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T H E D E F O R M A T I O N OF L A G R A N G I A N M I N I M A L 
S U R F A C E S IN K A H L E R - E I N S T E I N S U R F A C E S 

YNG-ING LEE 

A Kahler manifold can be viewed both as a symplectic manifold and 
a Riemannian manifold. These two structures are related by the Kahler 
form. One can study the Lagrangian minimal submanifolds which are 
Lagrangian with respect to the symplectic structure and are minimal 
with respect to the Riemannian structure. Lagrangian minimal sub-
manifolds have many nice properties and have been studied by several 
authors (see [3], [5], [13], [16], [17], [27], [30], [33], [34] etc.). There are 
obstructions to the existence of the Lagrangian minimal submanifolds 
in a general Kahler manifold [3]. These obstructions do not occur in a 
Kahler-Einstein manifold. But even in this case, the general existence 
is still unknown. Most of the discussions of the paper are on compact 
manifolds without boundary. We assume this from now on unless other 
conditions are indicated. The main result of this paper is the following: 

T h e o r e m 4. Assume that (N,go) is a Kahler-Einstein surface 
with negative first Chern class. Let [A] be a class in the second ho­
mology group H2(N,Z), which can be represented by a finite union of 
branched Lagrangian minimal surfaces with respect to the metric go. 
Then with respect to any other metric in the connected component of go 
in the moduli space of Kahler-Einstein metrics, the class [A] can also be 
represented by a finite union of branched Lagrangian minimal surfaces. 

Note that the complex structure on N is allowed to change accord­
ingly. An immersed Lagrangian minimal submanifold in a Kahler mani­
fold with negative Ricci curvature is strictly stable ([4], [20], [22]). Thus 
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one expects to have a result as the theorem. However, there are some 
major difficulties due to the occurrence of branched points to realize this 
expectation. In this introduction we first explain how the ideas work out 
in the local deformation of the immersed case. Then we point out the 
difficulties in the branched case and how we solve the problems. When 
the Lagrangian minimal surface is immersed, it is strictly stable and 
thus the Jacobi operator is invertible. By the implicit function theory, 
we can find a minimal surface for any nearby metric and the tangent 
bundle of the surface changes smoothly. Hence the minimal surface ob­
tained is totally real if the metric is sufficiently close to the original one. 
A totally real (branched) minimal surface in a Kahler-Einstein surface 
with negative scalar curvature is Lagrangian ([5], [33]). Therefore, we 
get the local deformation of an immersed Lagrangian minimal surface. If 
we want to continue the process, we need to take the limit of a sequence 
of surfaces and it is not enough to restrict to the immersed case. We 
need to extend each step to the branched case. It seems that there is no 
known result for the deformation of branched minimal surfaces except 
the holomorphic curves. The Jacobi operator on a branched minimal 
surface is degenerate and it is a delicate problem to decide the allowable 
variations. For our problem, it is certainly not enough to consider only 
the variations with support away from the branched points. Branched 
minimal immersions are the critical points of the energy functional. We 
thus study the problem in the map settings and show that the strict 
stability in the sense of Definition 2 works suitably for the deformation 
of a branched minimal immersion. In particular, we have: 

T h e o r e m 2. Assume that ipo : S —> (N n,go) is a strictly sta­
ble branched minimal immersion. Then there exists a strictly stable 
branched minimal immersion ipt : X —> (N n,g t) for any g t which is 
close to go. Furthermore, ft converges to f§ in C°° if g t converges to 
g0 in C°°. 

Here S is a closed surface and N n is a complete Riemannian n-
manifold which is not necessarily compact. We show that a branched 
Lagrangian minimal surface in a Kahler surface with negative Ricci cur­
vature is strictly stable. Thus we can deform the branched Lagrangian 
minimal surface to get a family of strictly stable branched minimal sur­
faces. We still need to show that these surfaces are Lagrangian. One 
can hardly control the behavior of the tangent bundles after perturbing 
the branched points. The perturbation of the holomorphic curve (z2, z3) 
reveals some of the complexity. However, there are still some control 
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in the holomorphic case. We prove that when the branched minimal 
surfaces are stable, we still have the similar control. More precisely, we 
show: 

T h e o r e m 3. Let fi : E —> (N,g i) be a stable branched minimal 
immersion from a closed surface E to a Riemannian 4-manifold (N,g i). 
Assume that g i converges to go and (fi converges to fo in C°°, where 
ipo is a branched minimal immersion from E to (N,go). Then 

a(</?o(S)) = lim a(<fi(E)). 
i—s>oo 

The adjunction number a(tpi(E)) in the theorem is defined to be the 
sum of the integral of the Gaussian curvature on the tangent bundle and 
the integral of the Gaussian curvature on the normal bundle. It is equal 
to the total number of the complex points with indices when N has an 
almost complex structure and the complex points on <i(E) are isolated 
[5]. The immersed version of the theorem is proved by Chen and Tian 
[5] using a different approach. From this theorem we can conclude that 
the branched minimal surface obtained above is totally real when the 
metric is sufficiently close to the original one. Thus it is Lagrangian 
([5], [33]). This shows the local deformation of a branched Lagrangian 
minimal surface. The rest of the proof for Theorem 4 follows from an 
area bound and standard arguments. 

The organization of the paper is as follows. In section 1 we study 
the critical points of the energy functional and the stability. This point 
of view helps us to understand the branched minimal immersions and 
the results in this section should have their own interest. The local 
deformation of a strictly stable branched minimal immersion is obtained 
in section 2. We use the three circle theorem in section 3 to study the 
oscilation of the conformal harmonic maps. The adjunction number and 
some necessary preliminaries are introduced in section 4. In section 5 
we prove the theorem about the limit of the adjunction numbers. In the 
last section we complete the proof of the main theorem and give one 
application. 

The author would like to thank the interest of G. Tian and S. T. Yau 
in this work. She also wants to express her gratitude to J. Wolfson's 
insipring discussions and interest. Special thanks are to R. Schoen who 
brought this problem to the author 's attention and shared with her 
many of his profound insights. She also appreciate very much for those 
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valuable comments and suggestions from the refree. During the prepa­
ration of this work, the author has been supported by the National 
Science Council of Taiwan under two projects and a visit to Stanford 
University. She would like to thank these organizations as well. 

1. The energy functional 

Let S be a closed surface of genus r and N n be a n-manifold which 
is not necessarily compact. The energy functional on 

C°°(E,N) x M ( S ) xM(N) 

is defined to be 

where C°°(E, N) is the set of smooth maps between E and N, M(E) and 
M(N) are the set of smooth complete metrics on E and N respectively, 
and dA is the volume form of h. The quantity 

X i j g kl 
dipk dil 

dx i dx j 

is denoted by e(tp), which is called the energy density of tp between 
(E,h) and (N n,g). If we fix h, g and vary the map tp only, a critical 
point of E(-, h, g) is called a harmonic map between (E, h) and (N n,g). 
There has been a thorough study on harmonic maps. Here we only 
refere to [9], [10], [29] and the reference therein. If we fix ip, g and vary 
the metric h only, a direct computation gives the following formula: 

Lemma 1. Assume that h t is a smooth family of metrics on E with 
ho = h. Then 

where 

is the pull back metric and h = h-j t=o- In particular, a critical point 
of E(cp,-,g) satisfies <p*(g) = \e{ip)h; that is, the map ip is weakly 
conformal. 
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Proof. Assume that xljx2 are the local coordinates on E. Then 
dA t = p det h t dx1dx2 and the energy can be written as 

E((f,h t,g) = Z X h t3ip*(g)ij p ë t h t dxldx2. 

