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I N T E G R A L C U R V A T U R E B O U N D S , D I S T A N C E 
E S T I M A T E S A N D A P P L I C A T I O N S 

PETER PETERSEN & CHADWICK SPROUSE 

Abstrac t 

In this paper we show how the classical diameter bound for manifolds with 
positive Ricci curvature generalizes to a situation where one has integral 
curvature bounds. In addition we also generalize the P. Levy isoperimetric 
constant to this situation. This gives generalizations of work of Lichnerow-
icz, Cheng, Croke, Gallot, Colding and more. 

1. In t roduct ion 
We shall in this paper generalize the classical diameter bound for 

manifolds with positive curvature to a situation where one only has 
integral curvature bounds. The history of this problem is briefly as 
follows. In 1855, Bonnet in [6] showed that a surface with curvature 
> 1 has the property that no geodesic of length > n can be length 
minimizing. Given that the surface is complete, one then obtains the 
standard diameter bound. In 1925 Synge generalized this to arbitrary 
Riemannian manifolds of sectional curvature > 1. However, he neglected 
to point out the consequence for the diameter (see [40]). He did do this 
later in 1935 ([41]), but only after Myers in the same year published a 
paper on this (see [28] and also [38]). In the meantime Hopf and Rinow 
had also pointed out this diameter bound in their paper on completeness 
of surfaces from 1931, but only for abstract surfaces ([23]). In 1941 
Myers then generalized these results to the now standard situation where 
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Ric > (n — 1) ([29]). There have been several subsequent generalizations 
of this result, among which we point out those of Ambrose, Calabi, Avez, 
Markvorsen, Galloway, Cheeger-Gromov-Taylor, and Itokawa, to such 
situations as when one assumes positivity for the integral of the Ricci 
curvature along all geodesics (see [1], [7], [2], [27], [19], [10], [25]). Closer 
to the spirit of what we are studying here, J.-Y. Wu showed in [42] that 
if one assumes that Ric > (n — 1) away from a small metric e-ball on 
which one has Ric > — (n — 1) K 2 , then one still gets a diameter bound 
of the form diam < n + O (e). This was generalized by Rosenberg and 
D. Yang in [37] to a situation where, instead of a metric ball, one has 
merely a set of small volume on which the curvature is allowed to dip 
down. In both of these results the second variation technique of Synge's 
original paper is still used, much as in the early work, but with some nice 
tricks thrown in. Recently the second author in [39] managed to show 
that if one assumes the manifold has Ric > — (n — 1) K2, then it suffices 
to assume that the amount of Ricci curvature which lies below (n — 1) is 
small in L 1 to get a diameter bound close to n. In this paper the second 
variation technique is still used, but with a somewhat surprising twist 
in that it relies on the interesting inequality [8, Thm 2.11], which was 
originally introduced for completely different purposes. This inequality 
depends rather crucially on a pointwise lower Ricci curvature bound, 
and unlike many other results (see [35], [36]) has not yet been generalized 
to manifolds with appropriate integral curvature bounds. In this paper 
we use an excess estimate technique to generalize the diameter bound to 
such a situation. Before stating the results, we introduce some notation. 

Fix a real number K, and consider at each point of a Riemannian n-
manifold M the lowest eigenvalue Ric_ for the Ricci tensor. To measure 
the extent to which the Ricci curvature lies below (n — 1) K, we introduce 
the function p = max {((n — 1) K — R i c_ ) , 0} and the quantity 

k (p, K, R) = sup ——-—— Z /p. 
x£M v o l B (x, R ) B(x,R) 

Note that k (p, K, R) = 0 iff Ric > (n — 1) K. The volume normalization 
is natural in our context, and makes (k (p, K, R)) scale like curvature 
(see also [17], [35], [36]). As R —> 0 we get that the k (p, K, R) converges 
to min pP, while if R —> oo one gets some (asymptotic in the non-compact 
case) global curvature invariant. This limit will be denoted by k (p, K) . 
In [17] it was shown by several examples that smallness of k (p, K, R) for 
p < n/2 or general boundedness of k (p, K, R), for any p > 1, does not 
give any interesting results. 
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However, if one assumes that k (p, K, R) is small for p > n / 2 , then 
interesting phenomena emerge. In [17] it was shown that one gets 
lower bounds for certain isoperimetric constants. This gives in a stan
dard way lower eigenvalue bounds and Sobolev constant bounds (for 

