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MINIMAL LAGRANGIAN DIFFEOMORPHISMS

BETWEEN DOMAINS IN THE HYPERBOLIC PLANE

Simon Brendle

Abstract

Let N be a complete, simply-connected surface of constant cur-
vature κ ≤ 0. Moreover, suppose that Ω and Ω̃ are strictly convex
domains in N with the same area. We show that there exists
an area-preserving diffeomorphism from Ω to Ω̃ whose graph is a
minimal submanifold of N ×N .

1. Introduction

This paper is concerned with the boundary regularity of minimal
Lagrangian diffeomorphisms. The notion of a minimal Lagrangian dif-
feomorphism was introduced by R. Schoen. In [7], Schoen proved an
existence and uniqueness result for minimal Lagrangian diffeomorphisms
between hyperbolic surfaces:

Theorem 1.1 (R. Schoen [7]). Let N be a compact surface of genus

greater than 1, and let g, g̃ be a pair of hyperbolic metrics on N . Then

there exists a unique diffeomorphism f : N → N with the following

properties:

(i) f is area-preserving.

(ii) f is homotopic to the identity.

(iii) The graph of f is a minimal submanifold of (N, g) × (N, g̃).

Theorem 1.1 was subsequently generalized by Y.I. Lee [5]. M.T. Wang
[10] gave an alternative proof of the existence part of Theorem 1.1 using
mean curvature flow.

In this paper, we study an analogous problem for surfaces with bound-
ary. Throughout this paper, we will assume that N is a complete,
simply-connected surface of constant curvature κ ≤ 0. Suppose that Ω
and Ω̃ are domains in N with smooth boundary, and let f be a diffeo-
morphism from Ω to Ω̃. We will say that f is a minimal Lagrangian
diffeomorphism if the following conditions are satisfied:

(i) f is area-preserving.
(ii) f is orientation-preserving.
(iii) The graph of f is a minimal submanifold of N ×N .
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The case κ = 0 is somewhat special. In this case, the existence of a min-
imal Lagrangian diffeomorphism from Ω to Ω̃ is closely related to the
solvability of the second boundary value problem for the Monge-Ampère
equation (cf. [12]). To describe the connection between the two prob-

lems, we consider two domains Ω, Ω̃ ⊂ R
2 and a minimal Lagrangian

diffeomorphism f : Ω → Ω̃. By definition, the graph of f is a minimal
Lagrangian submanifold of R

2 × R
2. Consequently, the graph of f has

constant Lagrangian angle. This implies that f is the composition of a
gradient mapping x 7→ ∇u(x) and a rotation. Since f is area-preserving
and orientation-preserving, the function u : Ω → R is a solution of the
Monge-Ampère equation detD2u(x) = 1.

P. Delanoë [3] has obtained an existence result for the second bound-
ary value problem for the Monge-Ampère equation in dimension 2. This
result was extended to higher dimensions by L. Caffarelli [2] and J. Ur-
bas [8]. The following result is an immediate consequence of Delanoë’s
existence theorem:

Theorem 1.2 (P. Delanoë [3]). Let Ω and Ω̃ be strictly convex do-

mains in R
2 with smooth boundary. Assume that Ω and Ω̃ have the same

area. Then there exists a minimal Lagrangian diffeomorphism from Ω
to Ω̃.

We point out that the convexity of both domains Ω, Ω̃ is essential.
J. Urbas [9] has recently constructed an example of a non-convex domain
of area π that does not admit a minimal Lagrangian diffeomorphism to
the unit disk.

We now return to the general case (κ ≤ 0). Note that the link be-
tween minimal Lagrangian diffeomorphisms and solutions of the Monge-
Ampère equation breaks down in this setting. Nonetheless, we have the
following existence and uniqueness result:

Theorem 1.3. Let Ω and Ω̃ be strictly convex domains in N with

smooth boundary. Assume that Ω and Ω̃ have the same area. Given

any point p ∈ ∂Ω and any point q ∈ ∂Ω̃, there exists a unique minimal

Lagrangian diffeomorphism from Ω to Ω̃ that maps p to q.

In order to prove Theorem 1.3, we deform Ω and Ω̃ to the flat unit
disk B

2 ⊂ R
2, and apply the continuity method. This requires a-priori

estimates for minimal Lagrangian diffeomorphisms from Ω to Ω̃.

Theorem 1.4. Let Ω and Ω̃ be strictly convex domains in N with

smooth boundary. Suppose that f : Ω → Ω̃ is a minimal Lagrangian

diffeomorphism. Then f is uniformly bounded in Cm; more precisely,

we have ‖f‖Cm ≤ C, where C = C(m,Ω, Ω̃) is a constant that depends

only on m and the domains Ω and Ω̃.
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The proof of Theorem 1.4 will occupy Sections 2–6. In Section 2,
we construct boundary defining functions for Ω and Ω̃ which are uni-
formly convex. Moreover, we establish some basic estimates involving
the boundary defining functions. In Section 3, we introduce tools from
complex geometry. In Section 4, we use these ideas to estimate the
singular values of Dfp for all boundary points p ∈ ∂Ω. In Section 5,
we employ an argument due to M.T. Wang to obtain uniform bounds
for the singular values of Dfp for all p ∈ Ω. In Section 6, we show
that f is bounded in C1,α. In Section 7, we show that the linearized
operator is invertible. This precludes bifurcations. Finally, in Section
8, we show that every minimal Lagrangian diffeomorphism from the flat
unit disk to itself is a rotation. This follows from a uniqueness result,
due to P. Delanoë [3], for the second boundary value problem for the
Monge-Ampère equation.

The author is grateful to Professor Richard Schoen and Professor
Leon Simon for discussions. This project was supported by the Alfred
P. Sloan Foundation and by the National Science Foundation under
grant DMS-0605223.

2. The boundary defining functions

As above, we assume that Ω and Ω̃ are strictly convex domains in N
with smooth boundary. We begin by constructing a boundary defining
function for the domain Ω which is uniformly convex:

Proposition 2.1. There exists a smooth function h : Ω → R with

the following properties:

• h is uniformly convex.

• For each point p ∈ ∂Ω, we have h(p) = 0 and |∇h(p)| = 1.
• If s is sufficiently close to infΩ h, then the sub-level set {p ∈ Ω :
h(p) ≤ s} is a geodesic disk

Similarly, we can find a smooth function h̃ : Ω̃ → R such that:

• h̃ is uniformly convex.

• For each point q ∈ ∂Ω̃, we have h̃(q) = 0 and |∇h̃q| = 1.

