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Introduct ion 

In the study of higher dimensional algebraic geometry, an impor
tant reduction step is to study certain good birational models of a given 
algebraic manifold. This leads to the famous "minimal model program" 
initiated by Mori - the search for birational models with numerically 
effective canonical divisors and at most terminal singularities. The exis
tence problem is still completely open in dimensions higher than three, 
but even worse, in contrast to the two-dimensional case, the minimal 
model is not unique in higher dimensions. It is then an important ques
tion to see what kind of invariants are shared by all the birationally 
equivalent minimal models, and more generally, are preserved under 
certain elementary birational transformations. In this paper, some re
sults in this direction are given: 

T h e o r e m A . Let f:X > X' be a birational map between two 
smooth complex projective varieties such that the canonical bundles are 
numerically effective along the exceptional loci. Then X and X' have the 
same Betti numbers. In particular, birational smooth minimal models 
have the same Betti numbers. 

Theorem A, in the smooth case, generalizes previous results of Kollar 
on the invariance of cohomologies under flops in dimension three (cf. 
5.1). Another interesting corollary via the Mayer-Vietoris argument 
shows that the exceptional loci of the given birational map also share 
the same Betti numbers (Corollary 4.5). 
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The proof of Theorem A is based on general considerations in bira-
tional geometry given in §1 and Grothendieck-Deligne's solution to the 
Weil conjecture [4], [5]. The bridge to connect these two is the theory 
of p-adic integrals. 

The idea to use the Weil conjecture via p-adic integrals to compute 
cohomologies can be dated back to Harder and Narasimhan in the 70's 
[9]. However, it was used there in a somewhat different way. In the 
context of Igusa-Weil local zeta functions, the p-adic integral has been 
studied extensively by Denef and Loeser since late 80's [12], [6]. Recently 
this was taken up again by Batyrev by developing Weil's idea of p-adic 
measure [1]. In fact, he established Theorem A in the special case of 
projective Calabi-Yau manifolds. 

By extending this idea further, an argument based on birational 
correspondences is developed here in order to deal with the general 
case. Namely, we introduce in §1 the notion of "K-partial ordering" 
and relate it to interesting geometric situations. The applicability of the 
Weil conjecture is largely clarified in terms of this notion (cf. Proposition 
2.16 and Theorem 3.1). Moreover, this approach also provides a natural 
setting in the singular case. 

In this paper, We have tried to develop this, together with the p-adic 
measure, as far as possible so that it could fit the need of the minimal 
model theory. In fact, an easy but very interesting result observed here 
is that the integral points of a p-adic variety has finite p-adic measure if 
and only if it has at most log-terminal singularities (Proposition 2.12). 
This gives the basic reason why p-adic integrals fit into the framework of 
minimal model theory naturally. But due to technical reasons, we have 
restricted ourself to the smooth case when we state and prove Theorem 
A. (See however 5.3 for the singular case.) 

Theorem A is still not all satisfactory in two aspects - the torsion 
elements are not considered, and no natural maps between cohomolo
gies have been mentioned. Although there is one obvious candidate for 
this map - the cohomology correspondence induced from the birational 
correspondence, it is not clear how to show directly that it induces iso
morphisms. In fact, there is no strong evidence why this should be 
true. The next result only deals with the simplest cases. However, it is 
included to emphasize this important aspect. 

T h e o r e m B . Smooth minimal models minimize H2(X,Z) compat
ible with the Hodge structure among birational smooth projective vari
eties. In the singular case, the minimal models minimize the group of 
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Weil divisors among birational projective varieties with at most terminal 
singularities. 

The proof, which is elementary (does not use the Weil conjecture), is 
contained in §4 together with some related results. In fact, it is simply 
another application of the notion of K-partial ordering. 

To finish the introduction, it is worth pointing out that in stating 
both theorems, what we have in mind is that there should be a "minimal 
cohomology theory" among birational varieties. Moreover, it should be 
realized exactly by the minimal models. 

1. Birat ional g e o m e t r y 

We begin with some standard definitions. For a complete treatment 
of minimal model theory, the reader should consult [13]. 

