VARIATIONS OF THE BOUNDARY GEOMETRY OF 3-DIMENSIONAL HYPERBOLIC CONVEX CORES

FRANCIS BONAHON

Dedicated to D.B.A. Epstein, on his 60th birthday.

Let M be a (connected) hyperbolic 3-manifold, namely a complete 3-dimensional Riemannian manifold of constant curvature -1 , such that the fundamental group $\pi_{1}(M)$ is finitely generated. We exclude the somewhat degenerate case where $\pi_{1}(M)$ has an abelian subgroup of finite index. Then, a fundamental subset of M is its convex core C_{M}, defined as the smallest non-empty closed convex subset of M. The boundary ∂C_{M} of this convex core is a surface of finite topological type, and its geometry was described by W. P. Thurston [17] (see also [8]): The surface ∂C_{M} is almost everywhere totally geodesic, and is bent along a family of disjoint geodesics called its pleating locus. The path metric induced by the metric of M is hyperbolic, and the way ∂C_{M} is bent is completely determined by a certain measured geodesic lamination.

We want to investigate how the geometry of ∂C_{M} varies as we deform the metric of M. For technical reasons, in particular because we do not want the topology of ∂C_{M} to change, we choose to restrict attention to quasi-isometric deformations of M, namely hyperbolic manifolds M^{\prime} for which there exists a diffeomorphism $M \rightarrow M^{\prime}$ whose differential is uniformly bounded. In the language of Kleinian groups, a

[^0]quasi-isometric deformation of M is also equivalent to a quasi-conformal deformation of its holonomy; see [17, §10]. This is not a very strong restriction. For instance, in the conjecturally generic case where M is geometrically finite without cusps, every small deformation of the metric is quasi-isometric. When M is geometrically finite, quasi-isometric deformations of the metric coincide with deformations of the holonomy $\pi_{1}(M) \rightarrow \operatorname{Isom}\left(\mathbb{H}^{3}\right)$ that respect parabolicity [12]. Also, every holomorphic family of hyperbolic manifolds homeomorphic to M consists of quasi-isometric deformations [16].

Let $\mathcal{Q D}(M)$ be the space of quasi-isometric deformations of the metric of M, where we identify two deformations $M \rightarrow M^{\prime}$ and $M \rightarrow M^{\prime \prime}$ when the corresponding pull back metrics on M are isotopic. This space can be parametrized by the space of conformal structures on the domain of discontinuity of M [1], [15], and in particular is a differentiable manifold of dimension $3\left|\chi\left(\partial C_{M}\right)\right|-c$, where $\chi()$ denotes the Euler characteristic, and c is the number of cusps of ∂C_{M}. Given a quasi-isometric deformation M^{\prime}, there is a homeomorphism between ∂C_{M} and $\partial C_{M^{\prime}}$, well defined up to isotopy. Consequently, if we consider the geometry of $\partial C_{M^{\prime}}$, its hyperbolic metric defines an element $\mu\left(M^{\prime}\right)$ of the Teichmüller space $\mathcal{T}\left(\partial C_{M}\right)$, and its bending measured geodesic lamination defines an element $\beta\left(M^{\prime}\right)$ of the space $\mathcal{M L}\left(\partial C_{M}\right)$ of compact measured geodesic laminations on ∂C_{M}; see [17], [6], [8] for a definition of these notions.

Before going any further, we must mention that the definitions have to be adapted in the special case where the convex core C_{M} is a totally geodesic surface, namely when M is Fuchsian or twisted Fuchsian. To keep the correspondence between ∂C_{M} and the domain of discontinuity of M, we define in this case ∂C_{M} as the unit normal bundle of C_{M} in M, namely as the 'two sides' of C_{M} in M, whereas the topological boundary of C_{M} is equal to C_{M}. With this convention, we have as above a prefered (up to isotopy) identification between ∂C_{M} and $\partial C_{M^{\prime}}$ for every quasi-isometric deformation $M \rightarrow M^{\prime}$, and such a deformation again defines a hyperbolic metric $\mu\left(M^{\prime}\right) \in \mathcal{T}\left(\partial C_{M}\right)$ and a bending measured lamination $\beta\left(M^{\prime}\right) \in \mathcal{M L}\left(\partial C_{M}\right)$.

Theorem 1. For every hyperbolic 3-manifold M, the map μ : $\mathcal{Q D}(M) \rightarrow \mathcal{T}\left(\partial C_{M}\right)$, defined by considering the hyperbolic metrics of convex core boundaries, is continuously differentiable.

A simple example in $\S 6$ shows that the map μ is not necessarily twice differentiable.

To prove a similar differentiability property for the map

$$
\beta: \mathcal{Q D}(M) \rightarrow \mathcal{M L}\left(\partial C_{M}\right),
$$

we encounter a conceptual difficulty. Indeed, the space $\mathcal{M L}\left(\partial C_{M}\right)$ does not have a natural differentiable structure. On the other hand, it has a natural structure of piecewise linear manifold of dimension

$$
3\left|\chi\left(\partial C_{M}\right)\right|-c ;
$$

see for instance [17], [14]. In this context, we can use a weak notion of differentiability, namely the existence of a tangent map (see $\S 1$ for a definition).

Theorem 2. The map $\beta: \mathcal{Q D}(M) \rightarrow \mathcal{M L}\left(\partial C_{M}\right)$, defined by considering the bending measured laminations of convex core boundaries, is tangentiable in the sense that it admits a tangent map everywhere.

The tangent map of β plays an important rôle in the variation of the volume of the convex core C_{M}, as one varies the hyperbolic metric; see [5]. A continuity property, in a weak sense, for the maps μ and β was earlier obtained by L. Keen and C. Series [11].

The proof of Theorems 1 and 2 is probably of as much interest as the results themselves. Indeed, these two statements are proved simultaneously, mixing together the differentiable and piecewise linear contexts. In particular, the 'corners' of the piecewise linear structure of $\mathcal{M L}\left(\partial C_{M}\right)$ account for the fact that the map μ is not C^{2}.

The proof goes as follows. First of all, we can restrict attention to the case where M is orientable. Indeed, if \widehat{M} is its orientation covering, the spaces $\mathcal{Q D}(M), \mathcal{T}\left(\partial C_{M}\right)$ and $\mathcal{M} \mathcal{L}\left(\partial C_{M}\right)$ are submanifolds (in the appropriate category) of $\mathcal{Q D}(\widehat{M}), \mathcal{T}\left(\partial C_{\widehat{M}}\right)$ and $\mathcal{M L}\left(\partial C_{\widehat{M}}\right)$, respectively, and the maps μ, β for M are just the restrictions of the corresponding maps for \overparen{M}. Consequently, we will henceforth assume that M is orientable.

Let S_{1}, \ldots, S_{n} be the components of ∂C_{M}. For each i, let $\mathcal{R}\left(S_{i}\right)$ denote the space of representations $\pi_{1}\left(S_{i}\right) \rightarrow$ Isom $^{+}\left(\mathbb{H}^{3}\right)$ sending the fundamental group of each end of S_{i} to a parabolic subgroup of Isom ${ }^{+}\left(\mathbb{H}^{3}\right)$, where $\mathrm{Isom}^{+}\left(\mathbb{H}^{3}\right)$ denotes the group of orientation-preserving isometries of the hyperbolic 3 -space \mathbb{H}^{3}, and these representations are considered modulo conjugation by elements of Isom ${ }^{+}\left(\mathbb{H}^{3}\right)$. Let $\mathcal{R}\left(\partial C_{M}\right)$ denote the product $\prod_{i=1}^{n} \mathcal{R}\left(S_{i}\right)$. Restricting the holonomy of a quasiisometric deformation to the components of ∂C_{M}, we get a map R :
$\mathcal{Q D}(M) \rightarrow \mathcal{R}\left(\partial C_{M}\right)$. The image of R is in the non-singular part of $\mathcal{R}\left(\partial C_{M}\right)$, and R is differentiable. See for instance [7], and [12], [1].

If we are given a finite area hyperbolic metric and a compactly supported measured geodesic lamination on the surface S_{i}, we can always realize these in a unique way as the pull back metric and the bending measured lamination of a pleated surface $f=(\tilde{f}, \rho)$, where $\rho \in \mathcal{R}\left(S_{i}\right)$ is not necessarily discrete, and $\widetilde{f}: \widetilde{S}_{i} \rightarrow \mathbb{H}^{3}$ is a ρ equivariant pleated surface from the universal covering of S_{i} into \mathbb{H}^{3}; see [8], [10], [4]. By considering the corresponding representations, this defines a map $\varphi: \mathcal{T}\left(\partial C_{M}\right) \times \mathcal{M L}\left(\partial C_{M}\right) \rightarrow \mathcal{R}\left(\partial C_{M}\right)$. Thurston showed that φ is a local homeomorphism, by establishing a correspondence between $\mathcal{T}\left(\partial C_{M}\right) \times \mathcal{M L}\left(\partial C_{M}\right)$ and the space of complex projective structures on ∂C_{M}; see [10], and see [9] for a description of the image of φ. In particular, there is a local inverse φ^{-1} defined near the point of $\mathcal{R}\left(\partial C_{M}\right)$ corresponding to the original metric of M. Then, near that metric, the product $\mu \times \beta: \mathcal{Q D}(M) \rightarrow \mathcal{T}\left(\partial C_{M}\right) \times \mathcal{M} \mathcal{L}\left(\partial C_{M}\right)$ coincides with the composition $\varphi^{-1} \circ R$.

The main technical step in the proof of Theorems 1 and 2 is to show that the map φ is tangentiable, and that its tangent map is everywhere injective. This is done in $\S \S 2-3$, by locally comparing φ to the parametrization of $\mathcal{R}\left(\partial C_{M}\right)$ by shear-bend coordinates developed in [4]. The crucial technical step here is the growth estimate provided by Lemma 7. Then, an easy inverse function theorem (Lemma 4 in $\S 1$) shows that the local inverse φ^{-1} is tangentiable. Since $\mu \times \beta=\varphi^{-1} \circ R$ and R is differentiable, it follows that μ and β are tangentiable. In addition, the proof gives that the tangent map of μ is linear, so that μ is differentiable in the usual sense. Continuity properties for the differential of μ follow from the computation of this differential, and are proved in $\S 5$.

As a by-product of the proof, we obtain the following result for the space of complex projective structures on a connected surface S of finite type (without boundary). A complex projective structure on S is an atlas modelling S over open subsets of the complex projective line $\mathbb{C P}^{1}$, where all changes of charts extend to elements of the projective group $\mathrm{PSL}_{2}(\mathbb{C})$, and the atlas is maximal for this property. Let $\mathcal{P}(S)$ be the space of isotopy classes of complex projective structures on S which are of cusp type near the ends of S. When $\chi(S)<0$, Thurston defined a homeomorphism $\psi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{P}(S)$, by associating to each complex projective structure a locally convex pleated surface; see [10] for
an exposition. Because geometric structures are locally parametrized by deformations of their monodromy, the monodromy map $\mathcal{P}(S) \rightarrow \mathcal{R}(S)$ is a local diffeomorphism. Our proof that

$$
\varphi: \mathcal{T}\left(\partial C_{M}\right) \times \mathcal{M L}\left(\partial C_{M}\right) \rightarrow \mathcal{R}\left(\partial C_{M}\right)
$$

and its local inverses are tangentiable immediately gives:
Theorem 3. The Thurston homeomorphism

$$
\psi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{P}(S)
$$

and its inverse are tangentiable.
Again, if we compose ψ^{-1} with the projection

$$
\mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{T}(S)
$$

the map $\mathcal{P}(S) \rightarrow \mathcal{T}(S)$ so obtained is C^{1} but not C^{2}.

Acknowledgements

Parts of this article were written while the author was visiting the University of California at Berkeley, the Centre Émile Borel and the Institut des Hautes Études Scientifiques. He would like to thank these institutions for their beneficial hospitality. He is also grateful to Mike Wolf for pointing out to him the reference [10].