Since 

d(h p deth) = -h i%h t)aßh t p ^ t + h i j-h t { h t)aßp t 

the formula follows. If —^ ' t t j t=o = 0 for arbitrary haß, one has 

X ( ± h ij haf)-h iahM)<p*(g)ij=0, for any a,ß. 

In the matrix expression, this becomes 

^e{V)h-1-h-\*(g)h-1=Q. 

Hence tp*(g) = ^e(ip)h. q.e.d. 

Definit ion 1. A map ip : E —> (N n,g) is called a branched immer­
sion if ip is an immersion except isolated points at which the differential 
dip is a zero map satisfying the characterization in [11]. (See 1.2 Defini­
tion in [11].) These points are called the branched points of ip. 

If (/p is a branched immersion, the pull back metric <p*(g) can be 
expressed as A2h, where h is a smooth metric on E, and A is a smooth 
scalar function with isolated and finite order zeros. 

Thus one has the following result of Sacks and Uhlenbeck: 

Corollary 1. [25]If(ip,h) is a critical point of E(-,-,g), and ip is 
a nonconstant map, then ip is a branched minimal immersion. 

Proof. Assume that h t is a smooth family of metrics on E with 

ho = h, h = 2ft j t=o and ipt is a smooth family of maps with ipo = 

tp, -$t j t=o = V. By Leibniz's rule, one has 

dE{ipt,h tig)j _ dE(ipt,h,g)j dE{<p,h t,g)j 
T t=° ~~ Ti t=° "' Ti t=0-
dt dt dt 

Thus (ip, h) is a critical point of E(-, -,g) is equivalent to that the map 
ip is both harmonic and weakly conformal between (S ,h ) and (N n,g). 
When ip is a nonconstant map, this is equivalent to that ip is a branched 
minimal immersion. q.e.d. 
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Lemma 2. Follow the notation as in Lemma 1 and assume that h 
is a critical point of E(ip, -,g). Then 

d E ^ h t,g)j t=o = ZAe{v){Trh-ihh-ih)_iemTrh-ihft dA 
dt? | t -u 2 4 

where Tr denotes the trace of a matrix. 

Proof. Now we continue the computation in the proof of Lemma 1 
and differentiate —^'t t . Because 

X(±h h -h a ^V(g)y=0 , 
2 

hi 

those terms which come from the differentiation on (h t) aßp det h t have 
no contribuition. So we only need to differentiate 

XÏ Ïh h^-h ^ V g ) « -2 

Now we compute the formula in terms of matrices and get 

d(l-(Trh t l ^ ( g ) ) h t - h t<p*(g)h t ) j t=0 

= -)-(Trh-lhh-l(p*(g))h-1 - ]-e(ip)h~l hh~l 

+ h - 1 h h - V ( g ) h _ 1 + h^ip^g^hh-1 

= -je(ip)(Trh-lh)h-1 + )-e(ip)hTl hhTl. 

Therefore, 

d2E(ip,h t,g) 
j t=o Z (?-e(ip)(Trh-1hh-1h) - je(<p)(Trh^hf) dA. 

dt2 

q.e.d. 

Lemma 3. Assume that (ip,h) is a critical point of E(-,-,g). Let 
h t be a smooth family of metrics on S with ho = h, h = ^t j t=o and 
let (ft be a smooth family of maps with ipo = ip, - t j t=o = V. Then we 
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have 

d2E(ipt,h tig)j 

dt2 t = ° 

2 ( j r V j 2 + X < R N(d<p(e i), V)Me i), V >) dA 
i 

+ Z ( \ e ( ^ ) { T r h - l h h - l h ) - je(ip)(Trh^hf) dA 

(< rjLV,d<p(-x j) > + < r _ x V , M ^ - ) >) dA, 
dx i Ox dx j 

where R N is the curvature tensor of (N,g), and fei , e ̂  g is a local frame 
for h. 

Proof. By Leibniz's rule, one has 

d2E(ipt,h t,g) _ d2E(ipt,h,g) d2E(<p,h t,g) 

dti j t = 0 " dti j t = 0 + dt j t= 0 

ì2 
nd

2E(<pt,h s,g) 
+ z 77777 j t=s=0-

dtds 

The formula 

d2E(ipt,h,g) 

dt2 j t=o 2 ( j r V j 2 + X < R N(d<p(e i), V)Me i), V >) dA 

is well known and can be found for instance in [9] or [29]. The formula 

for dt2 j t=o is derived in Lemma 2. A direct computation shows 
that 

d(Pt(g)ij <rjLViMd) > + < r^ViM^ > . 
dt dx i dx j 8x j dx 

This together with the computation in the proof of Lemma 1 gives the 

formula for d E t tgh s,g'j t=s=o- q-e.d. 

Because the domain is two dimensional, the energy is a conformal 
invariant on the metric of the domain. Denote E g(ip,h) = E(ip,h,g). 
Then E g can be viewed as a smooth function E g(ip, [h]) on C°°(£ , N) x 
T , where T is the Teichmuller space of E, and [h] is the conformal 
class of h. Note that [^*(g)] is well-defined for a branched immersion 
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and E g(ip,[ip*(g)]) = 2A(ip,g), where A(ip,g) is the area of </?(E) in 
(N,g). It is clear that the opposite direction of Corollary 1 is also true. 
That is, if ip : E —> (N n,g) is a branched minimal immersion, then 
(ip, [<p*(g)]) is a critical point of E g. 

Remark . Assume that (ip, [h]) is a critical point of E g and [h t] is 
a variation of the conformal structure. Because in our case the energy 
functional is a conformal invariant, and by a result of Moser [21] we can 
choose h t such that they all determine the same volume form; that is, 
we can assume Trh~lh = 0 in the second variational formula. 

Assume that p : E —> (N n,g) is a branched minimal immersion and 
(ip, [h]) is the corresponding critical point on E g. Define a function f£ 

on E: 

:D 

0 jxj < e 2 , 

V e < jxj < e, 
l o g ! - - > 

1 jxj > e. 

Then lim R j r f j 2 dA = 0. Now we choose f£ such that it vanishes near 

each branched point of ip. 

L e m m a 4. If we denote the second variation of E g in the direction 
ofV and h by ô2E g(V,h), then 

82E g(Vìh) = l i m 8 2 E g(f£Vìh). 

Proof. A direct computation gives us 

rj±f£V = ferj^V+^lV 
dx i dx i 0x 

and 

j r f V j 2 = f 2 j r V j 2 + j r f e j 2 jV j 2 + 2J2 < e i(fs)Vf£r e i V > . 