Let X be an n-dimensional complex normal Q-Gorenstein variety, 
that is, the canonical divisor K X is Q-Cartier. Recall that X has (at 
most) terminal (resp. canonical, resp. log-terminal) singularities if there 
is a resolution (f> : Y —> X such that in the canonical bundle relation 

(1.1) K Y=Cl4>*K X + X a E i 

we have that a i > 0 (resp. a i > 0, resp. a i > —1) for all i. Here, 
the E i s vary among the prime components of all the exceptional divi
sors. Although (1.1) holds only up to Q-linear equivalence, the divisor 
P a i E i G Z n-i (g)Q is uniquely determined. Moreover, the condition on 
a i's is readily seen to be independent of the chosen resolution. It is also 
elementary to see that smooth points are all terminal. 

Let Z be a proper subvariety of X. A Q-Cartier divisor D is called 
numerically effective (nef) along Z if D.C := deg ^(f*D) > 0 for all 
effective curves C C Z, where f : C —> C is the normalization of C. D 
is simply called nef if Z = X. A projective variety X is called a minimal 
model if X is terminal and K X is nef. 

Two normal varieties X and X' are birational if they have isomorphic 
function fields K(X) = K(X') (over C) . Geometrically, this means that 
there is a rational map f: X •—> X' such that f~l is also rational. The 
exceptional loci of f are defined to be the smallest subvarieties Z C X 
and Z' C X' such that f induces an isomorphism X — Z = X' — Z'. 

Among the class of birational Q-Gorenstein varieties, we have the 
notion of K-part ial ordering, where the "K" is for canonical divisors: 
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Defini t ion 1.2. For two Q-Gorenstein varieties X and X ' , we say 
that X <K X' (resp. X <K X') if there is a birational correspondence 
(</>,</>') : X <- Y ->• X ' with Y smooth, such that cf K X < Q ^ ' ^ X ' 
(resp. " < Q " ) . Moreover, "X <K X" ' plus "X >K X ' " implies that 
"X =K X " ' , i.e., (p*K X = Q <f>'*K Xi- In this case, we say that X and 
X ' are K-equivalent. 

The well-definedness of this notion follows from the canonical bundle 
relations 

(1.3) K Y=Qcj)*K X + E=Q<p,*K X'+E,
i 

since we know that X <K X' if and only if E > E'. In the terminal case, 
this means that (f> has more exceptional divisors than cf>' (so heuristically, 
X is "smaller" than X ' ) . 

Here is the typical geometric situation that we can compare their 
K-partial order: 

T h e o r e m 1.4. Let f : X —> X' be a birational map between two 
varieties with canonical singularities. Suppose that the exceptional lo
cus Z C X is proper and that K X is nef along Z. Then X <K X'. 
Moreover, if X' is terminal, then Z has codimension at least two. 

Proof. Let (p : Y —> X and (f)' : Y —> X' be a good common resolution 
of singularities of f so that the union of the exceptional set of <f> and 
(j)' is a normal crossing divisor of Y. This can be done by considering 
Tf C X x X ' , the closure of the graph of f, blowing up the exceptional 
set of f f —> X and Tf —> X ' and then taking Y to be a Hironaka 
(embedded) resolution [10]. 

Consider the canonical bundle relations: 

K Y = Q 4>*K X + E = <f)*K X + F + G 

= Q 4>'*K X> +E' = 4>'*K X> +F' + G'. 

Here F and F' denote the sum of divisors (with coefficients > 0) which 
are both (f> and cf>' exceptional. G (resp. G') denotes the part which is 
(f) exceptional but not 4>' exceptional (resp. 4>' but not (f> exceptional). 
Notice that 4>{G') C Z. 

To proceed, we write 

(1.6) 4>'*K X>=Q4>*K X + G+{F-F'-G'). 

It is enough to prove that F — F' — G' > 0, because this implies that 
F - F' > 0 and G' = 0, and so E > E'. 
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By taking a generic hyperplane section H of Y (n — 2)-times, the 
problem is reduced to a problem on surfaces. Namely, 

(1.7) H n-24'*K X, =Q H n-24*K X + ( + ( £ - £ ' - C'), 

where £ = H n~2.F and ( = H n~2.G etc. If £ - £' - ( ' is not effective, 
write it as H n~2.(A — B) = a — b with A and B effective. Then by 
taking the intersection of (1.5) with b, we get 

(1.8) B.H n-24'*K X> = Q B.H n-24*K X + b-C + b.a - b2. 