1. Tangent maps

Given a map $\varphi: U \rightarrow \mathbb{R}^{p}$ defined on an open subset U of \mathbb{R}^{n}, its tangent map at $x \in U$ is, if it exists, the map $T_{x} \varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ such that one of the following equivalent conditions holds:
(i) $T_{x} \varphi(v)=\lim _{t \rightarrow 0^{+}}(\varphi(x+t v)-\varphi(x)) / t$, uniformly in v on compact subsets of \mathbb{R}^{n};
(ii) for every continuous curve $\gamma:[0, \varepsilon[\rightarrow U$ with $\gamma(0)=x$ and $\gamma^{\prime}(0)=v, T_{x} \varphi(v)=(\varphi \circ \gamma)^{\prime}(0)$.
(iii) for every sequence of points $x_{n} \in \mathbb{R}^{n}$ and numbers $t_{n}>0$ such that $\lim _{n \rightarrow \infty} t_{n}=0$ and $\lim _{n \rightarrow \infty}\left(x_{n}-x\right) / t_{n}=v, \quad T_{x} \varphi(v)=$ $\lim _{n \rightarrow \infty}\left(\varphi\left(x_{n}\right)-\varphi(x)\right) / t_{n}$ (a discrete version of (ii)).

The equivalence of these three conditions is an easy exercise. The tangent map $T_{x} \varphi$ is continuous and positive homogeneous of degree 1 (namely $T_{x} \varphi(a v)=a T_{x} \varphi(v)$ for every $v \in \mathbb{R}^{n}$ and $a \geqslant 0$), but not necessarily linear. We will say that φ is tangentiable if it admits a tangent map at each $x \in U$.

A tangentiable structure on a topological manifold is a maximal atlas where all changes of charts are tangentiable. Examples of such tangentiable manifolds include differentiable manifolds, piecewise linear manifolds and products of these, as we will encounter in this paper. By the usual tricks, we can define a space $T_{x} M$ of tangent vectors at each point x of a tangentiable manifold M. This tangent space $T_{x} M$ is not necessarily a vector space, although it admits a law of multiplication by non-negative numbers. There is also a notion of tangentiable map between tangentiable manifolds, defined using charts, and such a tangentiable map $\varphi: M \rightarrow N$ induces a tangent $\operatorname{map} T_{x} \varphi: T_{x} M \rightarrow T_{\varphi(x)} N$ for every $x \in M$.

Lemma 4. Let $\varphi: M \rightarrow N$ be a homeomorphism between two tangentiable manifolds. Assume that φ admits a tangent map at $x \in M$, and that this tangent map $T_{x} \varphi: T_{x} M \rightarrow T_{\varphi(x)} N$ is injective. Then, the inverse φ^{-1} admits a tangent map at $\varphi(x)$, and $T_{\varphi(x)} \varphi^{-1}=\left(T_{x} \varphi\right)^{-1}$.

Proof. Because φ is a homeomorphism, $T_{x} \varphi$ is surjective by a degree argument. The fact that $T_{\varphi(x)} \varphi^{-1}=\left(T_{x} \varphi\right)^{-1}$ easily follows by taking appropriate subsequences in Definition (iii) of tangentiability. q.e.d.

2. Proof that $\varphi: \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S) \rightarrow \mathcal{R}(S)$ is tangentiable

Let S be a connected oriented surface of finite topological type and negative Euler characteristic. Given a finite area hyperbolic metric m and a compactly supported measured geodesic lamination b on S, there is a unique locally convex pleated surface $f=(\widetilde{f}, \rho)$ whose pull back metric is equal to m and whose bending measured lamination is equal to b; see [8], [10], [4]. This defines a map $\varphi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow$ $\mathcal{R}(S)$. This bending map φ is also the composition of the Thurston parametrization $\psi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{P}(S)$ with the holonomy map $\mathcal{P}(S) \rightarrow \mathcal{R}(S)$. Because ψ and the monodromy map $\mathcal{P}(S) \rightarrow \mathcal{R}(S)$ are local homeomorphisms, so is φ.

In [4], we developed another local parametrization of $\mathcal{R}(S)$ which similarly uses pleated surfaces. Fix a compact geodesic lamination λ on S. If $f=(\tilde{f}, \rho)$ is a pleated surface with pleating locus λ, the
amount by which f bends along λ is measured by a transverse finitely additive measure for λ, valued in $\mathbb{R} / 2 \pi \mathbb{Z}$. We call such a transverse finitely additive measure an $\mathbb{R} / 2 \pi \mathbb{Z}$-valued transverse cocycle for λ. In general, this bending transverse cocycle is not a transverse (countably additive) measure, unless the pleated surface is locally convex, namely always bends in the same direction. Let $\mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z})$ denote the space of all $\mathbb{R} / 2 \pi \mathbb{Z}$-valued transverse cocycles for λ.

Given $m \in \mathcal{T}(S)$ and $b \in \mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z})$, there is a unique pleated surface $f=(\widetilde{f}, \rho)$ with pleating locus λ, pull back metric m and bending transverse cocycle b. This defines a differentiable map φ_{λ} : $\mathcal{T}(S) \times \mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z}) \rightarrow \mathcal{R}(S)$. If, in addition, λ is maximal among all compact geodesic laminations (this is equivalent to say that each component of $S-\lambda$ is, either an infinite triangle, or an annulus leading to a cusp and with exactly one spike in its boundary), then φ_{λ} is a local diffeomorphism; see [4].

Transverse cocycles occurred in a different context in [3]. The piecewise linear structure of $\mathcal{M L}(S)$ defines a space of tangent vectors at each of its points, as in §1. In [3], we gave an interpretation of these combinatorial tangent vectors at $a \in \mathcal{M L}(S)$ as geodesic laminations containing the support of a and endowed with transverse \mathbb{R}-valued cocycles. In this context, Proposition 5 below connects the infinitesimal properties of the maps $\varphi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{R}(S)$ and $\varphi_{\lambda}: \mathcal{T}(S) \times \mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z}) \rightarrow$ $\mathcal{R}(S)$.

Before stating this result, it is convenient to introduce the following notation. We will often have to consider the right derivatives at $t=0$ of various quantities a_{t} defined for $t \in[0, \varepsilon[$, with $\varepsilon>0$. We will denote such a right derivative $d a_{t} / d t_{\mid t=0}^{+}$by \dot{a}_{0}.

Proposition 5. Let the 1-parameter families $m_{t} \in \mathcal{T}(S)$ and $b_{t} \in \mathcal{M L}(S), t \in\left[0, \varepsilon\left[\right.\right.$, admit tangent vectors \dot{m}_{0} and \dot{b}_{0} at $t=0$, respectively, and let $\rho_{t}=\varphi\left(m_{t}, b_{t}\right) \in \mathcal{R}(S)$. Interpret \dot{b}_{0} as a geodesic lamination with a transverse \mathbb{R}-valued cocycle, and choose a maximal geodesic lamination λ which contains the supports of b_{0} and \dot{b}_{0}. In particular, b_{0} and \dot{b}_{0} can both be considered as elements of $\mathcal{H}(\lambda ; \mathbb{R})$, and $\rho_{0}=\varphi_{\lambda}\left(m_{0}, \bar{b}_{0}\right)$ where $\bar{b}_{0} \in \mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z})$ is the reduction of b_{0} modulo 2π. Then, the family ρ_{t} admits a tangent vector $\dot{\rho}_{0}$ at $t=0^{+}$and $\dot{\rho}_{0}=T_{\left(m_{0}, \bar{b}_{0}\right)} \varphi_{\lambda}\left(\dot{m}_{0}, \dot{b}_{0}\right)$.

The tangent space $T_{b_{0}} \mathcal{M} \mathcal{L}(S)$ admits a decomposition into linear faces. Each face is associated to a geodesic lamination λ containing the support of b_{0}, and the tangent vectors in this face correspond to (some)
transverse cocycles in $\mathcal{H}(\lambda ; \mathbb{R})$; see [3, §5]. Proposition 5 immediately implies the following corollary.

Corollary 6. The $\operatorname{map} \varphi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{R}(S)$ is tangentiable at each $\left(m_{0}, b_{0}\right)$. In addition, if λ is a maximal geodesic lamination containing the support of b_{0}, and $\bar{b}_{0} \in \mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z})$ denotes the reduction of b_{0} modulo 2π, then the tangent map $T_{\left(m_{0}, b_{0}\right)} \varphi$ coincides with $T_{\left(m_{0}, \bar{b}_{0}\right)} \varphi_{\lambda}$ on the product of $T_{m_{0}} \mathcal{T}(S)$ and the face of $T_{b_{0}} \mathcal{M L}(S)$ associated to λ.

Proof of Proposition 5. Consider the transverse cocycle $b_{t}^{\prime}=$ $b_{0}+t \dot{b}_{0} \in \mathcal{H}(\lambda ; \mathbb{R})$ and its reduction $\bar{b}_{t}^{\prime} \in \mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z})$ modulo 2π. Let $\rho_{t}^{\prime}=\varphi_{\lambda}\left(m_{t}, \bar{b}_{t}^{\prime}\right) \in \mathcal{R}(S)$. Because $\dot{b}_{0}^{\prime}=\dot{b}_{0}$ and φ_{λ} is a differentiable map, the curve $t \mapsto \rho_{t}^{\prime}$ admits a tangent vector $\dot{\rho}_{0}^{\prime}=T_{\left(m_{0}, \bar{b}_{0}\right)} \varphi_{\lambda}\left(\dot{m}_{0}, \dot{b}_{0}\right)$ at $t=0$. We will compare the two curves $t \mapsto \rho_{t}$ and $t \mapsto \rho_{t}^{\prime}$ in $\mathcal{R}(S)$, and show that they are tangent at $t=0$.

We first make the additional assumption that, for the Hausdorff topology, the geodesic lamination λ_{t} underlying b_{t} converges to some sublamination of λ as t tends to 0^{+}. We will later indicate how to obtain the general case from this one.

Let $f_{t}=\left(\widetilde{f_{t}}, \rho_{t}\right)$ be the locally convex pleated surface with pull back metric m_{t} and bending measured lamination b_{t}. Similarly, let $f_{t}^{\prime}=\left(\tilde{f}_{t}^{\prime}, \rho_{t}^{\prime}\right)$ be the pleated surface with pull back metric m_{t}, pleating locus λ, and bending transverse cocycle \bar{b}_{t}^{\prime}. In the universal covering \widetilde{S}, consider the preimage $\widetilde{\lambda}$ of λ.

So far, the metric m_{t} was defined only up to isotopy of S, and $\tilde{f_{t}}$, $\rho_{t}, \widetilde{f_{t}^{\prime}}$ and ρ_{t}^{\prime} were only defined up to conjugacy by isometries of \mathbb{H}^{3}. We can normalize these so that the metric $m_{t} \mathrm{C}^{\infty}$-converges to m_{0} and so that, for a choice of a base point $\widetilde{x}_{0} \in \widetilde{S}-\widetilde{\lambda}$ and of a base frame at \widetilde{x}_{0}, $\widetilde{f_{t}}$ and $\widetilde{f_{t}^{\prime}}$ coincide with $\widetilde{f_{0}}$ at these base point and frame.

To show that the two curves $t \mapsto \rho_{t}$ and $t \mapsto \rho_{t}^{\prime}$ are tangent at $t=0$ in $\mathcal{R}(S)$, it suffices to show that, for each $\xi \in \pi_{1}(S)$, the curves $t \mapsto \rho_{t}(\xi)$ and $t \mapsto \rho_{t}^{\prime}(\xi)$ are tangent at $t=0$ in $\mathrm{Isom}^{+}\left(\mathbb{H}^{3}\right)$. For this, we first have to remind the reader of the construction of $\left(\widetilde{f}_{t}, \rho_{t}\right)$ and $\left(\widetilde{f_{t}^{\prime}}, \rho_{t}^{\prime}\right)$.