Since h _ 1 , h , p, and V are smooth and fixed, the norms and the norms 
of their derivatives are all bounded. Therefore, 

j82E g(V,h)-lim62E g f V , h ) j 

< C i l i m [ jrf£j
2dA + C2(lim l jrf£j

2 dA)^ 
e—s>0 e^O 

= o, 

where C\ and C<2 are positive constants independent of e. q.e.d. 
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Definit ion 2. A branched minimal immersion ip : E —> (N n,g) 
is called strictly stable if lim ô2A(f£V) > 0, where V = -jt j t=o for 

any smooth family of maps ipt with ipo = ip. It is called stable if 
lim ô2A(f£V) 
e->0 

>o 
T h e o r e m 1. A branched minimal immersion ip : S —> (N n,g) 

is strictly stable if and only if the correponding critical point on E g is 
strictly stable. 

Proof. We first claim that for any branched immersion 0 : S —> 
(N n,g) and any smooth metric h on E, one always has 

E g(<l>,h)>2A(<l>,g). 

Choose xl,x2 to be the conformal coordinates for the pull back metric 

4>*(g); that is, 

X dcpk dcl 2 

g kl x 8 x j-fÂij> 
kl 

where ß is nonnegative. Express the inverse matrix (h i j) in this coordi-
a c 

nates as ( ), where a and b are positive. Then we have 
c b 

= Z X aß + bfj) . dx dx 
p ab — c2 

ab 1 9 
> 2 jjL p =dx dx 

p ab 
> 2A(<l>,g). 

c 2 

The equalities hold if and only if a = b and c = 0, i.e., when 0 is a 
weakly conformal map. 

Assume that (</?, [h]) is the corresponding critical point on E g of the 
branched minimal immersion, where h is a smooth metric on S. Let 
h t be a smooth family of metrics on S with ho = h, h = h j t=o and 
(ft be a smooth family of maps with ipo = ip, - t j t=o = V. Define 
<Pt(x) = exp<f(x)tfeV(x), where f£ is chosen as in (1). Then ipt is a 
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smooth family of branched immersions with (p6
0 = ip and - t j t=o = feV-

By the claim proved above, one has 

E g{<pst,h t)>2A{<pst,g). 

Define the C2 nonnegative function F by 

F(t) =E g(<pt h t) -2A(<pet,g). 

Because F(0) = F(0) = 0, it follows that F(0) > 0. Hence 

S2E g(f£V,h)>2ô2A(f£V) 

and thus 

S2E g(V,h) > lim2ô2 A(f£V) > 0. 

One also has ô2E g(0, h) > 0 by Lemma 3 for h which is not identically 
zero. This shows that (</?, [h]) is a strictly stable critical point on E g. 

Assume that (</?, [h]) is a strictly stable critical point on E g. Then 
</3 is a branched minimal immersion and one has 

82AfV)=l-82E g f V ^ ) . 

Thus 

l i m ^ ( f V ) = ^ 2
J g ( V , 0 ) > 0 . 

Hence ip is a strictly stable branched minimal immersion q.e.d. 

2. T h e deformat ion of branched min imal surfaces 

Let E be a closed surface and (N n,go) be a complete Riemannian 
n-manifold which is not necessarily compact. The strict stability in the 
sense of Definition 2 works suitably for the deformation of a branched 
minimal immersion. In particular, we have: 

T h e o r e m 2. Assume that tpo : E —> (N n,go) is a strictly sta­
ble branched minimal immersion. Then there exists a strictly stable 
branched minimal immersion ipt : S —> (N n,g t) for any g t which is 
close enough to go. Furthermore, ipt converges to tpo in C°° if g t con­
verges to go in C°°. 
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Proof. Let (po,[ho\) be the corresponding critical point on E go. 
By Theorem 1, one knows that (ipo, [ho]) is strictly stable. Part icularly, 
ipo is a strictly stable harmonic map from (E,ho) to (N,go). It is a 
theorem of Eells and Lemaire [8] that there exist a neighborhood V of 
ho and go in M ( E ) x M ( N ) and a unique smooth map S on V such 
that S(ho,go) = fo and S(h,g) is a smooth harmonic map between 
(S ,h ) and (N,g). Let y t h = S(h,g t) and be the corresponding 
neighborhood of [ho] in the Teichmuller space U • Since the energy is a 
conformal invariant on the domain, ipt h is also harmonic with respect 
to any other representative of [h]. Thus ft,h is determined by [h] in U. 
Define 

G :U x ( -£ ,£) - ^ d E t j tfc.lh]), 

where d E g t is the differential of E g t. Note that G([ho],0) = 0 and 
dGj([ho],o) is of full rank because the (ipo, [ho]) is a strictly stable critical 
point of E g0. By applying the implicit function theory to G, there exists 
a smooth path [h t] in T r such that G([h t],t) = 0. Denote <pt,h t by </3t. 
It follows that (ipt, [h t]) is a critical point of £g t and ipt is a branched 
minimal immersion. Because the energy E g depends smoothly on g, we 
can conclude that (ft, [h t]) is a strictly stable critical point for t small 
enough. Thus (ft is a strictly stable branched minimal immersion. By 
the construction of (ft and the theorem of Eells and Lemaire in [8], one 
also has that ft converges to fo in C°°. q.e.d. 

Propos i t i on 1. Every branched Lagrangian minimal surface in a 
Kahler surface N with negative Ricci curvature is strictly stable. 

Proof. The surface can be realized as the image of a branched 
minimal immersion tpo from E to N. Let f£ be defined as in (1), which 
has support away from the branched points of ipo, and assume that V 
is a vector field along ip$ which is defined on S. Define the one-form ße 

on E by ß£(u) =< Jf£V,u > , where J is the complex structure on N 
and u G T E . By a result in [4] and [20], we have 

ö2A(feV) = Z(jdßej
2 + joßej

2-Ric(f£VfeV))dA 
T, 

> c Z jf£Vj2dA, 
T, 

where Ric is the Ricci curvature of the Kahler surface satisfying 

Ric(V,V) < -cjVj2 
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for some positive constant c. Thus 

lim ô2A(feV) > limc Z \f£V\2 dA > 0, 
e-s-0 e ^ O s 

and the surface is strictly stable in the sense of Definition 2. q.e.d. 

Corollary 2. Let L be a branched Lagrangian minimal surface in 
a Kahler surface with negative Ricci curvature. Then there is a strictly 
stable branched minimal surface near L with respect to any Riemannian 
metric which is close to this Kahler metric. 

