A NOTE ON A COUNTEREXAMPLE OF DELGADO

J. N. BROOKS

In this note we correct some incorrect analysis appearing in the paper of J. A. Delgado [1].

The example concerns two plane curves γ_1, γ_2 , which both are regular and complete, and have nonnegative curvature κ , i.e., $\kappa(\gamma_1) \ge 0$, $\kappa(\gamma_2) \ge 0$.

In this example Delgado intended to show that γ_1 and γ_2 are internally tangent at 0 and that $\kappa(\gamma_1(t)) \ge \kappa(\gamma_2(s))$ whenever $N_1(t) = N_2(s)$ where N_1 (resp. N_2) is the unit outward normal of γ_1 (resp. γ_2). He also showed that γ_1 is not contained in the convex region formed by γ_2 , thus showing that Blaschke's theorem does not apply to curves with nonnegative rather than positive curvature. However his analysis is incorrect. The example should go as follows:

$$\begin{split} \gamma_{1}(t) &= (pt, t^{4}), \quad t \in \mathbf{R}, \quad p > 1, \\ \gamma_{2}(s) &= \begin{cases} (s, (s-1)^{4}), \quad s \in \mathbf{R}, \quad s \ge 1, \\ (s, 0), \quad s \in \mathbf{R}, \quad |s| \le 1, \\ (s, (s+1)^{4}), \quad s \in \mathbf{R}, \quad s \le -1, \end{cases} \\ N_{1}(t) &= \frac{1}{(p^{2} + 16t^{2})^{1/2}} (4t^{3}, -p), \\ N_{2}(s) &= \begin{cases} \frac{1}{(1 + 16(s-1)^{6})^{1/2}} (4(s-1)^{3}, -1), & \text{if } s \ge 1, \\ (0, -1), & \text{if } |s| \le 1, \\ \frac{1}{(1 + 16(s+1)^{6})^{1/2}} (4(s+1)^{3}, -1), & \text{if } s \le -1. \end{cases} \end{split}$$

Received April 15, 1982.

Hence $N_1(t) = N_2(s)$ iff s > 1, and $t = \sqrt[3]{p}(s-1)$, -1 < s < 1 and t = 0 or $s \le -1$ and $t = \sqrt[3]{p}(s+1)$. We have

$$\kappa(\gamma_{1}(t)) = \frac{12pt^{2}}{(p^{2} + 16t^{6})^{3/2}},$$

$$\kappa(\gamma_{2}(s)) = \begin{cases} \frac{12(s-1)^{2}}{(1+16(s-1)^{6})^{3/2}}, & \text{if } s \ge 1, \\ 0, & \text{if } |s| \le 1, \\ \frac{12(s+1)^{2}}{(1+16(s+1)^{6})^{3/2}}, & \text{if } s \le -1, \end{cases}$$

(and not as appeared in [1]). So in fact we have

$$\kappa(\gamma_1(0)) = \kappa(\gamma_2(s)) = 0, \quad |s| \le 1,$$

$$\kappa(\gamma_1(t)) < \kappa(\gamma_2(s)) \quad \text{for } N_1(t) = N_2(s), t \ne 0$$

(and not $\kappa(\gamma_1(t)) \ge \kappa(\gamma_2(s))$ as appeared in [1]).

Hence it is no surprise that γ_1 eventually leaves the convex region formed by γ_2 . However, looking at the conjecture the other way around we should have that γ_2 lies in the convex region formed by γ_1 . In fact what we find is that in no neighborhood of the origin does it do so. Thus the conjecture fails rather strongly. The fact that γ_1 "cuts" γ_2 for points $t \neq 0$ is now irrelevant. This point is made even more clear by the fact that if p = 1 then $\gamma_1 \cap \gamma_2 = \{0\}$ and the example still works.

References

- J. A. Delgado, Blaschke's theorem for convex hypersurfaces, J. Differential Geometry 14 (1979) 489-496.
- [2] M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, NJ, 1976.
- [3] J. A. Thorpe, *Elementary topics in differential geometry*, Undergraduate Texts in Math., Springer, New York, 1979.

LA TROBE UNIVERSITY, AUSTRALIA

150