We begin with the totally geodesic (un-)pleated surface ($\widetilde{f}_{t}^{\prime \prime}, \rho_{t}^{\prime \prime}$) with pull back metric m_{t} and bending measured lamination 0 , normalized so that $\widetilde{f}_{t}^{\prime \prime}$ coincides with \widetilde{f}_{0} at the base frame in \widetilde{S}. To fix ideas, we can arrange that $\widetilde{f_{t}^{\prime \prime}}(\widetilde{S})=\mathbb{H}^{2} \subset \mathbb{H}^{3}$. Choose as base point x_{0} for the fundamental group $\pi_{1}(S)=\pi_{1}\left(S ; x_{0}\right)$ the image of the base point $\widetilde{x}_{0} \in \widetilde{S}$. Let \widetilde{c} be the m_{0}-geodesic arc in \widetilde{S} going from \widetilde{x}_{0} to $\xi \widetilde{x}_{0}$, so
that the projection of \widetilde{c} to S represents $\xi \in \pi_{1}\left(S ; x_{0}\right)$. Then, $\rho_{t}(\xi)$ and $\rho_{t}^{\prime}(\xi)$ are defined by composition of $\rho_{t}^{\prime \prime}(\xi)$ with rotations around certain geodesics of $\mathbb{H}^{2} \subset \mathbb{H}^{3}$ that are determined by ξ, λ, and b_{t}.

Let $U \subset S$ be a train track neighborhood carrying λ, or more precisely carrying the m_{0}-geodesic lamination corresponding to λ. We can choose U sufficiently small so that, if \widetilde{U} is its preimage in \widetilde{S}, each component of $\widetilde{\boldsymbol{c}} \cap \widetilde{U}$ is an arc contained in a single edge of \widetilde{U}. Because of our assumption that the m_{0}-geodesic lamination underlying b_{t} converges to some sublamination of λ, U will also carry this lamination for t sufficiently small. Finally, since the metric m_{t} converges to m_{0}, the m_{t}-geodesic representative of the geodesic lamination underlying b_{t} will also be carried by U for t sufficiently small.

For $r \geqslant 0$, let Γ_{r} be the set of all edge paths of length $2 r+1$ in \widetilde{U} that are centered on an edge meeting \tilde{c}. We can partially order the elements of Γ_{r} from \widetilde{x}_{0} to $\xi \widetilde{x}_{0}$ as follows. For two edge paths γ, γ^{\prime} centered at different edges of $\widetilde{U}, \gamma \prec \gamma^{\prime}$ precisely when the central edge of γ cuts \widetilde{c} closer to \widetilde{x}_{0} than the central edge of γ^{\prime}. Two edge paths γ, γ^{\prime} with the same central edge e follow a common edge path and diverge at 1 or 2 switches; then $\gamma \prec \gamma^{\prime}$ precisely when γ diverges always on the side of γ^{\prime} which contains the point of $e \cap \widetilde{\boldsymbol{c}}$ that is closest to \widetilde{x}_{0}. Neither $\gamma \prec \gamma^{\prime}$ nor $\gamma^{\prime} \prec \gamma$ holds when γ and γ^{\prime} have the same central edge and diverge on opposite sides.

To each edge path γ of \widetilde{U}, the transverse measure of b_{t} associates a number $b_{t}(\gamma) \geqslant 0$, namely the b_{t}-mass of the set of those geodesics realizing γ (whether we consider $m_{t^{-}}$or m_{0}-geodesics does not matter here because the m_{0}-geodesic lamination and m_{t}-geodesic lamination underlying b_{t} are both carried by U). This $b_{t}(\gamma)$ is a piecewise linear function of $b_{t} \in \mathcal{M L}(S)$, and the fact that $t \mapsto b_{t}$ admits a tangent vector at $t=0^{+}$is equivalent to the property that $t \mapsto b_{t}(\gamma)$ admits a right derivative $\dot{b}_{0}(\gamma)$ for every edge path γ. The transverse cocycle b_{t}^{\prime} similarly associates to γ a number $b_{t}^{\prime}(\gamma)$ which, in our case, is equal to $b_{0}(\gamma)+t \dot{b}_{0}(\gamma)$. See [2], [3].

List all the elements of Γ_{r} as $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ in a way which is compatible with the partial order \prec, namely so that $i<j$ whenever $\gamma_{i} \prec \gamma_{j}$. For each γ_{i}, let g_{i}^{t} be the geodesic of $\mathbb{H}^{2} \subset \mathbb{H}^{3}$ image under $\tilde{f}_{t}^{\prime \prime}: \widetilde{S} \rightarrow \mathbb{H}^{2} \subset \mathbb{H}^{3}$ of an m_{t} geodesic of \widetilde{S} that is carried by \widetilde{U} and realizes γ_{i}. Such a geodesic may not exist for every γ_{i}, but it will definitely exist if at least one of $b_{t}\left(\gamma_{i}\right)$ or $b_{t}^{\prime}\left(\gamma_{i}\right)$ is non-zero (for instance, a leaf of the $m_{t^{-}}$geodesic lamination underlying b_{t} if $b_{t}\left(\gamma_{i}\right) \neq 0$, or a leaf
of the $m_{t^{-}}$geodesic lamination corresponding to λ if $b_{t}^{\prime}\left(\gamma_{i}\right) \neq 0$), which is exactly the case in which we need it. Then,

$$
\begin{equation*}
\rho_{t}(\xi)=\lim _{r \rightarrow \infty} R_{g_{1}^{t}}^{b_{t}\left(\gamma_{1}\right)} R_{g_{2}^{t}}^{b_{t}\left(\gamma_{2}\right)} \ldots R_{g_{p}^{t}}^{b_{t}\left(\gamma_{p}\right)} \rho_{t}^{\prime \prime}(\xi) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{t}^{\prime}(\xi)=\lim _{r \rightarrow \infty} R_{g_{1}^{\prime}}^{b_{t}^{\prime}\left(\gamma_{1}\right)} R_{g_{2}^{t}}^{b_{t}^{\prime}\left(\gamma_{2}\right)} \ldots R_{g_{p}^{t}}^{b_{t}^{\prime}\left(\gamma_{p}\right)} \rho_{t}^{\prime \prime}(\xi) . \tag{2}
\end{equation*}
$$

where $R_{g}^{b} \in$ Isom $^{+}\left(\mathbb{H}^{3}\right)$ denotes the hyperbolic rotation of angle $b \in$ $\mathbb{R} / 2 \pi \mathbb{Z}$ around the oriented geodesic g, and the g_{i}^{t} are oriented to the left as seen from the base point $\widetilde{f}_{0}\left(\widetilde{x}_{0}\right)$ in \mathbb{H}^{2}. Compare $[8, \S 3]$ for the case of transverse measures, and see $[4, \S 5]$ for the more general case of transverse cocycles, where the convergence is much more subtle.

Identify the isometry group $\operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)$ with some matrix group, for instance SO $(3,1)$, and endow the corresponding space of matrices with any of the classical norms $\|\|$ such that $\| A B\|\leqslant\| A\|\|B\|$.

We can write the difference $\rho_{t}(\xi)-\rho_{t}^{\prime}(\xi)$ as

$$
\rho_{t}(\xi)-\rho_{t}^{\prime}(\xi)=\lim _{r \rightarrow \infty} A_{r}^{t}-B_{r}^{t}=\lim _{r \rightarrow \infty} C_{r}^{t},
$$

where

$$
\begin{aligned}
& A_{r}^{t}=R_{g_{1}^{t}}^{b_{t}\left(\gamma_{1}\right)} R_{g_{2}^{t}}^{b_{t}\left(\gamma_{2}\right)} \ldots R_{g_{p}^{t}}^{b_{t}\left(\gamma_{p}\right)} \rho_{t}^{\prime \prime}(\xi), \\
& B_{r}^{t}=R_{g_{1}^{t}}^{b_{t}^{\prime}\left(\gamma_{1}\right)} R_{g_{2}^{t}}^{b_{t}^{\prime}\left(\gamma_{2}\right)} \ldots R_{g_{p}^{t}}^{b_{t}^{\prime}\left(\gamma_{p}\right)} \rho_{t}^{\prime \prime}(\xi),
\end{aligned}
$$

and $C_{r}^{t}=A_{r}^{t}-B_{r}^{t}$.
The following growth estimate is the technical key to the proof of Proposition 5.

Lemma 7. There is a number $A>0$ such that

$$
C_{r+1}^{t}-C_{r}^{t}=t O\left(e^{-A r}\left\|\dot{b}_{0}\right\|_{U}\right)
$$

and

$$
\rho_{t}(\xi)-\rho_{t}^{\prime}(\xi)=C_{r}^{t}+t O\left(e^{-A r}\left\|\dot{b}_{0}\right\|_{U}\right),
$$

where $\left\|\dot{b}_{0}\right\|_{U}$ denote the maximum of $\left|\dot{b}_{0}(e)\right|$ as e ranges over all edges of U, and A and the constants hidden in the symbols $O()$ are independent of r and t.

Proof of Lemma 7. List the edge paths of Γ_{r+1} as $\delta_{1}, \ldots, \delta_{q}$, where the indexing is chosen to be compatible with the partial order \prec. There
is a natural map $\sigma: \Gamma_{r+1} \rightarrow \Gamma_{r}$, where $\sigma\left(\delta_{i}\right)$ is defined by chopping off the two end edges of δ_{i}. This map respects \prec in the sense that, if $\delta \prec \delta^{\prime}$, then $\sigma(\delta) \prec \sigma\left(\delta^{\prime}\right)$ or $\sigma(\delta)=\sigma\left(\delta^{\prime}\right)$. We can therefore choose the indexing so that, for every j, the set of those indices i for which $\sigma\left(\delta_{i}\right)=\gamma_{j}$ is of the form $k, k+1, \ldots, k+l$. We will also denote by σ the $\operatorname{map}\{1, \ldots, q\} \rightarrow\{1, \ldots, p\}$ defined by $\sigma\left(\delta_{i}\right)=\gamma_{\sigma(i)}$.

For each δ_{i}, let h_{i}^{t} be the image under $\widetilde{f_{t}^{\prime \prime}}: \widetilde{S} \rightarrow \mathbb{H}^{2} \subset \mathbb{H}^{3}$ of an $m_{t^{-}}$geodesic of \widetilde{S} that is carried by \widetilde{U} and realizes δ_{i}, if such a geodesic exists. Then,

$$
A_{r+1}^{t}=R_{h_{1}^{t}}^{b_{t}\left(\delta_{1}\right)} R_{h_{2}^{t}}^{b_{t}\left(\delta_{2}\right)} \ldots R_{h_{q}^{t}}^{b_{t}\left(\delta_{q}\right)} \rho_{t}^{\prime \prime}(\xi) .
$$

Noting that $b_{t}\left(\gamma_{j}\right)=\sum_{\sigma(i)=j} b_{t}\left(\delta_{i}\right)$, we can rewrite A_{r}^{t} as

$$
A_{r}^{t}=R_{g_{\sigma(1)}^{t}}^{b_{t}\left(\delta_{1}\right)} R_{g_{\sigma(2)}^{t}}^{b_{t}\left(\delta_{2}\right)} \ldots R_{g_{\sigma(q)}^{*}}^{b_{t}\left(\delta_{q}\right)} \rho_{t}^{\prime \prime}(\xi)
$$

