Z)/Torsion. There
exist holomorphic line bundles Ly, ..., Ly,(x) on X by Lemma 2.16 such
that ¢1(L£;)|x = e; for 1 < i < be(X), and such that the Dolbeault
cohomology classes of their Chern forms €;(£1),...,€1(Ly,(x)) form a
local basis of Rlﬂ-*Q.}{/Def(X) as a Opep(x)-module.

By Theorem 6.2, (pY)~1(ds) ® n;! is a local basis of sz*Qé/Def(X)
as an Opeg(x)-module. For s € Def(X), set

o1(8) = (€1(L1) A+ ACL(Lyy(x))) " @ ((p¥) (ds) @ ;).
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Then o4 is a nowhere vanishing holomorphic section of A(Q;E /Def( X))'
Let 5 be the Kéahler form of gx|x,. Since gx is a Kdhler metric on X,

the section Def(X) > s — [v5] € H*(Xs,R) of R?p,R is constant. Let

[v] € H*(X,R) be the element corresponding to [ys]. By Lemma 4.12,

1€1(L1) A= A€ (Lyy(x)) 1724, (8) = Volp2 (HA(X, Z), [7]) # 0
is a constant function on Def(X). Hence, we get

log [lo1(s) 72,4, = — log Vol 2(H*(X, Z), [7])

0

0
~toggwr ( g1 5% ) = 11200 g -

= O(log(—1log |s]))
by Propositions 4.4, 7.6 (3) and 7.8 (3). This proves the theorem. q.e.d.

8. The singularity of the BCOYV invariant I—the case of ODP

In Section 8, we fix the following notation. Let m: X — S be a
proper, surjective, flat holomorphic map from a compact, connected
smooth Kéhler fourfold to a compact Riemann surface. Let D be the
discriminant locus and let 0 € D. We assume that X := X is a Calabi-
Yau threefold with a unique ODP as its singular set satisfying h?(Q%) =
1. The deformation germ 7: (X, X) — (5, 0) is a smoothing of X, and a
general fiber of 7 is a smooth Calabi-Yau threefold. We set o := Sing X.

Let p: (X,X) — (Def(X),[X]) be the Kuranishi family of X with
discriminant locus ® = [X]. Since h?(Q}) = 1, we have dim Def(X) =
1. By Proposition 2.8, X is Kdhler. Let gx be a Kahler metric on X,
and set gx/pef(x) = 9x|Tx/Det(X)-

Let p: (S,0) — (Def(X), [X]) be the holomorphic map that induces
the family 7: (X, X) — (5,0) from the Kuranishi family. By the local
description (2.2), we have Ox , & C{z0, 21, 22, 23} /(28 + - - - + 23 — p(t)).
Since X is smooth, ® = p(0) is not a critical value of p, and the
morphism of germs pu: (S,0) — (Def(X), [X]) is an isomorphism. Hence
there exist a neighborhood U of 0 € S and an isomorphism of families
f: X‘u = x’u(u)

Let gr-1¢) be the Kéhler metric on 71 (U) defined as

Ir—1) = fr9x

Let gx/s be the Hermitian metric on TAX'/S| —1¢)\x, induced from
9r—1 (). Then

9x/s = f9x/pet(x)-

Let || - be the L2-metric on the Kihler extension

2
H)‘(g;/s):L2ng/S

)\(Ef(/s)m with respect to gx/g. Since F¥

X/s is acyclicon X for p = 0,1,
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we have the following isomorphisms for p = 0, 1:

(81) ( X/S)‘u - lu’ )\(QI:){/Def( )) || ’ ||L2,gX/S = ,"L*H : HLQ?Q%/Def(X)'

Let t be a local coordinate of S centered at 0. Let o, be a nowhere
vanishing holomorphic section of the Kéhler extension A(E% /S) near
0eD.

Theorem 8.1. The following formula holds as t — 0:

(—1)"log ||Up(t)||?\(5§(/s),L27yx/s

_ ) O(log(—log t[)) (p=0,1)

—log [t|* + O(log(—log|t])) (p=2,3).

Proof. Let p = 0,1. Since p: (S,0) — (Def(X), [X]) is an isomor-
phism, the assertion follows from Theorem 7.10 and (8.1).

Let p = 2,3. Recall that the canonical element 1,3 ,(X;) € A(Q%)®

)\(Qi(_tp )Y was defined in Subsection 3.3. Let 1,3, g0 be the nowhere
vanishing holomorphic section of A\(Q2,, / go) ® )\(Qio / g0)" defined by

1p3-pse(t) = 1p3-p(Xi) € M%) @ MQL)Y,  tese
Then
82) s pse®lrzgy,s = Ilpspse@lgons =1,  teS°

by Proposition 3.4.
By Theorem 5.11, we get
(8.3)

log HUp(t) ® J3_P( A(SX/S)(X»‘(EX/S) 7Q19X/S
— (—1)%P5(3,p) log |t + (=1)* - (~1)*"C~P)5(3,3 — p) log |¢]* + O(1)
= (=1)*Plog [t|* + O(1),

where we used the first identity of Lemma 5.12 to get the last equality
of (8.3).
Set

)

op(t) ® o3p(t) "
1p3-p (t)

fp(t) := € 0(5°).
By (8.2), we get

(8.4) lop(t) ® o3—p(t) Hx(gx/s)m(ex/s) V.Q.9x/s

—_— 2 . 2
=|fp(®)]" - 1 1p3-p(t )|| b S)BAEY BV Qx5

= ’fp(t)| . ||1p,3—p( )H / )®,\(53 /p)v L2gx/s

B 2
= |lop(t) @ o3-p(t)~ || b ONEY BV L2 g /s
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which, together with (8.3), yields that
(8.5)

log ||ap(t)®03_p(t)71||i(5§/3)®A(5§(7zS7)V7L27gX/S

= (—=1)3P log |t|*+0(1).
By Theorem 8.1 for p = 0,1 and (8.4), we get

—1)P 2
( 1) log“Up(t)"A(£;/5)7L27gX/S
— (1) —12
(=1)" log ||lop(t) @ o3-p(2) HA(gfg/s)®>\(5§g7g)vaL2,9X/s

—_1)P 2
+ ( 1) logHU3—P(t>H)\(gi*/g)’[/{gx/s
= —log [t|* + O(log(—log|t])).

This proves the theorem for p = 2, 3. q.e.d.

Let ¢ be the Kéhler form of gy /s|x,-

Theorem 8.2. The following formula holds as t — 0:

1
log TRCOV (X}t) = G log [t|* + O(log(—log [¢])).

Proof. By the definition of the BCOV torsion of (X¢,:), we have
(8.6)

log Tooov (Xe, 1) = Y (=1)Pp log oy ()3 e

> x/5)@:9x/s
P>

2;0( 1)Pp log ||Up(t)||A(5§(/s),L2,gx/s'

P>

19 2 ’ 2 2
= ——logl +Y plog|t]* + O(log(—log [¢[*))

p=2
= 1o > + O(log(~log 1),
where we used Theorems 5.13 and 8.1 to get the second equality. Since
log Vol(X¢,ve) = O(1),  log Volp2(H*(Xt, Z), [y]) = O(1),
we deduce from Proposition 7.9 (2) and (8.6) that
log Tpcov (Xt) = log A(Xy, 1) + log Tcov (Xi, 1) + O(1)

1
= & log 1] + O(log(~ log [¢]*)).

This proves the theorem. q.e.d.
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9. The singularity of the BCOV invariant II—general
degenerations

In Section 9, we fix the following notation: Let X be an irreducible
projective algebraic fourfold and let S be a compact Riemann surface.
Let m: X — S be a surjective, flat holomorphic map. Let D C S be a
reduced divisor and set X := X\ 7~ 4(D), S° := S\ D, 7° := 7|x0. Let
0 € D, and let (U,t) be a coordinate neighborhood of S centered at 0
such that U \ {0} = A*.

In Section 9, we shall prove a generalization of Theorem 8.2.

Theorem 9.1. If n°: X° — 5° is a smooth morphism whose fibers
are Calabi-Yau threefolds, then there exists a € R such that ast — 0,

log TBcov (Xt) = « log \t\Q + O(log(— log \t\Q))

First, we shall prove Theorem 9.1 when 7: X — S is a semi-stable
family. Then we shall reduce the general case to this particular case by
the semi-stable reduction theorem of Mumford [29]. We set D := X in
this section.

9.1. The singularity of L? metrics for semi-stable degenera-
tions. In Subsections 9.1 and 9.2, we assume that X’ is smooth and that
D = Xy is a reduced divisor of normal crossing, i.e., for every x € D,
there exist integers €, €1, €2, €3 € {0, 1} and a coordinate neighborhood
(U, (20, 21, 22, 23)) of X centered at x such that

m(z) = 250 27" 252 257, z€U.
Let Q%{ / s(log D) be the sheaf of meromorphic 1-forms on & with loga-
rithmic pole along D. Then QY (log D) lx\p = QMX\D, and Q% (log D)y
is a free Oy-module generated by dzo/z°, dz1/27", dza/25%, dz3/z5%.

Let 24(log0) be the sheaf of meromorphic 1-forms on S with loga-
rithmic pole at 0. Then Q%(log0)g = Og,dt/t. We set

Q;/s(log D) := QL (log D)/7*Q% (log 0).

See e.g., [53, Section 2], [58, Chap. 3, Section 2] for more details
about Qk/s(log D).

Let gx be a Kahler metric on X whose Kéhler class is integral. Let
% € H*(X,Z) be the Kéhler class of gx. We set gx/s = gx|r, /s

9.1.1. The canonical extension of the Hodge bundles. For the
proof of Theorem 9.1, let us recall some results of Schmid [50] and
Steenbrink [53]. Set U° := U \ {0}. We fix b € U° and set W :=
H™(X}p,C) and [ := dim .

