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Abstract

After Bershadsky-Cecotti-Ooguri-Vafa, we introduce an invari-
ant of Calabi-Yau threefolds, which we call the BCOV invariant
and which we obtain using analytic torsion. We give an explicit
formula for the BCOV invariant as a function on the compactified
moduli space, when it is isomorphic to a projective line. As a
corollary, we prove the formula for the BCOV invariant of quintic
mirror threefolds conjectured by Bershadsky-Cecotti-Ooguri-Vafa.
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1. Introduction

In the outstanding papers [6], [7], Bershadsky-Cecotti-Ooguri-Vafa
made a deep study of the generating function Fg of genus-g Gromov-
Witten invariants for Calabi-Yau threefolds. One mathematical sur-
prise, which they obtained from physical arguments, is a system of
holomorphic anomaly equations satisfied by the functions Fg, g ≥ 1.
From the holomorphic anomaly equations, they obtained a conjectural
explicit formula for some Fg of general quintic threefolds in P4 and thus
they extended the mirror symmetry conjecture of Candelas-de la Ossa-
Green-Parkes [15].

By focusing on the genus-1 holomorphic anomaly equation, they con-
jectured that F1 of a Calabi-Yau threefold is expressed as a certain linear
combination of the Ray-Singer analytic torsions (cf. [11], [48]) of its
mirror Calabi-Yau threefolds. After Bershadsky-Cecotti-Ooguri-Vafa,
we call the linear combination of Ray-Singer analytic torsions in [7] the
BCOV torsion, which is the main subject of this paper.

By making use of the curvature formula for Quillen metrics [11],
Bershadsky-Cecotti-Ooguri-Vafa obtained a variational formula for the
BCOV torsion of Ricci-flat Calabi-Yau manifolds [7]. Fang-Lu [18] ex-
pressed the variation of the BCOV torsion of Ricci-flat Calabi-Yau man-
ifolds as a linear combination of the Weil-Petersson metric [55] and the
generalized Hodge metrics [38], which led them to some new results on
the moduli space of polarized Calabi-Yau manifolds.

In [27], it was conjectured that the BCOV torsion of certain Ricci-flat
Calabi-Yau threefolds is expressed as the product of the norms of the
Borcherds Φ-function [13] and the Dedekind η-function. Their conjec-
ture was proved by Yoshikawa [62]. In his proof, an invariant of K3
surfaces with involution, which he obtained using equivariant analytic
torsion [8] and a Bott-Chern class [11], played a crucial role.

In this paper, we extend the constructions of Bershadsky-Cecotti-
Ooguri-Vafa and Yoshikawa to introduce a new invariant of Calabi-Yau
threefolds, which we call the BCOV invariant, and we get an explicit
formula for the BCOV invariant as a function on the compactified mod-
uli space when it is isomorphic to P1. As a corollary of our formula,
we prove one part of the conjecture of Bershadsky-Cecotti-Ooguri-Vafa
concerning the BCOV torsion of quintic mirror threefolds. Let us ex-
plain our results in more detail in the following.

Let X be a Calabi-Yau threefold. Let g be a Kähler metric on X
with Kähler form γ. We set X = (X, γ). Let ζp,q(s) be the spectral zeta

function of the Hodge-Kodaira Laplacian of X acting on (p, q)-forms.
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We define the BCOV torsion of X as

TBCOV(X) = exp


−

∑

p,q≥0

(−1)p+qpq ζ ′p,q(0)


 .

Let {e1, . . . , eb2(X)} be an integral basis of H2(X,Z)/Torsion. By

the Hodge theory and the Lefschetz decomposition theorem, H2(X,R)
is equipped with the L2-metric 〈·, ·〉L2,[γ], which depends only on the
Kähler class [γ]. We define

VolL2(H2(X,Z), [γ]) = det
(
〈ei, ej〉L2,[γ]

)
1≤i,j≤b2(X)

,

which is independent of the choice of an integral basis of H2(X,Z)/
Torsion.

Let η be a nowhere vanishing holomorphic 3-form on X. Let c3(X, γ)
be the top Chern form of (TX, g). We set Vol(X, γ) = (2π)−3

∫
X γ

3 and
χ(X) =

∫
X c3(X, γ). We define

A(X) = Vol(X, γ)
χ(X)
12

· exp

[
− 1

12

∫

X
log

(√
−1η ∧ η̄
γ3/3!

· Vol(X, γ)

‖η‖2
L2

)
c3(X, γ)

]
,

which is independent of the choice of η. We define the real number
τBCOV(X) as

τBCOV(X) = Vol(X, γ)−3 VolL2(H2(X,Z), [γ])−1 A(X) TBCOV(X).

In Section 4.4, we show that τBCOV(X) is independent of the choice
of γ. Hence τBCOV(X) is an invariant of X, which we call the BCOV
invariant. The purpose of this paper is to study τBCOV as a function on
the moduli of Calabi-Yau threefolds.

Let X be a (possibly singular) irreducible projective fourfold. Let
π : X → P1 be a surjective flat morphism with discriminant locus D.
Let ψ be the inhomogeneous coordinate of P1, and set Xψ := π−1(ψ)
for ψ ∈ P1. We assume the following:

(i) D is a finite subset of P1 such that ∞ ∈ D and D \ {∞} 6= ∅;
(ii) Xψ is a Calabi-Yau threefold with h2(Ω1

Xψ
) = 1 for ψ ∈ P1 \ D;

(iii) SingXψ consists of a unique ordinary double point (ODP) for
ψ ∈ D \ {∞};

(iv) Sing(X ) ∩X∞ = ∅ and X∞ is a divisor of normal crossing.

Under these assumptions, the relative dualizing sheaf KX/P1 is locally

free on X , and its direct image sheaf π∗KX/P1 is locally free on P1.

For ψ ∈ P1 \ {∞}, let (Def(Xψ), [Xψ]) be the Kuranishi space of Xψ.
Since Xψ is Calabi-Yau, dim Def(Xψ) = 1. We identify (Def(Xψ), [Xψ])
with (C, 0) by the smoothness of the Kuranishi space (cf. [55], [56],
[57]). Let µψ : (P1, ψ) → (Def(Xψ), [Xψ]) be the map of germs that
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induces the family π : X → P1 near ψ. The ramification index r(ψ) of
π : X → P1 at ψ ∈ P1 is defined as the vanishing order of µψ at ψ. Let
{Rj}j∈J be the set of points of P1 with ramification index > 1, and
write D\{∞} = {Dk}k∈K . We set rj = r(Rj) for j ∈ J and rk = r(Dk)
for k ∈ K.

Outside D ∪ {Rj}j∈J , TP1 is equipped with the Weil-Petersson met-

ric. Let ‖ · ‖ be the singular Hermitian metric on (π∗KX/P1)⊗(48+χ) ⊗
(TP1)⊗12 induced from the L2-metric on π∗KX/P1 and from the Weil-

Petersson metric on TP1.

Main Theorem 1.1. Let Ξ be a meromorphic section of π∗KX/P1

with

div(Ξ) =
∑

i∈I
mi Pi +m∞ P∞, Pi 6= P∞ (i ∈ I).

Identify the points Pi, Rj , Dk with their coordinates ψ(Pi), ψ(Rj), ψ(Dk)
∈ C, respectively. Set χ = χ(Xψ), ψ ∈ P1 \ D. Then there exists

C ∈ R>0 such that

τBCOV(Xψ)

= C

∥∥∥∥∥∥

∏

i∈I,j∈J,k∈K

(ψ −Dk)
2rk

(ψ − Pi)(48+χ)mi(ψ −Rj)12(rj−1)
Ξ48+χ
ψ ⊗

(
∂

∂ψ

)12
∥∥∥∥∥∥

1
6

.

As a corollary of the Main Theorem 1.1, we give a partial answer
to the conjecture of Bershadsky-Cecotti-Ooguri-Vafa, which we explain
briefly (cf. Section 12).

Let p : X → P1 be the pencil of quintic threefolds in P4 defined by

X := {([z], ψ) ∈ P4 × P1; z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5ψ z0z1z2z3z4 = 0},

p = pr2.

Let Z5 be the set of fifth roots of unity and define

G := {(a0, a1, a2, a3, a4) ∈ (Z5)
5; a0a1a2a3a4 = 1}/Z5(1, 1, 1, 1, 1) ∼= Z3

5.

We regard G as a group of projective transformations of P4. Since G
preserves the fibers of p, we have the induced family p : X/G→ P1. Let
D be the discriminant locus of the family p : X → P1. By [4], [14], [41],
there is a resolution q : W → X/G such that Wψ = q1(Xψ) is a smooth
Calabi-Yau threefold for ψ ∈ P1 \D and such that SingWψ consists of a
unique ODP if ψ5 = 1. The family of Calabi-Yau threefolds π : W → P1

is called a family of quintic mirror threefolds.
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After Candelas-de la Ossa-Green-Parkes [15], π∗KW/P1 and TP1 are

trivialized near ψ = ∞ as follows. For ψ ∈ P1 \D, we define a holomor-
phic 3-form on Xψ by

Ωψ =

(
2π

√
−1

5

)−3

5ψ
z4 dz0 ∧ dz1 ∧ dz2
∂Fψ(z)/∂z3

.

Since Ωψ is G-invariant, Ωψ induces a holomorphic 3-form on Xψ/G in
the sense of orbifolds. We identify Ωψ with the corresponding holomor-
phic 3-form on Xψ/G, and we define a holomorphic 3-form Ξψ on Wψ

as Ξψ = q∗ψΩψ. We define

y0(ψ) =
∞∑

n=0

(5n)!

(n!)5(5ψ)5n
, |ψ| > 1.

Then π∗KW/P1 is trivialized by the local section Ξψ/y0(ψ) near ψ = ∞.
Let q be the coordinate of the unit disc in C. We identify the param-

eters ψ5 and q via the mirror map [15]. Then TP1 is trivialized by the
local section q d/dq = q (dψ/dq) d/dψ near ψ = ∞. (See Section 12.)

Following [6, (23)], we define an analytic function F top
1,B (ψ) near ∞ ∈

P1 as

F top
1,B (ψ) = log

[(
ψ

y0(ψ)

) 62
3

(1 − ψ5)−
1
6 q

dψ

dq

]

and we set F top
1,A (q) = F top

1,B (ψ(q)). The conjectures of Bershadsky-

Cecotti-Ooguri-Vafa [6], [7] can be formulated as follows:

Conjecture 1.2.

(A) Let ng(d) be the genus-g degree-d instanton number of a quintic
P4 for g = 0, 1. Then the following identity holds: 1

−q d

dq
F top

1,A (q) =
50

12
−

∞∑

n,d=1

n1(d)
2nd qnd

1 − qnd
−

∞∑

d=1

n0(d)
2d qd

12(1 − qd)
.

(B) The following identity holds near ψ = ∞:

τBCOV(Wψ) = Const.
∣∣∣exp

(
−F top

1,B (ψ)
)∣∣∣

2
∥∥∥∥∥

(
Ξψ
y0(ψ)

)62

⊗
(
q
d

dq

)3
∥∥∥∥∥

2
3

.

Conjecture (A) can be found in [6, (24)]. Conjecture (B) is deduced
from [6, (16)] and [7, Section 5.8] as follows. In [7, p. 373, last formula],
Bershadsky-Cecotti-Ooguri-Vafa conjectured the following identity for
Calabi-Yau threefolds

(1.1) F1 = − log TBCOV,

1In the original conjecture in [6, 7], the Gromov-Witten invariants Ng(d) were
used. The invariants have to be replaced by the instanton numbers. See [65] for
details.
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where F1 is the partition function of the twisted N = 2 theory coupled
to gravity at genus 1 [6, (1)], [7, (2.37)].2 In [6, (16)], they conjectured
an explicit formula for F1 for quintic mirror threefolds, in which F1 is a
function on the moduli space. Since TBCOV does depend on the choice
of a Kähler metric and is not a function on the moduli space, some
corrections are necessary in (1.1). We observe that TBCOV coincides with
τBCOV up to a rational constant, if the Kähler metric is Ricci-flat [60]
and the corresponding Kähler class is integral. After this observation, it
is reasonable to replace TBCOV by the BCOV invariant τBCOV in (1.1).
Substituting [6, (16)] into F1 and replacing TBCOV by τBCOV, we get
Conjecture (B) from (1.1).

In Section 12, we prove the following:

Theorem 1.3. The Conjecture 1.2 (B) holds.

Recently, Conjecture 1.2 (A) has been proved by Zinger [36], [65].
In [19], we shall study the BCOV invariant of Calabi-Yau threefolds
with higher dimensional moduli and the BCOV torsion of Calabi-Yau
manifolds of dimension greater than 3.

Let us briefly explain our approach to prove the Main Theorem 1.1.
We follow the approach in [62]. Let ΩWP be the Weil-Petersson form
on P1 \D, and let Ric ΩWP be the Ricci-form of ΩWP. By [38], [39], the
(1, 1)-forms ΩWP and RicΩWP have Poincaré growth on P1 \D, so that
they extend trivially to closed positive (1, 1)-currents on P1 (cf. Section
7.3). We identify ΩWP and Ric ΩWP with their trivial extensions. For
a divisor D on P1, let δD denote the Dirac δ-current on P1 associated
to D. Regard τBCOV as a function on P1 \ D. By making use of the
Poincaré-Lelong formula, the Main Theorem 1.1 is deduced from the
following:

Claim 1.4. Set D∗ =
∑

k∈K rkDk. Then there exists a ∈ R such
that

(1.2) − 1

2πi
∂∂̄ log τBCOV = −

( χ
12

+ 4
)

ΩWP−Ric ΩWP+
1

6
δD∗ +a δ∞.

We shall establish Claim 1.4 as follows:

(a) By making use of the curvature formula for Quillen metrics of
Bismut-Gillet-Soulé [11], we prove the variational formula like (1.2)
for an arbitrary family of Calabi-Yau threefolds. As a result, we get
Eq. (1.2) on the open part P1\D. More precisely, we introduce a Hermit-
ian line, called the BCOV Hermitian line, for an arbitrary Calabi-Yau
manifold of arbitrary dimension, which we obtain using determinants
of cohomologies [30], Quillen metrics [11], [46], and a Bott-Chern class

2
F1 in [7, (2.37)] is the half of F1 in [6, (1)], which explains the difference between

(1.1) and [7, p. 373, last formula]. Since we use the formulae in [6], we follow the
definition of F1 in [6].
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like A(·). Then the BCOV Hermitian line of a Calabi-Yau manifold
depends only on the complex structure of the manifold. The Hodge di-
amond of Calabi-Yau threefolds are so simple that the BCOV Hermit-
ian line reduces to the scalar invariant τBCOV in the case of threefolds.
Hence Eq. (1.2) on P1 \D is deduced from the curvature formula for the
BCOV Hermitian line bundles. (See Section 4).

(b) To establish the formula for log τBCOV near D, we fix a specific
holomorphic extension of the BCOV bundle from P1 \ D to P1, which
we call the Kähler extension. (See Section 5.) Since τBCOV is the ratio
of the Quillen metric and the L2-metric on the BCOV bundle, it suffices
to determine the singularities of the Quillen metric and the L2-metric
on the extended BCOV bundle. We determine the singularity of the
Quillen metric on the extended BCOV bundle with respect to the metric
on TX/P1 induced from a Kähler metric on X . The anomaly formula
for Quillen metrics of Bismut-Gillet-Soulé [11] and a formula for the
singularity of Quillen metrics [9], [63] play the central role. (See Section
5.).

(c) By the smoothness of Def(Xψ) at ψ ∈ D∗ [28], [47], [56], the
behavior of the L2-metric on the extended BCOV bundle near D∗ is
determined by the singularity of ΩWP near D∗, which was computed by
Tian [56]. (See Sections 6, 7, 8.) To determine the behavior of the L2

metric on the extended BCOV bundle at ψ = ∞, one may assume that
π : X → P1 is semi-stable at ψ = ∞ by Mumford [29]. We consider
another holomorphic extension of the BCOV bundle, i.e., the canonical
extension in Hodge theory [50]. With respect to the canonical extension,
the L2-metric has at most an algebraic singularity at ψ = ∞ by Schmid
[50]. Comparing the two extensions, we show that the L2-metric has
at most an algebraic singularity at ψ = ∞ with respect to the Kähler
extension. (See Section 9.) By the residue theorem and assumption (ii),
the number a in Eq. (1.2) is determined by the degrees of the divisors
D∗, div(Ξ),

∑
j∈J(rj − 1)Rj . (See Section 11.)

This paper is organized as follows. In Section 2, we recall the de-
formation theory of Calabi-Yau threefolds. In Section 3, we recall the
definition of Quillen metrics and the corresponding curvature formula.
In Section 4, we introduce the BCOV invariant and prove its varia-
tional formula. In Section 5, we study the boundary behavior of Quillen
metrics. In Section 6, we study the boundary behavior of Kodaira-
Spencer map. In Section 7, we study the boundary behavior of the
Weil-Petersson metric and the Hodge metric. In Sections 8 and 9, we
study the boundary behavior of the BCOV invariant. In Section 10, we
extend the variational formula for the BCOV invariant to the boundary
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of moduli space. In Section 11, we prove the Main Theorem. In Sec-
tion 12, we study a conjecture of Bershadsky-Cecotti-Ooguri-Vafa. In
Section 13, we study a conjecture of Harvey-Moore.

Acknowledgements. The first-named author thanks Professors Jeff
Cheeger and Gang Tian for helpful discussions. The second-named au-
thor thanks Professors Gang Tian and Duong H. Phong for helpful dis-
cussions. The third-named author thanks Professors Shinobu Hosono,
Shu Kawaguchi, Yoshinori Namikawa and Gang Tian for helpful discus-
sions, and his special thanks are due to Professor Jean-Michel Bismut,
who suggested to him, together with many other ideas, one of the most
crucial constructions in this paper, the Bott-Chern term A(X).

2. Calabi-Yau varieties with at most one ordinary double
point

2.1. Calabi-Yau varieties with at most one ODP and their de-
formations.

2.1.1. Calabi-Yau varieties with at most one ODP. Recall that
an n-dimensional singularity is an ordinary double point (ODP for short)
if it is isomorphic to the hypersurface singularity at 0 ∈ Cn defined by
the equation z2

0 + · · · + z2
n = 0.

Definition 2.1. A complex projective variety X of dimension n ≥ 3
satisfying the following conditions is called a Calabi-Yau n-fold with at

most one ODP:

(i) There exists a nowhere vanishing holomorphic n-form on Xreg =
X \ Sing(X);

(ii) X is connected and Hq(X,OX) = 0 for 0 < q < n;
(iii) The singular locus Sing(X) consists of empty or at most one ODP.

Throughout this paper, we use the following notation: For a complex
space Y , let ΘY be the tangent sheaf of Y , let Ω1

Y be the sheaf of Kähler
differentials on Y , and let KY be the dualizing sheaf of Y . The sheaf
Ωp
Y is defined as

∧p Ω1
Y . On the regular part of Y , the sheaves ΘY ,

Ωp
Y , KY are often identified with the corresponding holomorphic vector

bundles TY ,
∧p T ∗Y , detT ∗Y , respectively.

We set ∆(r) := {t ∈ C; |t| < r} and ∆(r)∗ := ∆(r) \ {0} for r > 0.
We write ∆ (resp. ∆∗) for ∆(1) (resp. ∆(1)∗).

Since an ODP is a hypersurface singularity, the dualizing sheaf of a
Calabi-Yau n-fold with at most one ODP is trivial by (i).

2.1.2. Deformations of Calabi-Yau varieties with at most one
ODP. Let X be a Calabi-Yau n-fold with at most one ODP.

Definition 2.2. Let (S, 0) be a complex space with marked point
and let X be a complex space. A proper, surjective, flat holomorphic
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map π : X → S is called a deformation of X if π−1(0) ∼= X. If X
and S are smooth and if a general fiber of π : X → S is smooth, the
deformation π : (X , X) → (S, 0) is called a smoothing of X. If there
exists a smoothing of X, X is said to be smoothable.

We refer to [42, Example 5.8] for an example of a non-smoothable
Calabi-Yau threefold with a unique ODP as its singular set.

Since H0(X,ΘX) = 0 (cf. [42, p. 432, l.23]), there exists by [17],
[23], [34] a deformation germ p : (X, X) → (Def(X), [X]) of X with the
universal property: Every deformation germ π : (X , X) → (S, 0) is in-
duced from p : X → Def(X) by a unique holomorphic map f : (S, 0) →
(Def(X), [X]). This local universal deformation ofX is called the Kuran-

ishi family of X. The Kuranishi family is unique up to an isomorphism.
The base space (Def(X), [X]) is called the Kuranishi space of X. By
[28], [47], [55], [56], [57], Def(X) is smooth. We denote by TDef(X),[X]

the tangent space of Def(X) at [X].
For a deformation π : (X , X) → (S, 0), the fiber Xs (s ∈ S) is a

Calabi-Yau n-fold with at most one ODP if s ∈ S is sufficiently close to
0 (cf. [42, Prop. 6.1], [56, Prop. 4.2]).

In the rest of Subsection 2.1, we assume that X is a smoothable
Calabi-Yau n-fold with at most one ODP. Let π : (X , X) → (S, 0) be a
smoothing. The critical locus of π is defined by

Σπ := {x ∈ X ; dπx = 0}.
The discriminant locus of π : X → S is the subvariety of S defined by

D := π(Σπ) = {s ∈ S; Sing(Xs) 6= ∅}.
Lemma 2.3. Let N + 1 = dimS. For p ∈ Sing(X), there exists a

neighborhood Vp ∼= ∆n+1 ×∆N of p in X such that

π|Vp(z, w) = (z2
0 + · · · + z2

n, w1, . . . , wN ),

z = (z0, . . . , zn), w = (w1, . . . , wN ).

In particular, if Sing(X) 6= ∅, D is a divisor of S smooth at 0.

Proof. The proof is standard and is omitted. q.e.d.

2.1.3. The Kodaira-Spencer map. For a smoothing π : (X , X) →
(S, 0), the short exact sequence of sheaves on X

0 −→ π∗Ω1
S |X −→ Ω1

X |X −→ Ω1
X −→ 0

induces the long exact sequence:

· · · −→ HomOX
(π∗Ω1

S|X,OX) −→ Ext1OX
(Ω1

X,OX)

−→ Ext1OX (Ω1
X |X ,OX) −→ · · ·
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Definition 2.4. The Kodaira-Spencer map of π : (X , X) → (S, 0) is
the connecting homomorphism

ρ0 : T0S = HomOX
(π∗Ω1

S|X,OX) → Ext1OX
(Ω1

X,OX).

Proposition 2.5.
The Kodaira-Spencer map ρ[X] : TDef(X),[X] → Ext1OX (Ω1

X ,OX) for

the Kuranishi family of X is an isomorphism.

Proof. See [28], [47], [55], [56], [57]. q.e.d.

Let

r : Ext1OX (Ω1
X ,OX) ∋ α→ α|Xreg ∈ Ext1OX (Ω1

Xreg
,OXreg)

= H1(Xreg,ΘX)

be the restriction map. Since n ≥3, r : Ext1OX (Ω1
X ,OX)→H1(Xreg,ΘX)

is an isomorphism by [49, Th. 2] and [56, Prop. 1.1].

Lemma 2.6. Under the natural identification H0(Xreg, π
∗ΘS |Xreg)

∼=
T0S via π, the composition r◦ρ0 : T0S → H1(Xreg,ΘX) is the connecting

homomorphism of the long exact sequence of cohomologies associated

with the short exact sequence of sheaves

(2.1) 0 −→ ΘXreg −→ ΘX |Xreg −→ π∗ΘS |Xreg −→ 0.

Proof. The proof is standard and is omitted. q.e.d.

Let p : (X, X) → (Def(X), [X]) be the Kuranishi family of X.

Lemma 2.7. Suppose X is smoothable. Then the Kuranishi family

of X is a smoothing of X.

Proof. Since at the ODP point p,

(2.2) OX,p
∼= OCn+1×Def(X),(0,[X])/(z

2
0 + · · · + z2

n)

by e.g., [35, p. 103, (6.7)], this implies the smoothness of X at p. q.e.d.

Proposition 2.8. There exist a pointed projective variety (B, 0), a

projective variety Z, and a surjective flat holomorphic map f : Z → B
such that the deformation germ f : (Z, f−1(0)) → (B, 0) is isomorphic

to p : (X, X) → (Def(X), [X]). In particular, the map p : X → Def(X)
is projective.

Proof. See [42, p. 441, l.7–l.12]. q.e.d.
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2.1.4. The Serre duality for Calabi-Yau varieties with at most
one ODP. Let

〈·, ·〉 : Hn−1(X,Ω1
X ⊗KX)×Ext1OX (Ω1

X ⊗KX ,KX) → Hn(X,KX) ∼= C

be the Yoneda product. Since X is compact, the Yoneda product is a
perfect pairing by [1, Th. 4.1 and Th. 4.2]. Hence, we get by Proposition
2.5

Hn−1(X,Ω1
X ⊗KX) = Ext1OX (Ω1

X ⊗KX ,KX)∨

= (TDef(X),[X])
∨ = Ω1

Def(X),[X].

IfX is smooth, then Ext1OX (Ω1
X⊗KX ,KX) = H1(X,ΘX) and the Yone-

da product is given by the ordinary Serre duality pairing [1, Th. 4.2].
Let Hn−1

c (Xreg,Ω
1
X⊗KX) be the cohomology with compact support.

Lemma 2.9.
The natural map Hn−1

c (Xreg,Ω
1
X ⊗ KX) → Hn−1(Xreg,Ω

1
X ⊗ KX)

is an isomorphism. Under this isomorphism, the Yoneda product 〈·, ·〉
coincides with the Serre duality pairing on the regular part of X:

Hn−1
c (Xreg,Ω

1
X ⊗KX) ×H1(Xreg,ΘX) → Hn

c (Xreg, KX) ∼= C.

Proof. Since Ext1OX (Ω1
X ,OX) = H1(Xreg,ΘXreg) by [56, Prop. 1.1],

the Serre duality for open manifolds [1, Th. 4.1 and Th. 4.2] yields that

Hn−1(X,Ω1
X ⊗KX) = Ext1OX (Ω1

X ,OX)∨

= H1(Xreg,ΘXreg)
∨

= Hn−1
c (Xreg,Ω

1
X ⊗KX)

and that the Yoneda product pairing

Hn−1
c (Xreg,Ω

1
X ⊗KX) × Ext1OXreg

(Ω1
Xreg

⊗KX ,KX) → Hn
c (Xreg, KX)

is perfect. Since Xreg is smooth,

Ext1OXreg
(Ω1

Xreg
⊗KX ,KX) = H1(Xreg,ΘX)

and the Yoneda product pairing 〈·, ·〉 coincides with the Serre duality
pairing. q.e.d.

2.2. The locally-freeness of the direct image sheaves: the case
n = 3. Let n ≥ 3. Let X be a smoothable Calabi-Yau n-fold with
at most one ODP. Let π : (X , X) → (S, 0) be a smoothing of X. Set
Ω1
X/S := Ω1

X /π
∗Ω1

S .