We conclude that

$$
\begin{aligned}
& A_{r+1}^{t}-A_{r}^{t} \\
& \quad=\sum_{i=1}^{q} R_{h_{1}^{t}}^{b_{t}\left(\delta_{1}\right)} \ldots R_{h_{i-1}^{t}}^{b_{t}\left(\delta_{i-1}\right)}\left(R_{h_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}^{t}}^{b_{t}\left(\delta_{i}\right)}\right) R_{g_{\sigma(i+1)}^{t}}^{b_{t}\left(\delta_{i+1}\right)} \ldots R_{g_{\sigma(q)}^{t}}^{b_{t}\left(\delta_{q}\right)} \rho_{t}^{\prime \prime}(\xi) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& B_{r+1}^{t}-B_{r}^{t} \\
& \quad=\sum_{i=1}^{q} R_{h_{1}^{t}}^{b_{t}^{\prime}\left(\delta_{1}\right)} \ldots R_{h_{i-1}^{t}}^{b_{t}^{t}\left(\delta_{i-1}\right)}\left(R_{h_{i}^{t}}^{b_{t}^{\prime}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}^{t}}^{b_{t}^{\prime}\left(\delta_{i}\right)}\right) R_{g_{\sigma(i+1)}^{t}}^{b_{t}^{\prime}\left(\delta_{i+1}\right)} \ldots R_{g_{\sigma(q)}^{b_{t}^{\prime}}\left(\delta_{q}\right)}^{\rho_{t}^{\prime \prime}}(\xi) .
\end{aligned}
$$

It follows that $C_{r+1}^{t}-C_{r}^{t}=\left(A_{r+1}^{t}-A_{r}^{t}\right)-\left(B_{r+1}^{t}-B_{r}^{t}\right)$ can be written as a sum of q^{2} terms, each of the form

$$
\begin{align*}
& R_{h_{1}^{t}}^{b_{t}\left(\delta_{1}\right)} \ldots R_{h_{i-1}^{t}}^{b_{t}\left(\delta_{i-1}\right)}\left(R_{h_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}^{t}}^{b_{t}\left(\delta_{i}\right)}\right) R_{g_{\sigma(i+1)}^{t}}^{b_{t}\left(\delta_{i+1}\right)} \cdots \\
& \ldots R_{g_{\sigma(j-1)}^{t}}^{b_{t}\left(\delta_{j-1}\right)}\left(R_{g_{\sigma(j)}^{t}}^{b_{t}\left(\delta_{j}\right)}-R_{g_{\sigma(j)}^{t}}^{b_{t}^{\prime}\left(\delta_{j}\right)}\right) R_{g_{\sigma(j+1)}^{t}}^{b_{t}^{\prime}\left(\delta_{j+1}\right)} \ldots R_{g_{\sigma(q)}^{t}}^{b_{t}^{\prime}\left(\delta_{q}\right)} \rho_{t}^{\prime \prime}(\xi), \tag{3}
\end{align*}
$$

$$
\begin{align*}
& R_{h_{1}^{t}}^{b_{t}\left(\delta_{1}\right)} \ldots R_{h_{i-1}^{t}}^{b_{t}\left(\delta_{i-1}\right)}\left(\left(R_{h_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}}^{b_{t}\left(\delta_{i}\right)}\right)\right. \tag{4}\\
& \left.\quad-\left(R_{h_{i}^{t}}^{b_{t}^{\prime}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}^{\prime}}^{b_{t}^{\prime}\left(\delta_{i}\right)}\right)\right) R_{g_{\sigma(i+1)}^{b_{t}^{\prime}\left(\delta_{i+1}\right)}}^{\ldots} \ldots R_{g_{\sigma(q)}^{t}}^{b_{t}^{\prime}\left(\delta_{q}\right)} \rho_{t}^{\prime \prime}(\xi)
\end{align*}
$$

or

$$
\begin{align*}
R_{h_{1}^{t}}^{b_{t}\left(\delta_{1}\right)} \ldots R_{h_{j-1}^{t}}^{b_{t}\left(\delta_{j-1}\right)} & \left(R_{h_{j}^{t}}^{b_{t}\left(\delta_{j}\right)}-R_{h_{j}^{t}}^{b_{t}^{\prime}\left(\delta_{j}\right)}\right) R_{h_{j+1}^{t}}^{b_{t}^{\prime}\left(\delta_{j+1}\right)} \ldots \tag{5}\\
& \ldots R_{h_{i-1}^{t}}^{b_{t}^{\prime}\left(\delta_{i-1}\right)}\left(R_{h_{i}^{t}}^{b_{t}^{\prime}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}^{t}}^{b_{t}^{\prime}\left(\delta_{i}\right)}\right) R_{g_{\sigma(i+1)}^{t}}^{b_{t}^{\prime}\left(\delta_{i+1}\right)} \ldots R_{g_{\sigma(q)}^{t}}^{b_{t}^{\prime}\left(\delta_{q}\right)} \rho_{t}^{\prime \prime}(\xi) .
\end{align*}
$$

To bound these terms, we will use the following estimate.
Lemma 8. Let $A_{1}, A_{2}, \ldots, A_{n}$ be square matrices, and let the number R bound the norm of all products $A_{i_{1}} A_{i_{2}} \ldots A_{i_{p}}$ with $1 \leqslant i_{1}<$ $i_{2}<\cdots<i_{p} \leqslant n$. Then, for every matrices $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$,

$$
\left\|\left(A_{1}+\varepsilon_{1}\right)\left(A_{2}+\varepsilon_{2}\right) \ldots\left(A_{n}+\varepsilon_{n}\right)-A_{1} A_{2} \ldots A_{n}\right\| \leqslant R\left(e^{n R E}-1\right)
$$

where $E=\max _{i}\left\|\varepsilon_{i}\right\|$.
Proof. If we expand $\left(A_{1}+\varepsilon_{1}\right)\left(A_{2}+\varepsilon_{2}\right) \ldots\left(A_{n}+\varepsilon_{n}\right)-A_{1} A_{2} \ldots A_{n}$, each term in the expansion is the product of k terms ε_{i} and $k+1$ terms $A_{i_{1}} A_{i_{2}} \ldots A_{i_{s}}$ with $1 \leqslant i_{1}<i_{2}<\cdots<i_{s} \leqslant n$, for some k between 1 and n. In addition, the number of terms with k such ε_{i} is equal to the binomial coefficient $\binom{n}{k}$. It follows that

$$
\begin{aligned}
\left\|\left(A_{1}+\varepsilon_{1}\right)\left(A_{2}+\varepsilon_{2}\right) \ldots\left(A_{n}+\varepsilon_{n}\right)-A_{1} A_{2} \ldots A_{n}\right\| & \leqslant R\left((1+R E)^{n}-1\right) \\
& \leqslant R\left(e^{n R E}-1\right)
\end{aligned}
$$

q.e.d.

Lemma 9. In the expressions (3) to (5), the subterms of the form $R_{h_{k}^{t}}^{b_{t}\left(\delta_{k}\right)} \ldots R_{h_{l}^{t}}^{b_{t}\left(\delta_{l}\right)}, R_{h_{k}^{t}}^{b_{t}^{\prime}\left(\delta_{k}\right)} \ldots R_{h_{l}^{t}}^{b_{t}^{\prime}\left(\delta_{l}\right)}, R_{g_{\sigma(k)}^{t}}^{b_{t}\left(\delta_{k}\right)} \ldots R_{g_{\sigma(l)}^{t}}^{b_{t}\left(\delta_{l}\right)}$, or $R_{g_{\sigma(k)}^{t}}^{b_{t}^{\prime}\left(\delta_{k}\right)} \ldots R_{g_{\sigma(l)}^{t}}^{b_{t}^{\prime}\left(\delta_{l}\right)}$ are uniformly bounded (independent of r and t).

Proof. For every i with $b_{t}\left(\delta_{i}\right) \neq 0$, there is a leaf of the $m_{t^{-}}$ geodesic lamination underlying b_{t} which realizes δ_{i}, and we can consider its image \bar{h}_{i}^{t} under $\tilde{f}_{t}^{\prime \prime}$. The main property we need is that the \bar{h}_{i}^{t} are pairwise disjoint which, because the ordering of the δ_{i} is compatible with \prec, guarantees that \bar{h}_{i}^{t} meets $\widetilde{f}_{t}^{\prime \prime}(\widetilde{c})$ closer to $\widetilde{f}_{t}^{\prime \prime}\left(\widetilde{x}_{0}\right)$ than $\bar{h}_{i^{\prime}}^{t}$ if $i<i^{\prime}$. For $i_{1}<i_{2}<\cdots<i_{p}$ with all $b_{t}\left(\delta_{i_{j}}\right) \neq 0$, consider $R_{\bar{h}_{i_{1}}^{t}}^{b_{t}\left(\delta_{i_{1}}\right)} \ldots R_{\bar{h}_{i_{p}}^{t}}^{b_{t}\left(\delta_{i_{p}}\right)}$. Because of the ordering of the intersections $\bar{h}_{i}^{t} \cap \widetilde{f}_{t}^{\prime \prime}(\widetilde{c})$, the point $R_{\bar{h}_{i_{1}}^{t}}^{b_{t}\left(\delta_{i_{1}}\right)} \ldots R_{\bar{h}_{i_{p}}^{t}}^{b_{t}\left(\delta_{i_{p}}\right)} \widetilde{f}_{t}^{\prime \prime}\left(\xi \widetilde{x}_{0}\right)$ can be connected to $\widetilde{f}_{t}^{\prime \prime}\left(\widetilde{x}_{0}\right)$ by a broken arc of the same length as $\widetilde{f}_{t}^{\prime \prime}(\widetilde{c})$. It follows that
$R_{\bar{h}_{i_{1}}^{t}}^{b_{t}\left(\delta_{i_{1}}\right)} \ldots R_{\bar{h}_{i_{p}}^{t}}^{b_{t}\left(\delta_{i_{p}}\right)}$ stays in a compact subset of the isometry group of \mathbb{H}^{3}; in particular, its norm is uniformly bounded by a constant $R>0$.

Set $\varepsilon_{i}=R_{h_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}-R_{\bar{h}_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}$. Because $R_{h_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}$ and $R_{\bar{h}_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}$ are uniformly bounded, $\left\|\varepsilon_{i}\right\|$ is bounded by a constant times the distance between h_{i}^{t} and \bar{h}_{i}^{t}. Because h_{i}^{t} and \bar{h}_{i}^{t} follow the same edge path of length $2 r+1$ and the metric m_{t} is hyperbolic, this distance is an $O\left(e^{-A r}\right)$ for some constant $A>0$ depending on \widetilde{U} and \widetilde{c}.

We are now in a position to apply Lemma 8. To prove that the product $R_{h_{k}^{t}}^{b_{t}\left(\delta_{k}\right)} \ldots R_{h_{l}^{t}}^{b_{t}\left(\delta_{l}\right)}$ is uniformly bounded, Lemma 8 and the above estimate for ε_{i} imply that it suffices to show that $(l-k) e^{-A r}$ is bounded. Although the number of edge paths $\delta \in \Gamma_{r+1}$ grows exponentially with r, the number of those for which $b_{t}(\delta) \neq 0$ is bounded by a polynomial function of r (this is a general fact about geodesic laminations, see for instance [3, Lemma 10]). It follows that $l-k=O\left(r^{n}\right)$ for some n. As a consequence, $(l-k) e^{-A r}$ is bounded. By Lemma 8, we conclude that all the products $R_{h_{k}^{t}}^{b_{t}\left(\delta_{k}\right)} \ldots R_{h_{l}^{t}}^{b_{t}\left(\delta_{l}\right)}$ are uniformly bounded.

The proof of Lemma 9 for the products $R_{h_{k}^{t}}^{b_{t}^{\prime}\left(\delta_{k}\right)} \ldots R_{h_{l}^{t}}^{b_{t}^{\prime}\left(\delta_{l}\right)}$, $R_{g_{\sigma(k)}^{t}}^{b_{t}\left(\delta_{k}\right)} \ldots R_{g_{\sigma(l)}^{t}}^{b_{t}\left(\delta_{l}\right)}$ and $R_{g_{\sigma(k)}^{t}}^{b_{t}^{\prime}\left(\delta_{k}\right)} \ldots R_{g_{\sigma(l)}^{t}}^{b_{t}^{\prime}\left(\delta_{l}\right)}$ is identical. \quad q.e.d.