The left-hand side is zero since B C E' is (/>' exceptional. Moreover, 
if B C F ' , then B.H n~24*K X = 0 . If B C G', then the curve 
(f)(B.H n~2) C 0(G') C Z is inside the exceptional locus. So the first 
three terms on the right-hand side are non-negative since K X is nef along 
Z and a, b and £ are different components. However, since b is a nontriv-
ial combination of exceptional curves in H n~2, from the Hodge index 
theorem we have that b2 < 0, a contradiction! Hence F — F' — G' >0. 

For the second statement, from the construction of Y, we know that 
all components of the exceptional sets, denoted by Exc (f> and Exc 4>' 
respectively, are divisors. If X' is assumed to be terminal, then all 4>' 
exceptional divisors occur as components of E'. So G' = 0 implies that 
Exc (j)' C Exc (p. Wi th this understood, from 

(1.9) X - 0(Exc</>) = Y - Exc</> =* X' - ^ ' (Exc^) C X' - <f>'(Exc </>'), 

we conclude that Z C 0(Exc (/>) is of codimension at least two. q.e.d. 

Corollary 1.10. Let f: X —> X' be a birational map between two 
terminal varieties such that K X (resp. K Xi) is nef along the exceptional 
locus Z C X (resp. Z' C X'). Then X =K X' and f is an isomorphism 
in codimension one. This applies, in particular, if both X and X' are 
minimal models. 

Variant 1.11. Instead of assuming that the exceptional locus in X 
is proper, one can generalize Theorem 1.4 to the relative case, namely 
f is a S'-birational map and that X —> S and X' —> S are proper S-
schemes. The proof is identical to the one given above by changing 
notation. 

R e m a r k 1.12. This type of argument is familiar in the minimal 
model theory. Notably, in analyzing the log-flip diagram (eg. [13, 5-1-
11]) or more specially, the flops. Theorem 1.4 implies that if X' is a flip 
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of X, then X >K X' (in fact, more is true: X >K X'). Corollary 1.10 
yields that flop induces K-equivalence. Since flip/flop will not be used 
in any essential way in this paper, we will refer the interested reader to 
[13] for the definitions. The proof given above is inspired by Kollar's 
treatment of flops in [14]. 

2. T h e Weil Conjecture and p-adic integrals 

To prove Theorem A, we will show that X and X' have the same 
number of rational points over certain finite fields when a suitable good 
reduction is taken. That is, we prove that they have the same "zeta 
function". The theorem will then follow from the statement of the Weil 
conjecture. 

2.1 . T h e reduct ion procedure . This is standard in algebraic 
geometry and in number theory: as long as we perform only a finite 
number of "algebraic constructions" in the complex case, e.g. consider 
morphisms, since all the objects involved can by defined by a finite 
number of polynomials, we can take S c C a finitely generated subring 
over Z so that everything is defined over S. S has the property that the 
residue field S/m of any maximal ideal m C S i s finite. 

If we start with "smooth objects", general reduction theory then 
implies that for an infinite number of "good primes" (in fact, Zariski 
dense in Spec(S')), we may get good reductions so that everything is 
defined smoothly over the finite residue field F q with q = p r for some 
prime number p. We may also assume that this reduction has a lifting 
such that everything is defined smoothly over R, the maximal compact 
subring of a p-adic local field K, i.e., a finite extension field of Q p, with 
residue field F q. 

More precisely, let F be the quotient field of S. Based on the fact 
(and others) that Q p has infinite transcendence degree, the "embedding 
theorem" (see for example [3, p.82]) yields that for an infinite number 
of p's, there is an embedding of fields i : F —>• Q p such that i(S) C Z p. 
Moreover, i may be chosen so that a prescribed finite subset of S, say 
the coefficients of those defining polynomials, is mapped into the set of 
p-adic units. This embedding then gives the desired lifting. 

Let P be the unique maximal ideal of R (so R/P = F q). We denote 
by X, U , . . . those objects constructed from X, U... via reductions 
mod P , that is, objects lie over the point Spec R/P —> SpecR - they 
are defined over F q. We also denote the reduction map by n : X(R) —> 



o n t h e t o p o l o g y o f b i r a t i o n a l m i n i m a l m o d e l s 135 

X(F q) etc. 