Lemma 2.10. The sheaf Ω1
X/S is a flat OS-module.

Proof. See [43, p. 13, l. 28–p. 14, l. 1] and [25, Lemme 2.3]. q.e.d.

Let us consider the case S = Def(X). Let p : (X, X) → (Def(X), [X])
be the Kuranishi family of X.
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Theorem 2.11. If n = 3, the function Def(X) ∋ s→ hq(Xs,Ω
1
Xs

) ∈
Z is constant for all q ≥ 0. In particular, Rqp∗Ω1

X/Def(X) is a locally

free ODef(X)-module on Def(X) for all q ≥ 0.

The proof of this theorem is divided into the four lemmas below.

Lemma 2.12. If n ≥ 3, the function Def(X) ∋ s→ hn−1(Xs,Ω
1
Xs

) ∈
Z is constant. In particular, Rn−1p∗Ω1

X/Def(X) is a locally free ODef(X)-

module on Def(X).

Proof. Since KX
∼= OX , we have

TDef(X),[X]
∼= Ext1OX (Ω1

X ,OX) = Ext1OX (KX ⊗ Ω1
X ,KX)

= Hn−1(X,KX ⊗ Ω1
X)∨,

where the first isomorphism follows from Proposition 2.5, the second
equality follows from the triviality of KX , and the third equality follows
from the Serre duality [26, Chap. III Th. 7.6 (b) (iii)]. Notice that we
can apply the Serre duality to X, because X has at most one ODP and
hence X is Cohen-Macaulay [26, Chap. II Th. 8.21, Prop. 8.23]. Since
KX

∼= OX , we get hn−1(X,Ω1
X) = dimTDef(X),[X]. The smoothness of

Def(X) at [X] implies that the function on Def(X)

Def(X) ∋ s→ dimTDef(X),s = dimTDef(Xs),[Xs] = hn−1(Xs,Ω
1
Xs) ∈ Z

is constant, for the Zariski tangent space coincides with the usual
tangent space for smooth varieties. Notice that the first equal-
ity dimTDef (X), s = dimTDef(Xs), [Xs] follows from [17, Section 8.2].

Since Ω1
X/Def(X) is a flat ODef (X)–module by Lemmas 2.7 and 2.10,

Rn−1p∗Ω1
X/Def(X) is locally free by [1, Chap. 3, Th. 4.12 (ii)]. q.e.d.

Lemma 2.13. If n = 3, then h3(Xs,Ω
1
Xs

) = 0 for all s ∈ Def(X).

In particular, R3π∗Ω1
X/Def(X) = 0.

Proof. See [42, p. 432, l.23]. q.e.d.

Lemma 2.14. If n = 3, the function Def(X) ∋ s → h1(Xs,Ω
1
Xs

) ∈
Z is constant. In particular, R1p∗Ω1

X/Def(X) is a locally free ODef(X)-

module.

Proof. Since Ω1
X/Def(X) is a flat ODef(X)-module, the function Def(X)

∋ s→ χ(Xs,Ω
1
Xs

) ∈ Z is constant, where χ(Xs,Ω
1
Xs

) denotes the Euler

characteristic of Ω1
Xs

. Since hq(Xs,Ω
1
Xs

) is independent of s ∈ Def(X)

for all q 6= 1 by Lemmas 2.12 and 2.13, this implies that h1(Xs,Ω
1
Xs

) is
independent of s ∈ Def(X). q.e.d.

Lemma 2.15. If n = 3, then R1p∗Ω1
X is locally free. Moreover,

the restriction map R1p∗Ω1
X → R1p∗Ω1

X/Def(X) is an isomorphism of

ODef(X)-modules.
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Proof. Set N := dim Def(X). The short exact sequence of sheaves on
X

0 → O⊕N
X

∼= p∗Ω1
Def(X) → Ω1

X → Ω1
X/Def(X) → 0

induces the long exact sequence of direct images

· · · −→ R1p∗p
∗Ω1

Def(X) −→ R1p∗Ω
1
X −→ R1p∗Ω

1
X/Def(X)

−→ R2p∗p
∗Ω1

Def(X) −→ · · ·
Since

R1p∗p
∗Ω1

Def(X) = (R1p∗OX)⊕N = 0

and
R2p∗p

∗Ω1
Def(X) = (R2p∗OX)⊕N = 0

by Definition 2.1 (ii), the second assertion follows from the above exact
sequence.

By the same argument as above, we see that the restriction map
H1(Xs,Ω

1
X|Xs) → H1(Xs,Ω

1
Xs

) is an isomorphism for all s ∈ Def(X).

Hence h1(Xs,Ω
1
X|Xs) is independent of s ∈ Def(X) by Lemma 2.14.

This, together with [1, Chap. 3, Th. 4.12 (ii)] proves the first assertion.
q.e.d.

Theorem 2.11 follows from Lemmas 2.12, 2.13, 2.14, and 2.15. q.e.d.

Let H2 (X, Z)Def (X) be the constant sheaf on Def(X) with stalk

H2(X,Z). By [42, Prop. 6.1], R2p∗Z is isomorphic to the constant sheaf
H2(X,Z)Def(X).

Since R1p∗OX = R2p∗OX = 0 by Definition 2.1 (ii), the exponential
sequence on X induces the exact sequence of direct images

(2.3) 0 = R1p∗OX −→ R1p∗O∗
X

∼=−−−−→ R2p∗Z −→ R2p∗OX = 0.

For a holomorphic line bundle L ∈ H1(X,O∗
X), the Dolbeault coho-

mology class of the Chern form c1(L, h) ∈ H1(X,Ω1
X) is independent of

the choice of a Hermitian metric h on L, which we will denote by C1(L).
Since every element of H2(X,Z) is represented uniquely as the Chern
class of an element of H1(X,O∗

X) by the isomorphism (2.3), we define
the map j : H2(X,Z) → H1(X,Ω1

X) by

j (c1(L)|X) := C1(L), L ∈ H1(X,O∗
X).

We regard C1(L) as an element of H0(Def(X), R1p∗Ω1
X/Def(X)) after

Lemma 2.15. Since H2(X,Z) is finitely generated, the map j extends
to a homomorphism of ODef(X)-modules

j : H2(X,Z)Def(X) ⊗Z ODef(X) → R1p∗Ω
1
X/Def(X).

Lemma 2.16. The homomorphism j is an isomorphism of ODef(X)-

modules.
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Proof. Since H2(X,Z)Def(X) ⊗Z ODef(X) and R1p∗Ω1
X/Def(X) are lo-

cally free by Lemma 2.15, it suffices to prove that j|X : H2(X,C) →
H1(X,Ω1

X) is an isomorphism. Since h2(X,C) = h2(Xs,C) by [42,
Prop. 6.1] and since h1(Xs,Ω

1
Xs

) = h1(X,Ω1
X) by Lemma 2.14, we get

h2(X,C) = h1(X,Ω1
X). Since j|X is surjective by [42, Lemma 2.2], it is

an isomorphism. q.e.d.

3. Quillen metrics

Throughout Section 3, we fix the following notation: Let X be a com-
plex manifold. Let (F, hF ) be a holomorphic Hermitian vector bundle
on X, which we also write F = (F, hF ) for simplicity.

3.1. Analytic torsion and BCOV torsion. In Subsection 3.1, as-
sume that X is a compact Kähler manifold with Kähler metric gX and
with Kähler form γX . We set X = (X, gX). Define Ω

p
X to be the holo-

morphic vector bundle Ωp
X equipped with the Hermitian metric induced

from gX .
Let Ap,qX (F ) be the vector space of F -valued smooth (p, q)-forms on

X. Set SF =
⊕

q≥0A
0,q
X (F ). Let 〈·, ·〉 be the Hermitian metric on

(
∧
T ∗(0,1)X) ⊗ F induced from gX and hF . The volume form of X is

defined by dvX = γdimX
X /(dimX)!. The L2-metric is the Hermitian

metric on SF defined by

(s, s′)L2 :=
1

(2π)dimX

∫

X
〈s(x), s′(x)〉x dvX(x), s, s′ ∈ SF .

Let ∂̄F be the Dolbeault operator acting on SF and let ∂̄∗F be the
formal adjoint of ∂̄F with respect to (·, ·)L2 . Then �F = (∂̄F + ∂̄∗F )2 is
the corresponding ∂̄-Laplacian. Let σ(�F ) be the spectrum of �F and
let EF (λ) be the eigenspace of �F with respect to the eigenvalue λ.

Let N and ǫ be the operators on SF defined by N = q and ǫ = (−1)q

on A0,q
X (F ). Then N and ǫ preserve EF (λ).

The zeta function

ζF (s) :=
∑

λ∈σ(�F )\{0}
λ−s Tr [ǫN |EF (λ)]

converges absolutely for s ∈ C with Re s ≫ 1. By [11, II, Th. 2.16,
(2.98)], ζF (s) has a meromorphic continuation to the complex plane,
which is holomorphic at s = 0.

Definition 3.1.

(i) The analytic torsion of (X,F ) is defined by

τ(X,F ) := exp(−ζ ′
F
(0)).
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(ii) The BCOV torsion of X is defined by

TBCOV(X) :=
∏

p≥0

τ(X,Ω
p
X)(−1)pp = exp[−

∑

p≥0

(−1)pp ζ ′
Ω
p
X

(0)].

We refer the reader to [11], [48] for more details about analytic tor-
sion.

3.2. Quillen metrics.

Definition 3.2.

(i) The determinant of the cohomologies of F is the complex line
defined by

λ(F ) :=
⊗

q≥0

(detHq(X,F ))(−1)q .

(ii) The BCOV line is the complex line λ(Ω•
X) defined by

λ(Ω•
X) :=

⊗

p≥0

λ(Ωp
X)(−1)pp =

⊗

p,q≥0

(detHq(X,Ωp
X))(−1)p+qp.

Set Kq(X,F ) = ker�F ∩ A0,q
X (F ). Then Kq(X,F ) inherits a metric

from (·, ·)L2 . By Hodge theory, we have an isomorphism Hq(X,F ) ∼=
Kq(X,F ). We define hHq(X,F ) to be the metric on Hq(X,F ) induced

from the L2-metric on Kq(X,F ) by this isomorphism.
Let ‖ · ‖L2, λ (F ) be the Hermitian metric on λ (F ) induced from

{hHq(X,F )}q≥0.

Definition 3.3.

(i) The Quillen metric on λ(F ) is defined by

‖α‖2
Q,λ(F ) := τ(X,F ) · ‖α‖2

L2,λ(F ), α ∈ λ(F ).

(ii) The Quillen metric on λ(Ω•
X) is defined by

‖ · ‖2
Q,λ(Ω•

X) :=
⊗

p≥0

‖ · ‖(−1)p2p

Q,λ(ΩpX)
= TBCOV(X) ·

⊗

p≥0

‖ · ‖(−1)p2p

L2,λ(ΩpX)
.

Let (F1, hF1), · · · , (Fl, hFl) be holomorphic Hermitian vector bundles
on X, and let ‖ · ‖2

Q,λ(Fk)
be the Quillen metric on λ(Fk). For ⊗l

k=1αk ∈⊗l
k=1 λ(Fk), we set ‖ ⊗l

k=1 αk‖2
Q,⊗kλ(Fk)

:=
∏l
k=1 ‖αk‖2

Q,λ(Fk)
. When

the line λ(F ) is clear from the context, we write ‖ ·‖Q for ‖ ·‖Q,λ(F ). We
refer the reader to [11], [12], [46], [52] for more details about Quillen
metrics.
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3.3. The Serre duality. Let n := dimX. By the Serre duality, the
following pairing on the Dolbeault cohomology groups is perfect:

Hq(X,Ωp
X) ×Hn−q(X,Ωn−p

X ) ∋ (α, β) →
(√

−1

2π

)n ∫

X
α ∧ β ∈ C.

Let {ψi} be an arbitrary basis of Hq(X,Ωp
X), and let {ψ∨

i } be the

dual basis of Hn−q(X,Ωn−p
X ) with respect to the Serre duality pairing.

Then the element of detHp(X,Ωq
X) ⊗ detHn−p(X,Ωn−q

X ) defined by

(3.1) 1(p,q),(n−p,n−q) :=
∧

i

ψi ⊗
∧

i

ψ∨
i

is independent of the choice of a basis {ψi} and is called the canonical

element. Similarly, the following element of λ(Ωp
X) ⊗ λ(Ωn−p

X )(−1)n is
also called the canonical element:

1p,n−p = 1p,n−p(X) :=
n⊗

q=0

1(p,q),(n−p,n−q) ∈ λ(Ωp
X) ⊗ λ(Ωn−p

X )(−1)n .

Note that 1(p,q),(n−p,n−q) = 1−1
(p,q),(n−p,n−q) by (3.1).

Let 1C be the trivial Hermitian structure on C, i.e., 1C(a) = |a|2 for
a ∈ C.

Proposition 3.4. The following identity holds:

(3.2) ‖1p,n−p‖L2 = ‖1p,n−p‖Q = 1.

In particular, the canonical element 1p,n−p induces the following canon-

ical isometries of the Hermitian lines:
(
λ(Ωp

X) ⊗ λ(Ωn−p
X )(−1)n , ‖ · ‖L2,λ(ΩpX)⊗λ(Ωn−pX )(−1)n

)
∼= (C, 1C),(3.3)

(
λ(Ωp

X) ⊗ λ(Ωn−p
X )(−1)n , ‖ · ‖Q,λ(ΩpX)⊗λ(Ωn−pX )(−1)n

)
∼= (C, 1C).(3.4)

Proof. Let {φi} be a unitary basis of Hq(X,Ωp
X) with respect to the

L2-metric. The dual basis of {φi} with respect to the Serre duality

pairing is given by {∗̄φi}, where ∗ : Ap,qX → An−q,n−pX is the Hodge ∗-
operator with respect to the metric gX . By setting ψi = φi in (3.1), we
get the first equality

(3.5) ‖1(p,q),(n−p,n−q)‖L2 = 1,

which yields the isometry (3.3).
Let ζp,q(s) be the spectral zeta function of the ∂̄-Laplacian acting on

Ap,qX . Hence ζΩpX
(s) =

∑
q≥0(−1)qq ζp,q(s). Since ∗̄−1

�p,q∗̄ = �n−p,n−q,
we have ζp,q(s) = ζn−p,n−q(s), which yields that

(3.6) τ(X,Ω
p
X) = τ(X,Ω

n−p
X )(−1)n+1

.

The second isometry (3.4) follows from (3.3) and (3.6). q.e.d.
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For more detail about the Serre duality for Quillen metrics, we refer
to [22, (9)].

3.4. Characteristic classes. In Subsections 3.4 and 3.5, we do not

assume that X is compact Kähler.

3.4.1. Chern forms.
For a square matrix A, set Td(A) := det

(
A

I−exp(−A)

)
and ch(A) :=

Tr[eA]. Let R(F ) be the curvature of F = (F, hF ) with respect to the
holomorphic Hermitian connection. The real closed forms on X defined
by

Td(F, hF ) := Td

(
− 1

2π
√
−1

R(F )

)
,

ch(F, hF ) := ch

(
− 1

2π
√
−1

R(F )

)

are called the Todd form and the Chern character form of F , respec-
tively.

Let ci(F, hF ) be the i-th Chern form of (F, hF ).

3.4.2. Bott-Chern classes. Let E : 0 → E0 → E1 → · · · → Em → 0
be an exact sequence of holomorphic vector bundles on X, equipped
with Hermitian metrics hi, i = 0, . . . ,m. We set E := (E , {hi}mi=0).
By [11, I, Th. 1.29 and Eqs. (0.5), (1.124)], one has the Bott-Chern

secondary class c̃h(E) ∈ ⊕p≥0A
p,p(X)/Im ∂ + Im ∂̄ associated to the

Chern character and E such that

ddc c̃h(E) =
m∑

i=0

(−1)i+1ch(Ei, hi).

Consider the case where m = 1 and E0 = E1 = E. Let h′ and h be
Hermitian metrics of E0 and E1, respectively. By [11, I, Th. 1.27] or [21,

Section 1.2.4], one has the Bott-Chern secondary class c̃h(E; h, h′) ∈⊕
p≥0A

p,p(X)/Im ∂ + Im ∂̄ such that

ddcc̃h(E; h, h′) = ch(E, h) − ch(E, h′).

When rk(E) = 1, we have the following explicit formula by [21, I,
(1.2.5.1), (1.3.1.2)]:

(3.7) c̃h(E; h, h′) =
∞∑

m=1

1

m!

∑

a+b=m−1

c1(E, h)
ac1(E, h

′)b log

(
h′

h

)
.

Similarly, let T̃d(E;h, h′) ∈⊕p≥0A
p,p(X)/Im ∂+Im ∂̄ denote the Bott-

Chern secondary class associated to the Todd form such that

ddc T̃d(E;h, h′) = Td(E, h) − Td(E, h′).

For more detail about Bott-Chern classes, we refer to [11], [21], [52].
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3.5. The curvature formulas. Let S be a complex manifold and let
π : X → S be a proper surjective holomorphic submersion. Then every
fiber of π is a compact complex manifold. The map π : X → S is said to
be locally Kähler if for every s ∈ S there is an open subset U ∋ s such
that π−1(U) possesses a Kähler metric. We set Xs = π−1(s) for s ∈ S.

Let TX/S := kerπ∗ ⊂ TX be the relative holomorphic tangent bun-
dle of the family π : X → S. Set Ωp

X/S :=
∧p(TX/S)∨ and KX/S :=

KX ⊗ (π∗KS)−1 = ΩdimX−dimS
X/S .

A C∞ Hermitian metric on TX/S is said to be fiberwise Kähler if
the induced metric on Xs is Kähler for all s ∈ S. By Kodaira-Spencer
theory, there exists a fiberwise Kähler metric on TX/S if and only if
every Xs possesses a Kähler metric.

Assume that every fiber Xs possesses a Kähler metric. Let gX/S be a

fiberwise Kähler metric on TX/S. Set gs = gX/S |Xs and Xs = (Xs, gs)

for s ∈ S. We define Ω
p
Xs to be the holomorphic vector bundle Ωp

Xs
equipped with the Hermitian metric induced from gs. When p = 0,

Ω
0
Xs is defined as the trivial line bundle OXs equipped with the trivial

Hermitian metric.
Since dimHq(Xs,Ω

p
Xs

) is locally constant, the direct image sheaf

Rqπ∗Ω
p
X/S is locally free for all p, q ≥ 0 and is identified with the corre-

sponding holomorphic vector bundle over S. Set

λ(Ω•
X/S) :=

⊗

p,q≥0

(detRqπ∗Ω
p
X/S)(−1)p+qp.

Via the natural fiberwise identification λ(Ω•
X/S)|s = λ(Ω•

Xs
) for all s ∈

S, λ(Ω•
X/S) is equipped with the Hermitian metric ‖ · ‖λ(Ω•

X/S
),Q defined

by

‖ · ‖Q,λ(Ω•
X/S

)(s) := ‖ · ‖Q,λ(Ω•
Xs

), s ∈ S,

which is smooth by [11, III, Cor. 3.9]. We set λ(Ω•
X/S)Q := (λ(Ω•

X/S), ‖·
‖Q,λ(Ω•

X/S
)).

Since dimKq(Xs,Ω
p
Xs) is locally constant, there exists a C∞ vector

bundle Kp,q(X/S) over S such that Kp,q(X/S)s = Kq(Xs,Ω
p
Xs) for all

s ∈ S. Then the fiberwise isomorphismHq(Xs,Ω
p
Xs

) ∼= Kq(Xs,Ω
p
Xs) via

Hodge theory induces an isomorphism of C∞ vector bundles Rqπ∗Ω
p
X/S

∼= Kp,q(X/S). Let hRqπ∗Ωp
X/S

be the C∞ Hermitian metric on Rqπ∗Ω
p
X/S

induced from the L2-metric on Kp,q(X/S) by this isomorphism. We

define Rqπ∗Ω
p
X/S := (Rqπ∗Ω

p
X/S , hRqπ∗Ωp

X/S
).

Let TBCOV(X/S) be the function on S defined by

TBCOV(X/S)(s) := TBCOV(Xs) =
∏

p≥0

τ(Xs,Ω
p
Xs)

(−1)pp, s ∈ S.
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For a differential form ϕ, [ϕ](p,q) denotes the component of bidegree
(p, q) of ϕ.

Theorem 3.5. Assume that the map π : X → S is locally Kähler

and set n = dimX − dimS. Then TBCOV(X/S) lies in C∞(S), and the

following equation of C∞ (1, 1)-forms on S holds:

c1(λ(Ω•
X/S)Q) = −ddc log TBCOV(X/S) +

∑

q≥0

(−1)p+qp c1(Rqπ∗Ω
p
X/S)

= − 1

12
π∗
[
c1(TX/S, gX/S) cn(TX/S, gX/S)

](1,1)
.

Proof. See [7, p. 374] and [11, Th. 0.1]. q.e.d.

4. The BCOV invariant of Calabi-Yau manifolds

Throughout Section 4, we fix the following notation: Let X be a
smooth Calabi-Yau n-fold. Let p : (X, X) → (Def(X), [X]) be the Ku-
ranishi family of X.

Let g be a Kähler metric on X with Kähler form γ. We define
Vol(X, γ) := (2π)−n

∫
X γ

n/n! = ‖1‖2
L2 . Notice that our definition

of Vol(X, γ) is different from the ordinary one because of the factor
(2π)−n. We set ci(X, γ) := ci(TX, g) and χ(X) :=

∫
X cn(X, γ). Let

η ∈ H0(X,Ωn
X) \ {0}.

4.1. The BCOV Hermitian line. Recall that the L2-norm on
H0(X,Ωn

X) is independent of the choice of a Kähler metric g because

‖η‖2
L2 = (2π)−n(

√
−1)n

2

∫

X
η ∧ η̄.

After [62, Section 5.1], we make the following:

Definition 4.1.

(i) For X = (X, γ), define A(X) = A(X, γ) ∈ R by

A(X) := Vol(X, γ)
χ(X)
12

· exp

[
− 1

12

∫

X
log

(
(
√
−1)n

2
η ∧ η̄

γn/n!
· Vol(X, γ)

‖η‖2
L2

)
cn(X, γ)

]
.

(ii) The BCOV metric is the Hermitian structure ‖ · ‖λ(Ω•
X) on λ(Ω•

X)
defined by

‖ · ‖2
λ(Ω•

X) := A(X) · ‖ · ‖2
Q,λ(Ω•

X).

(iii) The BCOV Hermitian line is defined by

λ(Ω•
X) := (λ(Ω•

X), ‖ · ‖λ(Ω•
X)).
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Remark 4.2. By Yau [60], every Kähler class onX contains a unique
Ricci-flat Kähler form. If κ is a Ricci-flat Kähler form on X, then

κn/n!

(
√
−1)n2η ∧ η̄ =

Vol(X,κ)

‖η‖2
L2

,

and hence logA(X,κ) = χ(X)
12 log Vol(X,κ) in this case.

4.2. The Weil-Petersson metric and the Hodge metric. To com-
pute the curvature of the BCOV Hermitian line bundles, let us recall
the definitions of the Weil-Petersson metric [55] and the Hodge metric
[37], [38].

By Proposition 2.5, the homomorphism of ODef (X)–modules on
Def(X) induced by the Kodaira-Spencer map

ρDef(X) : ΘDef(X) → R1p∗ΘX/Def(X)

is an isomorphism.
Since Hn−1(Xs,Ω

1
Xs

) ⊂ Hn(Xs,C) consists of primitive cohomology

classes for all s ∈ Def(X), the L2-metric on R1p∗Ω
n−1
X/Def(X) is indepen-

dent of the choice of a fiberwise-Kähler metric on TX/Def(X) by e.g.,
[59, Th. 6.32]. We will often denote the L2-metric hR1p∗Ωn−1

X/Def(X)
on

R1p∗Ω
n−1
X/Def(X) by (·, ·)L2 . Then

(ξ, ζ)L2 = −(2π)−n(
√
−1)n

2

∫

X
ξ ∧ ζ, ξ, ζ ∈ H1(X,Ωn−1

X ).

For s ∈ Def(X), let ρs : TDef(X),s → H1(Xs,ΘXs) be the Kodaira-

Spencer map, and let ηs ∈ H0(Xs,Ω
n
Xs

) \ {0}. Let ι(·) be the interior
product.

Definition 4.3. The Weil-Petersson metric gWP on Def(X) is de-
fined by

gWP(u, v) := −
∫
Xs
ι(ρs(u))ηs ∧ ι(ρs(v))ηs∫

Xs
ηs ∧ ηs

=
(ι(ρs(u))ηs, ι(ρs(v))ηs)L2

‖ηs‖2
L2

for u, v ∈ TDef(X),s. Let ωWP be the Kähler form of gWP.

Let ηX/Def(X) be a local basis of p∗KX/Def(X). By e.g., [55, Th. 2], we
have

(4.1) ωWP = −ddc log ‖ηX/Def(X)‖2
L2 = c1(p∗KX/Def(X), ‖ · ‖L2).

Proposition 4.4. The Kodaira–Spencer map ρDef (X) induces an

isometry of the following holomorphic Hermitian vector bundles on

Def(X):

(ΘDef(X), gWP) ⊗ (p∗KX/Def(X), ‖ · ‖L2)

∼=
(
R1p∗Ω

n−1
X/Def(X), hR1p∗Ωn−1

X/Def(X)

)
.
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In particular, ρDef(X) induces an isometry of the following holomorphic

Hermitian line bundles on Def(X):

(detR1p∗Ω
n−1
X/Def(X),dethR1p∗Ωn−1

X/Def(X)
)

∼= (det ΘDef(X),det gWP) ⊗ (p∗KX/Def(X), ‖ · ‖L2)⊗h
1,n−1(X).

Proof. The Kodaira-Spencer map is given by

ΘDef(X) ⊗ p∗KX/Def(X) ∋ u⊗ η → ι(ρDef(X)(u))η ∈ R1p∗Ω
n−1
X/Def(X).

Hence (ι(ρDef(X)(u)) η, ι(ρDef(X)(v)) η)L2 = gWP(u, v) · ‖η‖2
L2 by Defini-

tion 4.3. q.e.d.

Definition 4.5. The Ricci form of the Weil-Petersson metric is the
Chern form of the Hermitian line bundle (det ΘDef(X),det gWP):

RicωWP := c1(detΘDef(X),det gWP).

Proposition 4.6. The following identities hold:

c1(detRn−pπ∗Ω
p
X/Def(X), ‖ · ‖L2)

=





−ωWP (p = 0)

−RicωWP − h1,n−1(X)ωWP (p = 1)

RicωWP + h1,n−1(X)ωWP (p = n− 1)

ωWP (p = n).

Proof. The assertion for p = 0, n follows from (4.1). The assertion for
p = 1, n− 1 follows from Proposition 4.4 and the Serre duality. q.e.d.

See [18, Section 2] for a generalization of Proposition 4.6. In the case
n = 3, the following positivity result for RicωWP + (h1,2(X) + 3)ωWP

shall be crucial in Section 7.

Proposition 4.7. When n = 3, the (1, 1)-form RicωWP+(h1,2(X)+
3)ωWP is a Kähler form on Def(X).