Remark. One could naively think that it is possible to greatly simplify the proof of Lemma 9 by taking $h_{i}^{t}=\bar{h}_{i}^{t}$ right away. However, it is not possible to do so simultaneously for the terms involving b_{t} and those involving b_{t}^{\prime}. In general, we cannot choose the h_{i}^{t} so that h_{i}^{t} is disjoint from $h_{i^{\prime}}^{t}$ whenever $b_{t}\left(\delta_{i}\right) b_{t}\left(\delta_{i^{\prime}}\right) \neq 0$ or $b_{t}^{\prime}\left(\delta_{i}\right) b_{t}^{\prime}\left(\delta_{i^{\prime}}\right) \neq 0$.

We can now estimate $C_{r+1}^{t}-C_{r}^{t}$.
In a term of type (3), the quantity $R_{h_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}}^{b_{t}\left(\delta_{i}\right)}$ is bounded by a constant times the distance from h_{i}^{t} to $g_{\sigma(i)}^{t}$, which is an $O\left(e^{-A r}\right)$ since these two geodesics follow the same edge path of length $2 r+1$. The quantity $R_{g_{\sigma(j)}^{t}}^{b_{t}\left(\delta_{j}\right)}-R_{g_{\sigma(j)}^{t}}^{b_{t}^{\prime}\left(\delta_{j}\right)}$ is bounded by a constant times $b_{t}\left(\delta_{j}\right)-b_{t}^{\prime}\left(\delta_{j}\right)$. In [3, Lemma 2], we give an explicit formula expressing $b_{t}\left(\delta_{j}\right)$ in terms of the weights $b_{t}(e)$ it assigns to the edges e of U. Because δ_{j} is an edge path of length $2 r+3$, from this formula it follows that

$$
b_{t}\left(\delta_{j}\right)-b_{0}\left(\delta_{j}\right)=O\left(r\left\|b_{t}-b_{0}\right\|_{U}\right)=t O\left(r\left\|\dot{b}_{0}\right\|_{U}\right) .
$$

Similarly,

$$
b_{t}\left(\delta_{j}\right)=b_{0}\left(\delta_{j}\right)+t \dot{b}_{0}\left(\delta_{j}\right)=b_{0}\left(\delta_{j}\right)+t O\left(r\left\|\dot{b}_{0}\right\|_{U}\right)
$$

and we conclude that

$$
b_{t}\left(\delta_{j}\right)-b_{t}^{\prime}\left(\delta_{j}\right)=t O\left(r\left\|\dot{b}_{0}\right\|_{U}\right) .
$$

By Lemma 9, every term of type (3) therefore is of the form $t O\left(r e^{-A r}\left\|\dot{b}_{0}\right\|_{U}\right)$.

Similarly, every term of type (5) is of the form $t O\left(r e^{-A r}\left\|\dot{b}_{0}\right\|_{U}\right)$.
In a term of type (4), the quantity

$$
\left(R_{h_{i}^{t}}^{b_{t}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}^{t}}^{b_{t}\left(\delta_{i}\right)}\right)-\left(R_{h_{i}^{t}}^{b_{b}^{\prime}\left(\delta_{i}\right)}-R_{g_{\sigma(i)}^{\prime}}^{b_{t}^{\prime}\left(\delta_{i}\right)}\right)
$$

is bounded by a constant times the product of $b_{t}\left(\delta_{i}\right)-b_{t}^{\prime}\left(\delta_{i}\right)$ and the distance from h_{i}^{t} to $g_{\sigma(i)}^{t}$. As above, we conclude that a term of type (4) is of the form $t O\left(r e^{-A r}\left\|\dot{b}_{0}\right\|_{U}\right)$.

We saw that $C_{r+1}^{t}-C_{r}^{t}$ is a sum of q^{2} terms of type (3), (4) or (5), and also that $q=O\left(r^{n}\right)$ for some n. Therefore,

$$
C_{r+1}^{t}-C_{r}^{t}=t O\left(r^{2 n+1} e^{-A r}\left\|\dot{b}_{0}\right\|_{U}\right)=t O\left(e^{-A^{\prime} r}\left\|\dot{b}_{0}\right\|_{U}\right)
$$

for any $A^{\prime}<A$. This proves the first statement of Lemma 7 .
The second statement of Lemma 7 is obtained by summing the differences $C_{r+1}^{t}-C_{r}^{t}$ from r to ∞, since $\rho_{t}(\xi)-\rho_{t}^{\prime}(\xi)=\lim _{r \rightarrow \infty} C_{r}^{t}$. q.e.d.

Now, fix r and let t tend to 0^{+}. For $i=1, \ldots, p$,

$$
\left(R_{g_{i}^{t}}^{b_{t}\left(\gamma_{i}\right)}-R_{g_{i}^{t}}^{b_{t}^{\prime}\left(\gamma_{i}\right)}\right) / t=O\left(b_{t}\left(\gamma_{i}\right)-b_{t}^{\prime}\left(\gamma_{i}\right)\right) / t
$$

As t tends to 0^{+}, each $\left(b_{t}\left(\gamma_{i}\right)-b_{t}^{\prime}\left(\gamma_{i}\right)\right) / t$ converges to 0 since $b_{t}^{\prime}\left(\gamma_{i}\right)=$ $b_{0}\left(\gamma_{i}\right)+t \dot{b}_{0}\left(\gamma_{i}\right)$. Therefore, for a fixed r,

$$
\begin{gathered}
C_{r}^{t} / t=R_{g_{1}^{t}}^{b_{t}\left(\gamma_{1}\right)} R_{g_{2}^{t}}^{b_{t}\left(\gamma_{2}\right)} \ldots R_{g_{p}^{t}}^{b_{t}\left(\gamma_{p}\right)} \rho_{t}^{\prime \prime}(\xi) / t-R_{g_{1}^{t}}^{b_{t}^{\prime}\left(\gamma_{1}\right)} R_{g_{2}^{t}}^{b_{t}^{\prime}\left(\gamma_{2}\right)} \\
\ldots R_{g_{p}^{\prime}}^{b_{t}^{t}\left(\gamma_{p}\right)} \rho_{t}^{\prime \prime}(\xi) / t \\
=\sum_{i=1}^{p} R_{g_{1}^{\prime}}^{b_{t}\left(\gamma_{1}\right)} R_{g_{2}^{\prime}}^{b_{t}\left(\gamma_{2}\right)} \ldots R_{g_{i-1}^{\prime}}^{b_{t}\left(\gamma_{i-1}\right)} \frac{R_{g_{i}^{t}}^{b_{t}\left(\gamma_{i}\right)}-R_{g_{i}^{t}}^{b_{t}^{\prime}\left(\gamma_{i}\right)}}{t} R_{g_{i+1}^{t}}^{b_{t}^{\prime}\left(\gamma_{i+1}\right)} \\
\ldots R_{g_{p}^{\prime}}^{b_{t}^{\prime}\left(\gamma_{p}\right)} \rho_{t}^{\prime \prime}(\xi)
\end{gathered}
$$

converges to 0 as t tends to 0^{+}.

Thus from Lemma 7 it follows that every limit point of $\left(\rho_{t}(\xi)-\rho_{t}^{\prime}(\xi)\right) / t$ as t tends to 0^{+}is of the form $O\left(e^{-A r}\left\|\dot{b}_{0}\right\|_{U}\right)$.

This holds for every r. If we now let r tend to ∞, we conclude that 0 is the only limit point of $\left(\rho_{t}(\xi)-\rho_{t}^{\prime}(\xi)\right) / t$ as t tends to 0^{+}, namely that the two curves $t \mapsto \rho_{t}(\xi)$ and $t \mapsto \rho_{t}^{\prime}(\xi) \in \operatorname{Isom}^{+}\left(\mathbb{H}^{3}\right)$ are tangent at $t=0$. Hence the two curves $t \mapsto \rho_{t}$ and $t \mapsto \rho_{t}^{\prime} \in \mathcal{R}(S)$ are tangent at $t=0$. As a consequence, $t \mapsto \rho_{t}$ has a tangent vector $\dot{\rho}_{0}$ at $t=0$, which is equal to $\dot{\rho}_{0}^{\prime}=T_{\left(m_{0}, \bar{b}_{0}\right)} \varphi_{\lambda}\left(\dot{m}_{0}, \dot{b}_{0}\right)$.

This concludes the proof of Proposition 5 under the additional assumption that the geodesic laminations underlying the b_{t} converge to some sublamination of λ.

In the general case, let $t_{n}, n \in \mathbb{N}$, be a sequence converging to 0^{+}, such that the geodesic lamination underlying $b_{t_{n}}$ converges to some lamination λ^{\prime} for the Hausdorff topology. The geodesic lamination λ^{\prime} must contain the supports of b_{0} and \dot{b}_{0}. We can therefore consider $b_{t}^{\prime}=b_{0}+t \dot{b}_{0}$ as a transverse cocycle for λ^{\prime} as well as for λ; the same holds for its reduction \bar{b}_{t}^{\prime} modulo 2π. Note that $\varphi_{\lambda^{\prime}}\left(m_{t}, \bar{b}_{t}^{\prime}\right)=\varphi_{\lambda}\left(m_{t}, \bar{b}_{t}^{\prime}\right)=\rho_{t}^{\prime}$. Then, the same argument as above shows that the "discrete curve" $t_{n} \mapsto \rho_{t_{n}}$ is tangent to the curve $t \mapsto \rho_{t}^{\prime}$ at 0 , in the sense that $\lim _{n \rightarrow \infty}\left(\rho_{t_{n}}(\xi)-\rho_{t_{n}}^{\prime}(\xi)\right) / t_{n}=0$ for every $\xi \in \pi_{1}(S)$. Since this property holds for any such subsequence $t_{n}, n \in \mathbb{N}$, this shows that the two curves $t \mapsto \rho_{t}$ and $t \mapsto \rho_{t}^{\prime}$ are tangent at $t=0$. Again, it follows that $t \mapsto \rho_{t}$ has a tangent vector $\dot{\rho}_{0}$ at $t=0$ which is equal to $\dot{\rho}_{0}^{\prime}=T_{\left(m_{0}, \bar{b}_{0}\right)} \varphi_{\lambda}\left(\dot{m}_{0}, \dot{b}_{0}\right)$, and this completes the proof of Proposition 5 .
q.e.d.

By Proposition 5, the map $\varphi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{R}(S)$ has a tangent map $T_{(m, b)} \varphi: T_{m} \mathcal{T}(S) \times T_{b} \mathcal{M} \mathcal{L}(S) \rightarrow T_{\varphi(m, b)} \mathcal{R}(S)$ everywhere. If, in addition, the support of b is a maximal geodesic lamination λ, then $T_{b} \mathcal{M L}(S) \cong \mathcal{H}(\lambda ; \mathbb{R})$ and $T_{(m, b)} \varphi=T_{(m, b)} \varphi_{\lambda}$. Since φ_{λ} is a local diffeomorphism, this immediately shows that $T_{(m, b)} \varphi$ is invertible when the support of b is a maximal geodesic lamination. The general case requires more work.

3. Proof that $T_{(m, b)} \varphi: T_{m} \mathcal{T}(S) \times T_{b} \mathcal{M L}(S) \rightarrow T_{\varphi(m, b)} \mathcal{R}(S)$ is injective

Proposition 10. The tangent map

$$
T_{(m, b)} \varphi: T_{m} \mathcal{T}(S) \times T_{b} \mathcal{M} \mathcal{L}(S) \rightarrow T_{\varphi(m, b)} \mathcal{R}(S)
$$

is injective.
Proof. Let $v^{\prime}=\left(\dot{m}^{\prime}, \dot{b}^{\prime}\right)$ and $v^{\prime \prime}=\left(\dot{m}^{\prime \prime}, \dot{b}^{\prime \prime}\right)$ be two tangent vectors at $\left(m_{0}, b_{0}\right)$ such that $T_{\left(m_{0}, b_{0}\right)} \varphi\left(v^{\prime}\right)=T_{\left(m_{0}, b_{0}\right) \varphi} \varphi\left(v^{\prime \prime}\right)$. We want to show that $v^{\prime}=v^{\prime \prime}$.