• If s is sufficiently close to infΩ̃ h̃, then the sub-level set {q ∈ Ω̃ :

h̃(q) ≤ s} is a geodesic disk.

Proof. We will only prove the assertion for the domain Ω. Let p0 be
an arbitrary point in the interior of Ω. We define a function h1 by

h1(p) =
d(p, ∂Ω)2

4 diam(Ω)
− d(p, ∂Ω).

Since Ω is strictly convex, there exists a positive real number ε such
that h1 is smooth and uniformly convex for d(p, ∂Ω) < ε. We assume
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that ε is chosen so that d(p0, ∂Ω) > ε. We next define a function h2 by

h2(p) =
ε d(p0, p)

2

4 diam(Ω)2
− ε

2
.

The function h2 is smooth and uniformly convex by the Hessian compari-
son theorem. For each point p ∈ ∂Ω, we have h1(p) = 0 and h2(p) ≤ − ε

4 .

Moreover, for d(p, ∂Ω) ≥ ε, we have h1(p) ≤ −3ε
4 and h2(p) ≥ − ε

2 .

We now define

h(p) =
h1(p) + h2(p)

2
+ Φ

(

h1(p) − h2(p)

2

)

,

where Φ : R → R is a smooth function satisfying Φ′′(s) ≥ 0 for all
s ∈ R and Φ(s) = |s| for |s| ≥ ε

16 . It is easy to see that h is smooth
and uniformly convex for d(p, ∂Ω) < ε. Since h agrees with h2 for
d(p, ∂Ω) ≥ ε, we conclude that h is smooth and uniformly convex in all
of Ω. Moreover, h agrees with h1 in a neighborhood of ∂Ω. Thus, we
conclude that h(p) = 0 and |∇hp| = 1 for all p ∈ ∂Ω.

It remains to verify the last statement. It is easy to see that h(p) ≥
h2(p) ≥ − ε

2 for all p ∈ Ω. Since h(p0) = h2(p0) = − ε
2 , it follows that

infΩ h = − ε
2 . Moreover, if s is a real number satisfying

−ε
2
< s <

ε (d(p0, ∂Ω) − ε)2

4 diam(Ω)2
− ε

2
,

then the set {p ∈ Ω : h(p) ≤ s} is a geodesic disk. This completes the
proof of Proposition 2.1.

Since h and h̃ are uniformly convex, we can find a positive constant
θ such that

θ |w|2 ≤ (Hessh)p(w,w) ≤ 1

θ
|w|2

for all p ∈ Ω and w ∈ TpN and

θ |w̃|2 ≤ (Hess h̃)q(w̃, w̃) ≤ 1

θ
|w̃|2

for all q ∈ Ω̃ and w̃ ∈ TqN .

Suppose now that f : Ω → Ω̃ is a minimal Lagrangian diffeomor-
phism. Let

Σ = {(p, f(p)) : p ∈ Ω}
be the graph of f . By definition, Σ is a minimal submanifold of the
product manifold M = N ×N . We define two functions H, H̃ : Σ → R

by H(p, f(p)) = h(p) and H̃(p, f(p)) = h̃(f(p)).

Proposition 2.2. The function H satisfies θ ≤ ∆ΣH ≤ 1
θ
. Simi-

larly, the function H̃ satisfies θ ≤ ∆ΣH̃ ≤ 1
θ
.
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Proof. Fix a point (p, f(p)) ∈ Σ. We can find an orthonormal basis
{v1, v2} of TpN such that

[

Df∗p Dfp

]

vk = λ2
k vk, where λ1, λ2 are posi-

tive real numbers satisfying λ1λ2 = 1. Since Σ is a minimal submanifold
of M , the Laplacian of H at (p, f(p)) is given by

∆ΣH = tr
[

(I +Df∗p Dfp)
−1 (Hessh)p

]

=
2

∑

k=1

1

1 + λ2
k

(Hessh)p(vk, vk).

By assumption, we have θ ≤ (Hessh)p(vk, vk) ≤ 1
θ

for k = 1, 2. More-
over, the relation λ1λ2 = 1 implies

1

1 + λ2
1

+
1

1 + λ2
2

= 1.

Thus, we conclude that θ ≤ ∆ΣH ≤ 1
θ
. The inequality θ ≤ ∆ΣH̃ ≤ 1

θ

follows from an analogous argument.

Proposition 2.3. We have −θ2 h(p) ≤ −h̃(f(p)) ≤ − 1
θ2 h(p) for all

p ∈ Ω.

Proof. It follows from Proposition 2.2 that the functions θ2H − H̃

and θ2 H̃ − H are superharmonic. Since both H and H̃ vanish along
the boundary of Σ, we conclude that −θ2H ≤ −H̃ ≤ − 1

θ2 H by the
maximum principle. From this, the assertion follows.

Corollary 2.4. We have θ2 ≤ 〈Dfp(∇hp),∇h̃f(p)〉 ≤ 1
θ2 for all p ∈

∂Ω.

3. Tools from complex geometry

As in the previous section, we assume that f : Ω → Ω̃ is a minimal
Lagrangian diffeomorphism. Fix a complex structure J on N . We define
a complex structure on the product M = N × N by J(p,q)(w, w̃) =
(Jpw,−Jqw̃) for all vectors w ∈ TpN and w̃ ∈ TqN . Since f is area-
preserving and orientation-preserving, the graph Σ = {(p, f(p)) : p ∈ Ω}
is a Lagrangian submanifold of M .

For each point p ∈ Ω, we define a linear isometry Qp : TpN → Tf(p)N

by

Qp = Dfp

[

Df∗p Dfp

]− 1

2 .

It is easy to see that Qp : TpN → Tf(p)N is orientation-preserving. This
implies Jf(p)Qp = Qp Jp for all p ∈ Ω.
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For each point p ∈ Ω, we define a bilinear form σ : T(p,f(p))M ×
T(p,f(p))M → C by

σ
(

(w1, w̃1), (w2, w̃2)
)

= i 〈Qp(w1), w̃2〉 + 〈Qp(Jpw1), w̃2〉
− i 〈Qp(w2), w̃1〉 − 〈Qp(Jpw2), w̃1〉

for w1, w2 ∈ TpN and w̃1, w̃2 ∈ Tf(p)N .

Lemma 3.1. We have σ(W2,W1) = −σ(W1,W2) and σ(JW1,W2) =
i σ(W1,W2) for all W1,W2 ∈ T(p,f(p))M .