Proof. See [38, Th. 1.1]. q.e.d.

Definition 4.8. When n = 3, the Hodge form on Def(X) is the
positive (1, 1)-form on Def(X) defined as

ωH := RicωWP + (h1,2(X) + 3)ωWP.

The corresponding Kähler metric on the Kuranishi space Def(X) is
called the Hodge metric on Def(X).

The Hodge metric is related to the invariant Hermitian metric on
the period domain for Calabi-Yau threefolds as follows. Let X be a
polarized smooth Calabi-Yau threefold. Let D be the classifying space
for the polarized Hodge structures of weight 3 on H3(X,Z)/Torsion
defined by Griffiths, e.g., [24, Section 2]. Let F i (i = 1, 2, 3) be the
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Hodge bundles on D. Let ωD be the invariant Hermitian metric of D.
Let f : Def(X) → D be the period map. Then we have

(a) ωWP = f∗(c1(F 3, ‖ · ‖L2)) [59];
(b) Up to a constant, ωH = f∗(ωD) [37]. In particular, ωH is always

Kählerian.

We refer to e.g., [24] for more details about the classifying space D.

4.3. The curvature formula for the BCOV Hermitian line bun-
dles. Let π : (X , X) → (S, 0) be a flat deformation of X. Set Xs =
π−1(s) for s ∈ S. Let gX/S be a fiberwise-Kähler metric on TX/S.
Then the line bundle λ(Ω•

X/S) on S is equipped with the BCOV metric

‖ · ‖λ(Ω•
X/S

) with respect to gX/S .

Let µ : (S, 0) → (Def(X), [X]) be the holomorphic map such that the
family π : (X , X) → (S, 0) is induced from the Kuranishi family by µ.
Then we have

c1(π∗ωX/S , ‖ · ‖L2) = µ∗ωWP

near s = 0. Let ηX/S be a local basis of π∗ωX/S and set

ωWP,X/S := µ∗ωWP = −ddc log ‖ηX/S‖2
L2 = c1(π∗ωX/S , ‖ · ‖L2).

Theorem 4.9. The following identity of (1, 1)-forms on (S, 0) holds:

c1(λ(Ω•
X/S)) =

χ(X)

12
ωWP,X/S .

Proof. We follow [62, Section 5.2]. Since the assertion is of local
nature, it suffices to prove it when S ∼= ∆dimS . Then π∗KX/S ∼= OS .

Let ηX/S ∈ H0(S, π∗KX/S) be a nowhere vanishing holomorphic section.

For s ∈ S, set ηs = ηX/S |Xs . Then ηs ∈ H0(Xs,KXs) \ {0} and ηX/S
are identified with the family of holomorphic n-forms {ηs}s∈S varying
holomorphically in s ∈ S. Define ‖ηX/S‖2

L2 ∈ C∞(S) by

‖ηX/S‖2
L2(s) = ‖ηs‖2

L2 , s ∈ S.

Set gs = gX/S |Xs . Then gX/S is identified with the family of Kähler
metrics {gs}s∈S . Let γs be the Kähler form of hs. Let γX/S = {γs}s∈S
be the family of Kähler forms associated to gX/S .

Define the C∞ functions Vol(X/S) and A(X/S) on S by

Vol(X/S)(s) = Vol(Xs, γs), A(X/S)(s) = A(Xs, γs), s ∈ S.

Let ci(X/S) be the i-th Chern form of the holomorphic Hermitian
vector bundle (TX/S, gX/S). Since

c1(X/S) = −c1(KX/S ,det g−1
X/S) = ddc log

(
(
√
−1)n

2
ηX/S ∧ ηX/S

γnX/S/n!

)
,
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the following identity of (1, 1)-forms on X holds:
(4.2)

c1(X/S) = −π∗
{
ωWP,X/S + ddc log Vol(X/S)

}

+ ddc log

{
(
√
−1)n

2
ηX/S ∧ η̄X/S

γnX/S/n!
· π∗

(
Vol(X/S)

‖ηX/S‖2
L2

)}
.

Then we get
(4.3)

− 1

12
π∗ [c1(X/S) cn(X/S)]

= − 1

12
π∗
[
−π∗

{
ωWP,X/S + ddc log Vol(X/S)

}
cn(X/S)

]

+ π∗

[
− 1

12
ddc log

{
(
√
−1)n2

ηX/S ∧ η̄X/S

γn
X/S/n!

· π∗

(
Vol(X/S)

‖ηX/S‖2
L2

)}
cn(X/S)

]

=
χ(X)

12
ωWP,X/S + ddc logA(X/S),

where the first equality follows from (4.2), and the second one follows
from the projection formula and the commutativity of ddc and π∗.

Since the map π : X → S is locally projective by Proposition 2.8, we
may apply Theorem 3.5 to the family π : X → S. Then we deduce from
(4.3) that

c1(λ(Ω•
X/S)) = c1(λ(Ω•

X/S)Q) − ddc logA(X/S)

= − 1

12
π∗[c1(X/S) cn(X/S)] − ddc logA(X/S)

=
χ(X)

12
ωWP,X/S .

This completes the proof of Theorem 4.9. q.e.d.

Theorem 4.10. Let X be a smooth Calabi-Yau n-fold. The Hermit-

ian metric ‖ · ‖λ(Ω•
X) on λ(Ω•

X) is independent of the choice of a Kähler

metric on X. In particular, the BCOV Hermitian line λ(Ω•
X) is an

invariant of X.

Proof. Let σ ∈ λ(Ω•
X) \ {0}. Let X = X × P1 → P1 be the trivial

family over P1. Let γ0, γ∞ be arbitrary Kähler forms on X. Let γX/P1 =
{γt}t∈P1 be a C∞-family of Kähler forms on X connecting γ0 and γ∞.
Since ωWP,X/P1 = 0, log ‖σ‖2

λ(Ω•

X/P1 ) is a harmonic function on P1 by

Theorem 4.9. Hence ‖σ‖λ(Ω•

X/P1 ) is a constant function on P1. This

proves Theorem 4.10. q.e.d.
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4.4. The BCOV invariant of Calabi-Yau threefolds. In Subsec-
tion 4.4, we fix n = 3. Hence X is a smooth Calabi-Yau threefold. Set
b2(X) := dimH2(X,R). Let cX(·, ·, ·) be the cubic form on H2(X,R)
induced from the cup-product:

cX(α, β, γ) :=
1

(2π)3

∫

X
α ∧ β ∧ γ, α, β, γ ∈ H2(X,R).

4.4.1. The covolume of the cohomology lattice. Let κ be a Kähler
class on X. Let 〈·, ·〉L2,κ be the L2-inner product on H2(X,R) with

respect to κ, and let 〈·, ·〉L2,detκ be the induced L2-inner product on

detH2(X,R). Set H2(X,Z)fr := H2(X,Z)/Torsion.

Definition 4.11. For a basis {e1, . . . , eb2(X)} of H2(X,Z)fr over Z,
set

VolL2(H2(X,Z), κ) : = det
(
〈ei, ej〉L2,κ

)

= 〈e1 ∧ · · · ∧ eb2(X), e1 ∧ · · · ∧ eb2(X)〉L2,detκ.

Obviously, VolL2(H2(X,Z), κ) is independent of the choice of a Z-
basis ofH2(X,Z)fr; it is the volume of the real torusH2(X,R)/H2(X,Z)fr
with respect to 〈·, ·〉L2,κ. We can write VolL2(H2(X,Z), κ) in terms of
the cubic form cX as follows:

Let L be the operator on H•(X,R) defined by L(ϕ) = κ ∧ ϕ for
ϕ ∈ H•(X,R).

Lemma 4.12. The following identity holds

〈α, β〉L2,κ =
3

2

cX(α, κ, κ) cX(β, κ, κ)

cX(κ, κ, κ)
−cX(α, β, κ), α, β ∈ H2(X,R).

In particular, VolL2(H2(X,Z), κ) ∈ Q if κ ∈ H2(X,Q).

Proof. Let ϕ ∈ H1,1(X,R) = H2(X,R). By [59, Lemma 6.31], one
has the orthogonal decomposition H1,1(X,R) = ker(L2) ⊕ Rκ with re-
spect to 〈·, ·〉L2,κ. Since

(4.4) 〈ϕ,ϕ〉L2,κ =

{
−cX(ϕ,ϕ, κ) (ϕ ∈ ker(L2))
1
2cX(ϕ,ϕ, κ) (ϕ ∈ Rκ)

by [59, Th. 6.32], we get the decomposition

(4.5) ϕ =

(
ϕ− cX(ϕ, κ, κ)

cX(κ, κ, κ)
κ

)
+
cX(ϕ, κ, κ)

cX(κ, κ, κ)
κ ∈ ker(L2) ⊕ Rκ.

By (4.4), (4.5), we get

〈α, β〉L2,κ = −cX
(
α− cX(α, κ, κ)

cX(κ, κ, κ)
κ , β − cX(β, κ, κ)

cX(κ, κ, κ)
κ , κ

)

+
1

2
cX

(
cX(α, κ, κ)

cX(κ, κ, κ)
κ ,

cX(β, κ, κ)

cX(κ, κ, κ)
κ , κ

)

=
3

2

cX(α, κ, κ) cX(β, κ, κ)

cX(κ, κ, κ)
− cX(α, β, κ).
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This proves the lemma. q.e.d.

4.4.2. The BCOV invariant. Let us introduce the main object of
this paper.

Definition 4.13. For a Kähler form γ on X, the BCOV invariant of
(X, γ) is the real number defined by

τBCOV(X, γ)

: = Vol(X, γ)−3 VolL2(H2(X,Z), [γ])−1 A(X, γ) TBCOV(X, γ)

= Vol(X, γ)
χ(X)
12

−3 VolL2(H2(X,Z), [γ])−1

· exp

[
− 1

12

∫

X
log

(√
−1 η ∧ η̄
γ3/3!

· Vol(X, γ)

‖η‖2
L2

)
c3(X, γ)

]
TBCOV(X, γ).

In the rest of Section 4, we derive a variational formula for the BCOV
invariant.

4.4.3. The curvature formula for the BCOV invariant. Let
π : (X , X) → (S, 0) be a flat deformation of X which is induced from
the Kuranishi family by a holomorphic map µ : (S, 0) → (Def(X), [X]).
Let ωH,X/S be the (1, 1)-form on S induced from the Hodge form on
Def(X) via µ:

ωH,X/S := µ∗ωH.

Let gX/S be a fiberwise-Kähler metric on TX/S. Let γs be the Kähler
form of gX/S |Xs . Let τBCOV(X/S) be the function on S defined by

τBCOV(X/S)(s) := τBCOV(Xs, γs), s ∈ S.

Theorem 4.14. The following identity of (1, 1)-forms on (S, 0) holds:

ddc log τBCOV(X/S) = −χ(X)

12
ωWP,X/S − ωH,X/S

= −
(
h1,2(X) +

χ(X)

12
+ 3

)
µ∗ωWP − µ∗RicωWP.

Proof. We follow [62, Th. 5.6]. Let A(X/S) and TBCOV(X/S) be the
C∞ functions on S defined by

A(X/S)(s) := A(Xs, γs), TBCOV(X/S)(s) := TBCOV(Xs, γs)

for s ∈ S. By Theorems 3.5 and 4.9, we get

− ddc log[A(X/S) TBCOV(X/S)]

+
∑

p,q≥0

(−1)p+qp c1

(
detRqπ∗Ω

p
X/S , ‖ · ‖L2,gX/S

)
=
χ(X)

12
µ∗ωWP.
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Since Rqπ∗Ω
p
X/S 6= 0 if and only if p + q = 3 or p = q, we deduce from

Proposition 4.6 that
(4.6)

− ddc log[A(X/S) TBCOV(X/S)] +
∑

p>0

p c1(detRpπ∗Ω
p
X/S , ‖ · ‖L2,gX/S

)

−
(
µ∗RicωWP + h1,2(X)µ∗ωWP

)
− 3µ∗ωWP

=
χ(X)

12
µ∗ωWP.

Define a function VolL2(H2(X/S,Z)) on S by

VolL2(H2(X/S,Z))(s) := VolL2(H2(Xs,Z), [γs]), s ∈ S.

Recall that the notation C1(L) was introduced just before Lemma
2.16. Since π : X → S is induced from the Kuranishi family, there exist
holomorphic line bundles L1, . . . ,Lb2(X) on X by Lemma 2.16 such that
C1(Li)|X = ei for 1 ≤ i ≤ b2(X), and such that C1(L1)∧· · ·∧C1(Lb2(X))

is a nowhere vanishing holomorphic section of R1π∗Ω1
X/S . Then

(4.7) ‖C1(L1) ∧ · · · ∧ C1(Lb2(X))‖2
L2,gX/S

= VolL2(H2(X/S,Z)).

By the Serre duality and (3.5), 1(1,1),(2,2)⊗(C1(L1)∧· · ·∧C1(Lb2(X)))
−1

is a nowhere vanishing holomorphic section of R2π∗Ω2
X/S such that

‖1(1,1),(2,2) ⊗ (C1(L1) ∧ · · · ∧ C1(Lb2(X)))
−1‖2

L2,gX/S
(4.8)

= VolL2(H2(X/S,Z))−1.

Let Vol(X/S, γX/S) be the function on S defined by

Vol(X/S)(s) := Vol(Xs, γs).

Then
γ3
X/S

3!Vol(X/S) is a nowhere vanishing holomorphic section ofR3π∗Ω3
X/S

such that

(4.9)

∥∥∥∥∥
γ3
X/S

3!Vol(X/S)

∥∥∥∥∥

2

L2,gX/S

= Vol(X/S)−1.

Substituting (4.7), (4.8), and (4.9) into (4.6), we get the equation:

− ddc log[A(X/S) TBCOV(X/S)] + ddc log VolL2(H2(X/S,Z))(4.10)

+ 3ddc log Vol(X/S)

=

(
h1,2(X) +

χ(X)

12
+ 3

)
µ∗ωWP + µ∗RicωWP.

The theorem follows from the definition of the BCOV invariant and
(4.10). q.e.d.
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Remark 4.15. If we follow mirror symmetry and if X∨ is the mir-
ror Calabi-Yau threefold of X, the coefficient of µ∗ωWP in (4.10) is
compatible with that of [6, Eq. (14)] since h1,1(X∨) = h1,2(X) and
χ(X∨) = −χ(X).

For a higher dimensional analogue of Theorem 4.14, we refer to [18].

Theorem 4.16. The BCOV invariant τBCOV(X, γ) is independent

of the choice of a Kähler metric on X. In particular, τBCOV(X, γ) is

an invariant of X.

Proof. Let X = X × P1 → P1 be the trivial family over P1. Let
γ0, γ∞ be arbitrary Kähler forms on X. Let γX/P1 = {γt}t∈P1 be a
C∞-family of Kähler forms on X connecting γ0 and γ∞. Since µ∗ωWP

and µ∗Ric(ωWP) are independent of t, log τBCOV(X/P1) is a harmonic
function on P1 by Theorem 4.14. Hence τBCOV(X/P1) is a constant
function on P1. q.e.d.

We shall write τBCOV(X) for τBCOV(X, γ) in the rest of this paper.
Recall that birational Calabi-Yau threefolds X and X ′ have the same

Hodge numbers hp,q(X) = hp,q(X ′), p, q ≥ 0. As an analogue, we
propose the following:

Conjecture 4.17. LetX andX ′ be birational Calabi-Yau threefolds.
Then the ratio τBCOV(X)/τBCOV(X ′) depends only on the topological
types of X and X ′.

5. The singularity of the Quillen metric on the BCOV bundle

In Section 5, we fix the following notation: Let X be a compact
Kähler manifold of dimension n + 1 and let S be a compact Riemann
surface. Let π : X → S be a surjective holomorphic map, and we do not

assume that a general fiber of π is Calabi-Yau.
Let Σπ be the critical locus of π, and set

D := π(Σπ), So := S \ D, X o := π−1(So), πo := π|X o .

Then πo : X o → So is a holomorphic family of compact complex mani-
folds, and Ω1

X o/So is a holomorphic vector bundle of rank n over X o.

As in Sections 3 and 4, we have the holomorphic line bundles on So:

λ(Ωp
X o/So) = ⊗n

q=0(detRqπ∗Ω
p
X o/So)

(−1)q ,

λ(Ω•
X o/So) = ⊗n

p=0λ(Ωp
X o/So)

(−1)pp.

In this section, we construct holomorphic extensions of λ(Ωp
X o/So) and

λ(Ω•
X o/So) from So to S, and we study the singularity of the correspond-

ing Quillen metrics.
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5.1. The Kähler extension of the determinant line bundles.
Since Ω1

X/S = Ω1
X /π

∗Ω1
S , we have the following complex of coherent

sheaves on X , which is acyclic on X (cf. [35, p. 94 l.12-l.16]):

0 −→ π∗Ω1
S −→ Ω1

X −→ Ω1
X/S −→ 0.

Definition 5.1.

(i) For p > 0, let EpX/S be the complex of holomorphic vector bundles

on X defined by

EpX/S : (π∗Ω1
S)⊗p −→ Ω1

X ⊗ (π∗Ω1
S)⊗(p−1) −→ · · ·

−→ Ωp−1
X ⊗ π∗Ω1

S −→ Ωp
X ,

where the maps Ωi
X ⊗ (π∗Ω1

S)⊗(p−i) → Ωi+1
X ⊗ (π∗Ω1

S)⊗(p−i−1) are
given by

ω ⊗ (π∗ξ)⊗(p−i) 7→ (ω ∧ π∗ξ) ⊗ (π∗ξ)⊗(p−i−1), ω ∈ Ωi
X , ξ ∈ Ω1

S .

For p = 0, set E0
X/S : 0 → OX → 0.

(ii) For p ≥ 0, let Fp
X/S be the complex of coherent sheaves on X

defined by

Fp
X/S : 0 −−−−→ EpX/S

r−−−−→ Ωp
X/S −−−−→ 0,

where r : Ωp
X → Ωp

X/S is the quotient map for p > 0 and the

identity map for p = 0.

Since rk(π∗Ω1
S) = 1, Fp

X/S is acyclic on X \ Σπ for p > 1 and on X
for p = 0, 1.

Definition 5.2.

(i) Let λ(EpX/S) be the holomorphic line bundle on S defined by

λ(EpX/S) :=

p⊗

i=0

λ(Ωp−i
X ⊗ (π∗Ω1

S)⊗i)(−1)i .

(ii) Let λ(Ω•
X/S) be the holomorphic line bundle on S defined by

λ(Ω•
X/S) :=

⊗

p≥0

λ(EpX/S)(−1)pp.

We call λ(EpX/S) and λ(Ω•
X/S) the Kähler extensions of λ(Ωp

X o/So) and

λ(Ω•
X o/So) from So to S, respectively.

Since Fp
X/S is acyclic on X \Σπ, we have the canonical isomorphisms

of holomorphic line bundles on So:

λ(Ωp
X o/So)

∼= λ(EpX/S)|So , λ(Ω•
X o/So)

∼= λ(Ω•
X/S)|So .
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Let gX be a Kähler metric on X . Let gX/S := gX |TX/S be the Her-
mitian metric on TX/S|X\Σπ induced from gX . Then gX/S (resp. gX )

induces the Hermitian metric gΩp
X/S

(resp. gΩp
X
) on Ωp

X/S |X\Σπ (resp.

Ωp
X ) for all p ≥ 0.
Following Bismut [9] and Yoshikawa [63], we determine the singu-

larity of the Quillen metric on λ(Ωp
X o/So) near D with respect to the

Kähler extension and with respect to the metrics gX/S , gΩp
X/S

.

5.2. Three Quillen metrics on the extended BCOV bundles.
Let 0 ∈ D. Let (U , t) be a coordinate neighborhood of 0 in S centered
at 0 such that U ∼= ∆ and U ∩D = {0}. We set Uo := U \ D = U \ {0}.

Let kS be a Hermitian metric on Ω1
S such that kS(dt, dt) = 1 on U .

Then π∗kS is a Hermitian metric on π∗Ω1
S . Let gπ∗Ω1

S
be the Hermitian

metric on π∗Ω1
S |X\Σπ induced from gΩ1

X
by the inclusion π∗Ω1

S ⊂ Ω1
X .

Since

π∗kS(dπ, dπ) = π∗{kS(dt, dt)} = 1,

gπ∗Ω1
S
(dπ, dπ) = gΩ1

X
(dπ, dπ) = ‖dπ‖2

on π−1(U), the following identity holds on π−1(U):

gπ∗Ω1
S

= ‖dπ‖2 π∗kS .

We define three Quillen metrics on the Kähler extension λ(EpX/S)|Uo
as follows.

Definition 5.3.

(i) Let ‖ · ‖2
λ(Ωp

Xo/So
),Q,gX/S

be the Quillen metric on λ(Ωp
X o/So)|Uo

with respect to gX/S and gΩp
X/S

. Let ‖ · ‖2
λ(Ep

X/S
),Q,gX/S

be the

Quillen metric on λ(EpX/S)|Uo induced from ‖ · ‖2
λ(Ωp

Xo/So
),Q,gX/S

by

the canonical isomorphism λ(Ωp
X o/So)|Uo ∼= λ(EpX/S)|Uo :

‖ · ‖2
λ(Ep

X/S
),Q,gX/S

:= ‖ · ‖2
λ(Ωp

Xo/So
),Q,gX/S

.

(ii) Let ‖ · ‖2
λ(Ωp−i

X
⊗(π∗Ω1

S)⊗i),Q,π∗kS
be the Quillen metric on λ(Ωp−i

X ⊗
(π∗Ω1

S)⊗i)|Uo with respect to gX/S and g
Ωp−i

X

⊗ π∗kS . Set

‖ · ‖2
λ(Ep

X/S
),Q,π∗kS

:=

p⊗

i=0

‖ · ‖2(−1)i

λ(Ωp−i
X

⊗(π∗Ω1
S)⊗i),Q,π∗kS

.
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(iii) Let ‖ · ‖2
λ(Ωp−i

X
⊗(π∗Ω1

S)⊗i),Q,h
π∗Ω1

S

be the Quillen metric on λ(Ωp−i
X ⊗

(π∗Ω1
S)⊗i)|Uo with respect to gX/S and g

Ωp−i
X

⊗ gπ∗Ω1
S
. Set

‖ · ‖2
λ(Ep

X/S
),Q,g

π∗Ω1
S

:=

p⊗

i=0

‖ · ‖2(−1)i

λ(Ωp−i
X

⊗(π∗Ω1
S)⊗i),Q,g

π∗Ω1
S

.

When p = 0, we have the following relations

‖ · ‖2
λ(E0

X/S
),Q,gX/S

= ‖ · ‖2
λ(E0

X/S
),Q,π∗kS

= ‖ · ‖2
λ(E0

X/S
),Q,g

π∗Ω1
S

= ‖ · ‖2
λ(OX ),Q,gX/S

.

We shall prove that log ‖ · ‖2
λ(Ep

X/S
),Q,gX/S

has logarithmic singularities

at 0 ∈ D, whose coefficients are determined by the resolution data of
the Gauss map.

5.3. The Gauss maps and their resolutions. Let Π : P(Ω1
X ) → X

be the projective bundle associated with the holomorphic cotangent
bundle Ω1

X . Let Π∨ : P(TX ) → X be the projective bundle associated
with the holomorphic tangent bundle TX . Then the fiber P(TxX )∨

is the set of all hyperplanes of TxX containing 0x ∈ TxX . We have
P(Ω1

X ) ∼= P(TX )∨.
We define the Gauss maps ν : X \ Σπ → P(Ω1

X ) and µ : X \ Σπ →
P(TX )∨ by

ν(x) := [dπx] =

[
n∑

i=0

∂π

∂zi
(x) dzi

]
, µ(x) := [TxXπ(x)].

Then ν = µ under the canonical isomorphism P(Ω1
X ) ∼= P(TX )∨.

Let L := OP(Ω1
X

)(−1) ⊂ Π∗Ω1
X be the tautological line bundle over

P(Ω1
X ), and set Q := Π∗Ω1

X /L. Then we have the following exact
sequences S of holomorphic vector bundles on P(Ω1

X ):

S : 0 −→ L −→ Π∗Ω1
X −→ Q −→ 0.

Let p ≤ n. Since rk(L) = 1, this induces the following exact sequence
of holomorphic vector bundles on P(Ω1

X ):

Kp : 0 −→ Lp −→ Π∗Ω1
X ⊗ Lp−1 −→ · · ·

−→ Π∗Ωp−1
X ⊗ L −→ Π∗Ωp

X −→
p∧
Q −→ 0,

whereΠ∗Ωp
X → ∧pQ is the quotient map andΠ∗Ωi

X⊗Lp−i → Π∗Ωi+1
X ⊗

Lp−i−1 is given by ω⊗σ⊗(p−i) 7→ (ω∧σ)⊗σ⊗(p−i−1) for ω ∈ Π∗Ω1
X and

σ ∈ L. Then

Fp
X/S = ν∗Kp.
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Similarly, let H := OP(Ω1
X

)(1), and let U be the universal hyperplane

bundle of (Π∨)∗TX . Then the dual of S is given by

S∨ : 0 −→ U −→ (Π∨)∗TX −→ H −→ 0.

Since TxX/S = {v ∈ TxX ; dπx(v) = 0}, we have

TX/S = µ∗U.

Let gU be the Hermitian metric on U induced from (Π∨)∗gX , and
let gH be the Hermitian metric on H induced from (Π∨)∗gX by the
C∞-isomorphism H ∼= U⊥.

Let gL be the Hermitian metric on L induced from Π∗gΩ1
X

by the

inclusion L ⊂ Π∗Ω1
X . Let gQ be the Hermitian metric onQ induced from

Π∗gΩ1
X

by the C∞-isomorphism Q ∼= L⊥. We consider the Hermitian

metric gΠ∗Ωi
X
⊗Lp−i on Π∗Ωi

X ⊗ Lp−i induced from Π∗gΩ1
X
, gL, and we

consider the Hermitian metric g∧pQ on
∧pQ induced from gQ. We define

Kp
to be the exact sequence Kp equipped with the Hermitian metrics

{gΠ∗Ωi
X
⊗Lp−i} and g∧pQ. Then we have the following isomorphisms of

Hermitian vector bundles over X \ Σπ:

(5.1) Fp
X/S = ν∗Kp

, (TX/S, gX/S) = µ∗(U, gU ).

Since dπ is a nowhere vanishing holomorphic section of ν∗L|X\Σπ , we
get the following equation on X \ Σπ

−ddc log ‖dπ‖2 = ν∗c1(L, gL).

Since Σπ is a proper analytic subset of X , the Gauss maps ν : X \
Σπ → P(Ω1

X ) and µ : X \ Σπ → P(TX )∨ extend to meromorphic maps
ν : X 99K P(Ω1

X ) and µ : X 99K P(TX )∨ by e.g., [45, Th. 4.5.3]. By

Hironaka, there exist a projective algebraic manifold X̃ , a divisor of

normal crossing E ⊂ X , a birational holomorphic map q : X̃ → X , and

holomorphic maps ν̃ : X̃ → P(Ω1
X ) and µ̃ : X̃ → P(TX )∨ satisfying the

following conditions:

(i) q| eX\q−1(Σπ)
: X̃ \ q−1(Σπ) → X \ Σπ is an isomorphism;

(ii) q−1(Σπ) = E;

(iii) ν̃ = ν ◦ q and µ̃ = µ ◦ q on X̃ \ E.