2.2. T h e Weil conjecture . Let X be a variety defined over a 
finite field F q. After fixing an algebraic closure, the Weil zeta function 
of X is defined by 

(2.3) Z(X,t):=exp 

In 1949, Weil conjectured several nice properties of this zeta func
tion for smooth projective varieties and expalined how some of these 
would follow once a suitable cohomology theory exists [16]. This led 
Grothendieck to his creation of etale cohomology theory. 

More precisely, Grothendieck proved a "Lefschetz fixed point for
mula" in a very general context (eg. constructible sheaves over seper-
ated schems of finite type . . . ) [5], which in particular implies that the 
zeta function is a rational function: 

(2.4) Z(X,t) P t - P n-it 
Po(t)P2(t) • • • P 2 n( ty 

where P j(t) is a polynomial with integer coefficients such that P j(0) = 1 
and deg P j(t) = h j the j - t h Betti number of certain etale cohomologies. 
Moreover, when X comes from a good reduction of a smooth complex 
projective variety X in the sense described in (2.1), h j coincides with 
the j - t h Betti number of the singular cohomologies of X(C). 

Deligne [4] completed the proof of the Weil conjecture by proving the 
important "Riemann Hypothesis" that all roots of P j (t) have absolute 
value q~H2. In particular, the complete information about the F ir
rational points determines the h j,s and all the roots. 

2.5. Count ing po ints v ia p-adic integrals . How do we count 
X(F q)7 If X comes from the good reduction of a smooth R-scheme, we 
will see that such a counting can be achieved by using p-adic integrals 
(cf. Theorem 2.8). We will first recall some elementary aspects of the 
p-adic integral over K-analytic manifolds and over R-schemes. 

Consider the Haar measure on the locally compact field K, normal
ized so that the compact open "disk" R has volume 1: 

(2.6) \dz\ = 1. 
R 
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We may extend this to the multivariable case and define the p-adic 
integral of any regular n form * = ip(zi, • • • , z n)dz\ A • • • A dz n by 

(2.7) | * | := | # z ) | | d z i A - - - A d z n|. 
R n R n 

Here \a\ := q~Up ̂  K/Q p a-1 is the usual p-adic norm. 
We may define an integral slightly more general than (2.7): suppose 

that * is a r-pluricanonical form such that in local analytic coordinates 
* = ip(zi,- • • , z n)(dz\ A • • • A dz n)®r. We define the integration of a 
"r-th root of | * | " by 

(2.7') Z I*)1 /r := Z | V ( z ) | 1 / r | d z i A - - - A d z n|. 
R n R n 

This is independent of the choice of coordinates, as can be checked easily 
by the same method as in [17, p.14]. So we can extend the definition 
to (not necessarily complete) K-analytic manifolds with * a (possibly 
meromorphic) pluricanonical form. Certainly then the integral defined 
may not be finite. 

The key property we need is the following (slightly more general 
form of a) formula of Weil [17, 2.2.5]. We briefly sketch its proof. 

T h e o r e m 2.8. Let U be a smooth R-scheme and Q a nowhere zero 
r-pluricanonical form on U. Then 

ini1 /r 
U ( F q 

U(R) q n 

Proof. The proof given by Weil in [17] goes through without diffi
culties. One first observes that the reduction map n: U(R) —> U(F q) 
induces an isomorphism between n~l(t) and PR n for any t G U(F q) 
(Hensel's lemma) such that there is a function ip with 1^(z)1 = 1 and 

(2.9) fi = i/>(z) • (dzi A • • • A dz n)®r 

in the K-analytic chart PR n. This implies that R _1,t) |fi |1 ' r = l/q n for 

any t G U(F q). Summing over t then gives the result. q.e.d. 

The right-hand side of (2.8) shows that the integral is independent 
of the choice of the form Q. One may also see this by observing that 
any two such forms differ by a nowhere vanishing function on U (over 
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R) which takes values in the units on all R-points. This allows one to 
define a canonical p-adic measure on the R-points of smooth R-schemes 
by "gluing" the local integrals. We will define it in the singular case 
with the hope that it may be useful for later development. 