3. The oscillation of the conformal harmonic maps 

Let (f : S —7- N be a smooth map from a Riemannian surface S to 
a complete n-dimensional Riemannian manifold N. Let 01, 62 be an 
orthonormal coframe in a neighborhood of p G S and let a;1,--- , wn 
be an orthonormal coframe in a neighborhood of (f(p) G N. Define 
<Pla, 1 < a < 2, 1 < l < n by 

2 

<p*l = X <PlJa for l<l<n. 
a = l 

We have the structure equations for N and E: 

n 

diol = X mAwm and l m = -cl m for 1 < l, m < n, 

m=l 

2 

dda = X d a
ß h d ß and da

ß = -di for l<a,ß< 2. 
ß=i 

Define iplaß, l<a,ß<2, 1 < l < n by 

n 2 2 

la + X mv*l m + X ^ = X lß0ß-
m=l ß=l ß=l 

Choose the local coordinates at p to be 0 and let p2(y) be the square 
of the distance between y and ip(0) in (N, g). Then p2(ip(x)) is a function 
on S and 

Ap 2 ^) ) = 2 X X / l a ) 2 + 2p X kl k l + 2p X l , 
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where 1 < a < 2 and 1 < k, l < n. The condition of (p to be harmonic is 
equivalent to P a iplaa = 0 for all l. If we choose the normal coordinates 
{y\... ,y n g at <p(0), then 

l(y) 
y 
P 

and pkl(y) 
P 

y k y l 

Er m y 
k l -

When ip is harmonic, one has 

Hence p2(tp(x)) is a subharmonic function on S when the metric on N is 
flat. A general Riemannian metric satisfies rkl(y) = O(|y|) . By taking 
y = <p(x), it follows that p2(ip(x)) is subharmonic when \x\ is small. 
Further computation shows that 

A l o g p 2 A/92 |Vp , 22 

P2 

2 

7 

P4 

|v^|2-^^rmkl 
2 

-2E E l « 
a V l 

L e m m a 5. Assume that ip : ( ^ ( O ) , P i l d x i)2) ""̂  C^gO is a con~ 
formal harmonic map from a ball of radius 2 into a normal neighborhood 
of ip(0) in N. Then we have 

max p (ip(x)) < — 
B r.2(o) r 

C 

max p2(<p(x)) 
B ri(0) 

for 0 < ri < r2 < e < 1, where e is a constant depending only on the 
metric g, and C is a constant independent of ri and r<i-

Remark . The radius 2 in the Lemma does not matter, and the 
main point is to have a ball of fixed radius which maps into a normal 
neighborhood of <p(0). The constant e is chosen such that it is less than 
the fixed radius, and p2(tp(x)) is subharmonic on B£(0). 

Proof. When ip is a constant map, the lemma holds trivally. So we 
assume that ip is a nonconstant map. Because ip is a conformal map, 
we have 

E l ) 2 = E l ) 2 = ̂  and E l2 0, 



312 YNG-ING l e e 

where /z is a smooth and nonnegative scalar function with isolated and 
finite order zeros. Hence 

where e\ and e2 are orthonormal. Therefore, 

/we2, 

Alogp2 

> 
2 

| v |̂2 - £ vmmkla - 2 W j ^ l l 
a \ l 

2 

a=l 

where the positive constant c depends only on the upper bound of |V</?|2 

and the metric g. We use the fact that |Vp| = 1 in the first inequality. 
A direct computation shows that Ar2 = 2 and Alogr = 0, where r is 
the distance function on the domain. Define 

F{x)=e c r^2p2{ip{x)). 

Then 

A log F(x) = 

> -c + c 

= 0, 

so that logF(x) is a subharmonic function. Define 

Alogp2 + A - r 2 

M(r) max F(x) 
dB r(0) 

maxF(x). 
B r(0) 

Then the function 

log r — log r\ 
logF(x) logM(r2) - logr2 logr l o g M ( r ) 

log r2 — log r\ log r2 — log r\ 

is a subharmonic function and has nonpositive values on the circles of 
radius r\ and r2. By applying the maximun principle to the annulus 
between radius r\ and r2, we conclude that 

logM(r) < l o g r - l o g r i logM(r2) + l o g r - l o g r logM ( r i ) 
log r2 — log r\ log r2 — log r\ 
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for r < r < r2- This means that log M{r) is a convex function in terms 
of logr. Since the choice of r\ and r% is arbitrary, the conclusion holds 
for all 0 < r < 2. Now we want to compute the derivative of log M(r) 
with respect to log r at r = 1 and bound it by a constant C. We have 

d log M(r) d log M{r) dr M'(r) 

dlogr dr dlogr M(r) 

where 

and 

c 2 
M(r) = max Fix) = e ̂  r max o (<p(x)) 

dB r(0) dB r(0) 

M'ir) < max |VF(x)|. 
~ dB r(o) 

A direct computation shows that 

\VF(x)\ < cre c r2p2{ip{x)) + 2e c r2p{ip{x))\Vp{v{x))\ 

< crezr2p2((p(x)) + 2e c r2' p(ip(x))\Vip(x)\ 

for x G dB r(0). Hence 

M(l) maxaB l/)
2(^(x)) max9Bl p(y?(x)) 

So we can choose 
C = - + 2maxaB1 |V<^(x)| 

maxaB l p(<p(x)) 

Because the slope of a convex function is increasing, we have that 

logM(r2) - l o g M ( r ) 
log r2 — log r\ 

for 0 < ri < r2 < 1. Therefore, 

< C , 

M(ri) ri 

or 

M{r) - r i ' 

Thus we have 
e2r2maxdB r2p

2((p(x)) ^ 

e2rimax3B r i/)
2(^(x)) ri 
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Choose e such that p2(tp(x)) is subharmonic when \x\ < e. Hence 

maxp2((p(x)) = maxp2(<p(x)) 

for r < e. It follows that 

max B r2p
2(<p(x)) e2rïmaxdB r2p

2((p(x)) ^ 

max B riP
2{<p{x)) - e c r i m a x a B r i p

2 ( V ( x ) ) ~ r 

when 0 < r i < r2 < e. q.e.d. 

4. T h e adjunct ion numbers 

For a real surface E in a Riemannian 4-manifold N which has an al­
most complex structure J N, one can consider the intersection of T xT, 
and J N T xY, for points x G E. There are only two possibilities: ei­
ther T xT. n J N T x E = {0} where x is called a totally real point or 
T xE = J N T xT. where x is called a complex point. When the complex 
points are isolated, it has a well-defined index at each complex point 
and there are formulas which relate the total number of the complex 
points with indices to the topology of E. (See [5], [7], [31], [32], [33].) 
The characterization given by Chen and Tian [5] is the following: 

a N(E) = Z (K T + K N) dA = X ind x k, 

where K T and K N are the Gaussian curvatures of the tangent bundle 
and normal bundle of E in N respectively and ind x k is the index at a 
complex point x k. The first equality is the definition of the adjunction 
number a N(E) of E in N, and the second equality is a theorem proved 
in [5]. The tangent planes and normal planes on a branched minimal 
surface are still well defined even at branched points [11]. The above 
discussions also hold for branched minimal surfaces and in that case the 
integral is understood as an improper integral. Moreover, it is proved 
by Webster [31] and also by Wolfson [33] that the complex points on a 
branched minimal surface are isolated and all of negative index when 
the surface is not holomorphic or antiholomorphic. 