By (iii), we have ν̃ = µ̃ under the canonical isomorphism P1(Ω1
X ) =

P(TX )∨.

We set π̃ := π ◦ q and X̃t := π̃−1(t) for t ∈ S. Similarly, we set Eb :=

E ∩ X̃b for b ∈ D. Then E = ∐b∈DEb, because E = q−1(Σπ) ⊂ π̃−1(D).

5.4. The singularity of Quillen metrics. To understand the regu-
larity property of the BCOV invariant near the boundary of the moduli
space of Calabi-Yau threefolds, we recall the function space B(U) intro-
duced by Barlet [3]. The reader who is not interested in the asymptotic
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expansions of the BCOV invariant near the boundary of the moduli
space can replace B(U) by the space of continuous functions C0(U) in
the rest of Section 5.

We define a subspace of C0(U) by

B(U) := C∞(U) ⊕
⊕

r∈Q∩(0,1]

n⊕

k=0

|t|2r(log |t|)k · C∞(U).

A function ϕ(t) ∈ B(U) has an asymptotic expansion at 0 ∈ D, i.e.,
there exist r1, . . . , rm ∈ Q ∩ (0, 1] and f0, fl,k ∈ C∞(U), l = 1, . . . ,m,

k = 0, . . . , n, such that ϕ(t) = f0(t) +
∑m

l=1

∑n
k=0 |t|2rl(log |t|)k fl,k(t)

as t → 0. In what follows, if f(t), g(t) ∈ C∞(Uo) satisfies f(t) − g(t) ∈
B(U), we write

f ≡B g.

It is obvious that f ≡B g implies f − g ∈ C0(U).
The purpose of Section 5 is to prove the following:

Theorem 5.4. Let σp be a nowhere vanishing C∞ section of the

Kähler extension λ(EpX/S)|U . Then

log ‖σp‖2
λ(Ep

X/S
),Q,gX/S

≡B

(∫

E0

p∑

j=0

(−1)p−j µ̃∗
{

Td(U)
Td(c1(H)) − e−(p−j)c1(H)

c1(H)

}

· q∗ch(Ωj
X )

)
log |t|2.

The proof of Theorem 5.4 is divided into the following three interme-
diary results, whose proofs shall be given in the subsections below:

Proposition 5.5. The following identity of functions on U holds

log(‖ · ‖2
λ(Ep

X/S
),Q,gX/S

/‖ · ‖2
λ(Ep

X/S
),Q,g

π∗Ω1
S

) ≡B 0.

Proposition 5.6. The following identity of functions on U holds

log



‖ · ‖2

λ(Ep
X/S

),Q,g
π∗Ω1

S

‖ · ‖2
λ(Ep

X/S
),Q,π∗kS


 ≡B



∫

E0

p∑

j=0

(−1)p−j µ̃∗
{

Td(U)
1 − e−(p−j)c1(H)

c1(H)

}
q∗ch(Ωj

X )


 log |t|2.
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Proposition 5.7. The following identity of functions on U holds

log ‖σp(t)‖2
λ(Ep

X/S
),Q,π∗kS

≡B


∫

E0

p∑

j=0

(−1)p−jµ̃∗
{

Td(U)
Td(c1(H)) − 1

c1(H)

}
q∗ch(Ωj

X )


 log |t|2.

Proof of Theorem 5.4. By Propositions 5.5, 5.6, and 5.7, we get

log ‖σp‖2
λ(Ep

X/S
),Q,gX/S

= log




‖ · ‖2
λ(Ep

X/S
),Q,gX/S

‖ · ‖2
λ(Ep

X/S
),Q,g

π∗Ω1
S


+ log



‖ · ‖2

λ(Ep
X/S

),Q,g
π∗Ω1

S

‖ · ‖2
λ(Ep

X/S
),Q,π∗kS




+ log ‖σp‖2
λ(Ep

X/S
),Q,π∗kS

≡B

(∫

E0

p∑

j=0

(−1)p−j µ̃∗
{

Td(U)
1 − e−(p−j)c1(H)

c1(H)

}

· q∗ch(Ωj
X )

)
log |t|2

+

(∫

E0

p∑

j=0

(−1)p−jµ̃∗
{

Td(U)
Td(c1(H)) − 1

c1(H)

}

· q∗ch(Ωj
X )

)
log |t|2

≡B

(∫

E0

p∑

j=0

(−1)p−j µ̃∗
{

Td(U)
Td(c1(H)) − e−(p−j)c1(H)

c1(H)

}

· q∗ch(Ωj
X )

)
log |t|2.

This proves the theorem. q.e.d.

5.5. Proof of Proposition 5.5. Let gΩi
X
⊗(π∗Ω1

S)⊗(p−i) be the Hermitian

metric on Ωi
X ⊗ (π∗Ω1

S)⊗(p−i) induced from gX , gπ∗Ω1
S
. We define Fp

X/S
to be the complex of holomorphic vector bundles Fp

X/S equipped with

the Hermitian metrics gΩi
X
⊗(π∗Ω1

S)⊗(p−i) on Ωi
X ⊗(π∗Ω1

S)⊗(p−i) and gΩp
X/S

on Ωp
X/S .

Let π∗ (resp. π̃∗) be the integration along the fibers of π (resp. π̃).

For a C∞ differential form ψ on X̃ , one has π̃∗(ψ)(0,0) ∈ B(U) by [3,
Th. 4bis].
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Since Fp
X/S is acyclic on X o, the following identity of C∞ functions

on So holds by the anomaly formula [11, Th. 0.3]:
(5.2)

log




‖ · ‖2
λ(Ep

X/S
),Q,gX/S

‖ · ‖2
λ(Ep

X/S
),Q,g

π∗Ω1
S


 = π∗

(
Td(TX/S, gX/S) c̃h(Fp

X/S)
)(0,0)

.

By (5.1), the following identity of C∞ differential forms on X \Σπ holds:

Td(TX/S, gX/S) c̃h(Fp
X/S)|X\Σπ = µ∗Td(U, gU ) ν∗c̃h(Kp

).

Since q∗ = (q−1)∗ on X̃ \ q−1(Σπ), this yields the following identity on
X \ Σπ:

Td(TX/S, gX/S) c̃h(Fp
X/S)|X\Σπ = (q)∗

{
µ̃∗Td(U, gU ) ν̃∗c̃h(Kp

)
}
.

Hence we get the following equation of C∞ functions on So:

π∗
(
Td(TX/S, gX/S) c̃h(Fp

X )|X\Σπ

)(0,0)
(5.3)

=
[
π̃∗
{
µ̃∗Td(U, gU ) ν̃∗c̃h(Kp

)
}](0,0)

.

Since {µ̃∗Td(U, gU ) ν̃∗c̃h(Kp
)}(n,n) is a C∞ (n, n)-form on X̃ and since

the projection π̃ : X̃ → S is proper and holomorphic, the right hand side
of (5.3) lies in B(U) by [3, Th. 4bis], which, together with (5.2), (5.3),
yields the result. q.e.d.

5.6. Proof of Proposition 5.6. For 0 ≤ i ≤ p, we deduce from the
anomaly formula [11, Th. 0.3] that

log



‖ · ‖2

λ(Ωi
X
⊗(π∗Ω1

S)⊗(p−i)),Q,g
π∗Ω1

S

‖ · ‖2
λ(Ωi

X
⊗(π∗Ω1

S)⊗(p−i)),Q,π∗kS


(5.4)

= π∗
(
Td(TX/S, gX/S) ch(Ωi

X , gX ) c̃h((π∗Ω1
S)⊗(p−i);

π∗kS , gπ∗Ω1
S
)
)(0,0)

= π∗
(
Td(TX/S, gX/S) ch(Ωi

X , gX ) c̃h((π∗Ω1
S)⊗(p−i);

π∗kS , ‖dπ‖2π∗kS)
)(0,0)

.
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Since ν∗c1(L, gL)|X\Σπ = −ddc log ‖dπ‖2 and c1(Ω
1
S , kS) = 0 on U , we

deduce from (3.7) that

c̃h((π∗Ω1
S)⊗l; π∗k⊗lS , ‖dπ‖2lπ∗k⊗lS )

∣∣∣
π−1(U)\Σπ

(5.5)

=
∞∑

m=1

1

m!

∑

a+b=m−1

c1

(
(π∗Ω1

S)⊗l, π∗k⊗lS

)a

· c1
(
(π∗Ω1

S)⊗l, ‖dπ‖2lπ∗k⊗lS

)b
log ‖dπ‖2l

=
∞∑

m=1

1

m!
(−ddc log ‖dπ‖2l)m−1 log ‖dπ‖2l =

elν
∗c1(L,gL) − 1

ν∗c1(L, gL)
log ‖dπ‖2.

By substituting (5.5) and Td(TX/S, gX/S) = µ∗Td(U, gU ) into (5.4),
we get
(5.6)

log



‖ · ‖2

λ(Ωi
X
⊗(π∗Ω1

S)⊗(p−i)),Q,g
π∗Ω1

S

‖ · ‖2
λ(Ωi

X
⊗(π∗Ω1

S)⊗(p−i)),Q,π∗kS



∣∣∣∣∣∣
Uo

= π∗

{
µ∗Td(U, gU ) ch(Ωi

X , gX )
e(p−i)ν∗c1(L,gL) − 1

ν∗c1(L, gL)
log ‖dπ‖2

}(0,0)

= π̃∗

{
µ̃∗Td(U, gU ) q∗ch(Ωi

X , gX )
e(p−i)eν∗c1(L,gL) − 1

ν̃∗c1(L, gL)
q∗(log ‖dπ‖2)

}(0,0)

,

which yields that

log



‖ · ‖2

λ(Ep
X/S

),Q,g
π∗Ω1

S

‖ · ‖2
λ(Ep

X/S
),Q,π∗kS



∣∣∣∣∣∣
Uo

(5.7)

=

p∑

j=0

(−1)p−j log



‖ · ‖2

λ(Ωj
X
⊗(π∗Ω1

S)⊗(p−j)),Q,g
π∗Ω1

S

‖ · ‖2
λ(Ωj

X
⊗(π∗Ω1

S)⊗(p−j)),Q,π∗kS




= π̃∗

[
q∗(log ‖dπ‖2)

p∑

j=0

(−1)p−jµ̃∗Td(U, gU ) ν̃∗

·
{
e(p−j)c1(L,gL) − 1

c1(L, gL)

}
q∗ch(Ωj

X , gX )

](0,0)

.

Lemma 5.8. Let ϕ be a ∂ and ∂̄-closed C∞ differential form on X̃ .

Let (F, ‖ · ‖) be a holomorphic Hermitian line bundle on X̃ . Let s be a

holomorphic section of F with div(s) ⊂ ⋃
b∈D X̃b. Then the following
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identity of functions on U holds

π̃∗((log ‖s‖2)ϕ)(0,0)|U ≡B

(∫

div(s)∩ eX0

ϕ

)
log |t|2.

In particular,

π̃∗(q
∗(log ‖dπ‖2)ϕ)(0,0)|U ≡B

(∫

E0

ϕ

)
log |t|2.

Proof. See [63, Lemma 4.4 and Cor. 4.6] q.e.d.

Since
∑p

j=0 (−1)p−j µ̃∗ Td (U, gU ) ν̃∗ { e(p−j) c1 (L, gL)−1
c1 (L, gL) } q∗ ch (Ωj

X , gX )

is a C∞ differential form on X̃ and since ν̃∗c1(L) = −µ̃∗c1(H) in
H2(π̃−1(U),Z), Proposition 5.6 follows from (5.7) and Lemma 5.8.

q.e.d.

5.7. Proof of Proposition 5.7. We need the following result:

Theorem 5.9. Let ξ → X be a holomorphic vector bundle on X
equipped with a Hermitian metric hξ. Let λ(ξ) = detRπ∗ξ be the de-

terminant of the cohomologies of ξ equipped with the Quillen metric

‖ · ‖2
λ(ξ),Q with respect to gX/S and ξ. Let s be a nowhere vanishing

holomorphic section of λ(ξ)|U . Then

log ‖s‖2
Q,λ(ξ) ≡B

(∫

E0

µ̃∗
{

Td(U)
Td(c1(H)) − 1

c1(H)

}
q∗ch(ξ)

)
log |t|2.

Proof. See [63, Th. 1.1]. q.e.d.

Let σ(p,j) be a nowhere vanishing C∞ section of λ(Ωj
X⊗(π∗Ω1

S)⊗(p−j))|U .
Then

σp := ⊗p
j=0σ

(−1)p−j

(p,j)

is a nowhere vanishing C∞ section of λ(EpX/S)|U . Since π∗Ω1
S is trivial

near E0 and since

log ‖ · ‖2
λ(Ep

X/S
),Q,π∗kS

=

p∑

j=0

(−1)p−j log ‖ · ‖2
λ(Ωj

X
⊗(π∗Ω1

S)⊗(p−j)),Q,π∗kS
,
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we deduce from Theorem 5.9 that

log ‖σp‖2
λ(Ep

X/S
),Q,π∗kS

|U

=

p∑

j=0

(−1)p−j log ‖σ(p,j)‖2
λ(Ωj

X
⊗(π∗Ω1

S)⊗(p−j)),Q,π∗kS
|U

≡B

p∑

j=0

(−1)p−j
(∫

E0

µ̃∗
{

Td(U)
Td(c1(H)) − 1

c1(H)

}

· q∗ch(Ωj
X ⊗ (π∗Ω1

S)⊗(p−j))

)
log |t|2

≡B



∫

E0

p∑

j=0

(−1)p−jµ̃∗
{

Td(U)
Td(c1(H)) − 1

c1(H)

}
q∗ch(Ωj

X )


 log |t|2.

This completes the proof of Proposition 5.7. q.e.d.

5.8. An extension of Theorem 5.4. Let hπ−1(U) be a Kähler metric

on π−1(U), and let hX/S be the Hermitian metric on TX/S induced from
hπ−1(U). We do not assume that hπ−1(U) extends to a Kähler metric on
X .

Theorem 5.10. Let σp be a nowhere vanishing C∞ section of the

Kähler extension λ(EpX/S)|U . Then

log ‖σp‖2
λ(Ep

X/S
),Q,hX/S

|U ≡B



∫

E0

p∑

j=0

(−1)p−j µ̃∗

{
Td(U)

Td(c1(H)) − e−(p−j)c1(H)

c1(H)

}
q∗ch(Ωj

X
)


 log |t|2.

Proof. By the anomaly formula [11, Ths. 0.2 and 0.3], we have on Uo
(5.8)

log

(
‖ · ‖2

λ(Ep
X/S

),Q,hX/S
/‖ · ‖2

λ(Ep
X/S

),Q,gX/S

)

=
∑

q

(−1)qq π∗
(
T̃d(TX/S; gX/S , hX/S) ch(Ωq

X/S , hΩq
X/S

)
)(0,0)

+
∑

q

(−1)qq π∗
(
Td(TX/S, gX/S) c̃h(Ωq

X/S ; gΩq
X/S

, hΩq
X/S

)
)(0,0)

.

Let hU be the Hermitian metric on U induced from (Π∨)∗hπ−1(U). Let

hΩ1
X

be the Hermitian metric on Ω1
X |π−1(U) induced from hπ−1(U). Let

hΩq
X/S

be the Hermitian metric on Ωq
X/S induced from hΩ1

X
. Let h∧qQ be

the Hermitian metric on ∧qQ induced from Π∗hΩ1
X
. Then we have the

following isomorphisms of holomorphic Hermitian vector bundles over
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X \ Σπ:
(5.9)

(TX/S, hX/S) = µ∗(U, hU ), (Ωq
X/S , hΩq

X/S
) = ν∗(∧qQ, h∧qQ).

By (5.1), (5.8), (5.9), we get
(5.10)

log

(
‖ · ‖2

λ(Ep
X/S

),Q,hX/S
/‖ · ‖2

λ(Ep
X/S

),Q,gX/S

)

=
∑

q

(−1)qq π̃∗
(
µ̃∗T̃d(U ; gU , hU ) ν̃∗ch(∧qQ, h∧qQ)

)(0,0)

+
∑

q

(−1)qq π̃∗
(
µ̃∗Td(U, gU ) ν̃∗c̃h(∧qQ; g∧qQ, h∧qQ)

)(0,0)
≡B 0.

Here the right hand side of (5.10) lies in B(U) by [3, Th. 4bis], because

µ̃∗T̃d(U ;hU , gU ) ν̃∗ch(∧qQ, h∧qQ),

µ̃∗Td(U, gU ) ν̃∗c̃h(∧qQ;h∧qQ, g∧qQ)

are C∞ differential forms on π̃−1(U). The result follows from Th. 5.4
and (5.10). q.e.d.

5.9. The case of ODP. In Subsection 5.9, we assume that Σπ ∩ X0

consists of non-degenerate critical points. Hence Sing(X0) consists of
ODP’s. For y ∈ X , let my be the maximal ideal of the local ring
OX ,y. Then there exists a neighborhood of X0 in X on which IΣπ =

⊕y∈Sing(X0)my. Let q : X̃ → X be the blowing-up of the discrete set Σπ∩
X0, and set Ey := q−1(y) for y ∈ Sing(X0). Then E0 = ∐y∈Sing(X0)Ey
and Ey ∼= Pn.

Since Σπ is discrete, we may identify P(Ω1
X ) and P(TX ) with the

trivial projective bundle on a neighborhood of Σπ∩X0 by fixing a system
of coordinates near Σπ ∩X0. Under this trivialization, we consider the
Gauss maps ν and µ only on a small neighborhood of Σπ ∩X0. Then
we have the following on a neighborhood of each y ∈ Σπ ∩X0:

µ(z) = ν(z) =

(
∂π

∂z0
(z) : · · · :

∂π

∂zn
(z)

)
.

Since π is non-degenerate at every y ∈ Σπ ∩ X0, we may assume by
Morse’s lemma that π(z) = z2

0 + · · · + z2
n near Σπ ∩ X0. Hence, the

composition ν ◦ q : X̃ \ E0 → Pn extends to a holomorphic map ν̃ :=

ν ◦ q : X̃ → Pn such that

ν̃|E = µ̃|E = idE .
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For n ∈ N and 0 ≤ p ≤ n, set

δ(n, p) :=

p∑

j=0

(−1)j
(
n+ 1

j

)
(p− j + 1)n+2 − (p− j)n+2

(n+ 2)!
.

For a formal power series f(x) ∈ C[[x]], we define f(x)|xm to be the
coefficient of xm of f(x). Recall that the metric hX/S is defined only on
TX/S|π−1(U)\Σπ .

Theorem 5.11. Let σp be a nowhere vanishing C∞ section of the

Kähler extension λ(EpX/S)|U . Then the following identity of functions

on U holds

(−1)p log ‖σp(t)‖2
λ(Ep

X/S
),Q,hX/S

≡B (−1)nδ(n, p)#Sing(X0) log |t|2.

Proof. In Theorem 5.10, we can identify U (resp. L) with the uni-
versal hyperplane bundle (resp. tautological line bundle) on Pn. Then
H = L−1. Set x := c1(H). Hence

∫
Pn
xn = 1. From the exact sequence

0 → U → Cn+1 → H → 0, we get Td(U) = Td−1(x) = (1 − e−x)/x.

Since q(E0) consists of a point, we get q∗Ωj
X |E0 = C⊕(n+1

p ). By substi-

tuting this and the equation q∗ch(Ωj
X )|E0 =

(
n+1
p

)
into the formula in

Theorem 5.10, we get
(5.11)∫

E

p∑

j=0

(−1)p−j µ̃∗
{

Td(U)
Td(c1(H)) − e−(p−j)c1(H)

c1(H)

}
q∗ch(Ωj

X )

= #Sing(X0)

p∑

j=0

(−1)p−j
1

Td(x)
· Td(x) − e−(p−j)x

x
·
(
n+ 1

j

)∣∣∣∣∣∣
xn

= #Sing(X0)

p∑

j=0

(−1)p−j
(
n+ 1

j

){
(e−x − 1)e−(p−j)x

x2
+

1

x

}∣∣∣∣∣∣
xn

= #Sing(X0)

p∑

j=0

(−1)p−j
(
n+ 1

j

)
{e−(p−j+1)x − e−(p−j)x}|xn+2

= (−1)n−p δ(n, p)#Sing(X0).

The result follows from Theorem 5.4 and (5.11). q.e.d.

Lemma 5.12. The following identities hold:

δ(3, p) + δ(3, 3 − p) = 1 (0 ≤ p ≤ 3),
3∑

p=0

p δ(3, p) =
19

4
.

Proof. By the definition of δ(n, p), we get

δ(3, 0) =
1

120
, δ(3, 1) =

27

120
, δ(3, 2) =

93

120
, δ(3, 3) =

119

120
,
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which yields the result. q.e.d.

Set

σ := ⊗n
p=0σ

(−1)pp
p .

Then σ is a nowhere vanishing C∞ section of λ(Ω•
X/S) near D.

Theorem 5.13. When n = 3,

log ‖σ(t)‖2
λ(Ω•

X/S
),Q,hX/S

≡B −19

4
#Sing(X0) log |t|2.

Proof. By Theorem 5.11, we get

log ‖σ‖2
λ(Ω•

X/S
),Q,gX/S

|U =
3∑

p=0

(−1)pp log ‖σp‖2
λ(Ep

X/S
),Q,gX/S

|U

≡B (−1)3
3∑

p=0

p δ(3, p)#Sing(X0) log |t|2.

This, together with the second identity of Lemma 5.12, yields the result.
q.e.d.

Remark 5.14. In our subsequent paper [19], we shall determine
the behavior of log ‖σ(t)‖2

λ(Ω•
X/S

),Q,hX/S
as t → 0 for arbitrary relative

dimension n.

6. The cotangent sheaf of the Kuranishi space

Let X be a smoothable Calabi-Yau n-fold with only one ODP as its
singular set. Let p : (X, X) → (Def(X), [X]) be the Kuranishi family of
X with discriminant locus D. Then X, Def(X), and D are smooth by
Lemmas 2.3 and 2.7.

Lemma 6.1. The dualizing sheaf KX of X is trivial. In particular,

the relative dualizing sheaf KX/Def(X) = KX ⊗ (p∗KDef(X))
−1 is trivial.

Proof. By the same argument as in [62, p. 68 l.25-l.28], we see that
KX|Xs ∼= OXs for all s ∈ Def(X). Since Def(X) ∼= ∆N+1, we get the
triviality of KX by the same argument as in [62, p. 68 l.29-l.33]. q.e.d.

Recall that the Kodaira-Spencer map

ρDef(X)\D : ΘDef(X)\D → R1p∗ΘX/Def(X)|Def(X)\D

was defined in Subsection 4.2. By considering the dual of ρDef(X)\D,
the relative Serre duality induces an isomorphism of ODef(X)-modules
on Def(X) \ D:

ρ∨Def(X)\D : Rn−1p∗(Ω
1
X/Def(X)⊗KX/Def(X))|Def(X)\D ∼= Ω1

Def(X)|Def(X)\D.
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Theorem 6.2. The isomomorphism ρ∨Def(X)\D extends to an isomor-

phism

ρ∨Def(X) : R
n−1p∗(Ω

1
X/Def(X) ⊗KX/Def(X)) ∼= Ω1

Def(X)

of ODef(X)-modules over Def(X).

The isomorphism ρ∨Def(X) is again called the Kodaira-Spencer map.

Before proving Theorem 6.2, we first prove an intermediate result in the
next subsection.

6.1. Blowing-up and the regularity of differential forms. Set

∆̃n+1 = {(z, [ζ]) ∈ ∆n+1×Pn; ziζj−zjζi = 0 0 ≤ i, j ≤ n}, q := pr1.

Then q : ∆̃n+1 → ∆n+1 is the blowing-up at the origin. Set E := q−1(0)
and

Ui : = {(z, [ζ]) ∈ ∆̃n+1; ζi 6= 0}, Oi := {z ∈ ∆n+1; zi 6= 0},
Wi : = {(ζ0, . . . , ζi−1, zi, ζi+1, . . . , ζn) ∈ Cn+1; |zi| < 1,

|ziζj | < 1 (j 6= i)}.
Then Ui ∼= Wi ⊂ Cn+1 via the map

Wi ∋ (ζ0, . . . , ζi−1, zi, ζi+1, . . . , ζn)

→
(
(ziζ0, . . . , ziζi−1, zi, ziζi+1, . . . , ziζn),

[ζ0 : · · · : ζi−1 : 1 : ζi+1 : · · · : ζn]
)
∈ Ui.

By construction, we have ∆̃n+1 =
⋃n
i=0 Ui and

E ∩ Ui ∼= {(ζ0, . . . , ζi−1, zi, ζi+1, . . . , ζn) ∈Wi; zi = 0}, q(Ui) ⊃ Oi.

Let ωij be the C∞ (n, 0)-form on Oi defined by

ωij :=
|zj |2

|z0|2 + · · · + |zn|2
· dz0 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn

zn−2
i zj

.

Lemma 6.3. For all 0 ≤ i, j ≤ n, the C∞ (n, 0)-form q∗ωij on

q−1(Oi) = Ui \ E extends to a C∞ (n, 0)-form on Ui and satisfies

q∗ωij |E∩Ui = 0.

Proof. Since

q|Wi(ζ0, . . . , ζi−1, zi, ζi+1, . . . , ζn) = (ziζ0, . . . , ziζi−1, zi, ziζi+1, . . . , ziζn)

under the identification Ui ∼= Wi, we get the following two formulas:

q∗
( |zj |2
|z0|2 + · · · + |zn|2

)
=

{
|ζj |2(1 + ‖ζ‖2)−1 (j 6= i)
(1 + ‖ζ‖2)−1 (j = i),
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q∗
(
z
−(n−1)
i dz0 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn

)

= z
−(n−1)
i d(ziζ0) ∧ · · · ∧ d(ziζi−1) ∧ d(ziζi+1) ∧ · · · ∧ d(ziζn)

= zidζ0 ∧ · · · d̂ζi · · · ∧ dζn+dzi ∧
∑

j<i

(−1)j−1dζ0 ∧ · · · d̂ζj · · · d̂ζi · · · ∧ dζn

+ dzi ∧
∑

j>i

(−1)jdζ0 ∧ · · · d̂ζi · · · d̂ζj · · · ∧ dζn ∈ An,0(Ui),

which yields that q∗ωii ∈ An,0(Ui) and q∗ωii|E∩Ui = 0. Since q∗ωij =
ζ̄j

1+‖ζ‖2 q
∗ωii when j 6= i, the assertion for q∗ωij (i 6= j) follows from the

assertion for q∗ωii. q.e.d.

6.2. Proof of Theorem 6.2. For simplicity, we set

X := X, S := Def(X), π := p, 0 := [X], X0 := X, N + 1 = dimS.

Hence (S, 0) ∼= (∆N+1, 0) and π : (X , X0) → (S, 0) is the Kuranishi
family of X0.

