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THE TOPOLOGY OF CERTAIN
RIEMANNIAN MANIFOLDS

WITH POSITIVE RICCI CURVATURE

YOE ITOKAWA

1. Let M be a complete connected Riemannian manifold of dimension n,

and let Ric denote its Ricci curvature. Understanding the Ricci curvature is

one of the important problems in today's geometry. In these notes, we assume

that Ric > n — 1. The classical theorem of Myers then asserts that M is

compact and has diameter dM < TΓ. R. Bishop showed that the volume of M

also satisfied volM < vol5«, where Sn is the unit Euclidean sphere in Rw + 1, and

that the equality holds only if M is isometric to Sn. In [3], S. Y. Cheng proves

Theorem A. If' dM — π, then M is isometric to Sn.

It is interesting to ask to what extent these theorems can be perturbed. Our

main result is

Main Theorem. Given any upper bound K for the sectional curvature of M,

there exists a constant v > 0, depending only on n and K, such that whenever

vol M > (1 — υ)vols«, then M has the homotopy type of Sn.

By using some of the same methods, we can also show

Theorem B. There is a constant p > 0, depending only on n, such that if M

has the injectivity radius iM> π — p, then M is homeomorphic to Sn.

In §2 of these notes, we describe the main tools which can be used to prove

these theorems. In §§3 and 4, we outline the proofs of Theorem B and Main

Theorem. In §5, we describe a new geometric proof for Theorem A. Finally, we

discuss some remarks and open question in §6. Details and additional applica-

tions will appear in [10]. The author would like to express gratitude to D.

Gromoll for many helpful discussions.

2. Our main tool is the following observation in [7], based on an earlier

work by Bishop. We denote by B(r\ p) the open metric ball of radius r and

center/? in M, and let B(r) be an open ball in Sn of radius r. Then we have
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Lemma 2.1 (M. Gromov). For any R > r > 0,

WOlB(R-p) ^ y θ l

Putting R — TΓ and cross-multiplying, we obtain

Lemma 2.2. ///or some 0 < v < 1, volM > (1 — υ)vols«, /Λen /or α^y r > 0

E M,

It also follows from Lemma 2.1 that if volM > (1 — u)vol5« for some u, then

J M must exceed the radius of the ball in Sn of volume (1 — υ)vol5*. We call

this radius D(v).

Lemma 2.3. Let volM > (1 — υ)vols*. Let p, q E M have distance d(p, q)

— dM. Then given any 0 < dλ < d2 with dx

Jrd2 — D{v), there is an r > 0 such

that the closed balls B(dx + r; p)~ and B(d2 + r; q)~ cover λί. Moreover, for

fixed dl9 r can be so chosen as to go toO asυ approaches 0.

For the proof of the above, we estimate the volume of the complement of the

set B(dx\ p) U B{d2\ q) and the volume of B(r\ x) at an arbitrary x in this

complement. If the latter exceeds the former, B{r\ x)~ must intersect

B(dλ\ p)~ UB(d2\ q)~ consequently either x E B{dλ + r; p)~ or x E

B(d2 + r; q)~ .

3. We now outline the proof of Theorem B. Setting dx — d2 in Lemma 2.3,

the next proposition can be obtained by a construction similar to that in the

proof of the classical Sphere Theorem (cf. [2, Chap. 6] or [6, §7.8]). In the

following, i(p) is the injectivity radius at/? E M.

Proposition 3.1. Let p, q E M be as in Lemma 2.3. Given 0 < v < 1, there is

an r>0 so that if volM > (1 — υ)vol5* and i(p), i(q) > π/2 + r, then M is

homeomorphic to Sn.

To complete the proof of Theorem B, let us denote the unit tangent sphere at

p by 5^(1). For u E Sp(\) and r > 0, setΛ(w, r) : = det(exp ). Then Bishop's

Monotonicity Theorem in [1, §11.10] states that

d{ A(u,r)

Therefore, A(u, r) > sin"" V/r"" 1 - sin""U(p)/i(/>)""'• Integrating this, we

get

volM > v o l ^ , ) ) - vol s.-i •/(/>)• sm"-ιi(p).
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From the last estimate, we can reduce Theorem B to the situation of Proposi-
tion 3.1.

4. Turning now to Main Theorem, the following is an immediate conse-

quence of Bishop's theorem.

Lemma 4.1. If volM > jvolSn, M is simply connected.

Let q E M. Denote by Sq(r) the sphere of radius r in the tangent space TqM,

and by m its natural measure. Let Nq be the star-shaped domain in TqM

bounded by the tangential cut locus of q. The next observation follows easily

from the volume comparison.

Lemma 4.2. Given any δ, r > 0, there is an vx > 0 such that if volM >

(1 - V l)vol 5 ., then m(Sq(r)^Nq) < δ.

Using Fubini's theorem for polar coordinates in Sq(r), we prove

Lemma 4.3. Given any η, r > 0, there exists an vλ, and if volM >

(1 — Ujjvol^n, then any u E Sq(r) can be joined to some v E Sq(r) Π N by a

path of length < η in Sq(r).