Proof. The first property is trivial. To prove the second property, we
observe that

σ
(

(Jpw1,−Jf(p)w̃1), (w2, w̃2)
)

= i 〈Qp(Jpw1), w̃2〉 − 〈Qp(w1), w̃2〉

+ i 〈Qp(w2), Jf(p)w̃1〉 + 〈Qp(Jpw2), Jf(p)w̃1〉

= i 〈Qp(Jpw1), w̃2〉 − 〈Qp(w1), w̃2〉

− i 〈Qp(Jpw2), w̃1〉 + 〈Qp(w2), w̃1〉

= i σ
(

(w1, w̃1), (w2, w̃2)
)

for all vectors w1, w2 ∈ TpN and w̃1, w̃2 ∈ Tf(p)N .

Lemma 3.2. If {e1, e2} is an orthonormal basis of T(p,f(p))Σ, then

σ(e1, e2) = ±1.

Proof. Since σ is anti-symmetric, it is enough to prove the assertion
for one particular orthonormal basis of T(p,f(p))Σ. To that end, we

choose an orthonormal basis {v1, v2} of TpN such that
[

Df∗p Dfp

]

vk =

λ2
k vk, where λ1, λ2 are positive real numbers satisfying λ1λ2 = 1. Since
Qp is an isometry, we have

〈Qp(Jpv1), Qp(v2)〉 = −〈Qp(Jpv2), Qp(v1)〉 = ±1

and

〈Qp(v1), Qp(v2)〉 = 0.

Moreover, the relation
[

Df∗p Dfp

]

vk = λ2
k vk implies

Dfp(vk) = λk Qp(vk).

We now define

ek =
1

√

1 + λ2
k

(vk, Dfp(vk)) =
1

√

1 + λ2
k

(vk, λk Qp(vk))



MINIMAL LAGRANGIAN DIFFEOMORPHISMS 7

for k = 1, 2. Clearly, {e1, e2} is an orthonormal basis of T(p,f(p))Σ. By
definition of σ, we have

σ(e1, e2)

=
1

√

1 + λ2
1

1
√

1 + λ2
2

[

iλ2 〈Qp(v1), Qp(v2)〉 + λ2 〈Qp(Jpv1), Qp(v2)〉

− iλ1 〈Qp(v2), Qp(v1)〉 − λ1 〈Qp(Jpv2), Qp(v1)〉
]

= ± 1
√

1 + λ2
1

1
√

1 + λ2
2

(λ1 + λ2)

= ±1.

This proves the assertion.

We next show that σ is parallel with respect to the Levi-Civita con-
nection on M . To fix notation, we denote by TM |Σ the restriction of
the tangent bundle TM to Σ.

Proposition 3.3. Let W1,W2 be sections of the vector bundle TM |Σ.

We define a function ψ : Σ → C by ψ = σ(W1,W2). Then

V (ψ) = σ(∇M
V W1,W2) + σ(W1,∇M

V W2)

for all V ∈ TΣ.

Proof. Fix a tangent vector field V along Σ, and let

τ(W1,W2) := σ(∇M
V W1,W2) + σ(W1,∇M

V W2) − V (σ(W1,W2)).

It is easy to see that τ(W1,W2) is a tensor. It follows from Lemma 3.1
that τ(W2,W1) = −τ(W1,W2) and τ(JW1,W2) = i τ(W1,W2). Hence,
it suffices to show that τ(e1, e2) = 0, where {e1, e2} is a local orthonor-
mal frame on Σ. By Lemma 3.2, we have σ(e1, e2) = ±1. This implies
V (σ(e1, e2)) = 0. Moreover, we have σ(∇Σ

V e1, e2) = 0 since ∇Σ
V e1 is a

multiple of e2. Similarly, σ(e1,∇Σ
V e2) = 0 since ∇Σ

V e2 is a multiple of
e1. Putting these facts together, we obtain

τ(e1, e2) = σ(∇M
V e1 −∇Σ

V e1, e2) + σ(e1,∇M
V e2 −∇Σ

V e2)

= σ(II(e1, V ), e2) + σ(e1, II(e2, V ))

= σ(Je1, e2) 〈II(e1, V ), Je1〉 + σ(e1, Je1) 〈II(e2, V ), Je1〉
+ σ(Je2, e2) 〈II(e1, V ), Je2〉 + σ(e1, Je2) 〈II(e2, V ), Je2〉

= i σ(e1, e2) (〈II(e1, V ), Je1〉 + 〈II(e2, V ), Je2〉)
= i σ(e1, e2) (〈II(e1, e1), JV 〉 + 〈II(e2, e2), JV 〉),

where II denotes the second fundamental form of Σ. Since

II(e1, e1) + II(e2, e2) = 0,

we conclude that τ(e1, e2) = 0. This completes the proof of Proposition
3.3.
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Given a smooth vector field W on M , we denote by

∇M,2
V1,V2

W = ∇M
V1
∇M

V2
W −∇M

∇M
V1

V2
W

the second order covariant derivative of a vector field W with respect
to the Levi-Civita connection on M .

We next compute the Hessian of a function of the form ψ=σ(W1,W2),
where W1,W2 are smooth vector fields on M .

Proposition 3.4. Let W1,W2 be smooth vector fields on M . We

define a function ψ : Σ → C by ψ = σ(W1,W2). Then

(HessΣ ψ)(V1, V2) = σ(∇M,2
V1,V2

W1,W2) + σ(W1,∇M,2
V1,V2

W2)

+ σ(∇M
V1
W1,∇M

V2
W2) + σ(∇M

V2
W1,∇M

V1
W2)

+ σ(∇M
II(V1,V2)W1,W2) + σ(W1,∇M

II(V1,V2)W2)

for all V1, V2 ∈ TΣ.

Proof. Suppose that V1, V2 are tangent vector fields along Σ. It fol-
lows from the previous proposition that

V2(ψ) = σ(∇M
V2
W1,W2) + σ(W1,∇M

V2
W2).

This implies

V1(V2(ψ)) = σ(∇M
V1
∇M

V2
W1,W2) + σ(W1,∇M

V1
∇M

V2
W2)

+ σ(∇M
V1
W1,∇M

V2
W2) + σ(∇M

V2
W1,∇M

V1
W2).

Thus, we conclude that

(HessΣ ψ)(V1, V2) = V1(V2(ψ)) − (∇Σ
V1
V2)(ψ)

= σ(∇M
V1
∇M

V2
W1,W2) + σ(W1,∇M

V1
∇M

V2
W2)

+ σ(∇M
V1
W1,∇M

V2
W2) + σ(∇M

V2
W1,∇M

V1
W2)

− σ(∇M
∇Σ

V1
V2
W1,W2) − σ(W1,∇M

∇Σ

V1
V2
W2).