Let s = (s0, . . . , sN ) be a system of coordinates of S such that D =
div(s0). We set s′ = (s1, . . . , sN ). Then ∂/∂sα is a nowhere vanishing
holomorphic vector field on S for 0 ≤ α ≤ N .

(Step 1)
The Kodaira-Spencer map ρS\D : ΘS\D → R1π∗ΘX/S |S\D yields holo-

morphic sections ρ(∂/∂sα) ∈ H0(S \ D, R1π∗ΘX/S). Let 〈·, 〉s be the

Yoneda product between Hn−1(Xs,Ω
1
Xs

⊗ KXs) and Ext1OXs (Ω
1
Xs

⊗
KXs ,KXs).

Since hn−1(Xs,Ω
1
Xs

) = N + 1, there exist

φ0, . . . , φN ∈ Hn−1(X ,Ω1
X/S ⊗KX/S)

such that

(i) {φ0, . . . , φN} is a basis of Rn−1π∗(Ω1
X/S ⊗ KX/S) as a free OS-

module;
(ii) {φ0|Xs , . . . , φN |Xs} is a basis ofHn−1(Xs,Ω

1
Xs

⊗KXs) for all s ∈ S;
(iii) 〈φα|X0 , ρ0(∂/∂sβ)〉0 = δαβ for 0 ≤ α, β ≤ N .

Let ρ∨s : Hn−1(Xs,Ω
1
Xs

⊗ KXs) → Ω1
S,s be the dual of the Kodaira-

Spencer map. For s ∈ S, set

gαβ(s) := 〈φα|Xs , ρs(∂/∂sβ)〉s = 〈〈ρ∨s (φα|Xs), ∂/∂sβ〉〉,
where 〈〈·, ·〉〉 : Ω1

S,s × TSs → C is the natural pairing. Then gαβ is a

function on S, which is holomorphic on S \ D but which may not be
continuous on S, such that

gαβ(0) = δαβ .
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It suffices to prove gαβ ∈ C0(S); if it is the case, (gαβ(s)) is a family
of invertible matrices depending holomorphically on s ∈ S, so that
Rn−1π∗(Ω1

X/S ⊗ KX/S) is the holomorphic dual bundle of ΘS via the

extension of ρ∨S\D.

(Step 2)
Let AX be the sheaf of germs of C∞ functions on X , and let Ap,q

X be
the sheaf of germs of C∞ (p, q)-forms on X . Set

Ap,q(X ,Ω1
X/S ⊗KX/S) := Γ(X ,Ap,q

X ⊗OX
Ω1
X/S ⊗KX/S).

Then Ap,q(X ,Ω1
X/S ⊗KX/S) is the vector space of C∞ (p, q)-forms on

X with values in Ω1
X/S ⊗KX/S . By Malgrange [40, p. 88, Cor. 1.12],

OX is a flat AX -module. Hence, we have the Dolbeault isomorphism
[1, Chap. VII, Prop. 4.5]

Hn−1(X ,Ω1
X/S ⊗KX/S)

=
ker{∂̄ : A0,n−1(X ,Ω1

X/S ⊗KX/S) → A0,n(X ,Ω1
X/S ⊗KX/S)}

Im{∂̄ : A0,n−2(X ,Ω1
X/S ⊗KX/S) → A0,n−1(X ,Ω1

X/S ⊗KX/S)} .

Let Φα ∈ A0,n−1(X ,Ω1
X/S ⊗ KX/S) be a ∂̄-closed differential form

representing φα, i.e., φα = [Φα].

(Step 3)
To study the behavior of gαβ(s) near D, we compute a representative

of the Kodaira-Spencer classes ρ(∂/∂sα) in the Dolbeault cohomology.
Near the critical locus Σπ ⊂ X , there is a neighborhood V ∼= ∆n+1 ×

∆N of Σπ in X such that π(z0, . . . , zn, s
′) = (z2

0 + · · · + z2
n, s1, . . . , sN ).

Hence, we have Σπ ∩ V = {0} ×∆N . For i = 0, 1, . . . , n, we set

Vi := ∆i−1 ×∆∗ ×∆n−i ×∆N = {(z, s′) ∈ ∆n+1 ×∆N ; zi 6= 0}
and Vi(

1
2) := {(z, s′) ∈ Vi; |zj | ≤ 1

2 (j = 0, . . . , n)}. Then {Vi}ni=0 is an
open covering of V \Σπ, i.e., V \Σπ =

⋃n
i=0 Vi. Let {Vλ}λ∈Λ be an open

covering of X \⋃n
i=0 Vi(

1
2) such that Vλ ∼= ∆n ×∆N+1 and π|Vλ = pr2.

Then V := {Vi}i ∪ {Vλ}λ is an open covering of X \ Σπ.
First let us construct a representative of the Kodaira-Spencer class

ρ(∂/∂sα) in the Cech cohomology with respect to the covering V.
On Vi, set

v
(i)
0 :=

1

2zi

∂

∂zi
, v(i)

α =
∂

∂sα
(α = 1, . . . , N).

Then v
(i)
0 , . . . v

(i)
N ∈ H0(Vi,ΘX ) and π∗(v

(i)
α ) = ∂

∂sα
(α = 0, . . . , N). We

also fix a holomorphic vector field v
(λ)
α such that π∗(v

(λ)
α ) = ∂

∂sα
on every

Vλ. We get in Cech cohomology

ρ

(
∂

∂sα

)
= {(v(µ)

α − v(ν)
α )|Vµ∩Vν}Vµ,Vν∈V ∈ H1(X \ Σπ,ΘX/S ; V).
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Let {χi}i ∪ {χλ}λ be a partition of unity of X \ Σπ subject to the
covering V such that on Vi(

1
2),

χi(z) =
|zi|2

|z0|2 + · · · + |zn|2
, i = 0, . . . , n.

Then the following differential form ξα ∈ A0,1(X \Σπ,ΘX/S) represents
ρ(∂/∂sα):

ξα|Vν :=
∑

µ

∂̄χµ ⊗ (v(µ)
α − v(ν)

α ), ρs

(
∂

∂sα

)
= [ξα|Xs ] (s ∈ S \ D).

In particular, we get on V \ Σπ

ξ0|V \Σπ =

n∑

i=0

∂̄χi ⊗
1

2zi

∂

∂zi
, ξα|V \Σπ = 0 (α = 1, . . . , N).

(Step 4)
Let us study the behavior of gαβ |S\D(s) as s → D. Let ̺(z) ∈

C∞
0 (∆n+1) be a cut-off function with ̺ ≡ 1 near 0 ∈ ∆n+1. Recall

that ι(·) denotes the interior product. There exists hαβ(s) ∈ C∞(S)
such that for s ∈ S \ D,

gαβ(s) = 〈φα|Xs , ρs(∂/∂sβ)〉s =

∫

Xs

ι(ξβ)Φα

=

∫

Xs∩V
̺(z) · ι(ξβ)Φα + hαβ(s).

Since ξβ ≡ 0 on V \Σπ for β 6= 0, gαβ |S\D(s) extends to a C∞ function on
S if β 6= 0. Let us prove that gα0|S\D extends to a continuous function
on S.

Since Φα is a (0, n − 1)-form on X with values in Ω1
X/S ⊗KX/S , we

can write

Φα|V =
n∑

i=0

θiα(z, s) [dzi] ⊗ η

with [dzi] = dzi mod OXπ∗ds0 + · · · + OXπ∗dsN , θiα ∈ A0,n−1(V ), and

η|Vi : = (−1)i−1 dz0 ∧ · · · ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn
2zi

∣∣∣∣
Vi

= Res

(
dz0 ∧ · · · ∧ dzn
z2
0 + · · · + z2

n

)∣∣∣∣
Vi

.
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Hence, we have the following formula on Vi
(6.1)

ι(ξ0)Φα|Vi = ι




n∑

j=0

∂̄χj ⊗
1

2zj

∂

∂zj




n∑

k=0

θkα [dzk] ⊗ η|Vi

=
1

2

n∑

j=0

∂̄χj ∧ θjα
zj

∧ η|Vi =
1

4

n∑

j=0

(−1)n+i zn−3
i θjα ∧ ∂̄ωij ,

where we used the following relations to get the second equality:

ι




n∑

j=0

∂̄χj ⊗
1

2zj

∂

∂zj


 π∗dsk = 0, k = 0, . . . , N.

Let q : X̃ → X be the blowing-up along the submanifold Σπ ⊂ V with
exceptional divisor E := q−1(Σπ) = P(NΣπ/X ). Then q|E : P(NΣπ/V ) →
Σπ is the standard projection. Since n ≥ 3 and since {Ui ×∆N}i is an

open covering of Ṽ := q−1(V ), we deduce from Lemma 6.3 and (6.1)

that q∗(ι(ξ0)Φα) ∈ A(n,n)(X̃ ).
Set π̃ = π ◦ q. By King [32, Th. 3.3.2], we have π̃∗q∗(ι(ξα)Φα) ∈

C0(S). Since

gα0|S\D = π∗(ι(ξ0)Φα) = π̃∗q
∗(ι(ξ0)Φα),

gα0|S\D extends to a continuous function on S.

(Step 5)
Let s0 ∈ D. We must prove limS\D∋s→s0 gαβ |S\D(s) = gαβ(s0). Let

Ys0 be the proper transform of Xs0 . Since q−1(Xs0) = Ys0 ∪E and since
gαβ |S\D extends to a continuous function on S, we get

lim
s→s0

gαβ |S\D(s) =

∫

q−1(Xs0 )
q∗(ι(ξβ)Φα)

=

∫

Ys0

q∗(ι(ξβ)Φα) +

∫

E
q∗(ι(ξβ)Φα).

Since q∗(ι(ξβ)Φα)|E = 0 by Lemma 6.3 and (6.1), we get

lim
s→s0

gαβ |S\D(s) =

∫

Ys0

q∗(ι(ξβ)Φα) =

∫

(Xs0 )reg

ι(ξβ)Φα

=

〈
φα|Xs0 , ρs0

(
∂

∂sβ

)〉

s0

= gαβ(s0),

where we used Lemma 2.9 to get the third equality. This proves gαβ(s) ∈
C0(S), completing the proof of Theorem 6.2. q.e.d.
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7. Behaviors of the Weil-Petersson metric and the Hodge
metric

In this section, we study the boundary behavior of the Weil-Petersson
metric and the Hodge metric for one-parameter families of Calabi-Yau
threefolds that shall be used later. We first recall some basic notions
about positive (1, 1)-current and give two lemmas on harmonic functions
on ∆∗.

7.1. Positive (1, 1)-currents and their trivial extensions. Let u
be a (1, 1)-current on ∆. Then u is positive if u is real and if the
inequality u(ϕ) ≥ 0 holds for all non-negative functions ϕ ∈ C∞

0 (∆).
For real (1, 1)-currents u, v on ∆, u ≥ v if u − v is a positive (1, 1)-
current on ∆. For a divisor H on ∆, let δH be the current of integration
over H. A real-valued function f ∈ L1

loc(∆) is subharmonic if f is upper
semi-continuous and if ddcf ≥ 0 as currents on ∆.

Let ω∆∗ be the Kähler form of the Poincaré metric on ∆∗:

ω∆∗ :=

√
−1dt ∧ dt̄

|t|2(− log |t|2)2 = −ddc log(− log |t|2).

A C∞ real (1, 1)-form T on ∆∗ has Poincaré growth if there exists
C > 0 with

(7.1) −C ω∆∗ ≤ T ≤ C ω∆∗ .

In that case, the coefficient of T lies in L1
loc(∆). The (1, 1)-current on

∆ defined by

T̃ (ψ) :=

∫

∆
ψ T, ψ ∈ C∞

0 (∆)

is called the trivial extension of T from ∆∗ to ∆. We have ω̃∆∗ =
−ddc log(− log |t|2) as currents on ∆.

7.2. Two lemmas on harmonic functions on ∆∗. The following
two lemmas about harmonic functions are standard. So we omit the
proofs.

Lemma 7.1. Let H(t) be a real-valued harmonic function on ∆∗

such that H(t) = O(log(− log |t|)) as t → 0. Then H(t) extends to a

harmonic function on ∆.

Lemma 7.2. Let λ(t) be a positive, locally Lm-integrable function

on ∆ for some m > 0. Let χ(t) be a function on ∆∗ satisfying χ(t) ≤
C (− log |t|+2), where C ∈ R is a constant. If log λ(t)+χ(t) is harmonic

on ∆∗, then there exists c ∈ R such that

log λ(t) = c log |t|2 +O(|χ(t)| + 1) (t→ 0).
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7.3. The boundary behaviors. In Subsection 7.3, we fix the follow-
ing notation. Let X be a (possibly) singular complex fourfold and let
π : X → ∆ be a proper surjective holomorphic function. Assume that
Xt := π−1(t) is a smooth Calabi-Yau threefold for t ∈ ∆∗. We do not

assume that the central fiber X0 has only ODPs as its singular set. Re-
call that the Weil-Petersson form ωWP,X/∆ and the Hodge form ωH,X/∆
for π : X → ∆ were defined in Sections 4.3 and 4.4.3, respectively.

Proposition 7.3. There exists a positive constant C such that

(7.2) 0 ≤ ωWP,X/∆ ≤ C ω∆∗ , 0 ≤ ωH,X/∆ ≤ C ω∆∗ .

In particular, the positive (1, 1)-forms ωWP,X/∆ and ωH,X/∆ on ∆∗ ex-

tend trivially to closed positive (1, 1)-currents on ∆.

Proof. We follow [39, Proof of Th. 5.1]. Since (7.2) is obvious when
ωH,X/∆ = 0, we assume that ωH,X/∆ does not vanish identically on ∆∗.
Shrinking ∆ if necessary, we may assume that ωH,X/∆ is strictly positive
on∆∗. Let b ∈ ∆∗. Since ωH,X/∆ is non-degenerate at b, the deformation
germ π : (X , Xb) → (∆, b) is induced from the Kuranishi family by an
immersion of germs (∆, b) →֒ (Def(Xb), [Xb]). Let ωH be the Hodge form
on Def(Xb). By [38, Th. 1.1.2], the holomorphic sectional curvature of
(Def(Xb), ωH) is bounded from above by α := −(5 + 2

√
3)−1. Since

b ∈ ∆∗ is an arbitrary point, the holomorphic sectional curvature of
(∆∗, ωH,X/∆) is bounded from above by α (cf. e.g., [31, Prop. 2.3.9]).
The second inequality of (7.2) follows from the Schwarz lemma [31,
Th. 2.3.5]. The first inequality of (7.2) follows from the second one
because 2ωWP,X/∆ ≤ ωH,X/∆ by [38, p. 107, l.17].

Since (∆(r)∗, ω∆∗) has finite volume when r < 1, the positive (1, 1)-
forms ωWP,X/∆ and ωH,X/∆ extend trivially to closed positive (1, 1)-
currents on ∆. q.e.d.

Definition 7.4. Define ΩWP,X/∆ and ΩH,X/∆ as the trivial extensions
of ωWP,X/∆ and ωH,X/∆ from ∆∗ to ∆, respectively.

Lemma 7.5. Let A,B ∈ R. Let λ(t) be a positive, locally Lm-

integrable C∞ function on ∆∗ for some m > 0 such that −ddc log λ =
AωH,X/∆ +B ωWP,X/∆.

(1) There exists c ∈ R such that as t→ 0,

log λ(t) = c log |t|2 +O(log(− log |t|)).
(2) With the same constant c as above, the following equation of cur-

rents on ∆ holds:

−ddc log λ = AΩH,X/∆ +BΩWP,X/∆ − c δ0.

Proof. We follow [62, Prop. 3.11]. By [51, Proof of Lemma 5.4], there
exist subharmonic functions ϕ and θ on ∆ such that

(7.3) ΩWP,X/∆ = ddcϕ, ΩH,X/∆ = ddcθ
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as currents on ∆. Since ϕ and θ are subharmonic, there exists C0 ∈ R
with

(7.4) ϕ(t) ≤ C0, θ(t) ≤ C0, t ∈ ∆(1/2).

Since ω̃∆∗ = −ddc log(− log |t|) as a current on ∆, we deduce from (7.2)
that

ddc {−C log(− log |t|) − ϕ} = C ω̃∆∗ − ΩWP,X/∆ ≥ 0,

ddc {−C log(− log |t|) − θ} = C ω̃∆∗ − ΩH,X/∆ ≥ 0.

Hence −C log(− log |t|) − ϕ and −C log(− log |t|) − θ are subharmonic
functions on ∆, so that there exists C1 ∈ R with

−C log(− log |t|) − ϕ(t) ≤ C1, −C log(− log |t|) − θ(t) ≤ C1,(7.5)

∀ t ∈ ∆(1/2).

By (7.4) and (7.5), there exists C2 ∈ R such that for all t ∈ ∆(1/2),

− C log(− log |t|) − C1 ≤ ϕ(t) ≤ C0,(7.6)

− C log(− log |t|) − C1 ≤ θ(t) ≤ C0.

Set χ(t) := Aθ(t) + B ϕ(t) and H(t) := log λ(t) + χ(t). Since
ddcH = 0, H(t) is a harmonic function on ∆∗. Since λ(t) ∈ Lmloc(∆),
the existence of c ∈ R with

(7.7) H(t) = c log |t|2 +O(log(− log |t|))
follows from Lemma 7.2 and (7.6). Since log λ(t) = H(t)−χ(t), the first
assertion follows from (7.6) and (7.7). Since H(t) − c log |t|2 extends to
a harmonic function on ∆ by Lemma 7.1 and (7.7), we get the equation
of currents ddc(H(t)− c log |t|2) = 0 on ∆, which, together with H(t) =
log λ(t) +Aθ(t) +B ϕ(t) and (7.3), implies the second assertion. q.e.d.

Let gWP,X /∆ be the Kähler metric on ∆∗ whose Kähler form is
ωWP,X/∆.

Proposition 7.6. Assume that h1,2(Xt) = 1 for all t ∈ ∆∗.
(1) There exists α ∈ R such that as t→ 0:

log gWP,X/∆

(
∂

∂t
,
∂

∂t̄

)
= α log |t|2 +O(log(− log |t|)).

(2) With the same constant α as above, the following equation of cur-

rents on ∆ holds:

ddc log gWP,X/∆

(
∂

∂t
,
∂

∂t̄

)
= α δ0 − ΩH,X/∆ + 4 ΩWP,X/∆.

(3) If X0 is a Calabi-Yau threefold with at most one ODP and if π : X →
∆ is the Kuranishi family of X0, then α = 0.
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Proof.

(1) Set λ(t) := gWP,X/∆( ∂∂t ,
∂
∂t̄) and A = 1, B = −4 in Lemma

7.5. By the definition of Hodge form, we have −ddc log λ = ωH,X/∆ −
4ωWP,X/∆ on ∆∗. Since λ(t) ∈ L1

loc(∆) by Proposition 7.3, the result
follows from Lemma 7.5 (1).

(2) The result follows from Lemma 7.5 (2).

(3) The result follows from [56, Cor. 5.1]. This completes the proof.
q.e.d.

If X is smooth, π∗KX is locally free by [54, p. 391, Th. V]. Since K∆

is trivial and since h0(Xt,KX |Xt) = 1 for t ∈ ∆∗, π∗KX/∆ = π∗(KX ⊗
π∗K−1

∆ ) ∼= π∗KX is an invertible sheaf on ∆ in that case.

Lemma 7.7. Assume that Xt is Calabi-Yau for all t ∈ ∆∗. If X is

smooth, there exists ξ ∈ H0(X ,KX ) such that div(ξ) ⊂ X0.

Proof. Since π∗KX is an invertible sheaf on ∆, there exists ξ ∈
H0(X ,KX ) = H0(∆,π∗KX ) that generates π∗KX as an O∆-module,
i.e., π∗KX = O∆ · ξ. Since H0(Xt,KX |Xt) ∼= H0(Xt,KXt)

∼= C for all
t ∈ ∆∗, we get H0(Xt,KX |Xt) = C ξ|Xt in that case by [1, Chap. 3,
Th. 4.12 (ii)]. Since KX |Xt ∼= KXt

∼= OXt for t ∈ ∆∗, ξ|Xt is nowhere
vanishing on Xt, t ∈ ∆∗. This proves the lemma. q.e.d.

If X is smooth, there exists ξ ∈ H0(X ,KX ) by Lemma 7.7 such that
div(ξ) ⊂ X0. In that case, we define a section ηX/∆ ∈ H0(X ,KX/∆) by

ηX/∆ := ξ ⊗ (π∗dt)−1. We identify ηX/∆|Xt with the Poincaré residue

ηt := ResXtξ/(π − t) ∈ H0(Xt,KXt) for t ∈ ∆∗. Then

(7.8) ξ|Xt = ηt ⊗ dπ,

and ηX/∆ is regarded as a family of holomorphic 3-forms. We also regard

ηX/∆ as the corresponding element of H0(∆,π∗KX/∆).

Proposition 7.8. Assume that X is smooth. Let ηX/∆ be a nowhere

vanishing holomorphic section of π∗KX/∆.

(1) There exists β ∈ R such that as t→ 0:

log ‖ηX/∆(t)‖2
L2 = β log |t|2 +O(log(− log |t|)).

(2) With the same constant β as above, the following equation of cur-

rents on ∆ holds:

ddc log ‖ηX/∆(t)‖2
L2 = β δ0 − ΩWP,X/∆.

(3) If X0 is a Calabi-Yau threefold with at most one ODP and if ξ is

nowhere vanishing on X , then log ‖ηX/∆(t)‖2
L2 extends to a con-

tinuous function on ∆. In particular, β = 0.
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Proof.

(1) Set λ(t) := ‖ηX/∆(t)‖2
L2 and A = 0, B = 1 in Lemma 7.5. Since

∫

∆(1/2)
λ(t)

√
−1dt ∧ dt̄ =

∫

∆(1/2)
π∗(

√
−1ηX/∆ ∧ ηX/∆)

√
−1dt ∧ dt̄

=

∫

π−1(∆(1/2))
ξ ∧ ξ̄ < +∞

by (7.8), we get λ(t) ∈ L1
loc(∆). Since −ddc log λ = ωWP,X/∆ by the

definition of the Weil-Petersson form, the result follows from Lemma
7.5 (1).

(2) The result follows from Lemma 7.5 (2).

(3) The result follows from e.g., [61, Proof of Th. 8.1]. This completes
the proof. q.e.d.

7.4. The boundary behavior of the anomaly term. In Subsection
7.4, we fix the following notation. Let π : X → ∆ be a proper surjective
holomorphic function on a smooth Kähler fourfold with critical locus
Σπ, so that π has relative dimension 3. Assume that Σπ ⊂ X0 and that
Xt is a smooth Calabi-Yau threefold for all t ∈ ∆∗.

Let gX be a Kähler metric on X . Let γX be the Kähler form of gX and
set γt := γX |Xt . Recall that the anomaly term A(Xt, γt) was defined
in Definition 4.1. The following result is a generalization of [62, (6.17),
(6.19)].

Proposition 7.9. (1) There exists c ∈ R such that as t→ 0:

logA(Xt, γt) = c log |t|2 +O(log(− log |t|)).

(2) If Σπ consists of a unique ODP and if X0 is Calabi-Yau, then as

t→ 0

logA(Xt, γt) = − 1

12
log |t|2 +O(1).

Proof.

(1) Let gX/∆ be the Hermitian metric on TX/∆ induced from gX ,
and let γX/∆ be the corresponding (1, 1)-form on TX/∆. Then we may
identify γX/∆ with the family of Kähler forms {γt}t∈∆. Let N∗

Xt/X
be the conormal bundle of Xt in X for t ∈ ∆∗. Then dπ = π∗dt ∈
H0(Xt, N

∗
Xt/X ) generates N∗

Xt/X for t ∈ ∆∗, so that N∗
Xt/X is trivial in

that case. Since the Hermitian metric on Ω1
Xt

is induced from gX via

the C∞ identification Ω1
Xt

∼= (N∗
Xt/X )⊥ and since (γ3

X/∆/3!)|Xt is the

volume form on Ω1
Xt

, we get

(7.9)
γ4
X
4!

=
γ3
X/∆
3!

∧
(√

−1
dπ

‖dπ‖ ∧ dπ

‖dπ‖

)
.
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By Lemma 7.7, there exists ξ ∈ H0(X ,KX ) such that div(ξ) ⊂ X0.
As before, define ηX/∆ ∈ H0(X ,KX/∆) by ηX/∆ := ξ ⊗ (π∗dt)−1, and
identify ηX/∆|Xt with the Poincaré residue ηt := ResXtξ/(π − t) ∈
H0(Xt,KXt) for t ∈ ∆∗. Then ηX/∆ is regarded as a family of holomor-
phic 3-forms {ηt}. By (7.8) and (7.9), we get
(7.10)√
−1 ηX/∆ ∧ ηX/∆

γ3
X/∆/3!

=
(−1)3

√
−1 ξ ∧ ξ

(γ3
X/∆/3!) ∧ dπ ∧ dπ

=
ξ ∧ ξ

γ4
X/∆/4!

· 1

‖dπ‖2
=

‖ξ‖2

‖dπ‖2
.

Let X denote a general fiber of π : X → ∆. Let A(X/∆) be the
function on ∆∗ defined by A(X/∆)(t) := A(Xt, γt). Then
(7.11)

logA(X/∆) = − 1

12
π∗

[
log

(√
−1 ηX/∆ ∧ ηX/∆

γ3
X/∆/3!

)
c3(TX/∆, gX/∆)

]

+
χ(X)

12
log ‖ηX/∆‖2

L2 .

We use the notation in Subsection 5.3. Hence q : X̃ → X is the
resolution of the Gauss maps µ and ν. Substituting (7.10) into (7.11)
and using (5.1), we get

logA(X/∆)

(7.12)

= − 1

12
π∗

[
log

( ‖ξ‖2

‖dπ‖2

)
c3(TX/∆, gX/∆)

]
+
χ(X)

12
log ‖ηX/∆‖2

L2

= − 1

12
π̃∗

[
log q∗

( ‖ξ‖2

‖dπ‖2

)
µ̃∗c3(U, gU )

]
+
χ(X)

12
log ‖ηX/∆‖2

L2 .

Since div(q∗ξ) ⊂ π̃−1(0) by the condition div(ξ) ⊂ X0, the assertion
follows from Lemma 5.8 and Proposition 7.8 (1) applied to the second
line of (7.12).

(2) Assume that Σπ consists of a unique ODP and that X0 is
Calabi-Yau. We use the notation in Subsection 5.9. We may assume by
Lemma 6.1 that ξ is nowhere vanishing on X . Hence div(q∗ξ) = ∅, and
π̃∗{q∗ log ‖ξ‖2 µ̃∗c3(U, gU )} and log ‖ηX/∆‖2

L2 are bounded as t → 0 by
the first equation of Lemma 5.8 and by Proposition 7.8 (3). We deduce
from (7.12) that

(7.13) logA(X/∆) =
1

12
π̃∗{q∗(log ‖dπ‖2) µ̃∗c3(U, gU )} +O(1).
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Since E = P3 and ϕ = (−1)3µ̃∗c3(U) in the second equation of Lemma
5.8, we get
(7.14)

logA(X/∆)(t) =

(
1

12

∫

P3

c3(U)

)
log |t|2+O(1) =

(−1)3

12
log |t|2+O(1).