The bundle of complex structures on R2l along a minimal surface 
E was discussed in Schoen's unpublished paper [26]. For the sake of 
completeness and the readers' reference, we adapt the argument to our 
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settings and include a discussion here. One can identify the 2-vectors 

A2R4 with the anti-symmetric 4 x 4 matrices by associating to a 2-vector 

V 

1 = 2 X a kl e k A e l 
k,l=l 

the anti-symmetric matrix A = (a kl), where fe k, 1 < k < 4g is an 
oriented orthonormal basis of R 4 . The inner product of A2R4 induced 
on the anti-symmetric matrices is denoted by < . , . > , and it is 

< A,B>=--Tr(AB) 

for A, B anti-symmetric matrices. Denote the set of oriented complex 
structures on R4 by C4. That is, it is the set of positively oriented 
J : R4 —> R4 satisfying 

J t J = I , J 2 = - I , 

where J t is the transpose of the matrix J . The image of C4 under the 
above identification is the sphere of radius p 2 in /\2

+R4 which consists of 
the self-dual 2-vectors in A2R4 . Let k, 1 < k < 4 be another oriented 
orthonormal basis of R4, where f& f P m lk e l an g denote M = (m kl). 
Note that M t M = I , and thus M t = M " 1 . If a 2-vector r\ is identified 
with a matrix A in the basis fe k, 1 < A; < 4g , it is identified with the 
matrix M~lAM in the basis { k , 1 < k < 4g. If a complex structure in 
the basis fe k, 1 < k < 4g is expressed as a matrix J , it is expressed as 
M~XJM in the basis ff k, l<k<4g. Thus we have the identification as 
a bundle on a Riemannian 4-manifold N. Denote the total space of the 
restricted bundle on E by E. We claim that E has an almost complex 
structure. The fiber S2 has an almost complex structure or we also can 
define the almost complex structure directly from C4 as follows. Let A 
be the set of anti-symmetric 4 x 4 matrices. For J G C4, one has 

T J CA = fA G A : AJ + JA = 0g. 

We define an almost complex structure 

J : T J C4 —> T J C4 

on C4 by J{A) = AJ. It is easy to check that this is a right defini­
tion and it gives an almost complex structure on the fiber. The same 
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construction gives an almost complex structure on C% for l > 2 as well. 
Using the Levi-Civita connection we have a complement to the fiber 
which is called a horizontal space, and it can be identified with TE 
via the projection map. The identification induces an almost complex 
structure on the horizontal space. Therefore, we have an almost com­
plex structure on the total space E and we will denote it still by J. 
Assume that u(t) is a section along a curve 7(t) in E and d1t1 = T. 
Then (-y(t),u(t)) is a curve in E and the projection of its tangent vector 
into the fiber is just r u . 

Assume that fei, e2, e ̂ , e ̂  is a local, oriented orthonormal basis of 
the tangent bundle TN over g such that fei, e2g is an oriented basis of 
TE. We define an almost complex structure J s of TN along E by 

Js(ei) = e2, Js(e2) =-ei, 

J s e ) = e4, J E ( e ) = -e3. 

Hence J E is a section of the above bundle. Chen and Tian [5] shows 
that 

K T + K N = fi12 + Q34 + \jHj2 - ^ j r J E j 2 , 

where Qkl are some ambient curvatures, H is the mean curvature on E 
satisfying 

jHj2 = (h i + h ) 2 + (hii + h ) 2 , 

and 

j r J E j 2 = 2[h\2 - hi,)2 + 2{h\2 + h\x)
2 + 2 ( h , - h\2)

2 + 2(h + h ) 2 . 

Thus one has 

a N(S) = Z (fì12 + Q34 + \jHj2 - ^ j r J E j 2 ) dA. 

We will consider maps from E into N from now on. Hence the surface 
on the above discussions should be replaced by the image of a map. But 
we will use the same notation whenever there is no confusion. 

Lemma 6. Assume that ip : E —> (N,g) is a branched minimal 
immersion. Then the map J E : S —> E is holomorphic. 

Proof. Assume that xl,x2 are the conformal coordinates near a 
point p on E for the pull back metric. Denote the complex structure by 
j which satisfies 
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Let fei, e2, e3, e4g be a local, oriented orthonormal basis of the tangent 
bundle TN as described before in a neighborhood of ip(p) on </?(£). 
Therefore 

<9 d 
dip(—-[) = ßei and dip(—-^) = ße2, 

where ß = jd(p(-£j-)j = jdip(-^)j. Note that Jv(z), which we will denote 
by J E instead, can be identified with 

- ( e i Ae2 + e3 Ae4). 

When p is an unbranched point, we have 

r ei(ei Ae2 + e3 A e4) 

= r eiei A e2 + ei A r eie2 + r eie3 A e4 + e3 A r eie4 

= (h11e3 + h11 e4) A e2 + ei A (h?2e3 + hf2e4) 

+ (-hfiei - h\2e2) A e4 + e3 A (-hfiei - h\2e2) 

= (hf2 + hfi)ei A e3 + (h\2 - h\x)ei A e4 

+ (—hfx + hf2)e2 A e3 + (-h4
n - h\2)e2 A e4 

= (hf2 - h ^ ( e i A e4 + e2 A e3) + (h?2 + hfi)(ei A e3 - e2 A e4). 

A similar computation gives 

r e2(ei A e2 + e3 A e4) =(h22 - h\2)(ei A e4 + e2 A e3) 

+ (h22 + h2i)(ei A e3 - e2 A e4). 

The 2-vectors are identified with the anti-symmetric matrices, so we mix 
the notation sometimes. It can be checked that 

ei A e4 + e2 A e3 G Tj^ C ̂  and e\ A e3 — e2 A e4 G TjEC4. 

Furthermore, we have 

J ( e i A e4 + e2 A e3) = ei A e3 - e2 A e4 

and 
J"(ei A e3 - e2 A e4) = - ( e i A e4 + e2 A e3). 

Because one has h\x = — h22 and hfi = — h22 on a minimal surface, it 
follows that 

Jr ei(ei Ae2 + e3 A e4) 

= (h12 - hii)(ei A e3 - e2 A e4) + (-h?2 - hfi)(ei A e4 + e2 A e3) 

= ( h 2 + h22)(ei A e3 - e2 A e4) + (h22 - h\2)(ei A e4 + e2 A e3) 

= r e2(ei Ae 2 + e3 Ae4). 
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That is, we have Jr eiJz = r e2Js • Since the almost complex struc­
ture on the horizontal space is given by the identification with TE, the 
map also satisfies the holomorphic condition in the horizontal space. 
Thus 

or J E is holomorphic away from the branched points. Because J s is a 
continuous map, it then follows that J E is in fact holomorphic at all 
points on E by the standard fact in complex analysis or see discussions 
below. q.e.d. 