Using the identity ∇M
V1
V2 −∇Σ

V1
V2 = II(V1, V2), we obtain

(HessΣ ψ)(V1, V2) = σ(∇M
V1
∇M

V2
W1,W2) + σ(W1,∇M

V1
∇M

V2
W2)

+ σ(∇M
V1
W1,∇M

V2
W2) + σ(∇M

V2
W1,∇M

V1
W2)

− σ(∇M
∇M

V1
V2
W1,W2) − σ(W1,∇M

∇M
V1

V2
W2)

+ σ(∇M
II(V1,V2)W1,W2) + σ(W1,∇M

II(V1,V2)W2).

From this, the assertion follows.
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Corollary 3.5. Let W1,W2 be smooth vector fields on M . As above,

we define a function ψ : Σ → C by ψ = σ(W1,W2). Then

∆Σψ =
2

∑

k=1

σ(∇M,2
ek,ek

W1,W2) +
2

∑

k=1

σ(W1,∇M,2
ek,ek

W2)

+ 2
2

∑

k=1

σ(∇M
ek
W1,∇M

ek
W2).

Proof. This follows immediately from Proposition 3.4 and the relation
∑2

k=1 II(ek, ek) = 0.

4. The boundary gradient estimate

We define a vector field ξ on Ω by ξ = ∇h; similarly, we define a
vector field ξ̃ on Ω̃ by ξ̃ = ∇h̃. We next define a function ϕ : Σ → R by

ϕ(p, f(p)) = 〈Qp(ξp), ξ̃f(p)〉
for all p ∈ Ω.

Proposition 4.1. The gradient of the function ϕ : Σ → R is given

by
〈

∇Σϕ(p,f(p)), (v,Dfp(v))
〉

= 〈Qp(∇vξ), ξ̃f(p)〉
+ 〈Qp(ξp),∇Dfp(v)ξ̃〉

for all p ∈ Ω and v ∈ TpN . Moreover, there exists a constant C1, de-

pending only on h and h̃, such that |∆Σϕ| ≤ C1 at each point (p, f(p)) ∈
Σ.

Proof. We define two vector fields W1 and W2 on Ω × Ω̃ ⊂M by

(W1)(p,q) = (ξp, 0) ∈ TpN × TqN

and
(W2)(p,q) = (0, ξ̃q) ∈ TpN × TqN

for all points (p, q) ∈ Ω × Ω̃. As in the previous section, we define a
function ψ : Σ → C by ψ = σ(W1,W2). This implies

ψ(p, f(p)) = i 〈Qp(ξp), ξ̃f(p)〉 + 〈Qp(Jpξp), ξ̃f(p)〉
for all p ∈ Ω. Hence, the function ϕ is the imaginary part of ψ. Using
Proposition 3.3, we obtain
〈

∇Σψ(p,f(p)), (v,Dfp(v))
〉

= i 〈Qp(∇vξ), ξ̃f(p)〉 + 〈Qp(Jp∇vξ), ξ̃f(p)〉
+ i 〈Qp(ξp),∇Dfp(v)ξ̃〉 + 〈Qp(Jpξp),∇Dfp(v)ξ̃〉

for all p ∈ Ω and v ∈ TpN . Since ϕ = Im(ψ), the first statement
follows. Moreover, it follows from Corollary 3.5 that |∆Σψ| ≤ C1 for
some constant C1. Since ϕ = Im(ψ), we conclude that |∆Σϕ| ≤ C1.
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Proposition 4.2. We have ϕ(p, f(p)) > 0 for all p ∈ ∂Ω.

Proof. Fix a point p ∈ ∂Ω. By definition of Qp, we have
〈

Qp(Df
∗
p (ξ̃f(p))), ξ̃f(p)

〉

=
〈

Df∗p (ξ̃f(p)), Q
∗
p(ξ̃f(p))

〉

=
〈

[Df∗p Dfp]
1

2 Q∗
p(ξ̃f(p)), Q

∗
p(ξ̃f(p))

〉

> 0.

On the other hand, the vector Df∗p (ξ̃f(p)) is a positive multiple of ξp.

Thus, we conclude that 〈Qp(ξp), ξ̃f(p)〉 > 0, as claimed.

Proposition 4.3. We have ϕ(p, f(p)) ≥ θ2

C1
for all p ∈ ∂Ω.

Proof. It follows from Proposition 4.1 that the function ϕ − C1

θ
H is

superharmonic. Hence, there exists a point p0 ∈ ∂Ω such that

inf
p∈Ω

(

ϕ(p, f(p)) − C1

θ
H(p, f(p))

)

= inf
p∈∂Ω

ϕ(p, f(p)) = ϕ(p0, f(p0)).

By the Hopf boundary point lemma, there exists a real number µ ≥ 0
such that

∇Σϕ =
(C1

θ
− µ

)

∇ΣH

at (p0, f(p0)). By Proposition 4.1, we have
〈

∇Σϕ, (v,Dfp(v))
〉

= 〈Qp(∇vξ), ξ̃f(p)〉
+ 〈Qp(ξp),∇Dfp(v)ξ̃〉

= (Hessh)p

(

v,Q∗
p(ξ̃f(p))

)

+ (Hess h̃)f(p)

(

Qp(ξp), Dfp(v)
)

for all p ∈ Ω and all v ∈ TpN . This implies
(C1

θ
− µ

)

〈ξp0
, v〉 = (Hessh)p0

(

v,Q∗
p0

(ξ̃f(p0))
)

+ (Hess h̃)f(p0)

(

Qp0
(ξp0

), Dfp0
(v)

)

for all v ∈ Tp0
N . Hence, if we put v = Q∗

p0
(ξ̃f(p0)), then we obtain

(C1

θ
− µ

)

ϕ(p0, f(p0)) = (Hessh)p0

(

Q∗
p0

(ξ̃f(p0)), Q
∗
p0

(ξ̃f(p0))
)

+ (Hess h̃)f(p0)

(

Qp0
(ξp0

), Qp0
(Df∗p0

(ξ̃f(p0)))
)

.

Since Qp0
is an isometry, we have

(Hessh)p0

(

Q∗
p0

(ξ̃f(p0)), Q
∗
p0

(ξ̃f(p0))
)

≥ θ |Q∗
p0

(ξ̃f(p0))|2 = θ |ξ̃f(p0)|2 = θ.

Moreover, we have

(Hess h̃)f(p0)

(

Qp0
(ξp0

), Qp0
(Df∗p0

(ξ̃f(p0)))
)

≥ 0
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since h̃ is convex and Df∗p0
(ξ̃f(p0)) is a positive multiple of ξp0

. Putting
these facts together, we obtain

(C1

θ
− µ

)

ϕ(p0, f(p0)) ≥ θ.