Let ° H™ := R" 7, C®cOpo and consider the Gauss-Manin connection
on “H™. The canonical extension H™ of “H™ from U° to U is defined
as follows: Let {vy,...,v;} be a basis of W, and let v € GL(W) be
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the Picard-Lefschetz transformation. There exists a Nilpotent operator
N € End(W) with v = exp(N).

Let 4: Ue sz — exp(2my/—1z) € U° be the universal covering.
Since °H™ is flat, the vectors v; extend to flat holomorphic sections v; €
F(f]T), ¢*(°H™)), which induce an isomorphism ¢*(°H™) = O, ®@c W
of flat bundles. Under this trivialization of ¢* (°H™), we have v;(z+1) =
v-v;(z) for all i. After Schmid [50, pp. 234-236], we define holomorphic

frame fields of ¥*(°H™) by
1

(9.1)  si(exp2nv—1z) :=exp(—2 N) vi(z) = Z E(_Z N)Evi(2).
k>0
Since sip,...,8 € I‘([ffv‘?,w*(on)) are invariant under the translation

z — z + 1, they descend to single-valued holomorphic frame fields of
°H™. Then H™ is a locally free sheaf on U defined as H™ := Oy s1 &
@ Oy sy.

By Hodge theory, °H™ carries the Hodge filtration 0 C °F™ C --- C
°Fl ¢ °H™ such that °F? is a holomorphic subbundle of °H™ with
OFP JoFPt! = Rm*pw*QI;(/Swo. For t € U°, we have the natural identi-

fication °Fy = @5, H™ (X, Q).

By [50, p. 235], [53, Th.2.11], [66, p. 130 Cor.], the filtration {°FP}
extends to a filtration {F?} of H™ such that

FP/FPt! o R P OF, ss(log D).

Under this isomorphism, we have an identification of holomorphic line
bundles on U:

(9.2) ip : (det FP) @ (det FPT1) ™1 = det Rm_pﬂ'*Qi/s(log D)|y.

Since °HJ® = H™(Xy,C) for t € U°, °H™ is equipped with the L%
metric hgmyg,c with respect to gy ,s. Recall that the C> vector bundles
CPa4(x°/U°) on U° were defined in Subsection 3.5. Let hgr be the
Lz—metrjc on “F? induced from hgm,,c by the C* isomorphism °FP =
D,>, L1 (X°/U°). By the definition of L?-metrics, the isomorphism
ip|re induces an isometry of Hermitian line bundles on U*°:

(9.3) ((det °F?) @ (det “FP*1) =1 det hpr ® (det hpp1) ")
> (det R, . | - [112).

Recall that the operator L: H™(X,;,C) — H™2(X;,C) with respect
to k|x, was defined in Subsection 4.4.1. Then L induces a homomor-
phism of Op-modules L: H™ — H™*2. The primitive part of H™ is
the holomorphic flat subbundle of H™ defined as P™ := H™Nker L4~

The Picard-Lefschetz transformation «y preserves P™. If s; € I'(U, P™),
there exists k € Z, C' € R by [50, p. 252 Th.6.6’] such that

(9-4) Isi(®)l7= < C (~log|th*,  teU”
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9.1.2. Singularities of the L?-metrics: the case of canonical
extension.

Lemma 9.2. Let m = 3. Let f, be a nowhere vanishing holomorphic
section of det FP defined on U. Then there exists ¢, € R such that as
t— 0,

log [[£,(t)lI72 = ¢ log [t|* + O(log(—log [¢])).

Proof. Since m = 3, we have H® = P3, i.e., the groups H3(Xy, C) are
primitive. By (9.4), there exists a constant C' > 0 and [ € Z such that

(9.5) Ap(t) = 50)][72 < C (=logt]),  teU”

We set A\4(t) = 1. By Proposition 4.6 and (9.3), we get the following on
Ue:

S
I

—WwPp,xe/U°

- o o 3 o o
(96) _ddc<log Ap _ log )\p—f—l) — wH7X /U + wWP7X /U
WH,xo/U° — 3WWP,x°,/U°

b
I

N N S~
iS
I
w N = O
— — — —

=
|

WWP,xo/U°

Since A, € L{ (U) by (9.5), the result follows from Lemma 7.5 (1) and

loc

(9.6). q.e.d.

Let 0}, be a nowhere vanishing holomorphic section of (€%, ) near

X/
0.

Proposition 9.3. There exists By € R such that ast — 0:
log ||Uo(t)\|§(ox)7Lz7gX/S = (o log [t]? + O(log(— log [t])).

Proof. We may assume that o9 = fo ® f; ! under the isomorphism
(9.2). Since (9.2) induces the isometry (9.3), the result follows from
Lemma 9.2. q.e.d.

By [53, Th.2.11], Rqﬂ*Q;/S(log D) is locally free. Set
r:=rk Rqﬂ'*Q}/S(log D).
Let e1(t),...,e.(t) be a basis of quQ}Y/S(log D) as a free Oy-module.

Proposition 9.4. For 0 < g < 3, there exists 64 € R such that as
t— 0,

log [lex(t) A+ Aer(t)ll3e Rim.Q,  ((log D).L2 g /s

= §4 log[t[* + O(log(—log|t[)).
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Proof. Since r = 0 when ¢ = 0, 3, it suffices to prove the cases ¢ = 1, 2.

(Case 1)

Let ¢ = 2. There exists a nowhere vanishing holomorphic function
h(t) on U such that ej(t) A --- Aeq(t) = h(t) fi(t) ® f2(t)~! under the
isomorphism (9.2). Since (9.2) induces the isometry (9.3), the result
follows from Lemma 9.2.

(Case 2)

Let ¢ = 1. When m = 2, we have H?> = F!. Hence r = [. Identify the
integral Kahler class x on X with the corresponding flat section of H2.
Then P™ and Oy k are holomorphic flat subbundles of H™ preserved by
the Picard-Lefschetz transformation «. Hence, we have a decomposition
H? = P2 @ Oy k of y-invariant flat bundles on U. Choose v; = k3 and
va,...,v € P2 N H*(X,,Z)/Torsion in Subsection 9.1.1. Then s; = &
and P = Oy sa®---® Oy s;. Since vi(z),...,vi(z) are identified with
v1,...,0 via the C°° trivialization X° Xy U° = Xp % (70, we get by
Definition 4.11 and Lemma 4.12

9.7) |[vi(2) A+ Avi(2) I3, = Volpa (H*(Xy, Z), k), Yz € U°
Since N is nilpotent and hence det exp(—zN) =1 for all z € U ) we get
(9.8) sl(eQWHZ) ARERWN sl(eQ’T\/jz)
=exp(—2zN)vi(z) A--- Aexp(—z N) vi(2)
=detexp(—zN) - vi(z) A--- Avi(z)
=vi(z) A Avi(z).
By (9.7), (9.8), we get for all t € U*:
99 lsi(®) A-- Asilt) 2, = Vola(H2(Xy, Z), ko).

Since {si(t),...,s;(t)} is a basis of le*Q}/S(logD) as a free Og-
module, the result follows from (9.9). This completes the proof. q.e.d.

9.1.3. Comparison of the Kahler extension and the canonical
extension.

Proposition 9.5. There exists 1 € R such that

log Ho-l(t)Hi(Q}V/S)’L27gX/S = B log [t|> + O(log(— log |t])) (t —0).

Proof. Consider the natural injection 0 — Qi{/s — Q},(/S(log D), and
set Q = Qﬁf/s(log D)/Q;/S. Then @ is a torsion sheaf on X whose
support is contained in Sing(D). Consider the long exact sequence of
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direct image sheaves induced by the short exact sequence of sheaves
0— Q}'(/S — Q;/S(logD) —@Q —0on A:
qulﬂ*Qk/S(log D) — R '7.Q — Rqrr*Q}‘,/S
— Rqﬂ'*Q}/S(log D) — Rim,.Q.

Since RY7,.(Q) is a torsion sheaf on U supported at {0} for all ¢, there exist
torsion sheaves My, N, on U supported at {0} and an exact sequence
of coherent sheaves on U:

(9.10) 0 — M, — RqW*Q}\,’/S _J RQW*Q}WS(IogD) — N, — 0.

Since U =2 A and hence Oy, is a discrete valuation ring for all ¢t € U,
the image j(quQ}WS) is a locally free submodule of quﬂ}\,/s(log D).
Hence (Rqﬂ'*Q}Y /S)toﬁ the torsion part of RqW*Q}\, /5 is contained in
ker j. Since M, C (RqW*Q}V/S)mr, we have

(9.11) M, = (R /s )tor-

Since Ny = Rqﬂ*Qk/s(log D)/j(quQk/S) is a torsion sheaf, there
exist integers v, ..., v > 0 such that N, = C{t}/(t"*) &---& C{t}/(t").
Replacing the basis {ei(t),...,e.(t)} by another one if necessary, we
may assume that j(wa*Q;/s) =Optei(t)®---®Oy t' e (t). Hence,

(9.12) det j(RqW*Q}/S) =0y -t"e1(t) A ANt e (t).
By [1, p. 110, 3. Proof of the theorem], there exists a complex of

locally free sheaves of finite rank on U

v-1 V0 Vi—1

Ee:0— FE_4

Ey E,—0

such that RqW*Q}\,/S is the ¢-th cohomology sheaf of E,, i.e., RQW*Q}Y/S
=~ HY(E,) for all ¢ > 0. Since U = A, kerv, C E4 and Imv; C Egpq
are locally free sheaves on U for all ¢ > —1. Let &, be the inverse image
of (quQ;/S)tor by the natural surjection ker v, — Rqﬂ'*ﬂk/s, and set
nq := Imwv,_1. There exists an exact sequence of coherent sheaves on U

0 — 77(] Pq £q — (Rqﬂ-*Q‘lX‘/S)tOI‘ — 0

such that n,, & are locally free with equal rank. Under the canon-
ical isomorphism det(R%m, Q) /5>t0r =~ det ¢, ® (detn,)~!, the canoni-
cal section det p, € H*(U,det &, ® (det n,)~!) induces the trivialization
det(RqT(*Q}t-/s)tor = Oy on U° by [52, p. 118, Proof of Lemma 1, First
Casel:

(9.13) det(Rqﬂ'*Q;/S)tor Sdety, — 1€ Oy.
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Since det Rqﬂ'*Qk/S = detj(quQ}Y/S)®det(Rq7r*Q}Y/S)tor by (9.10)
and (9.11), we deduce from (9.12), (9.13) that the following expression
51,4 is a holomorphic section of det R, Q% /s

s1,4(t) == (t"e1(t) A--- At"e,(t)) @ det pq(t).
Since s1,4(t)|ve is identified with the section t" eq (t)A- - -At" e, (t)|e un-
der the identification det R, Q% /S|Uo = det j(RIm. QY /S)]Uo induced
by (9.13), we deduce from Proposition 9.4 that for ¢t € U°,
(9.14)
log HSLQ(t)H%Q,gx/s =log ||t e1(t) A--- At"e(t)

= dimg¢ N, log [t|* + log [le1(t) A -+ - A en(t)

2
HLQ?QX/S

2

||L27gX/S
= (dime Ny + 8,) log [t|* + O(log(~ log ¢])).