L ' C L 2 p _ 1 ), which can then, for example, be used in connection with 
Gallot's modification of the Bochner technique to get various interest
ing Betti number bounds. In [35] and [36] it was shown that smallness 
of k (p, K, R) gives relative volume comparison, gradient bounds, and a 
generalized maximum principle. This was enough to generalize almost 
all results, new and old, on manifolds with lower Ricci curvature bounds 
to the situation in which k (p, K, R) is small. One nagging problem, how
ever, that remained from all of these generalizations, was that there was 
still no way that one could get diameter bounds as described above. The 
problem, in all its simplicity, was that one could not control negative 
mean curvature, or in other words ensure that it became negative in the 
necessary places. 

In this paper we take care of these problems and then go on to ex
plain that virtually all old and new results on manifolds with positive 
Ricci curvature carry over to the integral situation. We also improve 
Gallot's isoperimetric inequality. Namely, we generalize the Heintze-
Karcher-Gromov generalization of P. Levy's inequality. In particular, 
one gets almost optimal lower eigenvalue bounds in positive curvature 
and a bound for the classical Sobolev constant coming from the embed-
ding L ' C L n-1 (this Sobolev constant then yields bounds for all other 
Sobolev constants). 

Now let us mention a selection of the results we prove here. First 
the diameter bound: 

T h e o r e m 1.1. Let n > 2 be an integer, p > n/2, R > 0, and 
K > 0. For every ö > 0 there is an e (n,p,n,R) > 0 such that any 
complete Riemannian n-manifold M with k (p, K, R) < e has d i amM < 
(^^/pK) + ö. In particular, M is compact. 

We would like to point out a connection with general relativity here. 
There is an analogous phenomenon to these diameter bounds in general 
relativity, known as the Raychaudhuri effect (see [22] and also [3]). This 
is the result which predicts a big bang from present expansion (Hubble 
effect), together with nonnegativity of the energy-stress tensor. Later, 
Penrose and Hawking then refined this technique to show that black 
holes should exist (see, for instance, [22]). An interesting problem in 
all of this work is to see if the results remain true in the presence of 
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(small) quantum fluctuations. A very reasonable interpretation of hav
ing small quantum fluctuations is to say that the amount of negativity 
in the energy-stress tensor should be small in some suitable integral 
sense (noting that this still allows for large bursts as long as they don't 
persist). Our results, especially those of section 3, therefore indicate 
that indeed these singularity theorems do remain true in the presence 
of quantum fluctuations, at least in the Riemannian setting. 

Using the same estimates as are used for the above theorem and 
the proof technique from [31], we can generalize the almost-maximal 
diameter theorem from that paper. Thus we can find ö (n, K, K, R) , 
e (n, K, K,R) > 0 such that a Riemannian n-manifold M with 
k (1, K, R) < e, sec > — K2, and d i amM > (-K/pK) — ö is homeomorphic 

to a sphere. 

Let M be closed, with diameter < D. Suppose that H C M is a hy-
persurface with constant mean curvature r], which divides M into two 
domains, and let Q be one of these domains. In the space form S n pick 
the distance sphere H = S (xo,r) of constant positive mean curvature 
|r?|, and let Ù be either B(xo,D) — B(xo,r) or B(xo,r). The desired 
choice is that which gives the same sign for the mean curvature as when 
we look into Q from H. Using a generalization of the diameter estimate 
from above (see Section 3) we can, after possibly decreasing K slightly, 
show the following generalization of the Heintze-Karcher volume com
parison inequality (see [21]). 

T h e o r e m 1.2. For any a > 1, there is an e(n,p,a,K,R) > 0 such 
that if k (p, K, R) < e, then 

From this estimate it follows (see [18]) that the classical Sobolev 
constant is bounded, and from [5] that when K = 1, then the first eigen
value is bounded below by a~2n (Recall that the unit sphere has first 
eigenvalue n with multiplicity n + 1. Lichnerowicz first showed in [26] 
that Ai > n for manifolds with Ric > (n — 1) . However, his technique 
doesn't seem to carry through to our context.) In addition, Croke's 
result from [15] (see also [4]) that almost minimal first eigenvalue gives 
almost maximal diameter carries over as well, with the same proof. We 
can also generalize Cheng's upper eigenvalue bounds. These results give, 
in particular, that manifolds with k (p, 1,R) small and almost maximal 
diameter have first eigenvalue close to n. 
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Among more recent results, we can generalize Colding's amazing 
work on positive Ricci curvature from [12] and [13]. Quickly stated, 
this work says that for manifolds with Ric > (n — 1), the following 
statements are equivalent: 