Since ϕ(p0, f(p0)) ≥ 0 and µ ≥ 0, we conclude that ϕ(p0, f(p0)) ≥
θ2

C1
. On the other hand, we have infp∈∂Ω ϕ(p, f(p)) = ϕ(p0, f(p0)) by

definition of p0. From this, the assertion follows.

Proposition 4.4. Suppose that p is a point in Ω such that ξ̃f(p) 6= 0,
and {v1, v2} is an orthonormal basis of TpN . Let

Γ(p) =
2

∑

k=1

〈Dfp(vk), ξ̃f(p)〉 〈Qp(vk), ξ̃f(p)〉 > 0.

Then we have

〈Dfp(v1), Qp(v1)〉 =
1

Γ(p)

(

〈Dfp(v1), ξ̃f(p)〉2 + 〈Qp(v2), ξ̃f(p)〉2
)

and

〈Dfp(v2), Qp(v2)〉 =
1

Γ(p)

(

〈Dfp(v2), ξ̃f(p)〉2 + 〈Qp(v1), ξ̃f(p)〉2
)

.

Moreover, we have

〈Dfp(v1), Qp(v2)〉 = 〈Dfp(v2), Qp(v1)〉

=
1

Γ(p)

(

〈Dfp(v1), ξ̃f(p)〉 〈Dfp(v2), ξ̃f(p)〉

− 〈Qp(v1), ξ̃f(p)〉 〈Qp(v2), ξ̃f(p)〉
)

.

Proof. By definition of Qp, we have

〈Dfp(vk), Qp(vl)〉 =
〈[

Df∗p Dfp

]
1

2 vk, vl

〉

for 1 ≤ k, l ≤ 2. Hence, the matrix 〈Dfp(vk), Qp(vl)〉, 1 ≤ k, l ≤ 2, is
positive definite with determinant 1. Using the chain rule, we obtain

2
∑

l=1

〈Dfp(vk), Qp(vl)〉 〈Qp(vl), ξ̃f(p)〉 = 〈Dfp(vk), ξ̃f(p)〉

for k = 1, 2. The assertion follows now from a straightforward calcula-
tion.

Corollary 4.5. There exists a constant C3, depending only on h and

h̃, such that

det(I +Df∗p Dfp) ≤ C3

for all points p ∈ ∂Ω.
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Proof. Fix a point p ∈ ∂Ω. Let v1 be the outward-pointing unit
normal vector to ∂Ω at p, and let v2 be a unit vector tangential to ∂Ω.
Since Dfp(v2) is a tangent vector to ∂Ω̃, we have 〈Dfp(v2), ξ̃f(p)〉 = 0.
Using Proposition 4.4, we obtain

〈Dfp(v1), Qp(v1)〉 =
〈Dfp(v1), ξ̃f(p)〉2 + 〈Qp(v2), ξ̃f(p)〉2

〈Dfp(v1), ξ̃f(p)〉 〈Qp(v1), ξ̃f(p)〉
,

〈Dfp(v2), Qp(v2)〉 =
〈Qp(v1), ξ̃f(p)〉
〈Dfp(v1), ξ̃f(p)〉

,

and

〈Dfp(v1), Qp(v2)〉 = 〈Dfp(v2), Qp(v1)〉 = −
〈Qp(v2), ξ̃f(p)〉
〈Dfp(v1), ξ̃f(p)〉

.

We claim that 〈Dfp(vk), Qp(vl)〉 is uniformly bounded from above for
all k, l. By Corollary 2.4, we have

θ2 ≤ 〈Dfp(v1), ξ̃f(p)〉 ≤
1

θ2
.

Moreover, it follows from Proposition 4.3 that

〈Qp(v1), ξ̃f(p)〉 = ϕ(p, f(p)) ≥ θ2

C1
.

Hence, there exists a constant C2 such that

|〈Dfp(vk), Qp(vl)〉| ≤ C2

for all k, l. Thus, we conclude that

det(I +Df∗p Dfp) = 2 +
2

∑

k,l=1

〈Dfp(vk), Qp(vl)〉2 ≤ 2 + 4C2
2 .

5. The interior gradient estimate

In this section, we show that the singular values of Dfp are uniformly
bounded for all p ∈ Ω. To that end, we define a function β : Σ → R by

β(p, f(p)) =
2

√

det(I +Df∗p Dfp)
.

It is easy to see that 0 < β(p, f(p)) ≤ 1 for all p ∈ Ω.

Proposition 5.1. There exists a constant C4, depending only on h

and h̃, such that

det(I +Df∗p Dfp) ≤ C4

for all points p ∈ Ω.
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Proof. Since RicM = κ gM , it follows from work of M.T. Wang that

∆Σβ + 2β
2

∑

k,l=1

|II(ek, el)|2 + κβ (1 − β2) = 0,

where {e1, e2} is an orthonormal basis for TΣ. (This follows from equa-
tion (3.9) in [11]; see also [10], equation (2.2).) This implies

∆Σ(log β) + |∇Σ(log β)|2 + 2
2

∑

k,l=1

|II(ek, el)|2 + κ (1 − β2) = 0,

hence

∆Σ(log β) + κ ≤ 0.

On the other hand, we have ∆ΣH ≥ θ > 0 by Proposition 2.2. There-
fore, the function log β + κ

θ
H is superharmonic. Using the maximum

principle, we obtain

sup
p∈Ω

(

log det(I +Df∗p Dfp) −
2κ

θ
h(p)

)

= sup
p∈∂Ω

log det(I +Df∗p Dfp) ≤ logC3.

Thus, we conclude that

det(I +Df∗p Dfp) ≤ C3 exp

(

2κ

θ
inf
Ω
h

)

for all p ∈ Ω.

6. Estimates in C1,α

In this section, we prove uniform estimates for f in C1,α. In a first
step, we will establish uniform C1,α bounds for f in a neighborhood of
∂Ω.

Lemma 6.1. Assume that F : Ω̃ → R is a smooth function. Then

the function F ◦ f : Ω → R satisfies

tr
[

(I +Df∗p Dfp)
−1 (Hess (F ◦ f))p

]

= tr
[

Dfp (I +Df∗p Dfp)
−1Df∗p (HessF )f(p)

]

for all p ∈ Ω.

Proof. We define a function G : Ω × Ω̃ → R by G(p, q) = F (f(p)) −
F (q) for all points (p, q) ∈ Ω×Ω̃. Clearly, G|Σ = 0, hence ∆Σ(G|Σ) = 0.
Since Σ is a minimal submanifold of M , we obtain

2
∑

k=1

(HessM G)(p,f(p))(ek, ek) = 0,
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where {e1, e2} is an orthonormal basis for the tangent space T(p,f(p))Σ.
From this, the assertion follows easily.