By Proposition 5, $T_{\left(m_{0}, b_{0}\right)} \varphi\left(v^{\prime}\right)=T_{\left(m_{0}, b_{0}\right)} \varphi_{\lambda^{\prime}}\left(\dot{m}^{\prime}, \dot{b}^{\prime}\right)$ where λ^{\prime} is any maximal geodesic lamination containing the supports of b_{0} and \dot{b}^{\prime}. Similarly, $T_{\left(m_{0}, b_{0}\right)} \varphi\left(v^{\prime \prime}\right)=T_{\left(m_{0}, b_{0}\right)} \varphi_{\lambda^{\prime \prime}}\left(\dot{m}^{\prime \prime}, \dot{b}^{\prime \prime}\right)$ where $\lambda^{\prime \prime}$ is any maximal geodesic lamination containing the supports of b_{0} and $\dot{b}^{\prime \prime}$.

Lemma 11. The support of \dot{b}^{\prime} does not cross the support of $\dot{b}^{\prime \prime}$.
Proof. Suppose that there is a leaf g^{\prime} of the support of \dot{b}^{\prime} that transversely intersects in x a leaf $g^{\prime \prime}$ of the support of $\dot{b}^{\prime \prime}$. Without loss of generality, we may assume that g^{\prime} is in the boundary of $S-\lambda^{\prime}$ and that $g^{\prime \prime}$ is in the boundary of $S-\lambda^{\prime \prime}$.

Let $\rho_{t} \in \mathcal{R}(S), t \in[0, \varepsilon[$, be a family of representations with

$$
\rho_{0}=\varphi_{\lambda^{\prime}}\left(m_{0}, b_{0}\right)=\varphi_{\lambda^{\prime \prime}}\left(m_{0}, b_{0}\right)
$$

and

$$
\dot{\rho}_{0}=T_{\left(m_{0}, b_{0}\right)} \varphi_{\lambda^{\prime}}\left(\dot{m}^{\prime}, \dot{b}^{\prime}\right)=T_{\left(m_{0}, b_{0}\right)} \varphi_{\lambda^{\prime \prime}}\left(\dot{m}^{\prime \prime}, \dot{b}^{\prime \prime}\right)
$$

For t small enough, ρ_{t} determines a pleated surface $f_{t}^{\prime}=\left(\widetilde{f_{t}^{\prime}}, \rho_{t}\right)$ with pleating locus λ^{\prime} and a pleated surface $f_{t}^{\prime \prime}=\left(\widetilde{f_{t}^{\prime \prime}}, \rho_{t}\right)$ with pleating locus $\lambda^{\prime \prime}$. Let $m_{t}^{\prime} \in \mathcal{T}(S)$ and $b_{t}^{\prime} \in \mathcal{H}\left(\lambda^{\prime} ; \mathbb{R} / 2 \pi \mathbb{Z}\right)$ (resp. $m_{t}^{\prime \prime} \in \mathcal{T}(S)$ and $\left.b_{t}^{\prime \prime} \in \mathcal{H}\left(\lambda^{\prime \prime} ; \mathbb{R} / 2 \pi \mathbb{Z}\right)\right)$ be the pull back metric and the bending cocycles of f_{t}^{\prime} (resp. $f_{t}^{\prime \prime}$). Namely, $\rho_{t}=\varphi_{\lambda^{\prime}}\left(m_{t}^{\prime}, b_{t}^{\prime}\right)=\varphi_{\lambda^{\prime \prime}}\left(m_{t}^{\prime \prime}, b_{t}^{\prime \prime}\right)$. Note that $b_{0}^{\prime}=b_{0}^{\prime \prime}=b_{0}, \dot{b}_{0}^{\prime}=\dot{b}^{\prime}$ and $\dot{b}_{0}^{\prime \prime}=\dot{b}^{\prime \prime}$.

Lift x to a point \widetilde{x} in the universal covering \widetilde{S}, and let \widetilde{g}^{\prime} and $\widetilde{g}^{\prime \prime}$ be the lifts of g^{\prime} and $g^{\prime \prime}$ passing through \widetilde{x}, respectively. We want to compare the respective positions of the geodesics $\widetilde{f_{t}^{\prime}}\left(\widetilde{g_{t}^{\prime}}\right)$ and $\widetilde{f_{t}^{\prime \prime}}\left(\widetilde{g}_{t}^{\prime \prime}\right)$ of \mathbb{H}^{3}, where $\widetilde{g}_{t}^{\prime}$ is the m_{t}^{\prime} geodesic of \widetilde{S} corresponding to \widetilde{g}^{\prime}, and $\widetilde{g}_{t}^{\prime \prime}$ is the $m_{t}^{\prime \prime}$-geodesic corresponding to $\widetilde{g}^{\prime \prime}$. Because $\widetilde{f_{0}^{\prime}}=\widetilde{f_{0}^{\prime \prime}}$, the geodesics $\widetilde{f}_{0}^{\prime}\left(\widetilde{g}_{0}^{\prime}\right)$ and $\widetilde{f}_{0}^{\prime \prime}\left(\widetilde{g}_{0}^{\prime \prime}\right)$ are coplanar and meet in one point.

If $\widehat{g}_{t}^{\prime \prime}$ denotes the m_{t}^{\prime}-geodesic corresponding to $\widetilde{g}^{\prime \prime}, \tilde{f}_{t}^{\prime \prime}\left(\widetilde{g}_{t}^{\prime \prime}\right)$ is also the geodesic of \mathbb{H}^{3} that is asymptotic to $\widetilde{f_{t}^{\prime}}\left(\widehat{g}_{t}^{\prime \prime}\right)$. Because g^{\prime} and $g^{\prime \prime}$ intersect, they have to be disjoint from the support of b_{0}. This shows that $\dot{b}^{\prime}\left(k^{\prime \prime}\right) \geqslant$ 0 for every arc $k^{\prime \prime}$ contained in $g^{\prime \prime}$. Indeed, $\dot{b}^{\prime} \in T_{b_{0}} \mathcal{M} \mathcal{L}(S)$ is tangent to a family of measured laminations $b_{t} \in \mathcal{M L}(S)$ with $b_{0}(k)=0$ and $b_{t}(k) \geqslant 0$; compare [3, Theorem 19]. It follows that, infinitesimally, $\tilde{f}_{t}^{\prime}\left(\widetilde{g}_{t}^{\prime \prime}\right)$ bends everywhere in the direction of the negative side of $\widetilde{f}_{0}^{\prime}(\widetilde{S})$.

Intuitively, this will imply that, as t moves away from $0, \widetilde{f_{t}^{\prime \prime}}\left(\widetilde{g}_{t}^{\prime \prime}\right)$ moves away from $\widetilde{f}_{t}^{\prime}\left(\widetilde{g}_{t}^{\prime}\right)$ in the direction of the negative side of $\widetilde{f_{0}^{\prime}}(\widetilde{S})$. We need to quantify this.

By [4, Corollary 32], for every component P of $\widetilde{S}-\widetilde{\lambda}^{\prime}$, the infinite triangle $\widetilde{f_{t}^{\prime}}(P) \subset \mathbb{H}^{3}$ depends differentiably on the representation ρ_{t}. By our assumption that g^{\prime} is a boundary leaf, it is seen that $\widetilde{f_{t}^{\prime}}\left(\widetilde{g}_{t}^{\prime}\right)$ depends differentiably on ρ_{t}. Since the same property holds for $\widetilde{f}_{t}^{\prime \prime}\left(\widetilde{g}_{t}^{\prime \prime}\right)$, the length l_{t} of the shortest geodesic arc from $\widetilde{f_{t}^{\prime}}\left(\widetilde{g}_{t}^{\prime}\right)$ to $\widetilde{f}_{t}^{\prime \prime}\left(\widetilde{g}_{t}^{\prime \prime}\right)$ also depends differentiably on ρ_{t}.

To estimate the derivative i_{0}, normalize ρ_{t} and \tilde{f}_{t}^{\prime} so that \tilde{f}_{t}^{\prime} sends the component of $\widetilde{S}-\widetilde{\lambda}$ that is adjacent to \widetilde{g}^{\prime} to a fixed ideal triangle in $\mathbb{H}^{2} \subset \mathbb{H}^{3}$. Thus, $\widetilde{f}_{t}^{\prime}\left(\widehat{g}_{t}^{\prime \prime}\right)$ is obtained from the geodesic $\widetilde{f}_{0}^{\prime}\left(\widetilde{g}_{0}^{\prime \prime}\right) \subset \mathbb{H}^{2}$ by, first moving it in \mathbb{H}^{2} to reflect the passage from the metric m_{0}^{\prime} to m_{t}^{\prime}, and then bending this geodesic by successive rotations along geodesics of \mathbb{H}^{2}, following a formula analogous to (1). Let $\widetilde{h}^{\prime \prime}$ be a half-line in $\widetilde{g}^{\prime \prime}$, which crosses the support of \dot{b}^{\prime}, and originates in the component of $\widetilde{S}-\widetilde{\lambda}$ that is adjacent to \widetilde{g}^{\prime}; we will denote by $\widetilde{h}_{t}^{\prime \prime}, \widehat{h}_{t}^{\prime \prime}$ the subsets of $\widetilde{g}_{t}^{\prime \prime}$, $\widehat{g}_{t}^{\prime \prime}$ corresponding to $\widetilde{h}^{\prime \prime}$. Let θ_{t}^{+}be the visual amount by which the end point of $\widetilde{f_{t}^{\prime}}\left(\widehat{h}_{t}^{\prime \prime}\right)$ dips below \mathbb{H}^{2}, as measured from a fixed base point on \mathbb{H}^{2}.

The derivative of θ_{t}^{+}at $t=0$ is given by the formula

$$
\dot{\theta}_{0}^{+}=\int_{\tilde{f}_{0}^{\prime}\left(\widetilde{h}_{0}^{\prime \prime}\right)} A^{+}(u) d \dot{b}^{\prime}(u),
$$

where: $d \dot{b}^{\prime}$ is the distribution induced by \dot{b}^{\prime} on $\widetilde{f_{0}^{\prime}}\left(\widetilde{h}_{0}^{\prime \prime}\right)$, which is actually a (countably additive) measure since $\dot{b}^{\prime}\left(k^{\prime \prime}\right) \geqslant 0$ for every arc $k^{\prime \prime}$ contained in $g^{\prime \prime} ; A^{+}(u)>0$ denotes the amount by which the end point of $\widetilde{f}_{0}^{\prime}\left(\widetilde{h}_{0}^{\prime \prime}\right)$ dips under \mathbb{H}^{2} when we apply to it the infinitesimal rotation around the leaf of $\widetilde{f_{0}^{\prime}}\left(\widetilde{\lambda^{\prime}}\right)$ passing through $u \in \widetilde{f_{0}^{\prime}}\left(\widetilde{h_{0}^{\prime \prime}}\right)$, if it exists. This formula is easily obtained by formal computations. To justify these formal computations (and show that the integral really converges), it suffices to note that $-\log A^{+}(u)$ is at least a constant times the distance from u to the base point and that, for every arc k of length $\geqslant 1$ in $\widetilde{f}_{0}^{\prime}\left(\widetilde{h}_{0}^{\prime \prime}\right), \dot{b}(k)$ is bounded by a constant (depending on \dot{b} but not k) times the length of k.

The important part here is that $\dot{\theta}_{0}^{+}>0$, which holds because $\widetilde{h}^{\prime \prime}$ crosses the support of \dot{b}. A similar formula gives that $\dot{\theta}_{0}^{-} \geqslant 0$, where θ_{t}^{-} denotes the visual amount by which the other end point of $\widetilde{f}_{t}^{\prime}\left(\widehat{g}_{t}^{\prime \prime}\right)$ dips below \mathbb{H}^{2}. Combining these two properties, it follows that $i_{0}>0$.