Since det ¢, vanishes at ¢ = 0 with multiplicity dimc My, 014(t) =

t=dime Mg g, (¢) is a mnowhere vanishing holomorphic section of
det Rqﬂ'*Qi(/S. By (9.14), we get

015)  loglor®lZ,, .
= (dimg N, + 8, — dime M,) log|t|* + O(log(—log|t])).

The result follows from (9.15). This completes the proof of Proposition
9.5. q.e.d.

Proposition 9.6. Let p = 2,3. There exists 3, € R such that as
t— 0,

log Ho-p(t)||?\(5§c/s)vl’27gx/s = B, log|t|* + O(log(—log|t])).

Proof. We keep the notation in Section 8, Proof of Theorem 8.1. By
Theorem 5.4, there exists a, € Q such that
(9.16)

log [|o(t) ® o3p(t) 113 ¢ = aplog [t|* + O(1).

R s)ONEY BV Quax/s

By the same argument as in the proof of Theorem 8.1 (8.4) using (9.16)
in stead of (8.3), we get
—1y2 _ 2
log ”Up(t) ® US—p(t) HA(€§/5)®/\(5i_/g)vlz,gx/s = Gyp log |t‘ + 0(1)7

which, together with Propositions 9.3 and 9.5, yields the existence of
Bp € R such that

log Hop(t)Hi(gi/SLLg’gx/s = Bylog [t|* + O(log(— log [t])).

This proves the proposition. q.e.d.
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9.2. Proof of Theorem 9.1: the case of semi-stable degenera-
tions. Let 7; be the Kéhler form of gy g|x,. By the definition of the
BCOV torsion of (X¢,7:), we have

log Tcov (X¢, )
9 2
=Y (-1 {1% lon® ez, 0005 ~ 108 ”Up“)“mei/smw«/s} |
p

By Theorem 5.4 and Propositions 9.3, 9.5, 9.6, there exists a € R such
that

(9.17) log Tecov (Xy, 7)) = a log |t|? + O(log(—log|t]?)).
Since the Kéhler class of gy is integral, there exist positive constants
A, B € Q by Lemma 4.12 such that for all t € U°,
(9.18)  logVol(Xy,w) = A,  logVolz(H*(X¢,Z), [v]) = B.
By Proposition 7.9 (1), there exists € € R such that
(9.19) log A(Xt,7v¢) = € log [t|* + O(log(— log [t|*)).
By (9.17), (9.18), (9.19), we get
log TBcoV (Xt) = log A(X¢, 1) + log Tpcov (Xt 1) + O(1)
= (a+ €) log |t|* + O(log(— log [t|*)).
This proves the theorem. q.e.d.

9.3. Proof of Theorem 9.1: general cases. In Subsection 9.3, we
only assume that 7°: X° — S° is a smooth morphism whose fibers are
Calabi-Yau threefolds.
By the semi-stable reduction theorem [29, Chap.II], there exist a
pointed projective curve (B,o0), a finite surjective holomorphic map
f:(B,o) — (S,0), and a holomorphic surjection p: Y — B from a
projective fourfold Y to B satisfying the following conditions:
(i) Let V be the component of f~1(U) containing 0. Then f: V \
{o} — U\ {0} is an isomorphism.

(ii) Set U* = U \ {0} and V* = V' \ {o}. Then p|y~: Y
induced from 7|y+: X|y+ — U™ by fly=.

(iii) Y is smooth, and Y, is a reduced divisor of normal crossing.

v — Vs

Let b be the coordinate on V' centered at o. By condition (i), we may
assume that there exists v € N such that f*t = b”. Let 7y« and 7y« be
the functions on U* and V* defined by

mu+(t) == mBCov(Xt),  Tv+(b) := TBCOV(Y))
for t € U* and b € V*, respectively. By condition (ii) and Theorem
4.16, we get
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We can apply Theorem 9.1 to the family p|y: Y|y — V by condition
(iii), so that there exists a € R such that as b — 0,

(9.21) log 7y« (b) = a log [b]? + O(log(— log |b])).
Since b = t, the desired formula follows from (9.20) and (9.21). This
completes the proof of Theorem 9.1. q.e.d.

10. The curvature current of the BCOV invariant

Following [62, Section 7|, we extend Theorem 4.14 to the Kuranishi
space of Calabi-Yau threefold with a unique ODP as its singular set.

10.1. The curvature current of Tpcov: general cases. In Sub-
section 10.1, we fix the following notation. Let X be an irreducible
projective algebraic fourfold and let S be a compact Riemann surface.
Let m: X — S be a surjective, flat holomorphic map. Let D C S be a
reduced divisor and set X° := X'\ 7~ }(D), S° := S\ D, 7° := 7|xo. We
assume that the fibers of 7°: X° — S° are Calabi-Yau threefolds with
h?(Q%.) =1 for s € 5°. Let x(X) denote the topological Euler number
of X5, s € 5°.

Let Qwp x/s and Qg x5 be the trivial extensions of the Weil-Peters-
son form and the Hodge form from S° to S (cf. Proposition 7.3 and
Definition 7.4). Then the (1, 1)-currents Qywp x /g and Q4 x5 are posi-
tive.

Let 0 € D and let (U, t) be a coordinate neighborhood of S centered
at 0. By Eq.(7.3), there exist subharmonic functions ¢ and 6 on U
satisfying the following equations of currents on U:

(10.1) ddp = QWP,X/S|U7 dd®0 = QH,X/S|U-
As in Subsection 4.4.2, we define a function on S by
mBcov(X/S)(t) := TBcov(XY), teS.
By Theorems 4.14 and 9.1, log Tcov (X/S) € C°°(S°) N L(S).
Theorem 10.1. Set
log Tecov (X/S)|u ()

=1 R.
Ry log [t]? ©

Then the following equation of currents on U holds:

X
dd®log Tcov(X/S) = —X(12) Qwp,x/s — Quxys + ado.

Proof. Identify U with A in what follows. By Theorem 9.1, there
exists a positive constant K such that
(10.2)

|log TBcOV (X /S5)(t) — a log|t]*] < K log(—loglt]), — te€ A(1/2)".
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For t € A(1/2)*, set

P(t) = (1o mmoov(X/9)(1) — alog 1) + X5 1) + o(0)

Then P(t) € C*(A(1/2)*). By (7.6) and (10.2), there exists a positive
constant C' such that
(10.3) |P(t)] < C log(—log|t]), te& A(1/2)%.

Since P is harmonic on A(1/2)* by Theorem 4.14 and (10.1), we deduce
from Lemma 7.1 that P extends to a harmonic function on A(1/2).
Since P is harmonic on A(1/2), it follows from (7.6) that

X(X)

(10.4) logTpcov(X/S) = a log 1t — 19 ¥ O+Pc Llloc(A(1/2))'
Since dd°P = 0 on A, Eq. (10.4), together with (10.1), yields the asser-
tion. q.e.d.

10.2. The curvature current of Tgcoyv: the case of Kuranishi
families. In Subsection 10.2, we fix the following notation: Let X be a
smoothable Calabi-Yau threefold with only one ODP as its singular set.
Let Def(X) be the Kuranishi space of X with discriminant locus ®, and
let p: (X,X) — (Def(X),[X]) be the Kuranishi family of X. Assume
that dim Def(X) = h?(2}) = 1. Let s be a coordinate on Def(X) such
that ©® = div(s). We identify Def(X) with the disc A equipped with
the coordinate s. Then Def(X) \ © = A*.

Let Qwp and Qy be the trivial extensions of the Weil-Petersson form
and the Hodge form from Def(X) \ ® to Def(X). Let x(Xgen) denote
the topological Euler number of a general fiber of the Kuranishi family.

Theorem 10.2. The function log Tacov is locally integrable on
Def(X), and the following equation of currents on Def(X) holds:

X(Xgen) 0
12

Proof. By Proposition 2.8, there exist a pointed projective curve
(B,0), a projective fourfold 3, and a surjective, proper, flat holomorphic
map f: 3 — B such that the deformation germ f: (3, f~1(0)) — (B,0)
is isomorphic to the Kuranishi family p: (X, X) — (Def(X), [X]). Since
Def(X) is smooth at [X], so is B at 0. By Theorem 9.1, we get
log TBcov € Llloc(Def(X)). Let v := lim;_olog mBcov(Xy)/ log [t|*.
Since v = % by Theorem 8.2, the result follows from Theorem 10.1.

q.e.d.