Proposition 6.2. There exist positive constants α and C5 such that

[h̃ ◦ f ]C1,α(Ω) ≤ C5.

Proof. It follows from the previous lemma that

θ ≤ tr
[

(I +Df∗p Dfp)
−1 (Hess (h̃ ◦ f))p

]

≤ 1

θ

for all p ∈ Ω. By Proposition 5.1, the eigenvalues of the symmetric
operator I+Df∗p Dfp : TpN → TpN are uniformly bounded from above

and below. Since h̃ ◦ f vanishes along the boundary of Ω, the assertion
follows from work of Morrey and Nirenberg (see [4], Section 12.2, pp.
300–304).

In order to obtain uniform bounds for f in C1,α, we choose a globally
defined orthonormal frame {v1, v2} on N . For abbreviation, let

akl(p) = 〈Qp(vk), (vl)f(p)〉
bk(p) = 〈Dfp(vk), ξ̃f(p)〉 = 〈vk,∇(h̃ ◦ f)p〉
cl(p) = 〈(vl)f(p), ξ̃f(p)〉

for 1 ≤ k, l ≤ 2. The following result implies that the gradient of akl is
uniformly bounded:

Lemma 6.3. The gradient of the function akl is given by

〈∇akl, vj〉 = 〈Qp(∇vj
vk), vl〉 + 〈Qp(vk),∇Dfp(vj)vl〉

for j = 1, 2.

Proof. This follows from the same arguments that we used in the
proof Proposition 4.1.

It follows from Proposition 5.1 that the eigenvalues of Df∗p Dfp lie in

the interval [ 1
C4
, C4] for all p ∈ Ω. This implies

Γ(p) =
2

∑

k=1

〈Dfp(vk), ξ̃f(p)〉 〈Qp(vk), ξ̃f(p)〉

=
〈

Df∗p (ξ̃f(p)), Q
∗
p(ξ̃f(p))

〉

=
〈

[Df∗p Dfp]
1

2 Q∗
p(ξ̃f(p)), Q

∗
p(ξ̃f(p))

〉

≥ 1√
C4

|Q∗
p(ξ̃f(p))|2

=
1√
C4

|ξ̃f(p)|2

for all p ∈ Ω.
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By Proposition 2.1, we have |ξ̃q| = 1 for all points q ∈ ∂Ω̃. Hence, we

can find a positive real number ρ such that |ξ̃q| ≥ 1
2 for all points q ∈ Ω̃

satisfying h̃(q) ≥ −ρ. Let

Ω1 = {p ∈ Ω : h(p) ≥ −θ2ρ}
and

Ω2 =

{

p ∈ Ω : h(p) ≤ −1

2
θ2ρ

}

.

By Proposition 2.3, we have h̃(f(p)) ≥ −ρ for all points p ∈ Ω1. This

implies |ξ̃f(p)| ≥ 1
2 for all p ∈ Ω1. Putting these facts together, we obtain

Γ(p) ≥ 1√
C4

|ξ̃f(p)|2 ≥ 1

4
√
C4

for all points p ∈ Ω1.

Proposition 6.4. There exists a constant C9 such that [f ]C1,α(Ω1) ≤
C9.

Proof. Consider the functions χkl(p) = 〈Dfp(vk), (vl)f(p)〉 (1 ≤ k, l ≤
2). Using Proposition 4.4 and the identity a11 a22 − a12 a21 = 1, we
obtain

χ11 =
1

Γ

[

(a11 b1 + a21 b2) b1 + (a21 c1 + a22 c2) c2

]

χ12 =
1

Γ

[

(a12 b1 + a22 b2) b1 − (a21 c1 + a22 c2) c1

]

χ21 =
1

Γ

[

(a11 b1 + a21 b2) b2 − (a11 c1 + a12 c2) c2

]

χ22 =
1

Γ

[

(a12 b1 + a22 b2) b2 + (a11 c1 + a12 c2) c1

]

.

Moreover, the function Γ can be written in the form

Γ =
2

∑

k,l=1

akl bk cl.

Since Γ(p) ≥ 1
4
√

C4

for all p ∈ Ω1, we can find a constant C6 such that

2
∑

k,l=1

[χkl]Cα(Ω1) ≤ C6

( 2
∑

k,l=1

[akl]Cα(Ω1) +
2

∑

k=1

[bk]Cα(Ω1) +
2

∑

l=1

[cl]Cα(Ω1)

)

.

It follows from Lemma 6.3 that the gradient of akl is uniformly bounded
for all 1 ≤ k, l ≤ 2. Moreover, it is easy to see that the gradient of the
function cl is uniformly bounded for l = 1, 2. Finally, we have

2
∑

k=1

[bk]Cα(Ω) ≤ C7
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by Proposition 6.2. Putting these facts together, we obtain

2
∑

k,l=1

[χkl]Cα(Ω1) ≤ C8

for some constant C8. From this, the assertion follows.

Proposition 6.5. Assume that α is sufficiently small. Then there

exists a constant C12 such that [f ]C1,α(Ω2) ≤ C12.

Proof. Fix a global coordinate system on N , and let f1, f2 : Ω → R

be the coordinate functions of f . Using Lemma 6.1, we obtain
∣

∣

∣
tr

[

(I +Df∗p Dfp)
−1 (Hess fj)p

]
∣

∣

∣
≤ C10

for all p ∈ Ω and j = 1, 2. Hence, by Theorem 12.4 in [4], we can find
a constant C11 such that [fj ]C1,α(Ω2) ≤ C11 for j = 1, 2. From this, the
assertion follows.

It follows from the preceeding arguments that f is bounded in C1,α(Ω).
In order to prove higher regularity, we proceed as follows: assume that
f is bounded in Cm,α(Ω) for some positive integer m. It follows from

Lemma 6.1 and Schauder theory that the function h̃ ◦ f is bounded in
Cm+1,α(Ω). Hence, the function bk is bounded in Cm,α(Ω) for k = 1, 2.
Moreover, Lemma 6.3 implies that the gradient of akl is bounded in
Cm−1,α(Ω) for 1 ≤ k, l ≤ 2. Therefore, the function akl is bounded in
Cm,α(Ω) for 1 ≤ k, l ≤ 2. Finally, it is easy to see that the function cl is
bounded in Cm,α(Ω) for l = 1, 2. Consequently, the function χkl(p) =
〈Dfp(vk), (vl)f(p)〉 is bounded in Cm,α(Ω1) for 1 ≤ k, l ≤ 2. On the other
hand, it follows from interior Schauder estimates that f is bounded
in Cm+1,α(Ω2). Putting these facts together, we conclude that f is
bounded in Cm+1,α(Ω).