2.10. Canonical m e a s u r e on Q-Gorens te in R - s c h e m e s . We 
will only consider those R-schemes, eg. X, that come from complex 
Q-Gorenstein varieties as in (2.1). Let r G N such that rK X is Cartier 
(locally free). We may assume that we have a R-resolution of singulari
ties (f>: Y —> X, which is a projective R-morphism, so that the reduced 
part of the exceptional set is a simple normal crossing R-variety. We 
will define a measure on X(R) such that the measurable sets are exactly 
the compact open subsets in the K-analytic topology. 

Let f i ' s be a Zariski open cover of X such that rK X j U i is actually 
free. Then for a compact open subset S C U i(R) C X(R), we define its 
measure by 

(2.11) m X(S) = [ jfii j1/r := / j4>*^j1/r, 
S <l>-1(S) 

where fîi is an arbitrary generator of rK X j Ut • Notice that the properness 
of (j> implies that 4>~1{S) C Y(R). This allows us to operate the integral 
entirely on R-points. 

For general compact open S C X(R), we may break S into disjoint 
pieces S j so that S j is contained in some U i(R) (in fact, S j may be 
chosen to lie entirely in a fiber of the reduction map ir), and then define 
m X(S) = P i m X{S i)- Notice that m X(S) is again independent of the 
choice of U i, Oi and Y. 

The following proposition explains the possible connection between 
the canonical measure and the minimal model theory: 

Propos i t i on 2.12. For a Q-Gorenstein R-variety X, X(R) has 
finite measure if and only if X has at most log-terminal singularities. 

Proof. Consider the canonical bundle relation for cp: Y —> X, 

(2.13) rK Y = <p*rK X + y^i e i E i 

with rK X being Cartier and e i G Z. To determine the finiteness of 
m X(X(R)), we only need to consider those R-points on the exceptional 
fibers. Locally, div(/>*0 = P e i E i for a generator O of rK X- So the 
integral is a product of one-dimensional integrals of the form 

(2.14) I i : = [ jz e i dz®r j l l r = [ jzj e^r jdzj. 
R R 
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If this is finite, then 

(2.15) I i = Z \z\e ilr\dz\ + {q-l)-=q-elr+lI i + q ^ - . 
PR q q 

Since i > 0, this makes sense only if q e i'r+1 > 1. That is, e i / r > —1, 
which is exactly the definition of log-terminal singularities. q.e.d. 

Since the measure is defined Zariski-locally via p-adic integrals, for 
smooth X, from Weil's formula (2.8) we have 

Corollary 2.16. Let X be an n-dimensional smooth R-variety with 
finite residue field F q. Then 

m X(X(R)) = J X F . 

R e m a r k 2.17. If X is singular, m X((X(R)) is a weighted count
ing of the rational points. By definition, if 0 : Y —> X is a crepant 
R-morphism, i.e., K Y = Q 4>*K X, then m X{{X(R)) = m Y{{Y(R)). In 
particular, m X((X(R)) counts the rational points of Y if Y is smooth! 
This applies to many interesting "pure canonical" singularities and to 
terminal singularities having small resolutions. However, further inves
tigation on the precise "geometric meaning" of this weighted counting 
is still needed for the general case (cf. 5.3). 

3. T h e P r o o f of T h e o r e m A 

We will in fact prove a result which connects the notion of K-partial 
ordering and the canonical measure. This will largely clarify the role 
played by the Weil conjecture. 

T h e o r e m 3 .1 . Let X and X' be two birational log-terminal R-
varieties. Then m X(X{R)) < m X>{X'{R)) if X <K X'. 

Proof. Consider as before, a birational correspondence ((/>, ft) : X <— 
Y —> X' over R with Y a smooth R-variety. Let r G N be such that 
both rK X and rK X' are Cartier. Then X <K X' if and only if in the 
canonical bundle relations rK Y = ft rK X + E = ft*rK X> +E', we have 
E>E'. 

By the properness of 0 and ft, <j)-l{X{R)) = Y(R) = ft~l{X'{R)). 
So from the definition of the measure (2.11), it suffices to show that for 
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any compact open subset T C Y(R) with n(T) a single point y G Y(F q), 
we have 

(3.2) f l^fil1/r < f |(/,'*0'|1/r. 
T T 

Here il is an arbitrary local generator of rK X on a Zariski open set U 
where rK X is actually free and such that 4>(y) G U (and with similar 
conditions for Ci'). 