This proves (2). q.e.d.

7.5. The Weil-Petersson and Hodge metrics on the Kuranishi
space. In Subsection 7.5, we fix the following notation. Let X be a
smoothable Calabi-Yau threefold with only one ODP as its singular
set, and let p : (X, X) → (Def(X), [X]) be the Kuranishi family with
discriminant locus D. Assume that dim Def(X) = h1,2(X) = 1.

By Lemma 6.1, there exists a nowhere vanishing holomorphic 4-form ξ
on X. Then ηX/Def(X) = ξ⊗π∗(ds)−1 is a nowhere vanishing holomorphic
section of p∗KX/Def(X). Set ηs := ηX/Def(X)|Xs . We identify ηs with the
corresponding holomorphic 3-form on (Xs)reg such that ηs ⊗ (ds) =
ξ|Xs under the canonical isomorphism KXs ⊗ p∗KDef(X)|Xs = KX|Xs .
Then {ηs}s∈S is regarded as a holomorphic family of nowhere vanishing
holomorphic 3-forms.

For p = 0, 1 and q ≥ 0, the direct image sheaves Rqp∗Ω
p
X/Def(X) are

locally free by Definition 2.1 (ii) and Theorem 2.11. For p = 0, 1, let σp
be a nowhere vanishing holomorphic section of λ(Ωp

X/Def(X)).

By Proposition 2.8, there exists a Kähler metric gX on X. Let gX/Def(X)

be the Hermitian metric on TX/Def(X)|X\Σp
induced from gX. Set

gs := gX|Xs for s ∈ Def(X).

Theorem 7.10. The following formula holds for p = 0, 1:

log ‖σp(s)‖2
λ(Ωp

X/Def(X)
),L2,gX/Def(X)

= O(log(− log |s|)).
Proof. Let p = 0. Let 1 be the section of p∗OX such that 1s =

1 ∈ H0(Xs,OXs). Regard ηX/Def(X) as a nowhere vanishing holomor-

phic section of (R3p∗OX)∨ by the relative Serre duality. Set σ0 :=
1 ⊗ ηX/Def(X). Since

log ‖σ0(s)‖2
L2,gs

= log Vol(Xs, gs) + log ‖ηs‖2
L2 = log ‖ηs‖2

L2 +O(1),

the assertion for p = 0 follows from Proposition 7.8 (3).
Let p = 1. Let e1, . . . , eb2(X) be a Z-basis ofH2(X,Z)/Torsion. There

exist holomorphic line bundles L1, . . . ,Lb2(X) on X by Lemma 2.16 such
that c1(Li)|X = ei for 1 ≤ i ≤ b2(X), and such that the Dolbeault
cohomology classes of their Chern forms C1(L1), . . . ,C1(Lb2(X)) form a

local basis of R1π∗Ω1
X/Def(X) as a ODef(X)-module.

By Theorem 6.2, (ρ∨s )−1(ds) ⊗ η−1
s is a local basis of R2π∗Ω1

X/Def(X)

as an ODef(X)-module. For s ∈ Def(X), set

σ1(s) := (C1(L1) ∧ · · · ∧ C1(Lb2(X)))
−1 ⊗ ((ρ∨s )−1(ds) ⊗ η−1

s ).
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Then σ1 is a nowhere vanishing holomorphic section of λ(Ω1
X/Def(X)).

Let γs be the Kähler form of gX|Xs . Since gX is a Kähler metric on X,
the section Def(X) ∋ s → [γs] ∈ H2(Xs,R) of R2p∗R is constant. Let
[γ] ∈ H2(X,R) be the element corresponding to [γs]. By Lemma 4.12,

‖C1(L1) ∧ · · · ∧ C1(Lb2(X))‖2
L2,gs

(s) = VolL2(H2(X,Z), [γ]) 6= 0

is a constant function on Def(X). Hence, we get

log ‖σ1(s)‖2
L2,gs

= − log VolL2(H2(X,Z), [γ])

− log gWP

(
∂

∂s
,
∂

∂s

)
− h1,2(X) log ‖ηs‖2

L2

= O(log(− log |s|))
by Propositions 4.4, 7.6 (3) and 7.8 (3). This proves the theorem. q.e.d.

8. The singularity of the BCOV invariant I—the case of ODP

In Section 8, we fix the following notation. Let π : X → S be a
proper, surjective, flat holomorphic map from a compact, connected
smooth Kähler fourfold to a compact Riemann surface. Let D be the
discriminant locus and let 0 ∈ D. We assume that X := X0 is a Calabi-
Yau threefold with a unique ODP as its singular set satisfying h2(Ω1

X) =
1. The deformation germ π : (X , X) → (S, 0) is a smoothing of X, and a
general fiber of π is a smooth Calabi-Yau threefold. We set o := SingX.

Let p : (X, X) → (Def(X), [X]) be the Kuranishi family of X with
discriminant locus D = [X]. Since h2(Ω1

X) = 1, we have dim Def(X) =
1. By Proposition 2.8, X is Kähler. Let gX be a Kähler metric on X,
and set gX/Def(X) := gX|TX/Def(X).

Let µ : (S, 0) → (Def(X), [X]) be the holomorphic map that induces
the family π : (X , X) → (S, 0) from the Kuranishi family. By the local
description (2.2), we have OX ,o ∼= C{z0, z1, z2, z3}/(z2

0 + · · ·+ z2
3 −µ(t)).

Since X is smooth, D = µ(0) is not a critical value of µ, and the
morphism of germs µ : (S, 0) → (Def(X), [X]) is an isomorphism. Hence
there exist a neighborhood U of 0 ∈ S and an isomorphism of families
f : X|U ∼= X|µ(U).

Let gπ−1(U) be the Kähler metric on π−1(U) defined as

gπ−1(U) = f∗gX.

Let gX/S be the Hermitian metric on TX/S|π−1(U)\Σπ induced from
gπ−1(U). Then

gX/S = f∗gX/Def(X).

Let ‖ · ‖2
λ(Ep

X/S
),L2,gX/S

be the L2-metric on the Kähler extension

λ(EpX/S)|U with respect to gX/S . Since Fp
X/S is acyclic on X for p = 0, 1,
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we have the following isomorphisms for p = 0, 1:

(8.1) λ(EpX/S)|U ∼= µ∗λ(Ωp
X/Def(X)), ‖·‖L2,gX/S

= µ∗‖·‖L2,gX/Def(X)
.

Let t be a local coordinate of S centered at 0. Let σp be a nowhere
vanishing holomorphic section of the Kähler extension λ(EpX/S) near

0 ∈ D.

Theorem 8.1. The following formula holds as t→ 0:

(−1)p log ‖σp(t)‖2
λ(Ep

X/S
),L2,gX/S

=

{
O(log(− log |t|)) (p = 0, 1)

− log |t|2 +O(log(− log |t|)) (p = 2, 3).

Proof. Let p = 0, 1. Since µ : (S, 0) → (Def(X), [X]) is an isomor-
phism, the assertion follows from Theorem 7.10 and (8.1).

Let p = 2, 3. Recall that the canonical element 1p,3−p(Xt) ∈ λ(Ωp
Xt

)⊗
λ(Ω3−p

Xt
)∨ was defined in Subsection 3.3. Let 1p,3−p,So be the nowhere

vanishing holomorphic section of λ(Ωp
X o/So) ⊗ λ(Ω3−p

X o/So)
∨ defined by

1p,3−p,So(t) := 1p,3−p(Xt) ∈ λ(Ωp
Xt

) ⊗ λ(Ω3−p
Xt

)∨, t ∈ So.

Then

(8.2) ‖1p,3−p,So(t)‖L2,gX/S
= ‖1p,3−p,So(t)‖Q,gX/S = 1, t ∈ So

by Proposition 3.4.
By Theorem 5.11, we get

(8.3)
log ‖σp(t) ⊗ σ3−p(t)

−1‖2
λ(Ep

X/S
)⊗λ(E3−p

X/S
)∨,Q,gX/S

= (−1)3−pδ(3, p) log |t|2 + (−1)3 · (−1)3−(3−p)δ(3, 3 − p) log |t|2 +O(1)

= (−1)3−p log |t|2 +O(1),

where we used the first identity of Lemma 5.12 to get the last equality
of (8.3).

Set

fp(t) :=
σp(t) ⊗ σ3−p(t)−1

1p,3−p(t)
∈ O(So).

By (8.2), we get

‖σp(t) ⊗ σ3−p(t)
−1‖2

λ(Ep
X/S

)⊗λ(E3−p
X/S

)∨,Q,gX/S
(8.4)

= |fp(t)|2 · ‖1p,3−p(t)‖2
λ(Ep

X/S
)⊗λ(E3−p

X/S
)∨,Q,gX/S

= |fp(t)|2 · ‖1p,3−p(t)‖2
λ(Ep

X/S
)⊗λ(E3−p

X/S
)∨,L2,gX/S

= ‖σp(t) ⊗ σ3−p(t)
−1‖2

λ(Ep
X/S

)⊗λ(E3−p
X/S

)∨,L2,gX/S
,
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which, together with (8.3), yields that
(8.5)
log ‖σp(t)⊗σ3−p(t)

−1‖2
λ(Ep

X/S
)⊗λ(E3−p

X/S
)∨,L2,gX/S

= (−1)3−p log |t|2+O(1).

By Theorem 8.1 for p = 0, 1 and (8.4), we get

(−1)p log ‖σp(t)‖2
λ(Ep

X/S
),L2,gX/S

= (−1)p log ‖σp(t) ⊗ σ3−p(t)
−1‖2

λ(Ep
X/S

)⊗λ(E3−p
X/S

)∨,L2,gX/S

+ (−1)p log ‖σ3−p(t)‖2
λ(E3−p

X/S
),L2,gX/S

= − log |t|2 +O(log(− log |t|)).

This proves the theorem for p = 2, 3. q.e.d.

Let γt be the Kähler form of gX/S |Xt .

Theorem 8.2. The following formula holds as t→ 0:

log τBCOV(Xt) =
1

6
log |t|2 +O(log(− log |t|)).

Proof. By the definition of the BCOV torsion of (Xt, γt), we have
(8.6)

log TBCOV(Xt, γt) =
∑

p≥0

(−1)pp log ‖σp(t)‖2
λ(Ep

X/S
),Q,gX/S

−
∑

p≥0

(−1)pp log ‖σp(t)‖2
λ(Ep

X/S
),L2,gX/S

.

= −19

4
log |t|2 +

3∑

p=2

p log |t|2 +O(log(− log |t|2))

=
1

4
log |t|2 +O(log(− log |t|2)),

where we used Theorems 5.13 and 8.1 to get the second equality. Since

log Vol(Xt, γt) = O(1), log VolL2(H2(Xt,Z), [γt]) = O(1),

we deduce from Proposition 7.9 (2) and (8.6) that

log τBCOV(Xt) = logA(Xt, γt) + log TBCOV(Xt, γt) +O(1)

=
1

6
log |t|2 +O(log(− log |t|2)).

This proves the theorem. q.e.d.
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9. The singularity of the BCOV invariant II—general
degenerations

In Section 9, we fix the following notation: Let X be an irreducible
projective algebraic fourfold and let S be a compact Riemann surface.
Let π : X → S be a surjective, flat holomorphic map. Let D ⊂ S be a
reduced divisor and set X o := X \π−1(D), So := S \D, πo := π|X o . Let
0 ∈ D, and let (U, t) be a coordinate neighborhood of S centered at 0
such that U \ {0} ∼= ∆∗.

In Section 9, we shall prove a generalization of Theorem 8.2.

Theorem 9.1. If πo : X o → So is a smooth morphism whose fibers

are Calabi-Yau threefolds, then there exists α ∈ R such that as t→ 0,

log τBCOV(Xt) = α log |t|2 +O(log(− log |t|2)).
First, we shall prove Theorem 9.1 when π : X → S is a semi-stable

family. Then we shall reduce the general case to this particular case by
the semi-stable reduction theorem of Mumford [29]. We set D := X0 in
this section.

9.1. The singularity of L2 metrics for semi-stable degenera-
tions. In Subsections 9.1 and 9.2, we assume that X is smooth and that
D = X0 is a reduced divisor of normal crossing, i.e., for every x ∈ D,
there exist integers ǫ0, ǫ1, ǫ2, ǫ3 ∈ {0, 1} and a coordinate neighborhood
(U , (z0, z1, z2, z3)) of X centered at x such that

π(z) = zǫ00 z
ǫ1
1 z

ǫ2
2 z

ǫ3
3 , z ∈ U .

Let Ω1
X/S(logD) be the sheaf of meromorphic 1-forms on X with loga-

rithmic pole alongD. Then Ω1
X (logD)|X\D = Ω1

X |X\D, and Ω1
X (logD)|U

is a free OU -module generated by dz0/z
ǫ0
0 , dz1/z

ǫ1
1 , dz2/z

ǫ2
2 , dz3/z

ǫ3
3 .

Let Ω1
S(log 0) be the sheaf of meromorphic 1-forms on S with loga-

rithmic pole at 0. Then Ω1
S(log 0)0 = OS,0 dt/t. We set

Ω1
X/S(logD) := Ω1

X (logD)/π∗Ω1
S(log 0).

See e.g., [53, Section 2], [58, Chap. 3, Section 2] for more details
about Ω1

X/S(logD).

Let gX be a Kähler metric on X whose Kähler class is integral. Let
κ ∈ H2(X ,Z) be the Kähler class of gX . We set gX/S := gX |TX /S .

9.1.1. The canonical extension of the Hodge bundles. For the
proof of Theorem 9.1, let us recall some results of Schmid [50] and
Steenbrink [53]. Set Uo := U \ {0}. We fix b ∈ Uo and set W :=
Hm(Xb,C) and l := dimW .

Let oHm := Rmπ∗C⊗COUo and consider the Gauss-Manin connection
on oHm. The canonical extension Hm of oHm from Uo to U is defined
as follows: Let {v1, . . . , vl} be a basis of W , and let γ ∈ GL(W ) be
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the Picard-Lefschetz transformation. There exists a Nilpotent operator
N ∈ End(W ) with γ = exp(N).

Let ψ : Ũo ∋ z → exp(2π
√
−1z) ∈ Uo be the universal covering.

Since oHm is flat, the vectors vi extend to flat holomorphic sections vi ∈
Γ(Ũo, ψ∗(oHm)), which induce an isomorphism ψ∗(oHm) ∼= OfUo

⊗C W
of flat bundles. Under this trivialization of ψ∗(oHm), we have vi(z+1) =
γ ·vi(z) for all i. After Schmid [50, pp. 234-236], we define holomorphic
frame fields of ψ∗(oHm) by

(9.1) si(exp 2π
√
−1z) := exp (−z N) vi(z) =

∑

k≥0

1

k!
(−z N)kvi(z).

Since s1, . . . , sl ∈ Γ(Ũo, ψ∗(oHm)) are invariant under the translation
z → z + 1, they descend to single-valued holomorphic frame fields of
oHm. Then Hm is a locally free sheaf on U defined as Hm := OU s1 ⊕
· · · ⊕ OU sl.

By Hodge theory, oHm carries the Hodge filtration 0 ⊂ oFm ⊂ · · · ⊂
oF1 ⊂ oHm such that oFp is a holomorphic subbundle of oHm with
oFp/oFp+1 ∼= Rm−pπ∗Ω

p
X/S |Uo . For t ∈ Uo, we have the natural identi-

fication oFpt =
⊕

i≥pH
m−i(Xt,Ω

i
Xt

).

By [50, p. 235], [53, Th. 2.11], [66, p. 130 Cor.], the filtration {oFp}
extends to a filtration {Fp} of Hm such that

Fp/Fp+1 ∼= Rm−pπ∗Ω
p
X/S(logD)|U .

Under this isomorphism, we have an identification of holomorphic line
bundles on U :

(9.2) ip : (detFp) ⊗ (detFp+1)−1 ∼= detRm−pπ∗Ω
p
X/S(logD)|U .

Since oHm
t = Hm(Xt,C) for t ∈ Uo, oHm is equipped with the L2-

metric hRmπ∗C with respect to gX/S . Recall that the C∞ vector bundles
Kp,q(X o/Uo) on Uo were defined in Subsection 3.5. Let hFp be the
L2-metric on oFp induced from hRmπ∗C by the C∞ isomorphism oFp ∼=⊕

i≥pKi,m−i(X o/Uo). By the definition of L2-metrics, the isomorphism

ip|Uo induces an isometry of Hermitian line bundles on Uo:
(
(det oFp) ⊗ (det oFp+1)−1,dethFp ⊗ (dethFp+1)−1

)
(9.3)

∼= (detRm−pΩp
X/S , ‖ · ‖L2).

Recall that the operator L : Hm(Xt,C) → Hm+2(Xt,C) with respect
to κ|Xt was defined in Subsection 4.4.1. Then L induces a homomor-
phism of OU -modules L : Hm → Hm+2. The primitive part of Hm is
the holomorphic flat subbundle of Hm defined as Pm := Hm∩kerL4−m.
The Picard-Lefschetz transformation γ preserves Pm. If si ∈ Γ(U,Pm),
there exists k ∈ Z, C ∈ R by [50, p. 252 Th. 6.6’] such that

(9.4) ‖si(t)‖2
L2 ≤ C (− log |t|)k, t ∈ Uo.
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9.1.2. Singularities of the L2-metrics: the case of canonical
extension.

Lemma 9.2. Let m = 3. Let fp be a nowhere vanishing holomorphic

section of detFp defined on U . Then there exists cp ∈ R such that as

t→ 0,

log ‖fp(t)‖2
L2 = cp log |t|2 +O(log(− log |t|)).

Proof. Since m = 3, we have H3 = P3, i.e., the groups H3(Xt,C) are
primitive. By (9.4), there exists a constant C > 0 and l ∈ Z such that

(9.5) λp(t) := ‖fp(t)‖2
L2 ≤ C (− log |t|)l, t ∈ Uo.

We set λ4(t) = 1. By Proposition 4.6 and (9.3), we get the following on
Uo:

(9.6) −ddc(log λp− log λp+1) =





−ωWP,X o/Uo (p = 0)

−ωH,X o/Uo + 3ωWP,X o/Uo (p = 1)

ωH,X o/Uo − 3ωWP,X o/Uo (p = 2)

ωWP,X o/Uo (p = 3).

Since λp ∈ L1
loc(U) by (9.5), the result follows from Lemma 7.5 (1) and

(9.6). q.e.d.

Let σp be a nowhere vanishing holomorphic section of λ(EpX/S) near

0.

Proposition 9.3. There exists β0 ∈ R such that as t→ 0:

log ‖σ0(t)‖2
λ(OX ),L2,gX/S

= β0 log |t|2 +O(log(− log |t|)).

Proof. We may assume that σ0 = f0 ⊗ f−1
1 under the isomorphism

(9.2). Since (9.2) induces the isometry (9.3), the result follows from
Lemma 9.2. q.e.d.

By [53, Th. 2.11], Rqπ∗Ω1
X/S(logD) is locally free. Set

r := rkRqπ∗Ω
1
X/S(logD).

Let e1(t), . . . , er(t) be a basis of Rqπ∗Ω1
X/S(logD) as a free OU -module.

Proposition 9.4. For 0 ≤ q ≤ 3, there exists δq ∈ R such that as

t→ 0,

log ‖e1(t) ∧ · · · ∧ er(t)‖2
detRqπ∗Ω1

X/S
(logD),L2,gX/S

= δq log |t|2 +O(log(− log |t|)).
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Proof. Since r = 0 when q = 0, 3, it suffices to prove the cases q = 1, 2.

(Case 1)
Let q = 2. There exists a nowhere vanishing holomorphic function

h(t) on U such that e1(t) ∧ · · · ∧ er(t) = h(t) f1(t) ⊗ f2(t)
−1 under the

isomorphism (9.2). Since (9.2) induces the isometry (9.3), the result
follows from Lemma 9.2.

(Case 2)
Let q = 1. When m = 2, we have H2 = F1. Hence r = l. Identify the

integral Kähler class κ on X with the corresponding flat section of H2.
Then Pm and OU κ are holomorphic flat subbundles of Hm preserved by
the Picard-Lefschetz transformation γ. Hence, we have a decomposition
H2 = P2 ⊕OU κ of γ-invariant flat bundles on U . Choose v1 = κb and
v2, . . . , vl ∈ P2

b ∩ H2(Xb,Z)/Torsion in Subsection 9.1.1. Then s1 = κ
and Pm = OU s2⊕· · ·⊕OU sl. Since v1(z), . . . ,vl(z) are identified with

v1, . . . , vl via the C∞ trivialization X o ×Uo Ũ
o ∼= Xb × Ũo, we get by

Definition 4.11 and Lemma 4.12

(9.7) ‖v1(z) ∧ · · · ∧ vl(z)‖2
L2,κ = VolL2(H2(Xb,Z), κb), ∀ z ∈ Ũo.

Since N is nilpotent and hence det exp(−zN) = 1 for all z ∈ Ũo, we get

s1(e
2π

√
−1z) ∧ · · · ∧ sl(e

2π
√
−1z)(9.8)

= exp(−z N)v1(z) ∧ · · · ∧ exp(−z N)vl(z)

= det exp(−zN) · v1(z) ∧ · · · ∧ vl(z)

= v1(z) ∧ · · · ∧ vl(z).

By (9.7), (9.8), we get for all t ∈ Uo:

(9.9) ‖s1(t) ∧ · · · ∧ sl(t)‖2
L2,κ = VolL2(H2(Xb,Z), κb).

Since {s1(t), . . . , sl(t)} is a basis of R1π∗Ω1
X/S(logD) as a free OS-

module, the result follows from (9.9). This completes the proof. q.e.d.

9.1.3. Comparison of the Kähler extension and the canonical
extension.

Proposition 9.5. There exists β1 ∈ R such that

log ‖σ1(t)‖2
λ(Ω1

X/S
),L2,gX/S

= β1 log |t|2 +O(log(− log |t|)) (t→ 0).

Proof. Consider the natural injection 0 → Ω1
X/S → Ω1

X/S(logD), and

set Q := Ω1
X/S(logD)/Ω1

X/S . Then Q is a torsion sheaf on X whose

support is contained in Sing(D). Consider the long exact sequence of
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direct image sheaves induced by the short exact sequence of sheaves
0 → Ω1

X/S → Ω1
X/S(logD) → Q→ 0 on X :

Rq−1π∗Ω
1
X/S(logD) → Rq−1π∗Q→ Rqπ∗Ω

1
X/S

→ Rqπ∗Ω
1
X/S(logD) → Rqπ∗Q.

Since Rqπ∗Q is a torsion sheaf on U supported at {0} for all q, there exist
torsion sheaves Mq, Nq on U supported at {0} and an exact sequence
of coherent sheaves on U :

(9.10) 0 →Mq → Rqπ∗Ω1
X/S

j−−−−→ Rqπ∗Ω1
X/S(logD) → Nq → 0.

Since U ∼= ∆ and hence OU,t is a discrete valuation ring for all t ∈ U ,
the image j(Rqπ∗Ω1

X/S) is a locally free submodule of Rqπ∗Ω1
X/S(logD).

Hence (Rqπ∗Ω1
X/S)tor, the torsion part of Rqπ∗Ω1

X/S , is contained in

ker j. Since Mq ⊂ (Rqπ∗Ω1
X/S)tor, we have

(9.11) Mq = (Rqπ∗Ω
1
X/S)tor.

Since Nq = Rqπ∗Ω1
X/S(logD)/j(Rqπ∗Ω1

X/S) is a torsion sheaf, there

exist integers ν1, ..., νr ≥ 0 such that Nq
∼= C{t}/(tν1) ⊕· · ·⊕ C{t}/(tνr).

Replacing the basis {e1(t), . . . , er(t)} by another one if necessary, we
may assume that j(Rqπ∗Ω1

X/S) = OU t
ν1e1(t)⊕· · ·⊕OU t

νrer(t). Hence,

(9.12) det j(Rqπ∗Ω
1
X/S) = OU · tν1e1(t) ∧ · · · ∧ tνrer(t).

By [1, p. 110, 3. Proof of the theorem], there exists a complex of
locally free sheaves of finite rank on U

E• : 0 → E−1
v−1−−−−→ E0

v0−−−−→ · · · vk−1−−−−→ Ek → 0

such that Rqπ∗Ω1
X/S is the q-th cohomology sheaf of E•, i.e., Rqπ∗Ω1

X/S∼= Hq(E•) for all q ≥ 0. Since U ∼= ∆, ker vq ⊂ Eq and Im vq ⊂ Eq+1

are locally free sheaves on U for all q ≥ −1. Let ξq be the inverse image
of (Rqπ∗Ω1

X/S)tor by the natural surjection ker vq → Rqπ∗Ω1
X/S , and set

ηq := Im vq−1. There exists an exact sequence of coherent sheaves on U

0 → ηq
ϕq−−−−→ ξq → (Rqπ∗Ω1

X/S)tor → 0

such that ηq, ξq are locally free with equal rank. Under the canon-
ical isomorphism det(Rqπ∗Ω1

X/S)tor ∼= det ξq ⊗ (det ηq)
−1, the canoni-

cal section detϕq ∈ H0(U,det ξq ⊗ (det ηq)
−1) induces the trivialization

det(Rqπ∗Ω1
X/S)tor ∼= OU on Uo by [52, p. 118, Proof of Lemma 1, First

Case]:

(9.13) det(Rqπ∗Ω
1
X/S)tor ∋ detϕq → 1 ∈ OU .
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Since detRqπ∗Ω1
X/S

∼= det j(Rqπ∗Ω1
X/S)⊗det(Rqπ∗Ω1

X/S)tor by (9.10)

and (9.11), we deduce from (9.12), (9.13) that the following expression
s1,q is a holomorphic section of detRqπ∗Ω1

X/S :

s1,q(t) := (tν1e1(t) ∧ · · · ∧ tνrer(t)) ⊗ detϕq(t).

Since s1,q(t)|Uo is identified with the section tν1e1(t)∧· · ·∧tνrer(t)|Uo un-
der the identification detRqπ∗Ω1

X/S |Uo ∼= det j(Rqπ∗Ω1
X/S)|Uo induced

by (9.13), we deduce from Proposition 9.4 that for t ∈ Uo,
(9.14)
log ‖s1,q(t)‖2

L2,gX/S
= log ‖tν1e1(t) ∧ · · · ∧ tνrer(t)‖2

L2,gX/S

= dimCNq log |t|2 + log ‖e1(t) ∧ · · · ∧ er(t)‖2
L2,gX/S

= (dimCNq + δq) log |t|2 +O(log(− log |t|)).
Since detϕq vanishes at t = 0 with multiplicity dimCMq, σ1,q(t) :=

t−dimC Mq s1,q (t) is a nowhere vanishing holomorphic section of
detRqπ∗Ω1

X/S . By (9.14), we get

log ‖σ1,q(t)‖2
L2,gX/S

(9.15)

= (dimCNq + δq − dimCMq) log |t|2 +O(log(− log |t|)).
The result follows from (9.15). This completes the proof of Proposition
9.5. q.e.d.