1
dd‘log TRcov = — wp — Qu + 8 09.
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10.3. The curvature current of Tgcoy: the case of induced
families. We keep the notation in Subsection 10.2. Let u: (4,0) —
(Def(X), [X]) be a holomorphic map and let 7: X — A be the family
of Calabi-Yau threefolds induced from the Kuranishi family p: (X, X) —
(Def(X),[X]) by p. Notice that X is singular if 0 is a critical point of
L

Theorem 10.3. The function log Tecov(X/A) lies in Li (A), and
the following equation of currents on A holds:

C X X en 1
dd®log Tscov (X /A) = — (15 ) Qwp,x/a — Qua/a+ 6 O -

Proof. Let f € Opeg(x),;x] be such that ® = div(f). Let Qwp and
Q1 be the trivial extensions of the Weil-Petersson and the Hodge forms
on Def (X)), respectively. Asin Eq. (7.3), let ¢ and 0 be the subharmonic
functions on Def(X) with Qwp = dd®p and Qg = dd°. Then p*p and
w*6 are subharmonic functions on A with
(10.5) dd®(p"p)|ax = wwp x /A, dd“(u*0)| A+ = wh x/A-

After shrinking Def(X) if necessary, we may assume by (7.6) the
existence of constants Cp, C7 > 0 with

(10.6) — Co log(—log|f|*) < ¢lper(x o < C1,
— Cp log(—log | f|*) < Olpetx o < C1-

Since p~H(®) N A = {0}, there exist a positive integer k and a nowhere
vanishing holomorphic function £(s) € O(A) with

(10.7) wf(s) = ste(s).
After shrinking A if necessary, the following inequality holds by (10.6)
(10.8) — Cy log(—log |s|*) < p*pla- < Ci,

— Oy log(—log |s|?) < p*6|a- < C1,

where C > 0 is a constant. By (10.5), (10.8) and Lemma 7.5 (2), we
get the following equations of currents on A:

(10.9) Qwp x/a =dd (1 p),  Quxja=dd(p*0).

By (10.4) and Theorem 10.2, there exists a harmonic function P on
Def(X) such that

1 X
log TBCOV = ~ 10g\f|2—M@—9+P-
6 12
Since Tcov (X /A) = p*tBcov, we get
1, X) .
(10.10)  logtpcov(X/A) = s log | f|* — X(12),u ©—p 0+ urP.
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By (10.8), (10.10), we get logmgcov(X/A) € L (A). By (10.9),

loc

(10.10), we get the desired equation of currents. This completes the
proof. q.e.d.

11. The BCOV invariant of Calabi-Yau threefolds with hl2=1

In Section 11, we fix the following notation. Let X be a possibly
singular irreducible projective fourfold and let S be a compact Riemann
surface. Let m: X — S be a proper, surjective, flat morphism with
discriminant locus D := {s € S; Sing X # (0}. We set

S§°:=8\D,  X°:=xYS°),

D* := {s € D; Sing X, consists of a unique ODP},
and
S* .= 8°UD*, X =g (5.
In Section 11, we make the following:

Assumption

(i) X, is a Calabi-Yau threefold with h%(Q% ) =1 for all s € S*;
(ii) D* is a non-empty finite set, and D\ D* consists of a unique point
0o €5}
(iii) Sing(X) N Xoo = 0 and X is a normal crossing divisor.

Lemma 11.1. Let p € D*. Then X, is smoothable in the sense of
Definition 2.2.

Proof. To see this, let o = Sing X,,, and let f: )~(p — X, be a small
resolution such that C := f~!(0) = P! and )Z'p \C = X, \ {o}. Let
[C] € Hg()?p, Z) be the homology class of C. Since X, is smoothable
by a flat deformation by Assumption (ii), we get [C] = 0 by [44, Th.2.5
(2)=(3)]. Hence the map 7 in [43, p. 16, 1.28] is zero. By the com-
mutative diagram [43, p. 16 (14)], the natural map Extl(Qkp, Ox,) —
HY(X, Sa:t(ﬂﬁ(p,(’)xp)) is not zero. Let Def(X),,0) be the Kuranishi
space of the ODP (X}, 0) and let ¢: (Defx,1(X}), [Xp]) — (Def(Xp, 0), 0)
be the map of germs induced from the Kuranishi family of X,. Since
Ext' (Qk , Ox,) = Tix, Def(X,) and H°(X, €xt(Q , Ox,)) =
T,Def(X,, 0) via the Kodaira-Spencer map, and since the natural map
Ext!(Q) ,Ox,) — H(X,Ext(QY ,Ox,)) is identified with the differ-
ential of ¢ at [Xp], we get (do)x,] # 0. Since dim Ty Def(X,) =
dim T,Def(Xy,0) = 1 by Assumption (i), (d¢)x,) is an isomorphism.
By [43, Prop.5.3] and the smoothness of Def(X,,0), ¢ is an isomor-
phism of germs. This implies the smoothness of the total space of the
Kuranishi family of X,. q.e.d.
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The ramification divisor of the family 7: X — S is defined as follows.
For s € S* let ps: (S,s) — (Def(Xs),[Xs]) be the map of germs of
analytic sets defined by

1s(t) == [X¢] € Def(X,).

By Lemmas 2.7 and 11.1, p, is not a constant map for p € D*. Since
D* # () by Assumption (ii), us is not constant for all s € S*. Since
dim Def (X;) = 1, we may identify (Def(Xj), [X;]) with (C,0). Let z be
the coordinate of C, so that zop,(t) € Ogs. We define the ramification
indexof m: X — S at s € S by

Tx/s(8) = ordi=sz o ps(t) € N.

Let {R;}jes be the set of points of S whose ramification index is > 1.
The ramification divisor is then defined as

Ri=) (rj=1Rj,  rj:=rxs(R)).
JjedJ

Let p € D* and Sing(X,) = {o}. By the local description (2.2), we
have an isomorphism of local rings

(11.1) Oxo = Cla,y,z,w, t}/(@* + > + 22 +w? + tra/sp)y,
Write D* = { Dy }rex. As a divisor of S, we define

D* = Z T D, Tk = 1x/5(Dp).
keK

Since Sing X C Ugep+Sing X, X has at most isolated hypersurface
singularities as its singular points by (11.1). Hence, Ky and Ky g 1=
Ky @n* 51 are invertible sheaves on X.

Lemma 11.2. The sheaf m Ky s is an invertible sheaf on S.

Proof. Since 7~ 1(S\ D*) is smooth, 7. Ky g is an invertible sheaf on
S\ D* by Assumption (i) and [54, p. 391, Th.V]. Let s € D*. Since
the conormal bundle of (Xs)reg in Areg is trivial, we have Ky /sl (x,),0 =
K(x,)+ Since Ky g|x, and Kx, are invertible sheaves on X, we get
Kx/slx, & Kx, by the normality of Xs. Since X; is Calabi-Yau, we
have h%(Kys|x,) = h°(Kx,) = 1. By [1, Th.4.12 (ii)], 7. Ky/g is an
invertible sheaf near s € D*. This proves the lemma. q.e.d.

Let x be the topological Euler number of a general fiber X, s € S°.
Let || - || be the Hermitian metric on (W*KX/S)®(48+X) ® (T'S)®12|g0
induced from the L2-metric on 7. K X/5 and from the Weil-Petersson
metric gwp x/s on S°. The following is the main result of this paper.
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Main Theorem 11.3. Let = be a meromorphic section of m.Ky /s
on S with
div(2) = Zmi P, 4 Moo Poo, P+ Py (i € ),
el
and let V' be a meromorphic vector field on S. Then the following hold:
(1) There exists a locally integrable function Fzy on S with

dd°Fzy = {(24 n g) deg ™ K5 + 6 X(S) + 6 deg R — deg D*} S

+ 6p — (24 + g) Sdiv(z) — 6 dqiv(v) — 60r

such that )
TBCOV (X /S) = ||ef=V EB X @ V12||5 .

(2) When S = P!, let ¢ be the inhomogeneous coordinate of P with
1(00) = oo. Identify the points P;, Rj, Dy, with their coordinates ¢(P;),
Y(R;), ¥(Dy), respectively. Then there exists a constant C' # 0 such
that

TBcoV(Xy)
3
=C H (¢ — Dg)?"™ =18 X g <8> )
el jedkeK (1 — P,)@8+0mi(yp — R;)12(ri=1) " oY

In the rest of this section, we shall prove Theorem 11.3. For p € D, let
(Up,t) be a coordinate neighborhood of S centered at p with U, "D =
{p} and U, \ {p} = A™.

By Proposition 7.3, the positive (1, 1)-forms wywp x/s and wy x/g on
S¢ extend trivially to closed positive (1,1)-currents on S.

Definition 11.4. Let Qwp v/5 and Oy x/g be the trivial extensions
of wwp x/s and wy x /g from S° to S, respectively.

Proposition 11.5.
(1) There ezists a(p) € R such that the following equation of currents
on U, holds:

o 0
dd®log QWP,X/S’UP <8tv P

(2) For Dy € D*, one has a(Dy) =rp — 1.

Proof. We get (1) by Proposition 7.6 (2). Let p = Dj. Under
the identification of the Kuranishi space (Def(X)),[X,]) with (C,0),
we may assume by the definition of the ramification index ry,s that
7y, : Xly, — Up is induced from the Kuranishi family of X, by the
map pu(t) = t"*. Let wwp be the Weil-Petersson form on Def(X),).

> = a(p) 0p — Qg x5 + 4 Qwp x/s-
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Since Qwp x/slu,\{py = Wwwp, we deduce from Proposition 7.6 (1),
(3) that as t — 0,
(11.2)

log | 9 9\ logw 9.2
g3WP,x/S|Up o or) g WWP M*ﬁt’ﬂ*af
= (r, — 1) log [t|* + O(log(—log [t])).
By (11.2), we get a(p) = rp — 1. This completes the proof. q.e.d.

Proposition 11.6. There exists b(co) € R such that the following
equation of currents on S holds:

(11.3) dd®log |2 |72 = b(00) doo + Oaiv(z) — Qwp.x/s-

Proof. Let s € S be an arbitrary point. It suffices to prove Eq. (11.3)
on a neighborhood of s. By Proposition 7.8 (2), Eq. (11.3) holds on a
neighborhood of oc.