Let us note that from the assumptions in Main Theorem, we can also find a

lower bound for the sectional curvature of M in terms of n and K. Since the

norm of the map exp^ can be estimated from above by such bounds from both

sides, we have

Corollary 4.4. Under the hypotheses of Main Theorem, given any ε, r > 0,

there is an υ, > 0 so that //volM > (1 — Uj)vol5«, then any x E exp(Sq(r)) has

distance d(xy B(r\ q)) < ε/3.

Recall now that J. Cheeger has obtained a very general lower bound for the

injectivity radius from bounds on sectional curvature, volume, and diameter

(see [2, Chap. 5]). More recently, E. Heintze and H. Karcher [9] have improved

this estimate somewhat. From this, we deduce

Lemma 4.5. With the same assumptions, given ε sufficiently small, there is an

v2 > 0 such that ifvo\M > (1 — u2)vol5«, then iM > ε.

Thus any ball in M of radius < ε is contractible. Now take/?, q E M so that

d(p,q) = dM. Set dx : = ε/3. From Lemma 2.3 and its proof, one sees that for

some v3 > 0 and d2 : = D(υ3) — ε/3, whenever volM > (1 - u3)vols« the balls

5(2ε/3; p)~ and B(d2 + ε/3; g)~ cover M. In Corollary 4.4, set r : = d2 +

ε/3. We obtain

Lemma 4.6. We are still in the same situation and ε, r are as above. Then

there is an v > 0 such that if volM > (1 - υ)vol5«, then exp(S^(r)) is contained

in a contractible set C '. = B(ε; p).

For the proof, we simply take υ : = min{vl9 υ2, υ3}.
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We can now complete the proof of Main Theorem. Let D C TqM be the

closed disc bounded by Sq(r). Let Λf be the quotient space M/C, and Π:

Λf -> Λf the natural projection. Note that Λf can be given the structure of a

topological manifold and that Π is a homotopy equivalence. Consider Π © exp^:

D -> Λf. Insofar as 3D is mapped to a point, this map factors through a

continuous map h: S" -> Λf. Since there is a set in Λf which is covered only

once, h is seen to have mapping degree 1. Now it is a well-known topological

fact that M' and hence Λf also have the homotopy type of Sn.

5. In this section, we remark that Cheng's Theorem A can also be proved

more directly using our geometric techniques. Cheng's original proof relied on

the estimates for the eigenvalues of the Laplace operator.

Lemma 5.1. For any p E Λf,

This can be obtained from Lemma 2.1 by setting R — π, r — ττ/2 and

subtracting 1 from both sides of the inequality. Now suppose that dM — m.

Choose p, q so that d(p, q) = m. Then using that B(π/2; p) and B(π/2; q)

are each contained in the complement of the other, from Lemma 5.1 we obtain

Subtracting this again from the inequality of Lemma 5.1 gives

Lemma 5.2. IfdM — *rτ, then

vo\M = vo\B(π/2.p) + volB(w/2. q).

Corollary 5.3. In the same situation, the two closed balls B(π/2\ p)~ and

B(π/2; q)~ cover M and have a common boundary.

Thus any geodesic from p to dB(π/2; p) connects to a geodesic to q of

length 7r.

Lemma 5.4. For M, p as above, i(p) — π.

The last assertion follows from the observation that the geodesies emanating

from/? and entering into B(π/2; q) all minimize precisely to q, and their initial

velocity vectors form an open and closed set in 5^(1).

From Lemma 5.4 and the standard index comparison, it is easy to see that

along any of these radial geodesies at p, the vector fields considered in the

proof of Myers' theorem are Jacobi fields. This forces the sectional curvature

to equal 1 identically in all radial directions from p. But this is enough to

construct an isometry from Sn onto Λf exactly as in [6, §7.3].
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6. A closer examination of our proof to Theorem B shows that it suffices to
bound the injectivity radii at only two points on M, albeit they need be
specially situated with respect to each other. In this context, we mention its
relations with the almost-Blaschke manifolds of O. Durumeric. A manifold M
is said to be ε-Blaschke at p for some ε > 0, if i(p) > (1 — ε)d(p); here
d(p) := supq^Md(p9q). Recently, Durumeric [4] showed that there is an ε
depending only on an arbitrarily given lower bound to the sectional curvature
which rather severely restricts the topology of M, ε-Blaschke. However, without
the curvature dependence, such manifolds seem to have fairly arbitrary topol-
ogy even in dimension 2.

Note that the assumption on sectional curvature in our Main Theorem is
also only a dependence and not a restriction. It only enters in the last two steps
of our proof, though in crucial ways. Since the constant in Theorem B is
independent of any sectional curvature, one might hope to eliminate it also
from Main Theorem by using some methods different from ours. In fact, a
more straight-forward perturbation of Theorem A would be

Problem. Is there a constant 8 > 0 depending only on n such that if
dM > π — δ, then M is in some sense topologically similar to SnΊ

Recent works by K. Grove and K. Shiohama [8] and D. Gromoll and Grove
[5] show that if the sectional curvature of M is > 1, its topology is completely
determined already if dM > ττ/2. However, we can find metrics on SJ X Sk so
that Ric =j + k— 1 and the diameter approaches πΆSj + k goes to oo. So
for the Ricci curvature case, the dependence on n at least seems inevitable.

Addendum. After this work has been completed, we have received oral
communications that K. Shiohama has obtained a result apparently similar to
ours.
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