We would like to write the holomorphic condition in local coordi­
nates and show that it is equivalent to satisfying a first order elliptic 
system. Let fei, e2, e3, e4g be a local, oriented orthonormal basis of the 
tangent bundle TN. Then 

Ei = ei Ae2 + e3 Ae4, 

E2 = ei Ae3 - e2 Ae4, 

E3 = ei A e4 + e2 A e3 

becomes a local basis for the bundle of self-dual 2-vectors. Assume 
that P J i E i is a section of this bundle. Its covariant derivative is then 
defined to be 

r x X JE = X t ^ i+X J < r E E i > E• 

Note that C4 is identified with a sphere of radius p 2 in A+R4. Thus if 
P J i E i is in this subbundle, one has 

r ^ _ X J i E i = aiÇi + bi£2 and r ^ _ X J E = a2£i + b2£2, 
dx1 dx2 

where £1, £2 are of length p 2 and orthogonal. The almost complex 
structure on the S2 bundle is defined to be 

J(Zi) = b and J ( 6 ) = -ei-

A section is holomorphic is then equivalent to a\ = b2 and bi = —a2. 
Assume that J s is identified with 

- ( e i Ae2 + e3 A e4) 
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at a point p and is written as P J i E i near p, where J\ = — p \ — Jf — J$-
Thus 

at = <V_a_X J i E i,Ç1> 

and bi, a2, b2 also have similar expressions. We can choose £1 = E ̂  
and 2̂ = —E3 at p. Then at p, 

and 

a2 = x l + X J j r ^ j ' b2 = ~ôx2 " X j r 2 j 
The symbols for the equations a\ — b2 = 0 and a2 + b1 = 0 are nonde­
generate at p. By continuity, they are still nondegenerate near p. Hence 
Ji , J2 satisfy a first order elliptic system and the coefficients of the lower 
order terms are related to Yi j only. 

5. The limit of the adjunction numbers 

Theorem 3. Let fi : E —> (N,g i) be a stable branched minimal 
immersion from a closed surface E to a Riemannian 4-manifold (N,g i). 
Assume that g i converges to go and fi converges to f§ in C°°, where 
ipo is a branched minimal immersion from E to (N,go). Then 

a(</?o(S)) = lim a(<fi(E)). 
i—S>00 

Proof. Without loss of generality, we can assume that ipo has only 
one branched point at xQ. Let B r(xo) be the ball centered at xo of 
radius r with respect to the pull back metric fç,(go)- For i large enough 
all the branched points of fi are within B r(xo) and K i T + K i N converges 
to K T + K N on E \ B r(x0) uniformly. Thus 

a((A)(S)) = lim Z (K T + K N)dA0 
r->°znB r(x0) 

= lim lim Z (K i T + K i N) dA i 
r^0i^°°i:nB r(x0) 

= lim a(fi(T,)) - lim lim Z (K i T + K i N) dA i, 
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where dA i is the volume form for the pull back metric f*(g i). Because 

K i T + K i N = Qi2 + fti4 + ±jH i j2 - jjrJ i j2 

and H i = 0 at unbranched points, we have 

lim lim Z (K'T + K i N) dA i 

= lim lim Z (Çli2 + 0 i 4 - - j r J i j2) dA i 

lim (fiÇ2 + fi§4) dA0 

1 

4 r—>0 i—s>oo 

1 

4 r—>0 i—s>oo 

lim lim j r J i j 2 eLi 
B r(x 0 ) 

lim lim j r J i j 2 dA i. 
B r(xo) 

If we can show that lim lim , , j r J i j 2 dA i = 0, then the theorem 
r-s>0i->oo B r\x0) 

will be proved. Express the pull back metric as h i = <f*(g i) = A2/ii, 
where h i is a smooth metric with the volume form dA i, and Ai is a 
smooth scalar function with isolated and finite order zeros. We can 
choose Ai suitably such that Ai and h i converge to Ao and ho in C°° 
respectively. Choose r small enough such that B r(xo) is a conformal 
neighborhood for all h i. Compose ipi with a conformal transformation 
on B r(xo) if necessary, we can assume that x1 ,x2 are the conformal 
coordinates for all h i. Because the image is minimal, by the discussions 
in last section, it follows that jr_a_ J i j is bounded for any fixed i. That 

is, the energy density of J i with respect to the metric h i is bounded for 
any fixed i. We change the metric on the domain to h i, but still use 
the same notation j r J i j . If j r J i j is bounded in B r(xo) by a constant c 
which is independent of i, then 

lim lim Z j r J i j dA i < c l im lim Z dA i 

= c lim dA(j 
r ^ 0 B r(x0) 

= 0. 

When the domain is two-dimensional, the energy is a conformal invari­
ant on the metric of the domain. Hence the left-hand side is exactly 
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the quantity which we want to control. So that in this case the theorem 
follows. 

Now assume that 

max jVJ i(x)j = fi for i > 0, 
xeB r(xo) 

where fi tends to oo, and assume that the maximun value fi is obtained 
at x i. Because K T + K i N converges to K T + K N uniformly on Y,\B r(xo) 
for any r, the sequence x i must converge to xQ. We define a new metric 
h i = ti h i on the domain, and choose a ball of radius br around x i with 
respect to h i. Now we can consider tpi as a map from Bb r(0) in R2 

•2 

to (N,g i). If we denote the energy density with respect to h i still by 
jVJ i j 2 , then we have jVJ i(0)j = 1 and jVJ i(x)j < 1 for x G B i O ) . 

2 

Because J i satisfies a first order elliptic system in local coordinates, by 
an interior Schauder estimate [1], one has 

jJ i jl,a;Bi < C ( j J i jo;B2 + jf i jo,a;B2)i 

where C is a constant, and f i is related to the Christoffel symbol of h i 
only. (See the discussions at the end of last section.) Since the metric 
h i converges to the flat metric on B\, it follows that jf i jo,a;B2 converges 
to 0. Thus jJ i jita;Bi is uniformly bounded. By the Ascoli-Arzela con­
vergent Theorem, we have J i converges to a section J uniformly in C1 

and 

(2) jVJ(0)j = lim jVJ i(0)j = 1. 
i—>oo 

Note that B r(xQ) is a conformal neighborhood for h i with conformal 
coordinates xl,x2. With the coordinates, we denote the ball of radius r 
at x i in the Euclidean metric by D r (0). The map ipi is a conformal har-

monic map from (D r(0), P a = i (dx a ) 2 ) to (N, g i). Define <Pi(x) = <Pi{x)-

Then (pi{x) is a conformal harmonic map from (Db i r (0), P n - i (dxa)2) 
2 

to (N,g i). Let p2(y,g i) be the square of the distance between y and 
<Pi(0) in (N,g i). Assume that 

max p2(ipi{x),g i) = maxp 2(^(x) , f i ) = c2. 