Assume that s € S*. Let p: (X, X;) — (Def(X5), [Xs]) be the Ku-
ranishi family of X,. Since 7: (X, X ) — (S,s) is induced from the
Kuranishi family by the map pus: (S,s) — (Def(X5), [Xs]), there exists
a morphism of deformation germs f,, : (X, X;) — (X, X,) satisfying the
commutative diagram:

(X, X,) = (2, X,)

| d
(Sv 5) L} (Def(XS)a [XS])
Let Us = A be a neighborhood of s in S such that ps (resp. f,,) is

defined on Uy (resp. m1(Us)) and such that s has no critical points
on U? :=Us \ {s}. Since

(11.4) [ Kx/pef(x,) = Kxays

on 7~ H(Uy) \ Sing X, the normality of X implies that (11.4) holds on
7 1(Us).

By Lemma 6.1, Kx/pef(x,) 18 trivial. Let nx/per(x,) be a nowhere van-
ishing holomorphic section of Kx/pet(x,) defined on Def(X;). We regard
N%/Def(x,) s a family of holomorphic 3-forms {nx/pef(x,)lx, foeDer(x,)-
Since X has at most one ODP as its singular set, log [[17x/pe(x,)llz2 €
CY(Def (X)) by Proposition 7.8 (3).

Since [ nx/per(x,) € HO (771 (Us), Kxyg) = H(Us, muK x/g) is no-
where vanishing, [} nx/per(x,) generates m.Ky g on Us as an O,-
module. Since

£ 2 /et (x ) |2 (8) = 1nx/Det(x,) 2 (s (2)), teuy

by (114) and since log an/]:)ef(xs) ||L2 S CO(Def(XS)), IOg ||.f;:sn%/Def(XS) HLZ
is a continuous function on Us. Since —dd®log | f; nx/pet(xy) |2 =
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Qwp.x/s on UJ, we get the following equation of currents on Us by
Lemma 7.5 (1), (2):

(11.5) —dd®log || . nx/pet(x,) lL2 = Qwp /s

Since f}; 1nx/Det(x,) € HO(Us, 7K x/g) is nowhere vanishing, there exists
h(t) € O(Us) such that = = h - f; nx/pef(x,) on Us. By (11.5), we get
(11.6) —dd‘log HEH%2 = QWP,X/S - 5div(h)

as currents on Us. Eq. (11.3) on Us follows from (11.6). q.e.d.

Theorem 11.7. There exists c(o00) € Q such that the following equa-

tion of currents on S holds:
(11.7)

1
dd®log Tscov (X /S) = —% Qwp,x/s — Qs + g b+ +(00) dc.

Proof. The result follows from Theorems 10.1 and 10.3. q.e.d.

Proof of Theorem 11.3.
(1) By Proposition 11.5 and (4.1), we get the following equation of
currents on S:

(11.8) ddlog ||[V]]* = a(00) dsc + R + Saiv(y) — Qr,a/s + 4 Qwp v/s-
By (11.3), (11.7), (11.8), we get
(11.9)  dd°log||[V'? @ Z48TX2
= 12(a(00) boo + Or + daiv(v)) — 12 Qx5 + 48 Qwp x/s
+ (48 + x) (b(00) doo + daiv(=z)) — (48 + x) Qwp x/s
= 12dd°log Tscov(X/S)
+ {12 a(o0) + (48 + x) b(00) — 12 ¢(00)} doo
— 20p+ +120R + 12 0giy(v) + (48 + X) daiv(=)-
Integrating both sides of (11.9) over S, we get
(11.10) {12a(c0) + (48 4 x) b(c0) — 12¢(0c0)} — 2 deg D* + 12 deg R
+12x(S) + (48 + x) deg = = 0.
By (11.9) and (11.10),
F=zy :=log pcov(X/S)® — log [[V? @ 241X

is a harmonic function on S\ (DUR) satisfying Theorem 11.3 (1). This
proves (1).

(2) We set V() := /0 € HO(P!, TP!). Then div(V) = 200, so
that Fz y satisfies the following equation of currents on P! by (11.9),
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(11.10):

dd°Fz y = {(24 + %) degm, K5+ 6 deg R — degD*} .
* 2

(11.11) N

+ op- — (24 + 5) 5div(5) —60R.

Up to a constant, the solution of Eq.(11.11) is given by the following
formula:

(w _ Dk)2rk
(1 — P;)(8+)mi(yp — R;)120r=1) |

(11.12) Fzv(y)=log| ][]

i€l jeTkeK

The second assertion of Theorem 11.3 follows from (11.12). This com-
pletes the proof of Theorem 11.3. q.e.d.

12. The BCOYV invariant of quintic mirror threefolds

12.1. Quintic mirror threefolds. Let p: X — P! be the pencil of
quintic threefolds in P* defined by

Xi={(2v) € P x PL By(x) =0}, p=pn,

Fy(2) i= 2§ + 25 + 25 + 25 + 23 — 5 2021222324
The parameter v is regarded as the inhomogeneous coordinate of P!.
Identify Zs with the set of fifth roots of unity: Zs = {¢ € C; ¢° = 1}.
We define
{(ao, a1, a2,a3,a4) € (Zs5)®; aparazazas = 1}
Z5(1,1,1,1,1)

The group G x Zs acts on X and P! by

G := %Zg.

(a,b) - ([2],0) == (b apzo : a121 : agzy = azz3 : agzy], bip),
(a,b) - :=ba.

Then the projection p: X — P! is G' x Zs-equivariant. Since G preserves
the fibers of p, we have the induced family

p: X/G — P!
equipped with the induced Zs-action. We set

omy/—1
D = {exp“/;mepl; 0§m§4} cP!, D:=D*U{xx}cP.

Then D is the discriminant locus of the family p: X — P! by [15, p.
27].

Proposition 12.1. There exists a resolution f: W — X /G satisfy-
ing the following conditions:
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(1) Set fy = flw,- Then fy: Wy — Xy/G is a crepant resolution
for € P\D. In particular, Wy, is a smooth Calabi- Yau threefold
for € P1\ D;

(2) Sing Wy, consists of a unique ODP if ¢° = 1;

(3) W is a divisor of normal crossing.

Proof. See [41, Appendix B], [4, Th. 4.2.2 and Cor. 4.2.3], [16,
Sects. 2.2, 4.1.1, 4.2] for (1) and [15, p. 27] for (2). The last assertion
follows from Hironaka’s theorem. q.e.d.

While the choice of a resolution f: W — X /G as above is not
unique, there is a natural choice of f: Wlp1\ (oo} — (X/G)lp1\ (o0} by
[14, Th.1.2].

Definition 12.2. Set 7 := po f. Any family m: W — P! satisfying
the conditions (1), (2), (3) as above is called a family of quintic mirror

threefolds. The induced family 7: W/Z5 — P!/Zs is also called a family
of quintic mirror threefolds.

Lemma 12.3. If¢ € P\ D, then
Y2 (W) = 1, htH(Wy) = 101, x(Wy) = 200.
Proof. Since k' (Xy) = 1, hb?(X,) = 101, and x(Xy) = —200, the
result follows from [4], [16, Th.4.1.5], [58, Th. 4.30]. q.e.d.

We refer to [15], [16], [41], [58] for more details about quintic mirror
threefolds.

12.2. The mirror map.

Definition 12.4. The mirror map is the holomorphic map from a
neighborhood of co € P! to a neighborhood of 0 € A defined by the
following formula:

- (

g = (50) Pexp [ — >

5n
5n)! 1 1

yo(v) 2 (n)7 | 4=, | (5u)™
where
. > (5n)!
Yo(¥) = 1;0(”!)5(5@5”, [ > 1.

The inverse of the mirror map is denoted by (q).

For ¢ € P!\ D, we define a holomorphic 3-form on X, by

(2mV/-1 -3 zadzo A dz1 A dzo
& '_( 5 ) 5% OFy(2)/0z3
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Since 2y is G-invariant, {2, induces a holomorphic 3-form on X, /G
in the sense of orbifolds. We identify (2, with the corresponding holo-
morphic 3-form on X, /G. Then f;Qw is a holomorphic 3-form on W,.
Set
Ey = f302y € H'(Wy, Kw,).

By Lemma 12.3, we know rk H3(Wy,Z) = 4. There exists a symplectic
basis {A', A%, By, B} of H3(Wy,Q), ¥ & D, such that A* N By = dgn,
AN A* = B, N By = 0. By [15], [41, p. 245 1.13], the mirror map ¢(1))
is expressed as follows:

Jop, a1 S _
q = exp <2W\/—1 M) . ) = /2 Eyp-
A

fA2 =9

We refer to [15], [16, Section 2.3, Section 6.3], [41], [58, Chap. 3| for
more details about the mirror map.

12.3. Conjectures of Bershadsky-Cecotti-Ooguri-Vafa.

Definition 12.5. Under the identification of the local parameters 1)
and ¢ via the mirror map, define a multi-valued analytic function near

oo € P! as
¢ \® &
F°P(¢) = lo ( ) — %)~
and a power series in ¢ as

Fy°0(g) == Fy ((9))-
Set

n(g) =[] —q").
n=1
As explained in introduction, the conjectures of Bershadsky-Cecotti-
Ooguri-Vafa [6, Eqgs.(16), (23), (24)] and [7, p. 373, 1.34] are formulated
as follows:

Conjecture 12.6.
(A) Let ng4(d) be the genus-g degree-d instanton number of a quintic
threefold in P4 (Cf. [36], [65]). Then the following identity holds:
d _top 2nd D — 2d ¢*
F%(q) = —=— dy ——2
gt A n;I 1—q”d ;no( >12(1—qd)’
or equivalently
-2
Flt, ( ) log | ¢ 25/12 Hn n1 d)( qd)no(d)/IQ + Const.
d=1
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(B) Let ||-|| be the Hermitian metric on the line bundle (. Kyy /p1 1962
(T]P’1)®3|IP1\D induced from the L2-metric on T Ky p1 and from
the Weil-Petersson metric on TP'. Then the following identity

holds:
= 162 d\’
(Ey)*® (W)

- 62 3
() @ (o)
Yo(¥) dq
Remark 12.7.