Proposition 9.6. Let p = 2, 3. There exists βp ∈ R such that as

t→ 0,

log ‖σp(t)‖2
λ(Ep

X/S
),L2,gX/S

= βp log |t|2 +O(log(− log |t|)).

Proof. We keep the notation in Section 8, Proof of Theorem 8.1. By
Theorem 5.4, there exists ap ∈ Q such that
(9.16)

log ‖σp(t) ⊗ σ3−p(t)
−1‖2

λ(Ep
X/S

)⊗λ(E3−p
X/S

)∨,Q,gX/S
= ap log |t|2 +O(1).

By the same argument as in the proof of Theorem 8.1 (8.4) using (9.16)
in stead of (8.3), we get

log ‖σp(t) ⊗ σ3−p(t)
−1‖2

λ(Ep
X/S

)⊗λ(E3−p
X/S

)∨,L2,gX/S
= ap log |t|2 +O(1),

which, together with Propositions 9.3 and 9.5, yields the existence of
βp ∈ R such that

log ‖σp(t)‖2
λ(Ep

X/S
),L2,gX/S

= βp log |t|2 +O(log(− log |t|)).

This proves the proposition. q.e.d.
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9.2. Proof of Theorem 9.1: the case of semi-stable degenera-
tions. Let γt be the Kähler form of gX/S |Xt . By the definition of the
BCOV torsion of (Xt, γt), we have

log TBCOV(Xt, γt)

=
∑

p

(−1)pp

{
log ‖σp(t)‖2

λ(Ep
X/S

),Q,gX/S
− log ‖σp(t)‖2

λ(Ep
X/S

),L2,gX/S

}
.

By Theorem 5.4 and Propositions 9.3, 9.5, 9.6, there exists a ∈ R such
that

(9.17) log TBCOV(Xt, γt) = a log |t|2 +O(log(− log |t|2)).
Since the Kähler class of gX is integral, there exist positive constants
A,B ∈ Q by Lemma 4.12 such that for all t ∈ Uo,

(9.18) log Vol(Xt, γt) = A, log VolL2(H2(Xt,Z), [γt]) = B.

By Proposition 7.9 (1), there exists ǫ ∈ R such that

(9.19) logA(Xt, γt) = ǫ log |t|2 +O(log(− log |t|2)).
By (9.17), (9.18), (9.19), we get

log τBCOV(Xt) = logA(Xt, γt) + log TBCOV(Xt, γt) +O(1)

= (a+ ǫ) log |t|2 +O(log(− log |t|2)).
This proves the theorem. q.e.d.

9.3. Proof of Theorem 9.1: general cases. In Subsection 9.3, we
only assume that πo : X o → So is a smooth morphism whose fibers are
Calabi-Yau threefolds.

By the semi-stable reduction theorem [29, Chap. II], there exist a
pointed projective curve (B, o), a finite surjective holomorphic map
f : (B, o) → (S, 0), and a holomorphic surjection p : Y → B from a
projective fourfold Y to B satisfying the following conditions:

(i) Let V be the component of f−1(U) containing o. Then f : V \
{o} → U \ {0} is an isomorphism.

(ii) Set U∗ = U \ {0} and V ∗ = V \ {o}. Then p|V ∗ : Y|V ∗ → V ∗ is
induced from π|U∗ : X|U∗ → U∗ by f |V ∗ .

(iii) Y is smooth, and Yo is a reduced divisor of normal crossing.

Let b be the coordinate on V centered at o. By condition (i), we may
assume that there exists ν ∈ N such that f∗t = bν . Let τU∗ and τV ∗ be
the functions on U∗ and V ∗ defined by

τU∗(t) := τBCOV(Xt), τV ∗(b) := τBCOV(Yb)

for t ∈ U∗ and b ∈ V ∗, respectively. By condition (ii) and Theorem
4.16, we get

(9.20) τV ∗ = f∗τU∗ .
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We can apply Theorem 9.1 to the family p|V : Y|V → V by condition
(iii), so that there exists α ∈ R such that as b→ 0,

(9.21) log τV ∗(b) = α log |b|2 +O(log(− log |b|)).
Since b = tν , the desired formula follows from (9.20) and (9.21). This
completes the proof of Theorem 9.1. q.e.d.

10. The curvature current of the BCOV invariant

Following [62, Section 7], we extend Theorem 4.14 to the Kuranishi
space of Calabi-Yau threefold with a unique ODP as its singular set.

10.1. The curvature current of τBCOV: general cases. In Sub-
section 10.1, we fix the following notation. Let X be an irreducible
projective algebraic fourfold and let S be a compact Riemann surface.
Let π : X → S be a surjective, flat holomorphic map. Let D ⊂ S be a
reduced divisor and set X o := X \π−1(D), So := S \D, πo := π|X o . We
assume that the fibers of πo : X o → So are Calabi-Yau threefolds with
h2(Ω1

Xs
) = 1 for s ∈ So. Let χ(X) denote the topological Euler number

of Xs, s ∈ So.
Let ΩWP,X/S and ΩH,X/S be the trivial extensions of the Weil-Peters-

son form and the Hodge form from So to S (cf. Proposition 7.3 and
Definition 7.4). Then the (1, 1)-currents ΩWP,X/S and ΩH,X/S are posi-
tive.

Let 0 ∈ D and let (U, t) be a coordinate neighborhood of S centered
at 0. By Eq. (7.3), there exist subharmonic functions ϕ and θ on U
satisfying the following equations of currents on U :

(10.1) ddcϕ = ΩWP,X/S |U , ddcθ = ΩH,X/S |U .
As in Subsection 4.4.2, we define a function on S by

τBCOV(X/S)(t) := τBCOV(Xt), t ∈ S.

By Theorems 4.14 and 9.1, log τBCOV(X/S) ∈ C∞(So) ∩ L1(S).

Theorem 10.1. Set

a := lim
t→0

log τBCOV(X/S)|U (t)

log |t|2 ∈ R.

Then the following equation of currents on U holds:

ddc log τBCOV(X/S) = −χ(X)

12
ΩWP,X/S − ΩH,X/S + a δ0.

Proof. Identify U with ∆ in what follows. By Theorem 9.1, there
exists a positive constant K such that
(10.2)∣∣log τBCOV(X/S)(t) − a log |t|2

∣∣ ≤ K log(− log |t|), t ∈ ∆(1/2)∗.
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For t ∈ ∆(1/2)∗, set

P (t) :=
(
log τBCOV(X/S)(t) − a log |t|2

)
+
χ(X)

12
ϕ(t) + θ(t).

Then P (t) ∈ C∞(∆(1/2)∗). By (7.6) and (10.2), there exists a positive
constant C such that

(10.3) |P (t)| ≤ C log(− log |t|2), t ∈ ∆(1/2)∗.

Since P is harmonic on ∆(1/2)∗ by Theorem 4.14 and (10.1), we deduce
from Lemma 7.1 that P extends to a harmonic function on ∆(1/2).
Since P is harmonic on ∆(1/2), it follows from (7.6) that

(10.4) log τBCOV(X/S) = a log |t|2 − χ(X)

12
ϕ− θ + P ∈ L1

loc(∆(1/2)).

Since ddcP = 0 on ∆, Eq. (10.4), together with (10.1), yields the asser-
tion. q.e.d.

10.2. The curvature current of τBCOV: the case of Kuranishi
families. In Subsection 10.2, we fix the following notation: Let X be a
smoothable Calabi-Yau threefold with only one ODP as its singular set.
Let Def(X) be the Kuranishi space of X with discriminant locus D, and
let p : (X, X) → (Def(X), [X]) be the Kuranishi family of X. Assume
that dim Def(X) = h2(Ω1

X) = 1. Let s be a coordinate on Def(X) such
that D = div(s). We identify Def(X) with the disc ∆ equipped with
the coordinate s. Then Def(X) \ D ∼= ∆∗.

Let ΩWP and ΩH be the trivial extensions of the Weil-Petersson form
and the Hodge form from Def(X) \ D to Def(X). Let χ(Xgen) denote
the topological Euler number of a general fiber of the Kuranishi family.

Theorem 10.2. The function log τBCOV is locally integrable on

Def(X), and the following equation of currents on Def(X) holds:

ddc log τBCOV = −χ(Xgen)

12
ΩWP − ΩH +

1

6
δD.

Proof. By Proposition 2.8, there exist a pointed projective curve
(B, 0), a projective fourfold Z, and a surjective, proper, flat holomorphic
map f : Z → B such that the deformation germ f : (Z, f−1(0)) → (B, 0)
is isomorphic to the Kuranishi family p : (X, X) → (Def(X), [X]). Since
Def(X) is smooth at [X], so is B at 0. By Theorem 9.1, we get
log τBCOV ∈ L1

loc(Def(X)). Let γ := limt→0 log τBCOV(Xt)/ log |t|2.
Since γ = 1

6 by Theorem 8.2, the result follows from Theorem 10.1.
q.e.d.
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10.3. The curvature current of τBCOV: the case of induced
families. We keep the notation in Subsection 10.2. Let µ : (∆, 0) →
(Def(X), [X]) be a holomorphic map and let π : X → ∆ be the family
of Calabi-Yau threefolds induced from the Kuranishi family p : (X, X) →
(Def(X), [X]) by µ. Notice that X is singular if 0 is a critical point of
µ.

Theorem 10.3. The function log τBCOV(X/∆) lies in L1
loc(∆), and

the following equation of currents on ∆ holds:

ddc log τBCOV(X/∆) = −χ(Xgen)

12
ΩWP,X/∆ − ΩH,X/∆ +

1

6
δµ∗D.

Proof. Let f ∈ ODef(X),[X] be such that D = div(f). Let ΩWP and
ΩH be the trivial extensions of the Weil-Petersson and the Hodge forms
on Def(X), respectively. As in Eq. (7.3), let ϕ and θ be the subharmonic
functions on Def(X) with ΩWP = ddcϕ and ΩH = ddcθ. Then µ∗ϕ and
µ∗θ are subharmonic functions on ∆ with

(10.5) ddc(µ∗ϕ)|∆∗ = ωWP,X/∆, ddc(µ∗θ)|∆∗ = ωH,X/∆.

After shrinking Def(X) if necessary, we may assume by (7.6) the
existence of constants C0, C1 > 0 with

− C0 log(− log |f |2) ≤ ϕ|Def(X)\D ≤ C1,(10.6)

− C0 log(− log |f |2) ≤ θ|Def(X)\D ≤ C1.

Since µ−1(D)∩∆ = {0}, there exist a positive integer k and a nowhere
vanishing holomorphic function ε(s) ∈ O(∆) with

(10.7) µ∗f(s) = sk ε(s).

After shrinking ∆ if necessary, the following inequality holds by (10.6)

− C2 log(− log |s|2) ≤ µ∗ϕ|∆∗ ≤ C1,(10.8)

− C2 log(− log |s|2) ≤ µ∗θ|∆∗ ≤ C1,

where C2 > 0 is a constant. By (10.5), (10.8) and Lemma 7.5 (2), we
get the following equations of currents on ∆:

(10.9) ΩWP,X/∆ = ddc(µ∗ϕ), ΩH,X/∆ = ddc(µ∗θ).

By (10.4) and Theorem 10.2, there exists a harmonic function P on
Def(X) such that

log τBCOV =
1

6
log |f |2 − χ(X)

12
ϕ− θ + P.

Since τBCOV(X/∆) = µ∗τBCOV, we get

(10.10) log τBCOV(X/∆) =
1

6
µ∗ log |f |2 − χ(X)

12
µ∗ϕ− µ∗θ + µ∗P.
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By (10.8), (10.10), we get log τBCOV(X/∆) ∈ L1
loc(∆). By (10.9),

(10.10), we get the desired equation of currents. This completes the
proof. q.e.d.

11. The BCOV invariant of Calabi-Yau threefolds with h1,2 =1

In Section 11, we fix the following notation. Let X be a possibly
singular irreducible projective fourfold and let S be a compact Riemann
surface. Let π : X → S be a proper, surjective, flat morphism with
discriminant locus D := {s ∈ S; SingXs 6= ∅}. We set

So := S \ D, X o := π−1(So),

D∗ := {s ∈ D; SingXs consists of a unique ODP},
and

S∗ := So ∪ D∗, X ∗ := π−1(S∗).

In Section 11, we make the following:

Assumption

(i) Xs is a Calabi-Yau threefold with h2(Ω1
Xs

) = 1 for all s ∈ S∗;
(ii) D∗ is a non-empty finite set, and D\D∗ consists of a unique point

∞ ∈ S;
(iii) Sing(X ) ∩X∞ = ∅ and X∞ is a normal crossing divisor.

Lemma 11.1. Let p ∈ D∗. Then Xp is smoothable in the sense of

Definition 2.2.

Proof. To see this, let o = SingXp, and let f : X̃p → Xp be a small

resolution such that C := f−1(o) ∼= P1 and X̃p \ C ∼= Xp \ {o}. Let

[C] ∈ H2(X̃p,Z) be the homology class of C. Since Xp is smoothable
by a flat deformation by Assumption (ii), we get [C] = 0 by [44, Th. 2.5
(2)⇒(3)]. Hence the map γ′ in [43, p. 16, l.28] is zero. By the com-
mutative diagram [43, p. 16 (14)], the natural map Ext1(Ω1

Xp
,OXp) →

H0(X, Ext(Ω1
Xp
,OXp)) is not zero. Let Def(Xp, o) be the Kuranishi

space of the ODP (Xp, o) and let φ: (Def [Xp](Xp), [Xp])→(Def(Xp, o), o)
be the map of germs induced from the Kuranishi family of Xp. Since
Ext1 (Ω1

Xp
, OXp) = T[Xp] Def (Xp) and H0 (X, Ext (Ω1

Xp
, OXp)) =

TpDef(Xp, o) via the Kodaira-Spencer map, and since the natural map
Ext1(Ω1

Xp
,OXp) → H0(X, Ext(Ω1

Xp
,OXp)) is identified with the differ-

ential of φ at [Xp], we get (dφ)[Xp] 6= 0. Since dimT[Xp]Def(Xp) =
dimToDef(Xp, o) = 1 by Assumption (i), (dφ)[Xp] is an isomorphism.
By [43, Prop. 5.3] and the smoothness of Def(Xp, o), φ is an isomor-
phism of germs. This implies the smoothness of the total space of the
Kuranishi family of Xp. q.e.d.



ANALYTIC TORSION FOR CALABI-YAU THREEFOLDS 241

The ramification divisor of the family π : X → S is defined as follows.
For s ∈ S∗, let µs : (S, s) → (Def(Xs), [Xs]) be the map of germs of
analytic sets defined by

µs(t) := [Xt] ∈ Def(Xs).

By Lemmas 2.7 and 11.1, µp is not a constant map for p ∈ D∗. Since
D∗ 6= ∅ by Assumption (ii), µs is not constant for all s ∈ S∗. Since
dim Def(Xs) = 1, we may identify (Def(Xs), [Xs]) with (C, 0). Let z be
the coordinate of C, so that z ◦µs(t) ∈ OS,s. We define the ramification
index of π : X → S at s ∈ S by

rX/S(s) := ordt=sz ◦ µs(t) ∈ N.

Let {Rj}j∈J be the set of points of S whose ramification index is > 1.
The ramification divisor is then defined as

R :=
∑

j∈J
(rj − 1)Rj , rj := rX/S(Rj).

Let p ∈ D∗ and Sing(Xp) = {o}. By the local description (2.2), we
have an isomorphism of local rings

(11.1) OX ,o ∼= C{x, y, z, w, t}/(x2 + y2 + z2 + w2 + trX/S(p)).

Write D∗ = {Dk}k∈K . As a divisor of S, we define

D∗ :=
∑

k∈K
rkDk, rk := rX/S(Dk).

Since SingX ⊂ ∪s∈D∗SingXs, X has at most isolated hypersurface
singularities as its singular points by (11.1). Hence, KX and KX/S :=

KX ⊗ π∗K−1
S are invertible sheaves on X .

Lemma 11.2. The sheaf π∗KX/S is an invertible sheaf on S.

Proof. Since π−1(S \D∗) is smooth, π∗KX/S is an invertible sheaf on
S \ D∗ by Assumption (i) and [54, p. 391, Th. V]. Let s ∈ D∗. Since
the conormal bundle of (Xs)reg in Xreg is trivial, we have KX/S |(Xs)reg ∼=
K(Xs)reg . Since KX/S |Xs and KXs are invertible sheaves on Xs, we get
KX/S |Xs ∼= KXs by the normality of Xs. Since Xs is Calabi-Yau, we

have h0(KX/S |Xs) = h0(KXs) = 1. By [1, Th. 4.12 (ii)], π∗KX/S is an
invertible sheaf near s ∈ D∗. This proves the lemma. q.e.d.

Let χ be the topological Euler number of a general fiber Xs, s ∈ So.
Let ‖ · ‖ be the Hermitian metric on (π∗KX/S)⊗(48+χ) ⊗ (TS)⊗12|So
induced from the L2-metric on π∗KX/S and from the Weil-Petersson
metric gWP,X/S on So. The following is the main result of this paper.
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Main Theorem 11.3. Let Ξ be a meromorphic section of π∗KX/S
on S with

div(Ξ) =
∑

i∈I
mi Pi +m∞P∞, Pi 6= P∞ (i ∈ I),

and let V be a meromorphic vector field on S. Then the following hold:

(1) There exists a locally integrable function FΞ,V on S with

ddcFΞ,V =
{

(24 +
χ

2
) deg π∗KX/S + 6χ(S) + 6 degR− degD∗

}
δ∞

+ δD∗ − (24 +
χ

2
) δdiv(Ξ) − 6 δdiv(V ) − 6 δR

such that

τBCOV(X/S) =
∥∥eFΞ,V Ξ48+χ ⊗ V 12

∥∥ 1
6 .

(2) When S = P1, let ψ be the inhomogeneous coordinate of P1 with

ψ(∞) = ∞. Identify the points Pi, Rj , Dk with their coordinates ψ(Pi),
ψ(Rj), ψ(Dk), respectively. Then there exists a constant C 6= 0 such

that

τBCOV(Xψ)

= C

∥∥∥∥∥∥

∏

i∈I,j∈J,k∈K

(ψ −Dk)
2rk

(ψ − Pi)(48+χ)mi(ψ −Rj)12(rj−1)
Ξ48+χ
ψ ⊗

(
∂

∂ψ

)12
∥∥∥∥∥∥

1
6

.

In the rest of this section, we shall prove Theorem 11.3. For p ∈ D, let
(Up, t) be a coordinate neighborhood of S centered at p with Up ∩ D =
{p} and Up \ {p} ∼= ∆∗.

By Proposition 7.3, the positive (1, 1)-forms ωWP,X/S and ωH,X/S on
So extend trivially to closed positive (1, 1)-currents on S.

Definition 11.4. Let ΩWP,X/S and ΩH,X/S be the trivial extensions
of ωWP,X/S and ωH,X/S from So to S, respectively.

Proposition 11.5.

(1) There exists a(p) ∈ R such that the following equation of currents

on Up holds:

ddc log ΩWP,X/S |Up
(
∂

∂t
,
∂

∂t̄

)
= a(p) δp − ΩH,X/S + 4 ΩWP,X/S .

(2) For Dk ∈ D∗, one has a(Dk) = rk − 1.

Proof. We get (1) by Proposition 7.6 (2). Let p = Dk. Under
the identification of the Kuranishi space (Def(Xp), [Xp]) with (C, 0),
we may assume by the definition of the ramification index rX/S that
π|Up : X|Up → Up is induced from the Kuranishi family of Xp by the
map µ(t) = trk . Let ωWP be the Weil-Petersson form on Def(Xp).
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Since ΩWP,X/S |Up\{p} = µ∗ωWP, we deduce from Proposition 7.6 (1),
(3) that as t→ 0,
(11.2)

log ΩWP,X/S |Up
(
∂

∂t
,
∂

∂t̄

)
= logωWP

(
µ∗

∂

∂t
, µ∗

∂

∂t̄

)

= (rk − 1) log |t|2 +O(log(− log |t|)).
By (11.2), we get a(p) = rk − 1. This completes the proof. q.e.d.

Proposition 11.6. There exists b(∞) ∈ R such that the following

equation of currents on S holds:

(11.3) ddc log ‖Ξ‖2
L2 = b(∞) δ∞ + δdiv(Ξ) − ΩWP,X/S .

Proof. Let s ∈ S be an arbitrary point. It suffices to prove Eq. (11.3)
on a neighborhood of s. By Proposition 7.8 (2), Eq. (11.3) holds on a
neighborhood of ∞.

Assume that s ∈ S∗. Let p : (X, Xs) → (Def(Xs), [Xs]) be the Ku-
ranishi family of Xs. Since π : (X , Xs) → (S, s) is induced from the
Kuranishi family by the map µs : (S, s) → (Def(Xs), [Xs]), there exists
a morphism of deformation germs fµs : (X , Xs) → (X, Xs) satisfying the
commutative diagram:

(X , Xs)
fµs−−−−→ (X, Xs)

π

y p

y

(S, s)
µs−−−−→ (Def(Xs), [Xs]).

Let Us ∼= ∆ be a neighborhood of s in S such that µs (resp. fµs) is
defined on Us (resp. π−1(Us)) and such that µs has no critical points
on Uos := Us \ {s}. Since

(11.4) f∗µsKX/Def(Xs) = KX/S

on π−1(Us) \ SingXs, the normality of X implies that (11.4) holds on
π−1(Us).

By Lemma 6.1, KX/Def(Xs) is trivial. Let ηX/Def(Xs) be a nowhere van-
ishing holomorphic section ofKX/Def(Xs) defined on Def(Xs). We regard
ηX/Def(Xs) as a family of holomorphic 3-forms {ηX/Def(Xs)|Xb}b∈Def(Xs).
Since Xs has at most one ODP as its singular set, log ‖ηX/Def(Xs)‖L2 ∈
C0(Def(Xs)) by Proposition 7.8 (3).

Since f∗µsηX/Def(Xs) ∈ H0(π−1(Us),KX/S) = H0(Us, π∗KX/S) is no-
where vanishing, f∗µsηX/Def(Xs) generates π∗KX/S on Us as an OUs-
module. Since

‖f∗µsηX/Def(Xs)‖L2(t) = ‖ηX/Def(Xs)‖L2(µs(t)), t ∈ Uos

by (11.4) and since log ‖ηX/Def(Xs)‖L2 ∈ C0(Def(Xs)), log ‖f∗µs
ηX/Def(Xs)‖L2

is a continuous function on Us. Since −ddc log ‖f∗µsηX/Def(Xs)‖L2 =
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ΩWP,X/S on Uos , we get the following equation of currents on Us by
Lemma 7.5 (1), (2):

(11.5) −ddc log ‖f∗µsηX/Def(Xs)‖L2 = ΩWP,X/S .

Since f∗µsηX/Def(Xs) ∈ H0(Us, π∗KX/S) is nowhere vanishing, there exists
h(t) ∈ O(Us) such that Ξ = h · f∗µsηX/Def(Xs) on Us. By (11.5), we get

(11.6) −ddc log ‖Ξ‖2
L2 = ΩWP,X/S − δdiv(h)

as currents on Us. Eq. (11.3) on Us follows from (11.6). q.e.d.

Theorem 11.7. There exists c(∞) ∈ Q such that the following equa-

tion of currents on S holds:

(11.7)

ddc log τBCOV(X/S) = − χ

12
ΩWP,X/S − ΩH,X/S +

1

6
δD∗ + c(∞) δ∞.

Proof. The result follows from Theorems 10.1 and 10.3. q.e.d.

Proof of Theorem 11.3.
(1) By Proposition 11.5 and (4.1), we get the following equation of

currents on S:

(11.8) ddc log ‖V ‖2 = a(∞) δ∞ + δR + δdiv(V ) − ΩH,X/S + 4 ΩWP,X/S .

By (11.3), (11.7), (11.8), we get

ddc log ‖V 12 ⊗Ξ48+χ‖2(11.9)

= 12(a(∞) δ∞ + δR + δdiv(V )) − 12 ΩH,X/S + 48 ΩWP,X/S
+ (48 + χ) (b(∞) δ∞ + δdiv(Ξ)) − (48 + χ)ΩWP,X/S

= 12 ddc log τBCOV(X/S)

+ {12 a(∞) + (48 + χ) b(∞) − 12 c(∞)} δ∞
− 2 δD∗ + 12 δR + 12 δdiv(V ) + (48 + χ) δdiv(Ξ).

Integrating both sides of (11.9) over S, we get

(11.10) {12 a(∞) + (48 + χ) b(∞) − 12 c(∞)} − 2 degD∗ + 12 degR
+ 12χ(S) + (48 + χ) degΞ = 0.

By (11.9) and (11.10),

FΞ,V := log τBCOV(X/S)6 − log ‖V 12 ⊗Ξ48+χ‖
is a harmonic function on S \ (D∪R) satisfying Theorem 11.3 (1). This
proves (1).

(2) We set V (ψ) := ∂/∂ψ ∈ H0(P1, TP1). Then div(V ) = 2∞, so
that FΞ,V satisfies the following equation of currents on P1 by (11.9),
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(11.10):

(11.11)
ddcFΞ,V =

{
(24 +

χ

2
) deg π∗KX/S + 6 degR− degD∗

}
δ∞

+ δD∗ − (24 +
χ

2
) δdiv(Ξ) − 6 δR.

Up to a constant, the solution of Eq. (11.11) is given by the following
formula:

(11.12) FΞ,V (ψ) = log

∣∣∣∣∣∣

∏

i∈I,j∈J,k∈K

(ψ −Dk)
2rk

(ψ − Pi)(48+χ)mi(ψ −Rj)12(rj−1)

∣∣∣∣∣∣
.

The second assertion of Theorem 11.3 follows from (11.12). This com-
pletes the proof of Theorem 11.3. q.e.d.

12. The BCOV invariant of quintic mirror threefolds

12.1. Quintic mirror threefolds. Let p : X → P1 be the pencil of
quintic threefolds in P4 defined by

X := {([z], ψ) ∈ P4 × P1; Fψ(z) = 0}, p = pr2,

Fψ(z) := z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5ψ z0z1z2z3z4.

The parameter ψ is regarded as the inhomogeneous coordinate of P1.
Identify Z5 with the set of fifth roots of unity: Z5 = {ζ ∈ C; ζ5 = 1}.
We define

G :=
{(a0, a1, a2, a3, a4) ∈ (Z5)

5; a0a1a2a3a4 = 1}
Z5(1, 1, 1, 1, 1)

∼= Z3
5.

The group G× Z5 acts on X and P1 by

(a, b) · ([z], ψ) := ([b−1a0z0 : a1z1 : a2z2 : a3z3 : a4z4], bψ),

(a, b) · ψ := b ψ.

Then the projection p : X → P1 is G×Z5-equivariant. Since G preserves
the fibers of p, we have the induced family

p : X/G→ P1

equipped with the induced Z5-action. We set

D∗ :=

{
exp

2π
√
−1m

5
∈ P1; 0 ≤ m ≤ 4

}
⊂ P1, D := D∗∪{∞} ⊂ P1.