Clearly, (3.2) can fail to be an equality only if y G E U E ' . However, 
in this case E > E' implies that the order of (f>*Q. is no less than that of 
(f)*Q. (3.2) then follows from the definition of the p-adic integral (2.7') 
(see also (2.15)). q.e.d. 

If X and X' are smooth, combining this with (2.16) gives 

Corollary 3 .3 . Let X and X' be two birational smooth R-schemes. 
Then \X(F q)\ < \X'(F q)\ if X <K X'. 

With this been done, by working on cyclotomic extensions of K, the 
same proof shows that | X ( F q*)| < | X ' ( F q ) | for all k G N . In particular, 
Z(X, t) < Z(X', t) for all t > 0. The same is true for all the derivatives, 
but it is not clear how to make use of these. 

Corollary 3.4. Let X and X' be two birational complex smooth 
varieties. They have the same Euler number for the compactly supported 
cohomologies if X =K X'. 

Proof. Apply the reduction procedure (2.1) to reduce this to the 
p-adic case. The statement then follows from Grothendieck's Lefschetz 
fixed point formula (2.4) and the above comparison of zeta functions. 

q.e.d. 

What kind of geometric situation can we have X <K X'? Theorem 
1.4 provides such a typical case inspired by the minimal model theory. 
Namely, let f : X •—> X' be a birational map between two varieties with 
at most canonical singularities and proper exceptional locus Z C X 
such that K X is nef along Z. Then X <K X'. 

So far we have not used Deligne's theorem on the "Riemann Hy
pothesis". To use it, we need to impose the projective assumption. 

T h e o r e m 3.5. Let X and X' be two birational smooth projective 
R-schemes. If X =K X' then m X(X(R)) = m X ( X ' ( R ) ) . Equivalently, 
Z(X,t) = Z(X',t). In particular, they have the same étale Betti num
bers by the Weil conjecture. 
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Now Theorem A simply follows from the reduction procedure (2.1), 
Corollary 1.10 and Theorem 3.5. q.e.d. 

R e m a r k 3.6. In the preliminary version of this paper (dated Octo
ber 1997), Theorem A was stated with the assumption that the canon
ical bundle is semi-ample, that is, rK X is generated by global sections 
for some r G N . The proof proceeds by cutting out the pluri-canonical 
divisors and applying p-adic integrals to the birational correspondence, 
where the notion of K-equivalence is essential for this step to work. 

By using Weil's formula (2.8), the proof is then concluded by induc
tion on dimensions. In this approach, the usage of integration of a r - th 
root of the absolute value of a pluricanonical form was suggested to the 
author by C.-L. Chai in order to deal with the case r > 1. 

R e m a r k 3.7. The equivalence of zeta functions is a stronger state
ment than the equivalence of Betti numbers. Moreover, we have in fact 
established the equivalence of zeta functions for a dense set of primes. 
From the theory of motives, this suggests that we may in fact have the 
equivalence of Hodge structures. Further investigation in this should be 
interesting and important. 

Quest ion 3.8. Is Theorem A true for Kahler manifolds? 

4. Misce l laneous results and t h e P r o o f of T h e o r e m B 

Now we come back to the complex number field and begin with an 
elementary observation: 

L e m m a 4 .1 . If the exceptional loci of a birational map f : X •—> X' 
between two smooth projective varieties have codimension at least two, 
then fori < 2 we have i ^X) ^-i ^X') andH i{X,Z) ^ H i{X\Z) which 
is compatible with the rational Hodge structures. 

Proof. The real codimension-four statement plus the transversal-
ity argument shows that Hi{X) ^ ni(X'), H i(X,Z) = H i(X',Z) and 
H i(X,Z) = H ( X ' , Z ) canonically for i < 2. Moreover, by Hartog's 
extension we know that the Hodge groups H°(Qi) are all birational in
variants among smooth varieties. The orthogonality of Hodge nltrations 
then shows that H i(X, Q) and H i(X!, Q) share the same rational Hodge 
structures for i < 2. q.e.d. 

A slightly deeper result is given by 
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Propos i t i on 4 .2 . If the exceptional loci Z C X and Z' C X' of 
a birational map f between two smooth varieties have codimension at 
least two, then h i{X) - h i{Z) = h i{X') - h i{Z'). 