Under Conjecture 12.6, the instanton numbers {ng4(d)}s<i4en of a
quintic threefold in P* and the BCOV invariant of the mirror quintic
threefolds satisfy the following relation:

[o.¢]
25 no(d)
gz [ @)1 —q%) e

d=1
()" (o)

In the rest of this section, we prove Conjecture 12.6 (B) as an appli-
cation of Theorem 11.3. Conjecture 12.6 (A) has been proved by Zinger
[65]. Hence the above relation between Tcov(Wy) and {ny(d)}¢<1.den
holds.

12.4. Proof of Conjecture 12.6 (B). Let 7: W — P! be a family
of quintic mirror threefolds. Let K () be the K&hler potential of the
Weil-Petersson form Qwp defined as

K(¢) := —log (\/—71 Sy /\Ew) .
Wy

Define a function G(¢) by G(¢) = gwp(%, 8%—)), so that

V-10?K(¢)
2 OO
Proposition 12.8. The following estimates hold

log [4> + O(1) (¢ — 0)

2
3

_62 50112
mBcov (Wy) = Const. ‘w 3 (1 —1°)8

2
3

— Const. oo (~F5(0)

4

TBCOV (Ww) = Const.

2
3

Qwp(1) = V=1 G(W) dp A dip = dip A di.

(12.1) K@) =1 O(1) (65 — 1)
O(loglog [¢) (¥ — oo),
(1) (¥ — 0)

(12.2) log G(1) = ¢ O(log(—log [¢° —11)) (> —1)
—log [¢]* + O(loglog [¢]) (¢ — o0).
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In particular, R N\ D* = ( for any family of quintic mirror threefolds.
Proof. See [15, p. 50 Table 2]. q.e.d.
Proposition 12.9. The family of quintic mirror threefolds has trivial

ramification divisor, i.e., R =0 for the family m: W — PL.

Proof. By (11.2) and Proposition 12.8, if suffices to prove that G(¢) >
0 on P\ D. Since

K(l/}):—log (g ; Q¢/\Qw>,
P

Qwp (1) coincides with the Weil-Petersson form for X, by (4.1). Thus
G() > 0 if and only if the Kodaira-Spencer map g : TyP! — H(Xy,
Ox,) for p: X — P! is non-degenerate at ¢ € P\ D. By [58, p. 53,
1.18-1.27], py is non-degenerate for all p € P!\ D. This proves the
proposition. q.e.d.

Theorem 12.10. Conjecture 12.6 (B) holds.

Proof. For a point z = (1 : 2) € P!, let [2] = [(1 : 2)] denote the
corresponding divisor. By Proposition 12.1, we get
(12.3) div(D*) = > _[¢],

=1

which is a reduced divisor. By (12.1), we have
(12.4) div(&) = [0].

Substituting (12.3), (12.4) and R = 0 into the formula for Tscov in
Theorem 11.3 (2) and using x (W) = 200, we get

1/6
[lsm (¥ =) _ o \"
(125) TBCOV(WQJJ) = Const. CdjTﬂ :3}8+X & (w>
1/6
(¥° = 1)* _ogs o \"
= Const. g Ey 0 ® a0
2/3
= Const. ||~ %2> —1)1/2=282 g (a)?’
= . Ey %
This proves Conjecture 12.6 (B). q.e.d.

Remark 12.11. It seems that the families of Calabi-Yau threefolds
over P! studied in [33, Eqs. (2.1), (2.2)] satisfy Assumption (i), (ii),
(iii) of Section 11. (See [33, p. 157, last five lines|.) By the explicit
formula for the Yukawa coupling [33, Eq. (4.6)], we get RN (P1\ D) = ()
for these examples. If R N D* = (), the conjectured formulas for the
BCOV invariants of these families [6, p. 294] follow from Theorem 11.3

(2).
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13. The BCOYV invariant of FHSV threefolds

13.1. The threefolds of Ferrara—Harvey—Strominger—Vafa. A
compact connected complex surface S is an Enriques surface if it satisfies
H'(S,05) = 0, Kg % Og, and K2 = Og. An Enriques surface S is
an algebraic surface with 71(S) 2 Zy whose universal covering S is a
K3 surface. For an Enriques surface S, let tg: S — S be the non-
trivial covering transformation that generates m1(S). Then (S,tg) is a
2-elementray K3 surface. (See [62, Section 8.1].)

Let H C C be the complex upper-half plane. For 7 € H, let E, denote
the elliptic curve C/Z + 77Z. For an elliptic curve T' = E;, let —1p be
the involution on 7" defined as —17(2) = —=z for z € C/Z + TZ.

Let Zy be a group of order 2 with generator . Then Zy acts on the
spaces S, T, and S x T by identifying § with g, —17 and tg x (—17),
respectively.

Definition 13.1. For an Enriques surface S and an elliptic curve T',
define

X1y =8 xT/Ly.

Since 15 x (—1r) has no fixed points, X(g ) is a smooth Calabi-Yau
threefold. Let p1: X(g7) — S = §/Z2 and let pa: X(g1) — P! /Zy be
the natural projections. Then p; is an elliptic fibration with constant
fiber T', and po is a K3 fibration with constant fiber S. After Ferrara-
Harvey-Strominger-Vafa [20], the Calabi-Yau threefold X g r) is called
the FHSV threefold associated with (S,T). We have

(181)  x(Xsm) = 58 X T) = L X(SN(T) =0.

13.2. The moduli space of FHSV threefolds. The period of an
Enriques surface S is defined as the period of (§ ,ts) and lies in the
quotient space Q/T", where Q) is a symmetric bounded domain of type
IV of dimension 10 and where I' is an arithmetic subgroup of Aut(f2).
The period of S is denoted by [S] € Q/I". There exists a I'-invariant
divisor D C €, called the discriminant locus, such that (2\ D)/T" is a
coarse moduli space of Enriques surfaces via the period map. We refer
to e.g., [2, Chap.8, Sections 19-21] for more details about the moduli
space of Enriques surfaces.

In [13], Borcherds constructed an automorphic form ® on Q for I’
of weight 4 with div(®) = D. The automorphic form ® is called the
Borcherds ®-function. Let Bq be the Bergman kernel function of €.
The Petersson norm of the Borcherds ®-function is the I'-invariant C'*°
function on 2 defined as

@] == Bg|@|*.
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By the I'-invariance of ||®||2, it descends to a function on /T, denoted
again by ||®[|%. Then ||®([S])||? is the value of the Petersson norm of
the Borcherds ®-function at the period point of an Enriques surface S.
We refer to [13], [62] for more details about the Borcherds ®-function.

For an elliptic curve T' = E, the period of T is defined as the SL(Z)-
orbit of 7 € H and is denoted by [T'] € H/SL2(Z). The quotient space
H/SLy(Z) is a coarse moduli space of elliptic curves via the period map.
Let

o0
A(r)i=q [JA=¢9*,  q:=exp(2nV/~1r)
n=1
be the Jacobi A-function, which is a unique cusp form of weight 12.
The Petersson norm of the Jacobi A-function is a SLo(Z)-invariant C'*°
function on H defined as

HA(T)H2 := (det Im 7')12|A(7')|2.

By the SLy(Z)-invariance of |A|?, it descends to a function on
H/SLy(Z). Then ||A([T])||? is the value of the Petersson norm of the
Jacobi A-function at the period point of an elliptic curve T'.

Theorem 13.2. The analytic space [(2\ D)/T| x [H/SL2(Z)] is a
coarse moduli space of FHSV threefolds.

Proof. Since (2\ D)/I" is a coarse moduli space of Enriques surfaces
[2, Chap. 8, Ths.21.2 and 21.4] and since H/SL2(Z) is a coarse moduli
space of elliptic curves via the elliptic j-function, it suffices to prove
that X g7y = X (g vy if and only if S = §" and T' = T". This statement
follows from [5, Section 3]. q.e.d.

13.3. A Conjecture of Harvey-Moore. Following [27, Section V]
and [62, Section 8.1], we interpret a result of the third-named author
[62, Th.8.3] in terms of the BCOV torsion of FHSV threefolds. The
following formula was conjectured by Harvey-Moore [27, Eq. (4.9)].

Theorem 13.3. There exists a constant C such that for every En-
riques surface S and for every elliptic curve T,

mecov(X(sr)) = C IS AT
For the proof of Theorem 13.3, we need some intermediary results.
Let H? (S Z) be the invariant subspace of H2(S,Z) with respect to the
ts-action. Let H € H? (S Z) be an g-invariant Kahler class on S, and
let v € H?(T,Z) be the generator with [, v = 1. Let 7: SxT — X1
be the natural projection. We define x € HQ(X(SyT),Z) to be the Kahler

class on X(g7) such that 7*x = H + v. By [60], there exists a unique
Ricci-flat Kéhler form v = v, on X(g7y with Kéhler class . By [60]
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again, there exist a unique Ricci-flat Kahler form vy on S and a unique
Ricci-flat Kéhler form v on 7" such that

™y =va+yr,  Dwl=H,  [rl=v.

Let (-, -) denote the cup-product pairing on H2(§, Z). Since [pv =1
and (a,b) = [5a Ab for a,b € H*(S,Z), we get
(H+v)? 1

(2m)331 2573

1
(132 VollXsr) = [ (H, ).
SxT

By the Ricci-flatness of 7, Remark 4.2, and (13.1), we get
(13.3) A(X(s1),7) = Vol(X(g7), 7K D12 = 1.
Lemma 13.4. The following identity holds:

H H
V01L2(H2(X(S,T)az)’ K) = <2357r33>

Proof. Let H?r(g x T,7Z) be the invariant subspace of H2(§ xT,7)
with respect to the tg x (—17)-action. Similarly, let H_%(T, Z) be the
invariant subspace of H?(T,Z) with respect to the —1p-action. We have

(13.4) 7 H*(X(s1), L) = H3(S x T, Z)
= H2(S,Z)® H2(T,Z) = H*(S,Z) ® Zv.