Then D is the discriminant locus of the family p : X → P1 by [15, p.
27].

Proposition 12.1. There exists a resolution f : W → X/G satisfy-

ing the following conditions:
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(1) Set fψ := f |Wψ
. Then fψ : Wψ → Xψ/G is a crepant resolution

for ψ ∈ P1\D. In particular, Wψ is a smooth Calabi-Yau threefold

for ψ ∈ P1 \ D;

(2) SingWψ consists of a unique ODP if ψ5 = 1;
(3) W∞ is a divisor of normal crossing.

Proof. See [41, Appendix B], [4, Th. 4.2.2 and Cor. 4.2.3], [16,
Sects. 2.2, 4.1.1, 4.2] for (1) and [15, p. 27] for (2). The last assertion
follows from Hironaka’s theorem. q.e.d.

While the choice of a resolution f : W → X/G as above is not

unique, there is a natural choice of f : W|P1\{∞} → (X/G)|P1\{∞} by
[14, Th. 1.2].

Definition 12.2. Set π := p ◦ f . Any family π : W → P1 satisfying
the conditions (1), (2), (3) as above is called a family of quintic mirror

threefolds. The induced family π : W/Z5 → P1/Z5 is also called a family
of quintic mirror threefolds.

Lemma 12.3. If ψ ∈ P1 \ D, then

h1,2(Wψ) = 1, h1,1(Wψ) = 101, χ(Wψ) = 200.

Proof. Since h1,1(Xψ) = 1, h1,2(Xψ) = 101, and χ(Xψ) = −200, the
result follows from [4], [16, Th. 4.1.5], [58, Th. 4.30]. q.e.d.

We refer to [15], [16], [41], [58] for more details about quintic mirror
threefolds.

12.2. The mirror map.

Definition 12.4. The mirror map is the holomorphic map from a
neighborhood of ∞ ∈ P1 to a neighborhood of 0 ∈ ∆ defined by the
following formula:

q := (5ψ)−5 exp


 5

y0(ψ)

∞∑

n=1

(5n)!

(n!)5





5n∑

j=n+1

1

j





1

(5ψ)5n


 , |ψ| ≫ 1,

where

y0(ψ) :=
∞∑

n=0

(5n)!

(n!)5(5ψ)5n
, |ψ| > 1.

The inverse of the mirror map is denoted by ψ(q).

For ψ ∈ P1 \ D, we define a holomorphic 3-form on Xψ by

Ωψ :=

(
2π

√
−1

5

)−3

5ψ
z4 dz0 ∧ dz1 ∧ dz2
∂Fψ(z)/∂z3

.
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Since Ωψ is G-invariant, Ωψ induces a holomorphic 3-form on Xψ/G
in the sense of orbifolds. We identify Ωψ with the corresponding holo-
morphic 3-form on Xψ/G. Then f∗ψΩψ is a holomorphic 3-form on Wψ.
Set

Ξψ := f∗ψΩψ ∈ H0(Wψ,KWψ
).

By Lemma 12.3, we know rkH3(Wψ,Z) = 4. There exists a symplectic
basis {A1, A2, B1, B2} of H3(Wψ,Q), ψ 6∈ D, such that Aa ∩ Bb = δan,

Aa ∩Ab = Ba ∩Bb = 0. By [15], [41, p. 245 l.13], the mirror map q(ψ)
is expressed as follows:

q = exp

(
2π

√
−1

∫
2B1−A1 Ξψ∫
A2 Ξψ

)
, y0(ψ) =

∫

A2

Ξψ.

We refer to [15], [16, Section 2.3, Section 6.3], [41], [58, Chap. 3] for
more details about the mirror map.

12.3. Conjectures of Bershadsky-Cecotti-Ooguri-Vafa.

Definition 12.5. Under the identification of the local parameters ψ5

and q via the mirror map, define a multi-valued analytic function near
∞ ∈ P1 as

F top
1,B (ψ) := log

[(
ψ

y0(ψ)

) 62
3

(1 − ψ5)−
1
6 q

dψ

dq

]

and a power series in q as

F top
1,A (q) := F top

1,B (ψ(q)).

Set

η(q) :=
∞∏

n=1

(1 − qn).

As explained in introduction, the conjectures of Bershadsky-Cecotti-
Ooguri-Vafa [6, Eqs.(16), (23), (24)] and [7, p. 373, l.34] are formulated
as follows:

Conjecture 12.6.

(A) Let ng(d) be the genus-g degree-d instanton number of a quintic
threefold in P4 (cf. [36], [65]). Then the following identity holds:

−q d

dq
F top

1,A (q) =
50

12
−

∞∑

n,d=1

n1(d)
2nd qnd

1 − qnd
−

∞∑

d=1

n0(d)
2d qd

12(1 − qd)
,

or equivalently

F top
1,A (q) = log

[
q25/12

∞∏

d=1

η(qd)n1(d)(1 − qd)n0(d)/12

]−2

+ Const.



248 H. FANG, Z. LU & K.-I. YOSHIKAWA

(B) Let ‖·‖ be the Hermitian metric on the line bundle (π∗KW/P1)⊗62⊗
(TP1)⊗3|P1\D induced from the L2-metric on π∗KW/P1 and from

the Weil-Petersson metric on TP1. Then the following identity
holds:

τBCOV(Wψ) = Const.
∣∣∣ψ− 62

3 (1 − ψ5)
1
6

∣∣∣
2
∥∥∥∥∥(Ξψ)62 ⊗

(
d

dψ

)3
∥∥∥∥∥

2
3

= Const.
∣∣∣exp

(
−F top

1,B (ψ)
)∣∣∣

2
∥∥∥∥∥

(
Ξψ
y0(ψ)

)62

⊗
(
q
d

dq

)3
∥∥∥∥∥

2
3

.

Remark 12.7.
Under Conjecture 12.6, the instanton numbers {ng(d)}g≤1,d∈N of a

quintic threefold in P4 and the BCOV invariant of the mirror quintic
threefolds satisfy the following relation:

τBCOV(Wψ) = Const.

∣∣∣∣∣q
25
12

∞∏

d=1

η(qd)n1(d)(1 − qd)
n0(d)

12

∣∣∣∣∣

4

·
∥∥∥∥∥

(
Ξψ
y0(ψ)

)62

⊗
(
q
d

dq

)3
∥∥∥∥∥

2
3

.

In the rest of this section, we prove Conjecture 12.6 (B) as an appli-
cation of Theorem 11.3. Conjecture 12.6 (A) has been proved by Zinger
[65]. Hence the above relation between τBCOV(Wψ) and {ng(d)}g≤1,d∈N

holds.

12.4. Proof of Conjecture 12.6 (B). Let π : W → P1 be a family
of quintic mirror threefolds. Let K(ψ) be the Kähler potential of the
Weil-Petersson form ΩWP defined as

K(ψ) := − log

(
√
−1

∫

Wψ

Ξψ ∧Ξψ

)
.

Define a function G(ψ) by G(ψ) = gWP( ∂
∂ψ ,

∂
∂ψ̄

), so that

ΩWP(ψ) =
√
−1G(ψ) dψ ∧ dψ̄ =

√
−1

2π

∂2K(ψ)

∂ψ∂ψ̄
dψ ∧ dψ̄.

Proposition 12.8. The following estimates hold

(12.1) K(ψ) =





log |ψ|2 +O(1) (ψ → 0)
O(1) (ψ5 → 1)
O(log log |ψ|) (ψ → ∞),

(12.2) logG(ψ) =





O(1) (ψ → 0)
O(log(− log |ψ5 − 1|)) (ψ5 → 1)
− log |ψ|2 +O(log log |ψ|) (ψ → ∞).
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In particular, R∩D∗ = ∅ for any family of quintic mirror threefolds.

Proof. See [15, p. 50 Table 2]. q.e.d.

Proposition 12.9. The family of quintic mirror threefolds has trivial

ramification divisor, i.e., R = 0 for the family π : W → P1.

Proof. By (11.2) and Proposition 12.8, if suffices to prove thatG(ψ) >
0 on P1 \ D. Since

K(ψ) = − log

(√
−1

|G|

∫

Xψ

Ωψ ∧Ωψ

)
,

ΩWP(ψ) coincides with the Weil-Petersson form for Xψ by (4.1). Thus
G(ψ) > 0 if and only if the Kodaira-Spencer map µψ : TψP1 → H1(Xψ,
ΘXψ) for p : X → P1 is non-degenerate at ψ ∈ P1 \ D. By [58, p. 53,

l.18-l.27], µψ is non-degenerate for all ψ ∈ P1 \ D. This proves the
proposition. q.e.d.

Theorem 12.10. Conjecture 12.6 (B) holds.

Proof. For a point z = (1 : z) ∈ P1, let [z] = [(1 : z)] denote the
corresponding divisor. By Proposition 12.1, we get

(12.3) div(D∗) =
∑

ζ5=1

[ζ],

which is a reduced divisor. By (12.1), we have

(12.4) div(Ξ) = [0].

Substituting (12.3), (12.4) and R = 0 into the formula for τBCOV in
Theorem 11.3 (2) and using χ(Wψ) = 200, we get

τBCOV(Wψ) = Const.

∥∥∥∥∥

∏
ζ5=1(ψ − ζ)2

ψ48+χ
Ξ48+χ
ψ ⊗

(
∂

∂ψ

)12
∥∥∥∥∥

1/6

(12.5)

= Const.

∥∥∥∥∥
(ψ5 − 1)2

ψ248
Ξ248
ψ ⊗

(
∂

∂ψ

)12
∥∥∥∥∥

1/6

= Const.

∥∥∥∥∥ψ
−62(ψ5 − 1)1/2Ξ62

ψ ⊗
(
∂

∂ψ

)3
∥∥∥∥∥

2/3

.

This proves Conjecture 12.6 (B). q.e.d.

Remark 12.11. It seems that the families of Calabi-Yau threefolds
over P1 studied in [33, Eqs. (2.1), (2.2)] satisfy Assumption (i), (ii),
(iii) of Section 11. (See [33, p. 157, last five lines].) By the explicit
formula for the Yukawa coupling [33, Eq. (4.6)], we get R∩ (P1 \D) = ∅
for these examples. If R ∩ D∗ = ∅, the conjectured formulas for the
BCOV invariants of these families [6, p. 294] follow from Theorem 11.3
(2).
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13. The BCOV invariant of FHSV threefolds

13.1. The threefolds of Ferrara–Harvey–Strominger–Vafa. A
compact connected complex surface S is an Enriques surface if it satisfies
H1(S,OS) = 0, KS 6∼= OS , and K2

S
∼= OS . An Enriques surface S is

an algebraic surface with π1(S) ∼= Z2 whose universal covering S̃ is a

K3 surface. For an Enriques surface S, let ιS : S̃ → S̃ be the non-

trivial covering transformation that generates π1(S). Then (S̃, ιS) is a
2-elementray K3 surface. (See [62, Section 8.1].)

Let H ⊂ C be the complex upper-half plane. For τ ∈ H, let Eτ denote
the elliptic curve C/Z + τZ. For an elliptic curve T = Eτ , let −1T be
the involution on T defined as −1T (z) = −z for z ∈ C/Z + τZ.

Let Z2 be a group of order 2 with generator θ. Then Z2 acts on the

spaces S̃, T , and S̃ × T by identifying θ with ιS , −1T and ιS × (−1T ),
respectively.

Definition 13.1. For an Enriques surface S and an elliptic curve T ,
define

X(S,T ) := S̃ × T/Z2.

Since ιS × (−1T ) has no fixed points, X(S,T ) is a smooth Calabi-Yau

threefold. Let p1 : X(S,T ) → S = S̃/Z2 and let p2 : X(S,T ) → P1/Z2 be
the natural projections. Then p1 is an elliptic fibration with constant

fiber T , and p2 is a K3 fibration with constant fiber S̃. After Ferrara-
Harvey-Strominger-Vafa [20], the Calabi-Yau threefold X(S,T ) is called
the FHSV threefold associated with (S, T ). We have

(13.1) χ(X(S,T )) =
1

2
χ(S̃ × T ) =

1

2
χ(S̃)χ(T ) = 0.

13.2. The moduli space of FHSV threefolds. The period of an

Enriques surface S is defined as the period of (S̃, ιS) and lies in the
quotient space Ω/Γ, where Ω is a symmetric bounded domain of type
IV of dimension 10 and where Γ is an arithmetic subgroup of Aut(Ω).
The period of S is denoted by [S] ∈ Ω/Γ. There exists a Γ-invariant
divisor D ⊂ Ω, called the discriminant locus, such that (Ω \D)/Γ is a
coarse moduli space of Enriques surfaces via the period map. We refer
to e.g., [2, Chap. 8, Sections 19-21] for more details about the moduli
space of Enriques surfaces.

In [13], Borcherds constructed an automorphic form Φ on Ω for Γ
of weight 4 with div(Φ) = D. The automorphic form Φ is called the
Borcherds Φ-function. Let BΩ be the Bergman kernel function of Ω.
The Petersson norm of the Borcherds Φ-function is the Γ-invariant C∞

function on Ω defined as

‖Φ‖2 := B4
Ω|Φ|2.
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By the Γ-invariance of ‖Φ‖2, it descends to a function on Ω/Γ, denoted
again by ‖Φ‖2. Then ‖Φ([S])‖2 is the value of the Petersson norm of
the Borcherds Φ-function at the period point of an Enriques surface S.
We refer to [13], [62] for more details about the Borcherds Φ-function.

For an elliptic curve T ∼= Eτ , the period of T is defined as the SL2(Z)-
orbit of τ ∈ H and is denoted by [T ] ∈ H/SL2(Z). The quotient space
H/SL2(Z) is a coarse moduli space of elliptic curves via the period map.
Let

∆(τ) := q
∞∏

n=1

(1 − qn)24, q := exp(2π
√
−1τ)

be the Jacobi ∆-function, which is a unique cusp form of weight 12.
The Petersson norm of the Jacobi ∆-function is a SL2(Z)-invariant C∞

function on H defined as

‖∆(τ)‖2 := (det Im τ)12|∆(τ)|2.
By the SL2(Z)–invariance of ‖∆ ‖2, it descends to a function on
H/SL2(Z). Then ‖∆([T ])‖2 is the value of the Petersson norm of the
Jacobi ∆-function at the period point of an elliptic curve T .

Theorem 13.2. The analytic space [(Ω \ D)/Γ] × [H/SL2(Z)] is a

coarse moduli space of FHSV threefolds.

Proof. Since (Ω \D)/Γ is a coarse moduli space of Enriques surfaces
[2, Chap. 8, Ths. 21.2 and 21.4] and since H/SL2(Z) is a coarse moduli
space of elliptic curves via the elliptic j-function, it suffices to prove
that X(S,T )

∼= X(S′,T ′) if and only if S ∼= S′ and T ∼= T ′. This statement
follows from [5, Section 3]. q.e.d.

13.3. A Conjecture of Harvey-Moore. Following [27, Section V]
and [62, Section 8.1], we interpret a result of the third-named author
[62, Th. 8.3] in terms of the BCOV torsion of FHSV threefolds. The
following formula was conjectured by Harvey-Moore [27, Eq. (4.9)].

Theorem 13.3. There exists a constant C such that for every En-

riques surface S and for every elliptic curve T ,

τBCOV(X(S,T )) = C ‖Φ([S])‖2 ‖∆([T ])‖2.

For the proof of Theorem 13.3, we need some intermediary results.

Let H2
+(S̃,Z) be the invariant subspace of H2(S̃,Z) with respect to the

ιS-action. Let H ∈ H2
+(S̃,Z) be an ιS-invariant Kähler class on S̃, and

let v ∈ H2(T,Z) be the generator with
∫
T v = 1. Let π : S̃×T → X(S,T )

be the natural projection. We define κ ∈ H2(X(S,T ),Z) to be the Kähler
class on X(S,T ) such that π∗κ = H + v. By [60], there exists a unique
Ricci-flat Kähler form γ = γκ on X(S,T ) with Kähler class κ. By [60]
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again, there exist a unique Ricci-flat Kähler form γH on S̃ and a unique
Ricci-flat Kähler form γT on T such that

π∗γκ = γH + γT , [γH ] = H, [γT ] = v.

Let 〈·, ·〉 denote the cup-product pairing on H2(S̃,Z). Since
∫
T v = 1

and 〈a, b〉 =
∫

eS
a ∧ b for a, b ∈ H2(S̃,Z), we get

(13.2) Vol(X(S,T ), γ) =
1

2

∫

eS×T

(H + v)3

(2π)33!
=

1

25π3
〈H,H〉.

By the Ricci-flatness of γ, Remark 4.2, and (13.1), we get

(13.3) A(X(S,T ), γ) = Vol(X(S,T ), γ)
χ(X(S,T ))/12 = 1.

Lemma 13.4. The following identity holds:

VolL2(H2(X(S,T ),Z), κ) =
〈H,H〉
235π33

.

Proof. Let H2
+(S̃ × T,Z) be the invariant subspace of H2(S̃ × T,Z)

with respect to the ιS × (−1T )-action. Similarly, let H2
+(T,Z) be the

invariant subspace of H2(T,Z) with respect to the −1T -action. We have

π∗H2(X(S,T ),Z)fr = H2
+(S̃ × T,Z)(13.4)

= H2
+(S̃,Z) ⊕H2

+(T,Z) = H2
+(S̃,Z) ⊕ Zv.

By [2, Chap. 8, Lemma 15.1 (iii)], there exists an integral basis {e1, . . . ,

e10} of H2
+(S̃,Z) such that

(13.5) det(〈ei, ej〉)1≤i,j≤10 = −210.

By (13.4), we fix the basis {ē1, . . . , ē10, v̄} of H2(X(S,T ),Z)fr such that

π∗(ēi) = ei (1 ≤ i ≤ 10), π∗(v̄) = v.

Recall that the cubic form c = cX(S,T )
on H2(X(S,T ),Z)fr was defined in

Section 4.4. Then we get

c(ēi, v̄, κ) =
1

2(2π)3

∫

eS×T
ei ∧ v ∧ π∗κ

=
1

2(2π)3

∫

eS×T
ei ∧ v ∧ (H + v) =

1

2(2π)3
〈ei, H〉,

c(ēi, ēj , κ) =
1

2(2π)3

∫

eS×T
ei ∧ ej ∧ π∗κ

=
1

2(2π)3

∫

eS×T
ei ∧ ej ∧ (H + v) =

1

2(2π)3
〈ei, ej〉,
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c(ēi, κ, κ) =
1

2(2π)3

∫

eS×T
ei ∧ (π∗κ)2

=
1

2(2π)3

∫

eS×T
ei ∧ (H + v)2 =

1

(2π)3
〈ei, H〉,

c(v̄, v̄, κ) =
1

2(2π)3

∫

eS×T
v ∧ v ∧ π∗κ

=
1

2(2π)3

∫

eS×T
v ∧ v ∧ (H + v) = 0,

c(v̄, κ, κ) =
1

2(2π)3

∫

eS×T
v ∧ (π∗κ)2

=
1

2(2π)3

∫

eS×T
v ∧ (H + v)2 =

1

2(2π)3
〈H,H〉,

c(κ, κ, κ) =
1

2(2π)3

∫

eS×T
(π∗κ)3

=
1

2(2π)3

∫

eS×T
(H + v)3 =

3

2(2π)3
〈H,H〉.

By Lemma 4.12 and these formulae, we get

(2π)3〈ēi, ēj〉L2,κ =
3

2

c(ēi, κ, κ)c(ēj , κ, κ)

c(κ, κ, κ)
− c(ēi, ēj , κ)

=
〈ei, H〉 〈ej , H〉

〈H,H〉 − 1

2
〈ei, ej〉,

(2π)3〈ēi, v̄〉L2,κ =
3

2

c(ēi, κ, κ)c(v̄, κ, κ)

c(κ, κ, κ)
− c(ēi, v̄, κ)

=
1

2

〈ei, H〉 〈H,H〉
〈H,H〉 − 1

2
〈ei, H〉 = 0,

(2π)3〈v̄, v̄〉L2,κ =
3

2

c(v̄, κ, κ)c(v̄, κ, κ)

c(κ, κ, κ)
− c(v̄, v̄, κ)

=
1

4

〈H,H〉 〈H,H〉
〈H,H〉 − 0 =

1

4
〈H,H〉,

which yields that
(13.6)

VolL2(H2(X(S,T ),Z), κ)

= det

(
〈ēi, ēj〉L2,κ 〈ēi, v̄〉L2,κ

〈ēi, v̄〉L2,κ 〈v̄, v̄〉L2,κ

)

= (2π)−332−10 〈H,H〉
4

det

(
〈ei, ej〉 − 2

〈ei, H〉 〈ej , H〉
〈H,H〉

)

1≤i,j≤10

.
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Define a 10 × 10 symmetric matrix A by A = (〈ei, ej〉). Write H =∑10
i=1 hi ei and define a column vector h ∈ Z10 by h = (hi). We set

B := A− 2
(Ah) · (thA)

thAh
.

Since A is invertible and since thAh = 〈H,H〉 > 0, we get the decom-
position R10 = Rh ⊕ (Ah)⊥. Since B h = −Ah and B x = Ax for
x ∈ (Ah)⊥, we get detB = −detA = 210 by (13.5), which, together
with (13.6), yields that

VolL2(H2(X(S,T ),Z), κ) = (2π)−332−10 〈H,H〉
4

detB =
〈H,H〉
235π33

.

This completes the proof of Lemma 13.4. q.e.d.

Let �H (resp. �T ) be the ∂̄-Laplacian of (S̃, γH) (resp. (T, γT ))

acting on C∞(S̃) (resp. C∞(T )). We define

A±(S̃) := {f ∈ C∞(S̃); ι∗Sf = ±f},
A±(T ) := {f ∈ C∞(T ); (−1T )∗f = ±f}.

Since ιS (resp. −1T ) preserves γH (resp. γT ), �H commutes with the ιS-

action on C∞(S̃) and �T commutes with the (−1)T -action on C∞(T ).

Hence �H preserves A±(S̃), and �T preserves A±(T ). We set

�
±
H := �H |A±(eS)

, �
±
T := �T |A±(T ).

Let ζ±H(s) (resp. ζ±T (s)) be the spectral zeta function of �
±
H (resp.

�
±
T ). Then ζ±H(s) and ζ±T (s) converge absolutely for Re s ≫ 0, they

extend meromorphically to the complex plane C, and they are holomor-
phic at s = 0.

Lemma 13.5. The following identity holds

log TBCOV(X(S,T ), γ) = −24 (ζ+
T )′(0) − 8

{
(ζ+
H)′(0) − (ζ−H)′(0)

}
.

Proof. See [27, Section V], in particular [27, Eqs. (5.3), (5.9), (5.10)].
q.e.d.

Remark 13.6. The signs in [27, Eqs. (5.10), (5.11)] are not correct.
In [27, Eqs. (5.10), (5.11)], the formula log det′ �±

H = (ζ±H)′(0) was used,

while the correct formula is log det′ �±
H = −(ζ±H)′(0).

Lemma 13.7. There exists a constant C0 such that for every En-

riques surface S and for every Kähler class H on S̃, the following iden-

tity holds

8
{
(ζ+
H)′(0) − (ζ−H)′(0)

}
+ 4 log〈H,H〉 = − log ‖Φ([S])‖2 + C0.

Proof. The result follows from [62, Eq. (8.3)] and [64, Lemma 4.3,
Eq. (4.4)]. q.e.d.
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Lemma 13.8. There exists a constant C1 such that for every elliptic

curve T ,

24 (ζ+
T )′(0) = − log ‖∆([T ])‖2 + C1.

Proof. Since ζ+
T (s) = ζ−T (s) by [48, p. 166, l.8 and l.10] and since

ζ+
T (s)+ζ−T (s) is the spectral zeta function of �T , the result follows from

the Kronecker limit formula. See e.g., [48, Th. 4.1] or [10, Th. 13.1].
q.e.d.

13.4. Proof of Theorem 13.3. By Lemmas 13.5, 13.7, 13.8, we get
(13.7)
log TBCOV(X(S,T ), γ) = log(‖Φ([S])‖2 ‖∆([T ])‖2)+4 log〈H,H〉−C0−C1.

By (13.2), (13.3), (13.7) and Lemma 13.4, we get

τBCOV(X(S,T ), γ)

= Vol(X(S,T ),
γ

2π
)−3 VolL2(H2(X(S,T ),Z), [γ])−1

· A(X(S,T ), γ) TBCOV(X(S,T ), γ)

=

(〈H,H〉
25π3

)−3

·
(〈H,H〉

235π33

)−1

· 1 · ‖Φ([S])‖2 ‖∆([T ])‖2〈H,H〉4
eC0+C1

= C ‖Φ([S])‖2 ‖∆([T ])‖2,

where we set C = 250π42 e−C0−C1 . This completes the proof of Theorem
13.3. q.e.d.
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sur les fibres, Invent. Math. 68 (1982) 129–174, MR 0666639, Zbl 0508.32003.

[4] V.V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersur-

faces in toric varieties, Jour. Algebr. Geom. 3 (1994) 493–535, MR 1269718,
Zbl 0829.14023.

[5] A. Beauville, Some remarks on Kähler manifolds with c1 = 0, Classification of
algebraic and analytic manifolds (ed. K. Ueno), Progress in Math. 39 (1983)
1–26, MR 0728605, Zbl 0537.53057.

[6] M. Bershadsky, S. Cecotti, H. Ooguri, & C. Vafa, Holomorphic anomalies in

topological field theories, Nuclear Phys. B 405 (1993) 279–304, MR 1240687,
Zbl 1039.81550.

[7] , Kodaira-Spencer theory of gravity and exact results for quantum

string amplitudes, Commun. Math. Phys. 165 (1994) 311–427, MR 1301851,
Zbl 0815.53082.



256 H. FANG, Z. LU & K.-I. YOSHIKAWA

[8] J.-M. Bismut, Equivariant immersions and Quillen metrics, Jour. Differential
Geom. 41 (1995) 53–157, MR 1316553, Zbl 0826.32024.

[9] , Quillen metrics and singular fibers in arbitrary relative dimension, Jour.
Algebr. Geom. 6 (1997) 19–149, MR 1486991, Zbl 0871.32003.

[10] J.-M. Bismut & J.-B. Bost, Fibrés déterminants, métriques de Quillen et

dégénérescence des courbes, Acta Math. 165 (1990) 1–103, MR 1064578,
Zbl 0709.32019.
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pacts, Ann. Sci. Éc. Norm. Sup. 4 (1974) 569–602, MR 0382729, Zbl 0313.32036.

[18] H. Fang & Z. Lu, Generalized Hodge metrics and BCOV torsion on Calabi-Yau

moduli, Jour. reine angew. Math. 588 (2005) 49–69, MR 2196728.

[19] H. Fang, Z. Lu, & K.-I. Yoshikawa, in preparation.

[20] S. Ferrara, J. Harvey, A. Strominger, & C. Vafa, Second-quantized mirror sym-

metry, Phys. Lett. B 361 (1995) 59–65, MR 1362446, Zbl 0899.32012.
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