7. The linearized operator

As above, we fix two strictly convex domains Ω, Ω̃ ⊂ N with smooth
boundary. Moreover, we fix two points p ∈ ∂Ω and q ∈ ∂Ω̃. Suppose
that f : Ω → Ω̃ is a minimal Lagrangian diffeomorphism satisfying
f(p) = q. We claim that the linearized operator at f is invertible.

In order to prove this, we fix a real number α ∈ (0, 1). We denote by
M the space of all diffeomorphisms ϕ : Ω → Ω of class C3,α that are
area-preserving and orientation-preserving. It follows from the implicit
function theorem that M is a Banach manifold. The tangent space to
M at the identity can be identified with the space of all divergence-free
vector fields on Ω of class C3,α that are tangential at the boundary ∂Ω.
We will denote this space by X . In other words, X consists of all vector
fields of the form J ∇u, where u : Ω → R is a function of class C4,α
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satisfying u|∂Ω = 0. Finally, we denote by Y the space of all closed
one-forms on Ω of class C1,α.

We define a map H : M → Y as follows: for each ϕ ∈ M, we denote
by H(ϕ) the mean curvature one-form associated with the Lagrangian
embedding p 7→ (ϕ(p), f(p)). Note that H(ϕ) ∈ Y since the mean
curvature one-form associated with a Lagrangian embedding is closed.

Proposition 7.1. The linearized operator DHid : X → Y sends a

vector field J ∇u ∈ X to the one-form d(∆gu+κu) ∈ Y. Here, g denotes

the pull-back of the product metric on M under the map p 7→ (p, f(p)).

Proof. Consider a one-parameter family of diffeomorphisms ϕs ∈ M
such that ϕ0 = id and d

ds
ϕs

∣

∣

s=0
= J ∇u. We define a one-parameter

family of Lagrangian embeddings Fs : Ω →M by

Fs : p 7→ (ϕs(p), f(p)).

We denote by V the variation vector field associated with this family of
Lagrangian embeddings. This vector field is given by V = d

ds
Fs

∣

∣

s=0
=

(J ∇u, 0). We next define a one-form η on Ω by η(w) = −〈JV,DF0(w)〉.
Since −JV = (∇u, 0) and DF0(w) = (w,Df(w)), we have η(w) =
〈∇u,w〉, hence η = du. Using Proposition A.1, we obtain

d

ds
H(ϕs)

∣

∣

s=0
= −dδgη + κ η = d(−δgdu+ κu).

Since ∆gu = −δgdu, the assertion follows.

We next define a map G : M → Y × ∂Ω by G(ϕ) =
(

H(ϕ), ϕ(p)
)

.

Note that G(ϕ) = (0, p) if and only if f ◦ ϕ−1 : Ω → Ω̃ is a minimal
Lagrangian diffeomorphism that maps p to q.

Proposition 7.2. The linearized operator DGid : X → Y × Tp(∂Ω)
is invertible.

Proof. The linearized operator DGid : X → Y×Tp(∂Ω) sends a vector
field J ∇u ∈ X to the pair

(

d(∆gu+ κu), J ∇up

)

∈ Y × Tp(∂Ω).

Since u|∂Ω = 0, the vector field J ∇u is tangential to the boundary ∂Ω.
We claim that the operator DGid : X → Y×Tp(∂Ω) is one-to-one. To

prove this, suppose that u is a real-valued function of class C1,α such
that d(∆gu + κu) = 0 in Ω, u = 0 on ∂Ω, and ∇u = 0 at p. This
implies ∆gu + κu = c for some constant c ∈ R. If the constant c is
positive, then u is strictly negative in the interior of Ω by the maximum
principle. Hence, the Hopf boundary point lemma (cf. [4], Lemma 3.4)
implies that the outer normal derivative of u at p is strictly positive.
This contradicts the fact that ∇u = 0 at p. Thus, we conclude that
c ≤ 0. An analogous argument shows that c ≥ 0. Consequently, we
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must have c = 0. Using the maximum principle, we deduce that u = 0.
Thus, the operator DGid : X → Y × Tp(∂Ω) is one-to-one.

A similar argument shows that DGid : X → Y ×Tp(∂Ω) is onto. This
completes the proof.

8. The continuity method

In this section, we prove Theorem 1.3 using the continuity method.
To that end, we deform Ω and Ω̃ to the flat unit disk B

2 ⊂ R
2. There

is a convenient way of performing this deformation, which we describe
next.

Let h and h̃ be the boundary defining functions constructed in Section
2. For each t ∈ (0, 1], we consider the sub-level sets of h and h̃ with

area t2 area(Ω) = t2 area(Ω̃). More precisely, we define two functions

A, Ã : (0, 1] → (−∞, 0] by

area({p ∈ Ω : h(p) ≤ A(t)}) = t2 area(Ω)

area({q ∈ Ω̃ : h̃(q) ≤ Ã(t)}) = t2 area(Ω̃)

for t ∈ (0, 1]. For each t ∈ (0, 1], we consider the domains

Ωt = {p ∈ Ω : h(p) ≤ A(t)}
Ω̃t = {q ∈ Ω̃ : h̃(q) ≤ Ã(t)}.

It is easy to see that Ωt and Ω̃t are strictly convex domains with smooth
boundary. Moreover, Ωt and Ω̃t have the same area. It follows from re-
sults in Section 2 that Ωt and Ω̃t are geodesic disks if t > 0 is sufficiently
small. For each t ∈ (0, 1], we consider the following problem:

(⋆t) Find all minimal Lagrangian diffeomorphisms f : Ωt → Ω̃t that

map a given point on the boundary of Ωt to a given point on the boundary

of Ω̃t.

We now pass to the limit as t → 0. After suitable rescaling, the
domains Ωt and Ω̃t converge to the flat unit disk B

2. Hence, if we send
t→ 0, then the problem (⋆t) reduces to the following problem:

(⋆0) Find all minimal Lagrangian diffeomorphisms f : B
2 → B

2 that

map one given point on ∂B
2 to another given point on ∂B

2.