By [2, Chap. 8, Lemma 15.1 (iii)], there exists an integral basis {e1, ..
e} of H2(S,Z) such that

(135) det((ei, ej>)1§m§10 = —210.
By (13.4), we fix the basis {él, ..., €10, \7} of HQ(X(&T), Z)fr such that

)

@) =e (1<i<10), (%) =w.

Recall that the cubic form ¢ = CX(g.r) ON H? (X(s,1), L) was defined in
Section 4.4. Then we get

c(€, Vv, k) = 3 / e ANVAT'K

SxT

1 1
= G o AU ) = e )

_ 1 «
c(ei,ej,m) = 2(27r)3 éXTeiAejAﬂ K
1
=  ANej N (H = ——(€;,€e;
2(2m)? /ST % NIHY) = gy )
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clei, Kk, k) = 2(21%)3 /~ ei A (1T7k)?

SxT
1 1
= i A H 7= i7H7
2(2m)3 fST (H+v)" = Gosten H)
c(V,V,K) ! / VAVAT'K
) b - Tr
2(27T)3 §><T
=
= VAVA(H+v)=0,
2@ Jsr (H+v)
(ka8) = o [ VAR
c(V,k,K) = VA(TK
2(277)3 §><T
1
- A(H 2 _ H H
o Jo VUV = g LD,

1 *
(K, K, k) = 32y /gXT(ﬂ k)3

_ 1 V)3 —
= 50m5 y H = sp H

By Lemma 4.12 and these formulae, we get

_ §C(éi7 Lz K‘)C(éja Ky K‘)

(277)3<éi7 éj)LQ,n 9 C(H, s H) — c(e;, €;, K)
e 1
<H, H> g \C1 Cil
(27T>3<éi,V>L2,H = gc(él,:(,/z):’(:; s k) —c(&;,V,K)
el H)(HH) 1, .
s (mH 5lei H) =0,
2m)* (v, V)2, = ;C<V’ IZE:)IZ(‘;’)H’ r)_ c(v, v, K)
CV(HHY(HH) 1
Toqmm Tt

which yields that
(13.6)

Vol (H*(X(s,1), Z), k)

= det <éi7éj>L2,n <éi7‘7>L2,m

<éi7 ‘_’>L2,n <V7 V>L2,n

H H i, H i, H
< 9 > det ((ei,ej>—2<e ><e] >) )
4 (H,H) 1<4,j<10

— (27T)_332_10
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Define a 10 x 10 symmetric matrix A by A = ({(e;, e;)). Write H =
S>30 hie; and define a column vector h € Z'* by h = (h;). We set
(Ah) - (*hA)

- thAh

Since A is invertible and since th Ah = (H, H) > 0, we get the decom-
position R = Rh @ (Ah)t. Since Bh = —Ah and Bx = Ax for
x € (Ah)*, we get det B = —det A = 2'0 by (13.5), which, together
with (13.6), yields that

B=A-2

33510 (1, H) (H,H)
VOILZ (H2 (X(S7T),Z), /i) = (27T) 332 10 T det B = W
This completes the proof of Lemma 13.4. q.e.d.

Let Op (resp. Op) be the d-Laplacian of (S,~vg) (resp. (T,4r))

acting on C*°(S) (resp. C*°(T)). We define

AX(S) == {f € C®(5); 15 f = £},

AX(T) = {f € OX(T); (~17)"f = £f}.
Since vg (resp. —1r) preserves g (resp. yr), Uy commutes with the ¢g-
action on C*°(S) and O commutes with the (—1)p-action on C*°(T).
Hence Oy preserves A*(S), and Op preserves AT(T). We set

05 = Orl42(3): OF = Or|az(7)-

Let (i (s) (resp. (F(s)) be the spectral zeta function of O0% (resp.
OF). Then (i(s) and (F(s) converge absolutely for Res > 0, they
extend meromorphically to the complex plane C, and they are holomor-
phic at s = 0.

Lemma 13.5. The following identity holds
log Tecov(X(sm),7) = =24 (¢F)'(0) = 8 {(¢f)'(0) — () (0)}

Proof. See [27, Section V], in particular [27, Egs. (5.3), (5.9), (5.10)].
q.e.d.

Remark 13.6. The signs in [27, Egs. (5.10), (5.11)] are not correct.
In [27, Egs. (5.10), (5.11)], the formula log det’ 0% = (¢3)'(0) was used,
while the correct formula is log det’ 07 = —(¢3)(0).

Lemma 13.7. There exists a constant Co such that for every En-

riques surface S and for every Kdhler class H on S, the following iden-
tity holds

8{(¢77)'(0) = (€)' (0)} + 4 log(H, H) = —log||®([S])||* + Co.

Proof. The result follows from [62, Eq.(8.3)] and [64, Lemma 4.3,
Eq. (4.4)]. q.e.d.
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Lemma 13.8. There exists a constant C1 such that for every elliptic
curve T,

24(¢£)'(0) = —log |A([T)]* + Ch.

Proof. Since ¢} (s) = (7 (s) by [48, p. 166, 1.8 and 1.10] and since
¢ (s)+ ¢ (s) is the spectral zeta function of O, the result follows from
the Kronecker limit formula. See e.g., [48, Th.4.1] or [10, Th. 13.1].
q.e.d.

13.4. Proof of Theorem 13.3. By Lemmas 13.5, 13.7, 13.8, we get
(13.7)
log Tocov (X (s,r),7) = log(|@([S])|I* | A([T])|1*)+4 log(H, H)—Co—Ch.

By (13.2), (13.3), (13.7) and Lemma 13.4, we get

mBcov (X (s,1):7)
= Vol(X 5,1y, 5-) ™ Vol (H* (X(s,1), 2), [y) ™
~A(Xs1),7) Tecov(X(s1),7)
_ <<H, H>>3, (<H, H>>1 IO INIANRE:Rz5S

257T3 23571'33 eCO+Cl

L ENRINEANR

where we set C' = 290742 ¢=¢0=C1_ This completes the proof of Theorem
13.3. q.e.d.

References

[1] C. Banica & O. Stanasila, Algebraic methods in the global theory of complex
spaces, John Wiley&Sons, New York, 1976, MR 0463470, Zbl 0334.32001.

[2] W. Barth, C. Peters, & A. Van de Ven, Compact Complex Surfaces, Springer,
Berlin, 1984, MR 0749574, Zbl 1036.14016.

[3] D. Barlet, Développement asymptotique des fonctions obtenues par intégration
sur les fibres, Invent. Math. 68 (1982) 129-174, MR 0666639, Zbl 0508.32003.

[4] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersur-
faces in toric varieties, Jour. Algebr. Geom. 3 (1994) 493-535, MR 1269718,
Zbl 0829.14023.

[5] A. Beauville, Some remarks on Kdahler manifolds with ¢c1 = 0, Classification of
algebraic and analytic manifolds (ed. K. Ueno), Progress in Math. 39 (1983)
1-26, MR 0728605, Zbl 0537.53057.

[6] M. Bershadsky, S. Cecotti, H. Ooguri, & C. Vafa, Holomorphic anomalies in
topological field theories, Nuclear Phys. B 405 (1993) 279-304, MR 1240687,
Zbl 1039.81550.

, Kodaira-Spencer theory of gravity and ezxact results for quantum
string amplitudes, Commun. Math. Phys. 165 (1994) 311-427, MR 1301851,
Zbl 0815.53082.

[7]




256
8]
[9]

(10]

(11]

(12]
(13]

(14]

(15]

(16]
(17]
(18]

(19]
20]

21]

(22]
23]
(24]

(25]

(26]

H. FANG, Z. LU & K.-I. YOSHIKAWA

J.-M. Bismut, FEquivariant immersions and Quillen metrics, Jour. Differential
Geom. 41 (1995) 53-157, MR 1316553, Zbl 0826.32024.

, Quillen metrics and singular fibers in arbitrary relative dimension, Jour.
Algebr. Geom. 6 (1997) 19-149, MR 1486991, Zbl 0871.32003.

J.-M. Bismut & J.-B. Bost, Fibrés déterminants, métriques de Quillen et
dégénérescence des courbes, Acta Math. 165 (1990) 1-103, MR 1064578,
Zbl 0709.32019.

J.-M. Bismut, H. Gillet, & C. Soulé, Analytic torsion and holomorphic determi-
nant bundles L,ILIII, Commun. Math. Phys. 115 (1988) 49-78, 79-126, 301-351,
MR 0929146, MR 0929147, MR 0931666, Zbl 0651.32017.

J.-M. Bismut & G. Lebeau, Complexr immersions and Quillen metrics, Publ.
Math. THES 74 (1991) 1-297, MR 1188532, Zbl 0784.32010.

R.E. Borcherds, The moduli space of Enriques surfaces and the fake monster Lie
superalgebra, Topology 35 (1996) 699-710, MR 1396773, Zbl 0886.14015.

T. Bridgeland, A. King, & M. Ried, The MacKay correspondence as an
equivalence of derived categories, Jour. Amer. Math. Soc. 14 (2001) 535-554,
MR 1824990, Zbl 0966.14028.

P. Candelas, X. de la Ossa, P. Green, & L. Parkes, A pair of Calabi-Yau man-
ifolds as an ezxactly solvable superconformal field theory, Nuclear Physics B407
(1993) 115-154, MR 1115626, Zbl 1098.32506.

D.A. Cox & S. Katz, Mirror Symmetry and Algebraic Geometry, Amer. Math.
Soc. Providence, 1999, MR 1677117, Zbl 0951.14026.