Proof. Construct a birational correpondence X <— Y —)• X as in §1 
and denote the exceptional divisor of (f> : Y —> X (resp. (f>' : Y —> X') 
by E (resp. E'). Since Hironaka's resolution process only blows up 
smooth centers inside the singular set of the graph off, the isomorphism 
X - Z = X' - Z' implies that <f>{E U E') C Z and cf>'(E U E') C Z', 
hence that E red = E'red, Z = 4>{E) and Z' = <f>'{E'). 

Consider an open cover {V, W} of X by letting V := X — Z and 
W D Z be a deformation retract neighborhood. Let V := cf)~l(V) and 
W := <f>~1(W) D E be the corresponding open cover of Y. Then we 
have the following commutative diagram of integral cohomologies: 

(4.3) t t t t 
H - ^ V n W ) -+ H'(X) -+ H1(V)®H\Z) ->• H'(VnW) 

It is a general fact that 4>*'• H i(X) —> H i(Y) is injective by the 
projection formula which states that (f> is proper of degree one implies 
t h a t 0 . o 0 * ( a ) =aforallaeH i(X). Since V = V and VnW = VnW, 
simple diagram chasing shows that H i(Z) —> H i(E) is also injective. We 
may then break (4.3) into short exact sequences 

(4.4) 0 - • (ffH^X) -+ H i Y) -+ H i(E)l4>*H i{Z) ->• 0. 

Similarly, for (p! : Y —> X' we have 

(4.4') 0 ->• ^H iiX') ->• H ( Y ) ->• H i{E')l4J*H i Z') -+ 0. 

Since E red = -Ered' the proposition follows immedeately. q.e.d. 

Combining this with Theorem A gives 

Corollary 4.5. Let f : X —> X' be a birational map between two 
smooth complex projective varieties such that the canonical bundles are 
numerically effective along the exceptional loci. Then the exceptional 
loci also have the same Betti numbers. In particular, this applies to 
birational smooth minimal models. 

R e m a r k 4.6. The proof of Theorem A in fact also shows that Z 
and Z' have the same number of F q-rational points. This is simply 
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because \X(F q)\ = | X ' ( F q)| and X - Z = X ' - Z ' . In particular, if Z 
and Z' are smooth, then they have the same Betti numbers. Although 
this argument apparently only works for smooth Z and Z', which is very 
restricted, it is more than just a special case of (4.5) - since it carries 
certain nontrivial arithmetic information. 

Now we begin the proof of Theorem B. Let f : X • • —> X' be a 
birational map between two n-dimensional smooth projective varieties 
where only X is assumed to be minimal. In the notation of §1, Theorem 
1.4 says that E > E'. So we obtain canonical morphisms H i(E) —> 
H i{E') induced from E' C E. Since Z := <p{E) and Z' := (f)'{Er) are of 
codimension at least two, H2n~2(Z) = 0 = H2n~2(Zr). By comparing 
(4.4) and (4.4') via the surjective map H2n~2(E) ->• H2n~2(E'), we 
obtain a canonical embedding: 

(4.7) </>*H2n-2(X, Z) C (ß'*H2n-2(X', Z). 

which respects the Hodge structures. This induces an injective map 

(4.8) </>[ o </,* : H2n-2(X, Z) - • H2n-2{X', Z), 

which by the projection formula is easily seen to be independent of the 
choice of Y, and hence canonical. Poincare duality then concludes the 
first statement of Theorem B. 

For the second statement, we may simply copy the above proof by 
replacing (4.4) with the similar formula for the Weil divisors. q.e.d. 

One can also interpret this result in terms of the Picard group if the 
terminal varieties considered are assumed to be factorial or Q-factorial. 

5. Further R e m a r k s 

We conclude this paper with two historical and two technical re
marks: 

5.1 . Birat ional geometry . A version of Theorem 1.4, or rather 
the Corollary 1.10, was used before by Kollar in his study of three-
dimensional flops. In fact, he proved that three-dimensional birational 
Q-factorial minimal models all share the same singularities, singular 
cohomologies and intersection cohomologies with pure Hodge structures 
(for deep reasons). See [14] for the details. 

More recently, the author used a relative version of (1.10) to study 
the degenerations of minimal projective threefolds [15, §4] and obtained 
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a negative answer to the so called "filling-in problem" in dimension 
three. Namely, there exist degenerating projective families of smooth 
threefolds which are C°° trivial over the punctured disk, but can not be 
completed into smooth projective families. 