Because i tends to oo , it follows that c i tends to 0 and p2(ipi(x)ig i) is a 
subharmonic function on D\(0) for i large enough. Thus the maximun 
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value c2 for p2(<pi(x), g i) can be attained at x i G <9Di(0). By choosing a 
new parametrization we can assume that x i is fixed, say at the point q = 
(1,0). The image pi(Di) is a branched minimal surface in (N, g i). Since 
g i converges to go, the monotonicity constant for branched minimal 
surfaces and the radius where the bound holds can be chosen uniformly. 
Therefore, [24] 

area (pi(Di),g i) = area ( i ( D i ) , f i ) < cc2. 
b i 

Define a new metric g i = c~ g i on N. Let | | V ^ | | 2 be the energy density 
of <pi with respect to the metric g i . Then 

Z | | V < i | | 2 d A = 2 a r e a ( ( i ( D i ) , g ) < c. 
Di 

Because there is no harmonic map from S2 into (R4, P k= 1(dy k)2) , there 
cannot be any energy concentration. Moreover, <^(0) = x i converges 
to xQ. Thus there exist a subsequence, which is still denoted by <pi, 
converges to a smooth harmonic map ip from (D\(0), P a = i ( d x a ) 2 ) to 

(R4 , P = i ( d y k)2) in C°° by a result of Sacks and Uhlenbeck [25]. More­
over, 

p2mq),X(dy k)2)) = lim f?(<Pi(q),g'i) = 1-
fe=l 

Hence dp is a nonconstant map. 

For any L > 1 we claim that the energy E(<pi(D L),g'i) is also 
unformly bounded. This follows from a modification of the proof of 
Lemma 5. 

A modif icat ion of L e m m a 5. Because g i converges to go and 
Pi converges to po in C°°, there exists a uniform e such that pi(D£) 
lies in a normal neighborhood of <fi(0) in (N,g i), and p2(pi(x),g i) is 
subharmonic on D e . Moreover, we also have that 

| V i x | and m 
W i ( x ) . g i) 

are uniformly bounded on D e (0) . Thus the constant c i in Lemma 5 
can be chosen uniformly. Since p(ipi(x),g i) converges to p(ipo(x),go) 
and max,9De p(ipo(x),go) is positive, it follows that maxgDe p(fi(x),g i) 
has a uniform positive lower bound. The constant C i in Lemma 5 can 



t h e d e f o r m a t i o n o f l a g r a n g i a n m i n i m a l s u r f a c e s 323 

then be chosen uniformly. In conclusion, we show that there exist pos­
itive constants e and C such that fi : (D r(0),Pa=l(dxa)2) —> (N,g i) 
satisfies 

maxp2(ipi(x),g i) < (—)C max p2 (ipi{x), g i) 
D-2 r D ri 

for any 0 < r\ < r% < e. Note that a constant conformal factor on the 
metric of the target will not affect the conclusion. Because L < e for i 
sufficiently large, Lemma 5 can be applied to (pi on D L. Thus we show 
that 

maxp2(<Pi{x),g i) < L C max p2{ipi(x),g'i) < L C. 

Since <Pi(D L) = </3i(D_L ), for i sufficiently large the image lies in a 
b i 

ball in (N,g i) where the monotonicity formula holds. The same argu­
ment as above shows that area (*Pi{D L),g ^) < cL C [24]. That is, the 
energy E(ipi(D L),g'i) < C L , where C L is a constant depending on L 
only. Therefore, there exists a subsequence of <p~i, which is still denoted 
by <pi, such that (pi converges to a smooth harmonic map ip from D L(0) 
to ( R 4 , P L i ( d y k)2) t 2 5]- Choose a sequence L k which tends to oo and 
use the diagonal process to choose a subsequence which converges to a 
smooth harmonic map ip in any compact set of R2 [25]. Here ip is a 
harmonic map from (R2,Pa=i(dxa)2) to (R4,Ek=i(dy k)2). Consider 
the variations of ip which have compact supports and vanish near the 
branched points. Because there are no branched points of ipi in the 
support of the variation for i large enough, the stability of ipi implies 
that of ip (for such variations). By the same reason as above, we can 
show that the area of <Pi(D L) is of quadratic growth by the monotonicity 
formula [24]. Thus the area of <p(R2) is also of quadratic growth. It is a 
theorem of Micallef that every complete stable branched minimal sur­
face in R 4 which is holomorphic with respect to some complex structure 
on R 4 ([18], [19]). (The stability is for variations which have compact 
supports and vanish near the branched points.) In particular, it implies 
that V J = 0, where J is the section associated with ip(R2). The section 
J i converges to J in C°° on any compact set away from the branched 
points. On the other hand, we know that J i converges to J in C1,a on 
Bi by (2). Thus J = J on Bx and 

|VJ(0) | = lim | V J i(0)| = 1. 
i—s>oo 

It is a contradiction. Hence | V J i(x) | is uniformly bounded with respect 
to h i and g i. The theorem is then proved. q.e.d. 
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6. T h e m a i n t h e o r e m 

T h e o r e m 4. Assume that (N,go) is a Kahler-Einstein surface with 
first negative Chern class. Let [A] be a class in the second homology 
group H2(N,Z), which can be represented by a finite union of branched 
Lagrangian minimal surfaces with respect to the metric go. Then with 
respect to any other metric in the connected component of go in the 
moduli space of Kahler-Einstein metrics, the class [A] can also be rep­
resented by a finite union of branched Lagrangian minimal surfaces. 

Proof. Let g be any metric in the connected component of go in the 
moduli space of Kahler-Einstein metrics. There exists a smooth family 
of Kahler-Einstein metrics g t, 0 < t < 1, satisfying g\ = g. A metric 
is said to have the property P if the class [A] can be represented by a 
finite union of branched Lagrangian minimal surfaces with respect to 
this metric. Let 

T = f t j t G [0,1] and g t has the property Pg. 

From the assumption of the theorem, we know that T contains 0. Now 
assume that to belongs to T. That is, the class can be written as [A] = 
Un[<i(£i)], where fi : Si —> (N,g to) is a branched minimal immersion 
and the image is Lagrangian. We will deform each fi separately. So 
now we only work on a single map ft0 : X —> (N,g to). It is strictly 
stable by Proposition 1. Thus by Theorem 2 there exists a strictly 
stable branched minimal immersion ft from E to (N,g t) for jt — toj < e 
and ft converges to ft0 in C°°. The Lagrangian surface ft0(E) satisfies 
a(ft0(T.)) = 0. Because the adjunction number is an integer and 

l i m a ( < t ( £ ) ) = a(<ptoÇ£)) 
t—to 

by Theorem 3, a(ft(T,)) = 0. Since the complex points on a branched 
minimal surface which is not holomorphic or antiholomorphic are iso­
lated and of negative index (see [31], [33]), it follows that </?t(£) is totally 
real. A totally real, branched minimal surface in a Kahler-Einstein sur­
face with C\ < 0 is Lagrangian ([5], [33]). Thus ftfà) is a branched 
Lagrangian minimal surface. Because there are only finite maps, we can 
choose e such that each fi has a deformation in jt — toj < e. Hence the 
class [A] can be represented by a finite union of branched Lagrangian 
minimal surfaces with respect to the metric g t for jt — toj < e. That is, 
the set T is open. 
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Next we w a n t t o show t h e c losedness of T . We need t o get a n a r ea 

b o u n d a n d we first show th i s for a s m o o t h family of b r a n c h e d m i n i m a l 

i m m e r s i o n s (ft : S —> (N,g t), to < t < b, wh ich can b e t h o u g h t as t h e 

m a p s o b t a i n e d above . D e n o t e t h e a r ea of <^t(S) in (N,g t) by A(tpt,g t) 

a n d h(t,x) = ip't(g t)(x) w i t h vo lume form dA t. T h e pu l l back m e t r i c 

h(t,x) = X(t,x)2h(t,x) for some s m o o t h m e t r i c h(t,x) w i t h t h e vo lume 

form dA t . T h e n 

dA(<pt,g t) 

dt 
V h ij(t,x)h ij(t,x)dA t 

2 

E h ij(t,x)h ij(t,x)dA t. 