We claim that the problem (⋆0) has a unique solution. To prove this,
we need a uniqueness result for the second boundary value problem for
the Monge-Ampère equation:

Proposition 8.1. Suppose that u, v : B
2 → R are smooth convex

functions satisfying detD2u(x) = detD2v(x) = 1 for all x ∈ B
2. More-

over, suppose that the gradient mappings x 7→ ∇u(x) and x 7→ ∇v(x)
map B

2 to itself. Then the function u(x) − v(x) is constant.
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Proof. This is a subcase of a general uniqueness result due to Y. Bre-
nier [1]. A proof based on PDE methods was given by P. Delanoë [3].

Proposition 8.2. Suppose that f is a minimal Lagrangian diffeo-

morphism from the flat unit disk B
2 to itself. Then f is a rotation.

Proof. By assumption, the graph of f is a minimal Lagrangian sub-
manifold of R

2 × R
2. Hence, there exists a constant γ ∈ R such that

cos γ (∂1f2(x) − ∂2f1(x)) = sin γ (∂1f1(x) + ∂2f2(x))

for all x ∈ B
2. Hence, there exists a smooth function u : B

2 → R such
that

∂1u(x) = cos γ f1(x) + sin γ f2(x)

∂2u(x) = − sin γ f1(x) + cos γ f2(x).

By assumption, f is a diffeomorphism from B
2 to itself. Hence, the gra-

dient mapping x 7→ ∇u(x) is a diffeomorphism from B
2 to itself. Since

f is area-preserving and orientation-preserving, we have detD2u(x) =
detDf(x) = 1 for all x ∈ B

2. Consequently, the function u is either
convex or concave. If u is convex, it follows from Proposition 8.1 that
1
2 |x|2 − u(x) is constant. This implies

f1(x) = cos γ ∂1u(x) − sin γ ∂2u(x) = cos γ x1 − sin γ x2

f2(x) = sin γ ∂1u(x) + cos γ ∂2u(x) = sin γ x1 + cos γ x2.

Similarly, if u is concave, then Proposition 8.1 implies that 1
2 |x|2 +u(x)

is constant. In this case, we obtain

f1(x) = cos γ ∂1u(x) − sin γ ∂2u(x) = − cos γ x1 + sin γ x2

f2(x) = sin γ ∂1u(x) + cos γ ∂2u(x) = − sin γ x1 − cos γ x2.

In either case, we conclude that f is a rotation.

Proposition 8.3. For each t ∈ (0, 1], the problem (⋆t) has exactly

one solution.

Proof. By Theorem 1.4, every minimal Lagrangian diffeomorphism
from Ωt to Ω̃t is uniformly bounded in Cm after rescaling. More-
over, it follows from Proposition 7.2 that every solution of (⋆t) is non-
degenerate. Consequently, (⋆t) and (⋆0) have the same number of solu-
tions for all t ∈ (0, 1]. Since (⋆0) has a unique solution by Proposition
8.2, the proof is complete.

Appendix A. The linearization of the Lagrangian minimal

surface equation

Let M be a Kähler-Einstein manifold with RicM = κ gM . Moreover,
let Fs : Σ → M be a one-parameter family of Lagrangian embeddings
into M . For each s, we denote by µs the mean curvature one-form
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associated with Fs. Clearly, µs is a closed one-form on Σ. Finally, we
define a one-form η on Σ by η(X) = −〈JV,DF0(X)〉 for X ∈ TΣ, where
V = ∂

∂s
Fs

∣

∣

s=0
denotes the variation vector field.

Proposition A.1. Suppose that F0 : Σ → M is a minimal La-

grangian embedding, i.e., µ0 = 0. Then

d

ds
µs

∣

∣

s=0
= −dδgη + κ η.

Here, g denotes the pull-back of the Riemannian metric on M under

F0.

Proof. Without loss of generality, we may assume that Σ is a sub-
manifold of M and F0(p) = p for all p ∈ Σ. We can find a vector field
W ∈ TΣ such that η(X) = −〈JV,X〉 = 〈W,X〉 for all X ∈ TΣ. This
implies V − JW ∈ TΣ, i.e., JW is the normal component of V . The
change of the mean curvature vector is given by the formula

∑

k

∇⊥
ek
∇⊥

ek
(JW ) +

∑

k

[

RM (ek, JW )ek
]⊥

+
∑

k,l

〈II(ek, el), JW 〉 II(ek, el)

(cf. [6], Section 1, where a different sign convention for the curvature
tensor is used). Hence, the change of the mean curvature one-form is
given by

d

ds
µs(X)

∣

∣

s=0
=

∑

k

〈∇⊥
ek
∇⊥

ek
(JW ), JX〉 +

∑

k

RM (ek, JW, ek, JX)

+
∑

k,l

〈II(ek, el), JW 〉 〈II(ek, el), JX〉

for all X ∈ TΣ. Since J is parallel, we have

∇⊥
ek
∇⊥

ek
(JW ) = J(∇Σ

ek
∇Σ

ek
W ).

Moreover, using the relation
∑

k II(ek, ek) = 0 and the Gauss equations,
we obtain

∑

k

RM (ek, JW, ek, JX) +
∑

k,l

〈II(ek, el), JW 〉 〈II(ek, el), JX〉

=
∑

k

RM (ek, JW, ek, JX) +
∑

k,l

〈II(ek,W ), Jel〉 〈II(ek, X), Jel〉

=
∑

k

RM (ek, JW, ek, JX) +
∑

k

〈II(ek,W ), II(ek, X)〉

=
∑

k

RM (ek, JW, ek, JX) +
∑

k

RM (ek,W, ek, X)
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−
∑

k

RΣ(ek,W, ek, X)

=
∑

k

RM (Jek,W, Jek, X) +
∑

k

RM (ek,W, ek, X)

−
∑

k

RΣ(ek,W, ek, X)

= RicM (W,X) − RicΣ(W,X)

= κ 〈W,X〉 − RicΣ(W,X)

for all X ∈ TΣ. Putting these facts together, we obtain

d

ds
µs(X)

∣

∣

s=0
=

∑

k

〈∇Σ
ek
∇Σ

ek
W,X〉 − RicΣ(W,X) + κ 〈W,X〉,

and hence

d

ds
µs(X)

∣

∣

s=0
=

∑

k

(∇Σ
ek
∇Σ

ek
η)(X) −

∑

k

RicΣ(ek, X) η(ek) + κ η(X)

for X ∈ TΣ. On the other hand, we have

(dδη)(X) + (δdη)(X) = −
∑

k

(∇Σ
ek
∇Σ

ek
η)(X) +

∑

k

RicΣ(ek, X) η(ek)

by the standard Bochner formula. Thus, we conclude that

d

ds
µs

∣

∣

s=0
= −dδη − δdη + κ η.

Finally, we have dη = 0 since Fs is a one-parameter family of Lagrangian
embeddings. From this, the assertion follows.
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