This proves that, for $t>0$, the shortest geodesic arc from $\widetilde{f}_{t}^{\prime}\left(\widetilde{g}_{t}^{\prime}\right)$ to $\widetilde{f}_{t}^{\prime \prime}\left(\widetilde{g}_{t}^{\prime \prime}\right)$ is non-trivial and points in the direction of the negative side of $\tilde{f}_{0}^{\prime}(\widetilde{S})$. But the argument is symmetric. Exchanging primes and double primes, we obtain that, for $t>0$, the opposite shortest geodesic arc from $\widetilde{f}_{t}^{\prime \prime}\left(\widetilde{g}_{t}^{\prime \prime}\right)$ to $\widetilde{f_{t}^{\prime}}\left(\widetilde{g}_{t}^{\prime}\right)$ must also point in the direction of the negative side of $f_{0}^{\prime \prime}(\widetilde{S})=\tilde{f}_{0}^{\prime}(\overparen{S})$, a contradiction. q.e.d.

By Lemma 11, the supports of \dot{b}^{\prime} and $\dot{b}^{\prime \prime}$ do not cross each other. Therefore, there exists a maximal geodesic lamination λ which contains the supports of b_{0}, \dot{b}^{\prime} and $\dot{b}^{\prime \prime}$. As a consequence, we can choose our geodesic laminations $\lambda^{\prime}, \lambda^{\prime \prime}$ so that $\lambda^{\prime}=\lambda^{\prime \prime}=\lambda$.

Then,

$$
T_{\left(m_{0}, b_{0}\right)} \varphi_{\lambda}\left(v^{\prime}\right)=T_{\left(m_{0}, b_{0}\right)} \varphi\left(v^{\prime}\right)=T_{\left(m_{0}, b_{0}\right)} \varphi\left(v^{\prime \prime}\right)=T_{\left(m_{0}, b_{0}\right)} \varphi_{\lambda}\left(v^{\prime \prime}\right) .
$$

Since φ_{λ} is a diffeomorphism, its tangent map is a linear isomorphism, and it follows that $v^{\prime}=v^{\prime \prime}$. q.e.d.

4. Proof of Theorems 2 and 3

Theorems 2 and 3 immediately follow from Lemma 4, Corollary 6 and Proposition 10.

Indeed, for a connected surface S of finite type and negative Euler characteristic, the map $\varphi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{R}(S)$ is the composition of the Thurston homeomorphism $\psi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{P}(S)$ and of the monodromy map $\theta: \mathcal{P}(S) \rightarrow \mathcal{R}(S)$. Because θ is a local diffeomorphism, φ is a local homeomorphism. By Corollary $6, \varphi$ admits a tangent map everywhere, and Proposition 10 shows that this tangent map is injective. From Lemma 4, we conclude that any local inverse φ^{-1} for φ is also tangentiable. Because θ is a local diffeomorphism, this shows that ψ and ψ^{-1} are tangentiable. This proves Theorem 3.

For a hyperbolic 3 -manifold M, the map

$$
\mu \times \beta: \mathcal{Q D}(M) \rightarrow \mathcal{T}\left(\partial C_{M}\right) \times \mathcal{M} \mathcal{L}\left(\partial C_{M}\right)
$$

locally coincides with the composition $\varphi^{-1} \circ R$ near the metric M where, as in the introduction, $\mathcal{R}\left(\partial C_{M}\right)$ denotes the product $\prod_{i=1}^{n} \mathcal{R}\left(S_{i}\right)$ of the representation spaces corresponding to the components S_{1}, \ldots, S_{n} of ∂C_{M}, where $R: \mathcal{Q D}(M) \rightarrow \mathcal{R}\left(\partial C_{M}\right)$ is defined by restriction of the holonomy map, where $\varphi: \mathcal{T}\left(\partial C_{M}\right) \times \mathcal{M L}\left(\partial C_{M}\right) \rightarrow \mathcal{R}\left(\partial C_{M}\right)$ is defined as the product of the bending maps $\varphi_{i}: \mathcal{T}\left(S_{i}\right) \times \mathcal{M} \mathcal{L}\left(S_{i}\right) \rightarrow \mathcal{R}\left(S_{i}\right)$,
and φ^{-1} is the local inverse defined near the representation $R(M)$ and $(\mu(M), \beta(M))$. As above, a combination of Corollary 6, Proposition 10 and Lemma 4 shows that each local inverse φ_{i}^{-1} is tangentiable. Therefore, the local inverse φ^{-1} is tangentiable. Since R is a differentiable map between differentiable manifolds, it follows that $\mu \times \beta$ is tangentiable. Composing with the (clearly tangentiable) projection $P: \mathcal{T}\left(\partial C_{M}\right) \times \mathcal{M L}\left(\partial C_{M}\right) \rightarrow \mathcal{M L}\left(\partial C_{M}\right)$, we conclude that β is tangentiable everywhere. This proves Theorem 2.

The same argument shows that μ is tangentiable everywhere. To show that μ is continuously differentiable in the usual sense, we have to show that its tangent maps are linear and vary continuously with their base point. This will be done in the next section.

5. Proof of Theorem 1

By the same arguments as in $\S 4$, Theorem 1 immediately follows from the following result.

Proposition 12. Let S be a connected oriented surface of finite type and negative Euler characteristic. Then the composition $Q \circ \varphi^{-1}$ of any local inverse φ^{-1} for the bending map $\varphi: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow$ $\mathcal{R}(S)$ and the projection $Q: \mathcal{T}(S) \times \mathcal{M L}(S) \rightarrow \mathcal{T}(S)$ is continuously differentiable.

Proof. Let $\rho_{0} \in \mathcal{R}(S)$ and $\left(m_{0}, b_{0}\right)=\varphi^{-1}\left(\rho_{0}\right)$. By Corollary 6, Proposition 10 and Lemma $4, \varphi^{-1}$ has a tangent map at ρ_{0} and $T_{\rho_{0}} \varphi^{-1}=\left(T_{\left(m_{0}, b_{0}\right)} \varphi\right)^{-1}$.

By Corollary 6 , the restriction of $T_{\left(m_{0}, b_{0}\right)} \varphi$ to $T_{m_{0}} \mathcal{T}(S) \times 0$ coincides with the restriction of $T_{\left(m_{0}, b_{0}\right)} \varphi_{\lambda}$ for any maximal geodesic lamination λ containing the support of b. In particular, this restriction of $T_{\left(m_{0}, b_{0}\right)} \varphi$ to $T_{m_{0}} \mathcal{T}(S) \times 0$ is linear. Let $P_{\rho_{0}} \subset T_{\rho_{0}} \mathcal{R}(S)$ denote the linear subspace $T_{\left(m_{0}, b_{0}\right)} \varphi\left(T_{m_{0}} \mathcal{T}(S) \times 0\right)$; note that $P_{\rho_{0}}$ depends on ρ_{0}, but also on the choice of the local inverse φ^{-1}.

To consider the image of $0 \times T_{b_{0}} \mathcal{M L}(S)$ under $T_{\left(m_{0}, b_{0}\right)} \varphi$, we will exploit the complex structure of $\mathcal{R}(S)$ coming from the complex structure of the group Isom ${ }^{+}\left(\mathbb{H}^{3}\right)=\operatorname{PSL}_{2}(\mathbb{C})$. Indeed, it is showed in [4, §10] that, for every maximal geodesic lamination λ containing the support of b, the differential $T_{\left(m_{0}, b_{0}\right)} \varphi_{\lambda}$ sends $0 \times \mathcal{H}(\lambda ; \mathbb{R})$ to the subspace $i P_{\rho_{0}}$ obtained from $P_{\rho_{0}}$ by multiplication by i; see also the proof of Lemma 13 below. By Corollary 6, this implies that $T_{\left(m_{0}, b_{0}\right)} \varphi$ sends $0 \times T_{b_{0}} \mathcal{M} \mathcal{L}(S)$ inside $i P_{\rho_{0}}$. Because $T_{\left(m_{0}, b_{0}\right)} \varphi$ is invertible, the image of $0 \times T_{b_{0}} \mathcal{M} \mathcal{L}(S)$
by $T_{\left(m_{0}, b_{0}\right)} \varphi$ is actually equal to $i P_{\rho_{0}}$. (As an aside, since $T_{\left(m_{0}, b_{0}\right) \varphi}$ identifies $0 \times T_{b_{0}} \mathcal{M L}(S)$ to $i P_{\rho_{0}}$, this defines on $T_{b_{0}} \mathcal{M L}(S)$ a linear structure which is compatible with the linear structures of the faces and depends only on m_{0}).

We can then compute the tangent map

$$
T_{\rho_{0}}\left(Q \circ \varphi^{-1}\right): T_{\rho_{0}} \mathcal{R}(S) \rightarrow T_{m_{0}} \mathcal{T}(S) .
$$

By Corollary $6, T_{\rho_{0}}\left(Q \circ \varphi^{-1}\right)$ is just the composition $\Phi_{\rho_{0}}^{-1} \circ \Pi_{\rho_{0}}$ of the projection $\Pi_{\rho_{0}}$ of $T_{\rho_{0}} \mathcal{R}(S)$ onto $P_{\rho_{0}}$ parallel to $i P_{\rho_{0}}$ and of the inverse of the linear isomorphism $\Phi_{\rho_{0}}: T_{m_{0}} \mathcal{T}(S) \rightarrow P_{\rho_{0}}$ induced by $T_{\left(m_{0}, b_{0}\right)} \varphi$. In particular, $T_{\rho_{0}}\left(Q \circ \varphi^{-1}\right)$ is linear, and $Q \circ \varphi^{-1}$ is differentiable in the usual sense.

It remains to show that $T_{\rho_{0}}\left(Q \circ \varphi^{-1}\right)$ depends continuously on ρ_{0}.
Lemma 13. The linear map $\Phi_{\rho_{0}}: T_{m_{0}} \mathcal{T}(S) \rightarrow P_{\rho_{0}}$ depends continuously on ρ_{0}.

Proof. We will again make use of the complex structure of $\mathcal{R}(S)$.
If λ is a maximal geodesic lamination containing the support of b_{0}, we saw that φ_{λ} provides a local parametrization of $\mathcal{R}(S)$ near ρ_{0}. This parametrization associates to each representation near ρ_{0} the pull back metric $m_{\rho} \in \mathcal{T}(S)$ and the bending cocycle $b_{\rho} \in \mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z})$ of the pleated surface with pleating locus λ corresponding to ρ. In [4], we also associated to m_{ρ} on S a shearing cocycle $s_{\rho} \in \mathcal{H}(\lambda ; \mathbb{R})$, and combined s_{ρ} and b_{ρ} into a complex cocycle $s_{\rho}+i b_{\rho} \in \mathcal{H}(\lambda ; \mathbb{C} / 2 \pi i \mathbb{Z})$ to show that this provides a biholomorphic parametrization of a neighborhood of ρ_{0} by an open subset of $\mathcal{H}(\lambda ; \mathbb{C} / 2 \pi i \mathbb{Z})$.

If U is a train track carrying λ, each transverse cocycle $a \in \mathcal{H}(\lambda ; \mathbb{C} / 2 \pi i \mathbb{Z})$ associates to each edge e of U a weight $a(e) \in$ $\mathbb{C} / 2 \pi i \mathbb{Z}$. This defines a linear isomorphism between $\mathcal{H}(\lambda ; \mathbb{C} / 2 \pi i \mathbb{Z})$ and the space $\mathcal{W}(U ; \mathbb{C} / 2 \pi i \mathbb{Z})$ of all such systems of edge weights that satisfy the classical switch relations, namely such that, at each switch of U, the sum of the weights of the edges coming on one side is equal to the sum of the weights of the edges coming on the other side; see for instance [2].

Combining these two parametrizations, we get a holomorphic map $\psi_{\lambda}: \mathcal{U} \rightarrow \mathcal{R}(S)$ which restricts to a homeomorphism between an open subset \mathcal{U} of $\mathcal{W}(U ; \mathbb{C} / 2 \pi i \mathbb{Z})$ and a neighborhood $\psi_{\lambda}(\mathcal{U})$ of ρ_{0}.