N o t e t h a t 

h ij{t,x) = Y^ g kl(t,t x)) 
dipt{x)k d(ft(x)l 

k,l=l 
dx i dx j 

Hence 

dh ij(s,x) 

ds s=t 
k,l=l 

4 

dg kl(s,<pt{x)) dipt{x)k dipt{x)l 

ds s=t dx i 

dg kl(t,<Pt(x)) d(ps(x) 

k,l=i 
4 

dy 

+ Y g kl(t,<pt(x)) 

ds 

d2ips(x)k 

dx j 

dipt{x)k dipt{x)l 

s=t 

k,l=l 

4 

dsdx i 

dx i 

dtpt(x)l 

s=t dx j 

dx j 

+ Y g kl(t,<pt(x)) 
d(ft(x)k d2ips(x)l 

k,l=l 
dx i dsdx j s=t 

Because (ft is a b r a n c h e d m i n i m a l immers ion , t h e c o n t r i b u t i o n of t h e 

t e r m s which a re o b t a i n e d from fixing g t a n d va ry ing ipt is zero. T h u s 

we only need to cons ider t h e s i t u a t i o n w h e r e (ft is fixed a n d only g t is 

var ied . In t h i s case 

h ij [t, x) 
dg kl(s,<pt(x)) dtpt(x)k dtpt(x)l 

-j s=t 

k,l=l 
ds dx i dx j 
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For fixed t and x, we choose the conformal coordinates for h t at x such 
that h ij(t,x) = SijX2 or h ij(t,x) = öij. We also choose the normal 
coordinates for g t at <pt(x) such that g kl{t,tpt{x)) = 8kl- Then at (t,x) 

h^t,x) = Xd^x)kd^x)k=ijx\ 
fc=i 

Because g is a fixed smooth family, the quantity j g kl[-s^ t{-x>> j has a 
uniform bound c. Hence 

dA(<pt,g t) = Z X h ij(t \dg kl{s^ t{x)) _ d<pt(x)k d<pt(x)l A 

dt Z Ös j s_ t dx dxf' t 

X jd(pt(x)k jjdtpt(x)l j 
< c ——-— ——-—jdA t 

y Ox i Ox i 
k.l.i 

c Z X n g y t x k j2 , jd¥>t(x0l2w;i 
2 J j x + _äx~j )dA t E k,l,i 

= c / Â  dA t 
Y 

< cA(ipt,g t). 

Moreover, A(ipt,g t) < e c^~to'A(ipto,g to). The Gauss equation for mini­
mal surfaces is 

~K N{t,x) = Kx(t,x) + jIIj2t{x) 

at unbranched points, where K N(t, x) is the sectional curvature of (N, g t) 
on the tangent plane of y?t(S) at <ft(x), K~z{t,x) is the Gaussion cur­
vature for the pull back metric h(t,x), and jII t j2(x) is the norm of the 
second fundamental form of </t(S) in (N,g t) at ift{x). Integrating on 
both sides of the equation, we get 

Z K N(t,x) dA t = Z KY.it,x) dA t + Z jII t j2(x) dA t 
Z_^i Z_j Z_j 

= 2 T T X (S ) + 2irB(t) + / jII t j2(x) dA t, 
Y, 

where B(t) is the total branched order of the map ipt- Note that the 
integrals in the formula are all understood as improper integrals. Be­
cause we have the area bound for </?t(£) and K Nitjx) is bounded for a 
fixed family g t, 0 < t < 1, it follows that R s jII t j2(x) dA t + 2nB(t) is 
uniformly bounded. 

http://KY.it
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Similar to the lemma of Choi and Schoen in [6], one can show the 
boundness of the sup norm of jII t j2(x) in a ball away from the branched 
points, if the L2 norm of jII t j2(x) is sufficiently small in a larger ball 
(compare to [2]). Since RE jII t j2(x) dA t is uniformly bounded, by ap­
plying Sacks and Uhlenbeck's covering argument [25], one can pick up 
a subsequence which converges to a branched minimal surface. Because 
the surfaces are Lagrangian and the areas are bounded, the limit sur­
face is Lagrangian (see [27] and compare with [15],) and the area of the 
limit surface is also bounded by the same constant. The area of a closed 
minimal surface has a lower bound which depends only on the injective 
radius of the ambinent manifold. Because g t is a fixed smooth family 
of metrics for 0 < t < 1, this lower bound can be chosen uniformly. 
Thus once we have the area bound for the union of closed minimal sur­
faces, the total number of closed minimal surfaces in that union will 
be bounded. This shows that b G T and we can use the openness to 
continue the deformation. Although we do not have a lower bound for 
the length of the interval where the deformation can go further on each 
step. We do have a global area bound for the family of minimal sur­
faces during the process. Moreover, the topology is bounded and the 
union is finite. The same argument as above shows the closedness of T. 
The nonempty set T is both open and closed. So it must be the whole 
set [0,1]. That is, the class [A] can be represented by a finite union of 
branched Lagrangian minimal surfaces with repect to the metric g = g\. 
This completes the proof. q.e.d. 

Now we give a simple application of the theorem. Let 

N=(M,g)x(M,g), 

where (M, g) is a closed Riemannian surface with a hyperbolic metric. 
Assume that f is a map from a closed surface E to M whose induced 
map on the first foundamental group 7ri is injective. Then the induced 
map of (f, f ) on m is also injective and there exists a branched minimal 
surface in the homotopy class of (f, f ) by a result of Schoen and Yau 
[28]. Because the metrics on the two components of N are the same, the 
branched minimal immersions in the homotopy class of (f, f ) must be 
of the form (f, f ) by the uniqueness of harmonic maps into a hyperbolic 
space [12]. Thus the branched minimal immersions are Lagrangian if 
we reverse the orientation on the second component. By the same ar­
gument as in [16], it follows that the branched minimal surface in the 
homotopy class is unique since every branched minimal surface in the 
class is Lagrangian. 



328 YNG-ING l e e 

Now we change the metric on the second component in its moduli 

space of hyperbolic metrics. By Theorem 4 we still have the existence of 

the branched Lagrangian minimal surfaces in the homotopy class with 

respect to the new metric. The Lagrangian minimal surfaces obtained 

here can be of different topology with the one we have in [16]. One 

can also try to combine our existence result in [16] with Theorem 4 to 

get the existence of the branched Lagrangian minimal surfaces in other 

classes. 
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