5.2. Prev ious results . After Kollar's result on threefolds, the 
problem on the equivalence of Betti numbers seemed to be ignored for a 
while until recently when Batyrev treated the case of projective Calabi-
Yau manifolds [1]. 

In the special case of projective hyperkahler manifolds, Theorem A 
has also been proved recently by Huybrechts [11] using quite different 
methods. In fact, he proves more - these manifolds are all inseparable 
points in the moduli space (hence are diffeomorphic and share the same 
Hodge structures)! 

This problem on general minimal models, to the best of the author 's 
knowledge, has not been studied before our paper. In our case, the 
homotopy types will generally be different. In fact, it is well known that 
for a single elementary transform of threefolds, although the singular 
cohomologies are canonically identified, the cup product must change. 
However, inspired by Kollar's result and Remark 3.7, we still expect 
that the (non-polarized) Hodge structures will turn out to be the same. 

5.3. Singular case. In order to generalize Theorem A to the 
singular case, our approach works equally well in the log-terminal case, 
with the only problem being that we need a good interpretation like 
Weil's formula (2.8) for the precise meaning of the weighted counting, 
which is the key to relate p-adic integrals to the Weil conjecture. 

Since a suitable version of the Weil conjecture for singular varieties 
has already been proved by Deligne in [2] in terms of the intersection 
cohomologies introduced by Goresky and MacPherson [8], this problem 
is thus reduced to the calculation of local Lefschetz numbers. 

More precisely, one needs to evaluate the p-adic integrals over a sin
gular point and to reconstruct the "constructible complexes of sheaves" 
which it may correspond to. If luckily enough, it is the intersection coho-
mology complexes, then we may get our conclusion again via Deligne's 
theorem. A detailed discussion on this will be continued in a subsequent 
paper. 

5.4. Min imal cohomology . For Theorem B, it is likely that a 
similar argument works for proving that terminal minimal models also 
minimize the second intersection cohomology groups and that they all 
share the same pure Hodge structures. The important injectivity of 
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(f>* : IHt(X) —> IH(Y) needed to conclude (4.4) is now a consequence 
of the so called "decomposition theorem" of projective morphisms. ([2] 
again!) 

An interesting question arising: is the Picard number (or the second 
Betti number) of a non-minimal model always strictly bigger than the 
one attained by the minimal models? 

Mazur raised the following question: can one extract the expected 
"minimal cohomology piece" directly from any smooth model without 
referring to the minimal models? 

5.5. Recent deve lopment . We first notice that the proof of 
Theorem A can be formally separated into three parts: 

1. Geometric situations lead to the conclusion of K-equivalence. This 
is done in Theorem 1.4, or Corollary 1.10. In particular, this 
applies to birational minimal models. 

2. A reasonable integration/measure theory attached to a variety. 
Here we deal with p-adic integrals, or equivalently, the number of 
rational points in the case of smooth varieties. Theorem 3.1 shows 
that K-equivalence implies measure equivalence. In the notation 
used there, E and E' are exactly the Jacobian factor occuring in 
the changing of variables formula from X and X' to Y respectively. 

3. Topological/geometrical interpretation of the integral. In our case, 
this corresponds to Grothendieck-Deligne's solution to the Weil 
conjecture. 

We can then formulate a meta theorem via the above steps by con
sidering more general integrals. 

Recently, based on an idea of Kontsevich, Denef and Loeser [7] has 
constructed a motivic integration on the space of arcs of an algebraic 
variety, which generalizes the p-adic integral. Using this new integration 
theory in step 2 and Deligne's theorem on the existence of functorial 
mixed Hodge structures on compactly supported homologies of algebraic 
varieties in step 3, Theorem A can be strengthened to the statement that 
X and X' also have the same Hodge numbers. Moreover, the usage of 
motivic integration allows much better understanding of the exceptional 
loci. However, like the case of p-adic integrals, the topological meaning 
of the full measure in the singular case is still not well understood. 

After the present work was completed, their preprint [7] and then 
the preprint version of the paper became avaliable in the network. Af
terwards, the above implication was also observed and pointed out to 
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the author by Loeser. Since their construction of motivic integration is 
quite delicate, we will not try to say anything about it here. The inter
ested reader is referred to [7] for the details of this wonderful theory. 
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