The main point of using edge weights instead of transverse cocycles is that we can compare these maps as we vary the geodesic lamination λ. If $\lambda_{n}, n \in \mathbb{N}$, is a sequence of geodesic lamination that converges to
λ for the Hausdorff topology as n tends to ∞, the estimates of $[4, \S 4]$ show that, for n large enough, the $\psi_{\lambda_{n}}$ are also defined on the same $\mathcal{U} \subset$ $\mathcal{W}(U ; \mathbb{C} / 2 \pi i \mathbb{Z})$ and uniformly converge to ψ_{λ} on \mathcal{U}. Because the $\psi_{\lambda_{n}}$ are holomorphic, we also have uniform convergence of their tangent maps. We conclude that if, in addition, we have a sequence of edge weight systems $A_{n} \in \mathcal{U}$ converging to some $A \in \mathcal{U}$ and a sequence of tangent vectors $\dot{A}_{n} \in T_{A_{n}} \mathcal{U}=\mathcal{W}(U ; \mathbb{C})$ converging to $\dot{A} \in T_{A} \mathcal{U}=\mathcal{W}(U ; \mathbb{C})$ then, in $\mathcal{R}(S)$, the tangent vectors $T_{A_{n}} \psi_{\lambda_{n}}\left(\dot{A}_{n}\right)$ converge to $T_{A} \psi_{\lambda}(\dot{A})$ as n tends to ∞.

If we restrict attention to real cocycles (and consequently to totally geodesic pleated surfaces and Fuchsian representations), we similarly have a real analytic map $\theta_{\lambda}: \mathcal{V} \rightarrow \mathcal{T}(S)$ which restricts to a homeomorphism between an open subset \mathcal{V} of $\mathcal{W}(U ; \mathbb{R})$ and a neighborhood $\theta_{\lambda}(\mathcal{V})$ of $m_{0} \in \mathcal{T}(S)$. Again, as λ_{n} converges to λ for the Hausdorff topology, $\theta_{\lambda_{n}}$ and its tangent maps uniformly converge to θ_{λ} and its tangent maps as n tends to ∞.

We are now ready to prove the continuity property for $\Phi_{\rho_{0}}$. Let $\rho_{n} \in \mathcal{R}(S), n \in \mathbb{N}$, be a sequence of representations converging to ρ_{0}. Let $\left(m_{n}, b_{n}\right)=\varphi^{-1}\left(\rho_{n}\right) \in \mathcal{T}(S) \times \mathcal{M} \mathcal{L}(S)$, and let $\dot{m}_{n} \in T_{m_{n}} \mathcal{T}(S)$ be a sequence of tangent vectors converging to some $\dot{m}_{0} \in T_{m_{0}} \mathcal{T}(S)$. We want to show that $\Phi_{\rho_{n}}\left(\dot{m}_{n}\right)$ converges to $\Phi_{\rho_{0}}\left(\dot{m}_{0}\right)$.

For each n, let λ_{n} be a maximal geodesic lamination containing the support of b_{n}. Extracting a subsequence if necessary, we can assume that λ_{n} converges for the Hausdorff topology to some maximal geodesic lamination λ_{0} containing the support of b_{0}. Let U be a train track carrying λ_{0}. Then, by definition of all the maps involved,

$$
\varphi_{\lambda_{n}}\left(m_{n}, b_{n}\right)=\psi_{\lambda_{n}}\left(\theta_{\lambda_{n}}^{-1}\left(m_{n}\right)+i B_{n}\right)
$$

for n sufficiently large, where $B_{n} \in \mathcal{W}(U ; \mathbb{R} / 2 \pi \mathbb{Z})$ is the edge weight system corresponding to $b_{n} \in \mathcal{H}\left(\lambda_{n} ; \mathbb{R} / 2 \pi \mathbb{Z}\right)$. It follows that

$$
\begin{aligned}
\Phi_{\rho_{n}}\left(\dot{m}_{n}\right) & =T_{\left(m_{n}, b_{n}\right)} \varphi\left(\dot{m}_{n}, 0\right)=T_{\left(m_{n}, b_{n}\right)} \varphi_{\lambda_{n}}\left(\dot{m}_{n}, 0\right) \\
& =T_{\left(\theta_{\lambda_{n}}^{-1}\left(m_{n}\right)+i B_{n}\right)} \psi_{\lambda_{n}}\left(T_{m_{n}} \theta_{\lambda_{n}}^{-1}\left(\dot{m}_{n}\right)\right)
\end{aligned}
$$

By uniform convergence of the tangent maps, we conclude that $\Phi_{\rho_{n}}\left(\dot{m}_{n}\right)$ converges to $\Phi_{\rho_{0}}\left(\dot{m}_{0}\right)$ as n tends to ∞.

This concludes the proof of Lemma 13. q.e.d.
By Lemma 13, $\Phi_{\rho_{0}}$ depends continuously on ρ_{0}. In particular, its image $P_{\rho_{0}}$ depends continuously on ρ_{0}. Therefore the projection
$\Pi_{\rho_{0}}: T_{\rho_{0}} \mathcal{R}(S) \rightarrow P_{\rho_{0}}$ parallel to $i P_{\rho_{0}}$ also depends continuously on ρ_{0}. This proves that the tangent map $T_{\rho_{0}}\left(Q \circ \varphi^{-1}\right)=\Phi_{\rho_{0}}^{-1} \circ \Pi_{\rho_{0}}$ depends continuously on ρ_{0}, and concludes the proof of Proposition 12 and Theorem 1. q.e.d.

6. The map μ is not necessarily twice differentiable

It is not difficult to show by explicit computations that the map μ is not necessarily twice differentiable. For instance, we can borrow such computations from [13]. Let S be a once punctured torus. On S, choose a hyperbolic metric $m_{0} \in \mathcal{T}(S)$ and a pair of simple closed m_{0}-geodesics γ, δ on S meeting transversely in one point. If $\rho \in \mathcal{R}(S)$ is geometrically finite and M is the corresponding hyperbolic 3 -manifold, then the boundary ∂C_{M} is the union of two copies $\partial^{+} C_{M}$ and $\partial^{-} C_{M}$ of S, where the identification of S with $\partial^{+} C_{M}$ (resp. $\partial^{-} C_{M}$) respects (resp. reverses) the orientation. Let $\gamma^{ \pm}$and $\delta^{ \pm}$denote the closed geodesics of $\partial^{ \pm} C_{M}$ homotopic to γ and δ, respectively.

For $t \in \mathbb{R}$, let $\gamma_{t} \in \mathcal{H}(\lambda ; \mathbb{R} / 2 \pi \mathbb{Z})$ be the Dirac transverse measure for γ with mass the $\bmod 2 \pi$ reduction of t, and let $\rho_{t}=\varphi_{\gamma}\left(m_{0}, \gamma_{t}\right)$. The representation ρ_{0} is Fuchsian, and defines a hyperbolic 3-manifold M_{0}. For t close to 0 , we can then consider the hyperbolic metric $M_{t} \in$ $\mathcal{Q D}\left(M_{0}\right)$ corresponding to ρ_{t}.

First consider the case where t is non-negative, and close to 0 . Then, $\partial^{+} C_{M_{t}}$ has induced metric m_{0} and bending measured geodesic lamination γ_{t}. If we make the additional assumption that γ and δ meet orthogonally for the metric m_{0}, it is shown in [13] that $\partial^{-} C_{M}$ is bent along δ^{-}; this can also be seen from symmetry considerations.

For $t \leqslant 0$ close to 0 , it is now $\partial^{-} C_{M_{t}}$ which has induced metric m_{0} and bending measured lamination γ_{-t}, and $\partial^{+} C_{M}$ is bent along δ^{+}. In addition, the central equality of [13] shows that the lengths of γ^{-}and δ^{+}are related to t by the formula

$$
\cos ^{2}(t / 2)=\cosh ^{2} l_{t}\left(\gamma^{-}\right) \tanh ^{2} l_{t}\left(\delta^{+}\right) .
$$

Noting that $l_{t}\left(\gamma^{-}\right)=l_{0}(\gamma)$, we conclude that

$$
\tanh ^{2} l_{t}\left(\delta^{+}\right)=\cos ^{2}(t / 2) / \cosh ^{2} l_{0}(\gamma)
$$

Therefore, for t small, the function $\tanh ^{2} l_{t}\left(\delta^{+}\right)$is equal to

$$
\tanh ^{2} l_{0}(\delta)=1 / \cosh ^{2} l_{0}(\gamma)
$$

if $t \geqslant 0$, and equal to $\cos ^{2}(t / 2) / \cosh ^{2} l_{0}(\gamma)$ if $t \leqslant 0$. This function of t is not twice differentiable at 0 . On the other hand, the curve $t \mapsto M_{t}$ is real analytic in $\mathcal{Q D}\left(M_{0}\right)$. It follows that μ is not twice differentiable at M_{0}.

References

[1] L. Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960) 94-97.
[2] F. Bonahon, Transverse Hölder distributions for geodesic laminations, Topology 36 (1997) 103-122.
[3] , Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. 30 (1997) 205-240.
[4] , Shearing hyperbolic surfaces, bending pleated surfaces, and the Thurston symplectic form, Ann. Fac. Sci. Toulouse 5 (1996) 233-297.
[5] _, A Schläfli-type formula for convex cores of hyperbolic 3-manifolds, J. Differential Geom., to appear.
[6] R. D. Canary, D. B. A. Epstein \& P. Green, Notes on notes of Thurston, Analytical and Geometrical aspects of Hyperbolic space (ed. D.B.A. Epstein), London Math. Soc. Lecture Note Ser., Vol. 111, 1987, 3-92.
[7] M. Culler \& P. B. Shalen, Varieties of group representations and splittings of 3manifolds, Ann. Math. 117 (1983) 109-146.
[8] D. B. A. Epstein \& A. Marden, Convex hulls in hyperbolic spaces, a theorem of Sullivan, and measured pleated surfaces, Anal. geom. aspects of hyperbolic space (ed. D.B.A. Epstein), London Math. Soc. Lecture Note Ser., Vol. 111, 1986, 113-253.
[9] D. Gallo, M. Kapovich \& A. Marden, The monodromy groups of Schwarzian equations on closed Riemann surfaces, Preprint, 1995.
[10] Y. Kamishima \& S. Tan, Deformations spaces of geometric structures, Aspects of low-dim manifolds (eds. Y. Matsumo \& S. Morita), Adv. Stud. Pure Math. Vol. 20, Kinokuniya, Tokyo, Japan, 1992, 263-299.
[11] L. Keen \& C. Series, Continuity of convex hull boundaries, Pacific J. Math. 168 (1995) 183-206.
[12] A. Marden, The geometry of finitely generated Kleinian groups, Ann. Math. 99 (1974) 383-462.
[13] J. R. Parker \& C. Series, Bending formulae for convex hull boundaries, J. Anal. Math. 67 (1995) 165-198.
[14] R. C. Penner \& J. L. Harer, Combinatorics of the train tracks, Ann. of Math. Stud. Vol. 125, Princeton Univ. Press, Princeton, 1992.
[15] D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics (eds. I. Kra \& B. Maskit), Ann. of Math. Stud. Vol. 97, 1981, 465-496.
[16] _, Quasiconformal homeomorphisms and dynamics II: Structural stability implies hyperbolicity for Kleinian groups, Acta Math. 155 (1985) 243-260.
[17] W. P. Thurston, The topology and geometry of 3-manifolds, Princeton University, Lecture notes, 1976-79.

University of Southern California

[^0]: Received May 16, 1997. This research was partially supported by N.S.F. grants DMS-9001895, DMS-9201466 and DMS-9504282.

 Keywords and phrases. hyperbolic geometry, convex hull, convex core, hyperbolic volume

 1991 Mathematics Subject Classification. 53C25, 30F40, 57N05.