A. Douady, Le problémes des modules locauzx pour les espaces C-analytiques com-
pacts, Ann. Sci. Ec. Norm. Sup. 4 (1974) 569-602, MR 0382729, Zbl 0313.32036.

H. Fang & Z. Lu, Generalized Hodge metrics and BCOV torsion on Calabi- Yau
moduli, Jour. reine angew. Math. 588 (2005) 49-69, MR, 2196728.

H. Fang, Z. Lu, & K.-1. Yoshikawa, in preparation.

S. Ferrara, J. Harvey, A. Strominger, & C. Vafa, Second-quantized mirror sym-
metry, Phys. Lett. B 361 (1995) 59-65, MR 1362446, Zbl 0899.32012.

H. Gillet & C. Soulé, Characteristic classes for algebraic vector bundles with her-
mitian metric, I, II, Ann. of Math. 131 (1990) 163-203, 205-238, MR 1038362,
MR 1043268, Zbl 0715.14018, Zbl 0715.14006.

, Analytic torsion and the arithmetic Todd genus, Topology 30 (1991)
21-54, MR 1081932, Zbl 0787.14005.

H. Grauert, Der Satz von Kuranishi fir Kompakte Komplere Ratime, Invent.
Math. 25 (1974) 107-142, MR 0346194, Zbl 0286.32015.

P. Griffiths, Variation of Hodge structure, Ann. of Math. Studies 106 (1984)
3-28, MR 0756842, Zbl 0528.00004.

A. Grothendieck, Techniques de construction en géométrie analytique VI:
étude locale des morphismes: germes d’espaces analytiques, platitude, mor-
phismes simples, Séminaire Henri Cartan 1960/61, (1962) 136-148, MR 0146036,
Zbl 0142.33504.

R. Hartshorne, Algebraic Geometry, Springer, Berlin, 1977, MR 0463157,
Zbl 0531.14001.



27]

(28]
29]
(30]
(31]
(32]

33]

(34]
(35]
(36]
(37]
(38]

(39]

(40]

(41]

[42]
[43]
[44]
[45]

(46]

ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 257

J. Harvey & G. Moore, FEzact gravitational threshold correction in the
Ferrara-Harvey-Strominger- Vafa model, Phys. Rev. D 57 (1998) 2329-2336,
MR 1607775.

Y. Kawamata, Unobstructed deformations, a remark on a paper of Z. Ran, Jour.
Algebr. Geom. 1 (1992) 183-190, MR 1144434, Zbl 0818.14004.

G. Kempf, F. Knudsen, D. Mumford, & B. Saint-Donat, Toroidal Embeddings 1,
Lecture Notes Math. 339 (1973), MR 0335518, Zbl 0271.14017.

F.F. Knudsen & D. Mumford, The projectivity of the moduli space of stable
curves, I, Math. Scand. 39 (1976) 19-55, MR 0437541, Zbl 0343.14008.

S. Kobayashi, Hyperbolic Complex Spaces, Springer, Berline, 1998, MR 1635983,
Zbl 0917.32019.

J. King, The currents defined by analytic varieties, Acta Math. 127 (1971) 185—
220, MR 0393550, Zbl 0224.32008.

A. Klemm & S. Theisen, Considerations of one-modulus Calabi-Yau compacti-
fications: Picard-Fuchs equations, Kdhler potentials and mirror maps, Nuclear
Phys. B 389 (1993) 153-180, MR 1202211.

M. Kuranishi, On the locally complete families of complex analytic structures,
Ann. of Math. 75 (1962) 536577, MR 0141139, Zbl 0106.15303.

E.J.N. Looijenga, Isolated Singular Points on Complete Intersections, Cam-
bridge Univ. Press, Cambridge, 1984, MR 0747303, Zbl 0552.14002.

J. Li & A. Zinger, On the genus-one Gromov-Witten invariants of complete
intersection threefolds, E-print, arXiv: math.AG/0406105, 2004.

Z. Lu, On the geometry of classifying spaces and horizontal slices, Amer. Jour.
Math. 121 (1999) 177-198, MR 1705002, Zbl 0973.53057.

, On the Hodge metric of the universal deformation space of Calabi-Yau
threefolds, Jour. Geom. Anal. 11 (2001) 103-118, MR 1829350, Zbl 0986.32010.

Z. Lu & X. Sun, Weil-Petersson geometry on moduli space of polarized Calabi-
Yau manifolds, Jour. Inst. Math. Jussieu 3 (2004) 185-229, MR 2055709,
Zbl 1066.32028.

B. Malgrange, Ideals of Differentiable Functions, Oxford University Press, 1966,
MR 0212575, Zbl 0177.17902.

D. Morrison, Mirror symmetry and rational curves on quintic threefolds: A
quick guide for mathematicians, Jour. Amer. Math. Soc. 6 (1993) 223-247,
MR 1179538, Zbl 0843.14005.

Y. Namikawa, On deformations of Calabi- Yau 3-folds with terminal singularities,
Topology 33 (1994) 429-446, MR 1286924, Zbl 0813.14004.

, Calabi-Yau threefolds and deformation theory, Sugaku Exposition 15
(2002) 129, MR 1286924, Zbl 0813.14004.

, Stratified local moduli of Calabi-Yau threefolds, Topology 41 (2002)
1219-1237, MR 1923221, Zbl 1072.14523.

J. Noguchi & T. Ochiai, Geometric Function Theory in Several Complex Vari-
ables, Amer. Math. Soc., 1990, MR 1084378, Zbl 0713.32001.

D. Quillen, Determinants of Cauchy-Riemann operators over a Riemann surface,
Funct. Anal. Appl. 14 (1985) 31-34, MR 0783704, Zbl 0603.32016.




258
(47]
(48]
(49]
(50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

58]
[59]

(60]

(61]

(62]

(63]

(64]

(65]

H. FANG, Z. LU & K.-I. YOSHIKAWA

Z. Ran, Deformations of Calabi-Yau Kleinfolds, Essays in Mirror Symmetry (ed.
S.-T. Yau), International Press 1992, 451-457, MR 1191436, Zbl 0827.32021.

D.B. Ray & .M. Singer, Analytic torsion for complex manifolds, Ann. of Math.
98 (1973) 154-177, MR 0383463, Zbl 0267.32014.

M. Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971) 17—
26, MR 0292830, Zbl 0232.14005.

W. Schmid, Variation of Hodge structure: The singularities of the period map-
ping, Invent. Math. 22 (1973) 211-319, MR 0382272, Zbl 0278.14003.

Y.-T. Siu, Analyticity of sets associated to Lelong numbers and the exten-
ston of closed positive currents, Invent. Math. 27 (1974) 53-156, MR 0352516,
Zbl 0289.32003.

C. Soulé et al., Lectures on Arakelov Geometry, Cambridge University Press,
Cambridge, 1992, MR 1208731, Zbl 0812.14015.

J.H.M. Steenbrink, Mized Hodge structure on vanishing cohomology, Real and
Complex Singularities, Sijthoff-Noordhoff, Alphen aan den Rijn 1977, 525-563,
MR 0485870, Zbl 0373.14007.

K. Takegoshi, Higher direct images of canonical sheaves tensorized with semi-
positive vector bundles by proper Kdhler morphisms, Math. Ann. 303 (1995)
389-416, MR 1354997, Zbl 0843.32018.

G. Tian, Smoothness of the universal deformation space of Compact Calabi-Yau
manifolds and its Peterson- Weil metric, Mathematical Aspects of String Theory
(ed. S.-T. Yau), World Scientific 1987, 629-646, MR 0915841, Zbl 0696.53040.

, Smoothing 3-folds with trivial canonical bundle and ordinary double
points, Essays in Mirror Symmetry (ed. S.-T. Yau), International Press 1992,
458-479, MR 1191437, Zbl 0829.32012.

A. Todorov, The Weil-Petersson geometry of the moduli space of SU(n >

3) (Calabi-Yau) manifolds I, Commun. Math. Phys. 126 (1989) 325-346,
MR 1027500, Zbl 0688.53030.

C. Voisin, Mirror Symmetry, Amer. Math. Soc., Providence, 1999, MR 1711184,
Zbl 0849.14001.

, Hodge Theory and Complex Algebraic Geometry, I, Cambridge Univer-
sity Press, Cambridge, 2002, MR 1967689, Zbl 1129.14019.

S.-T. Yau, On the Ricci curvature of a compact Kdahler manifold and the complex
Monge-Ampére Equation, I, Commun. Pure Appl. Math. 31 (1978) 339-411,
MR 0480350, Zbl 0369.53059.

K.-I. Yoshikawa, Smoothing of isolated hypersurface singularities and Quillen
metrics, Asian J. Math. 2 (1998) 325-344, MR 1639560, Zbl 0971.32014.

, K3 surfaces with involution, equivariant analytic torsion, and automor-
phic forms on the moduli space, Invent. Math. 156 (2004) 53-117, MR 2047658,
Zbl 1058.58013.

, On the singularity of Quillen metrics, Math. Ann. 337 (2007) 61-89,
MR 2262777, Zbl 1126.32029.

, Real K3 surfaces without real points, equivariant determinant of the
Laplacian, and the Borcherds ®-function, Math. Zeit. 258 (2008) 213-225,
MR 2350043, Zbl 1131.14043.

A. Zinger, The reduced genus-one Gromov-Witten invariants of Calabi-Yau hy-
persurfaces, preprint, arXiv:0705.2397, 2007.



ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 259

[66] S. Zucker, Degenerations of Hodge bundles (after Steenbrink), Ann. of Math.
Studies 106 (1984) 121-141, MR 0756849, Zbl 0574.14008.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF Iowa
Towa Crry, TA 52245

FE-mail address: haofang@math.uiowa.edu

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA IRVINE
IrRvVINE, CA 92697

E-mail address: zZlu@math.uci.edu

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES
UNIVERSITY OF TOKYO
3-8-1 KomaBA, TOKYO 153-8914, JAPAN

E-mail address: yosikawa@ms.u-tokyo.ac.jp