1) volM is close to volS n, 
2) M is Gromov-Hausdorff close to S n 
3) M has radius close to n (where r a d M is the smallest closed metric 

ball which contains all of M). 
Moreover, from work in [9] we get that any of these conditions imply 

that the manifold is diffeomorphic to a sphere. 
Our claim is that these equivalences, appropriately qualified, remain 

true if k(p,l, R) is small. To this list of equivalences it is natural to add 
the condition that the (n + l)-st eigenvalue is close to n. It is shown in 
[33] that in fact this condition implies Gromov-Hausdorff closeness to 
S n, without using the work of Colding. This last condition also works in 
the context of smallness of k{p,l,R). Given the work in [36] this gen
eralization (including the diffeomorphism statement) is straightforward 
as long as one has the above diameter and eigenvalue bounds. 

From the above-mentioned work of Cheng and Croke, one sees that 
for manifolds with Ric > (n — 1) it is equivalent to have almost max
imal diameter and almost minimal first eigenvalue. To this Cheeger 
and Colding in the profound paper [8] add that these conditions are 
almost equivalent to the manifolds being Gromov-Hausdorff close to a 
sine warped product over some metric space. We can also add this last 
statement to our list of equivalences, but with the proviso that the man
ifold has a lower volume bound. It is interesting to note that our failure 
to address the collapsed case is precisely because we can't establish the 
inequality [8, Thm 2.11] also mentioned above. 

It is interesting to ponder what we have not been able to generalize. 
Besides the inequality of Cheeger and Colding, another important issue 
needs to be addressed. Namely, what happens to covering spaces when 
k (p, K, R) is small. One of the main consequences of the diameter bound 
in positive curvature is of course that one gets finite fundamental group. 
This is also the main feature of the work of Rosenberg-Yang and the 
more general work of [39]. In the case of purely integral curvature 
bounds, however, we have no such result. 

This is briefly organized as follows. In section 2 we establish the nec
essary mean curvature comparison. This seems to be somewhat harder 
than the corresponding earlier results of a similar nature. In Section 3 
we use this to prove the diameter bounds and also the generalization 
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of Perel'man's diameter sphere theorem. In Section 4 we then go on to 
prove the generalized P. Levy isoperimetric inequality, which gives the 
classical Sobolev constant. Finally in Section 5 we discuss the gaps that 
need to be filled in order to establish the pinching theorems mentioned 
above. In this section we also mention how to obtain bounds on the 
Sobolev constant in situations where k (p, K) is small and K < 0. 

2. Mean curvature comparison 

In this section we shall generalize the integral estimates for the 
Laplacian of distance functions that were obtained in [35] to the sit
uation where one has positive curvature (and negative Laplacian) in 
the comparison space. 

The notation is as follows: We have a complete Riemannian n-
manifold (M, g) . At each point in this manifold we denote by Ric_ 
the lowest eigenvalue for the Ricci tensor. If we have a distance func
tion f (x) = d (x, xo) (or f (x) = d (x, H) , where H is some hypersurface 
with mean curvature < ho), then the gradient off is denoted by dr, and 
the Laplacian by Af = tr (Hessf) or h. Of course, h is also the mean 
curvature of the level sets of f. In the comparison space S n of constant 
curvature K, we similarly pick a distance function fK, with Laplacian hK 

(in the hypersurface case this will be the signed distance to the distance 
sphere of mean curvature ho, or in other words, simply the distance to 
a point but with values shifted). More precisely, we have in the point 
case that 

/ \ / x s n K ( r ) 
h (r =c t« r =—27-7, 

snK (r) 

where 

sn" (r) + KsnK (r) 

snK (0) 

sn (0) 

and in the hypersurface case that 

h {r) = ct« (r + r 0 ) , 

ctK (r0) = h0. 

Clearly hK (r) depends only on the distance, while h (r, 6) depends on the 
distance and polar (or hypersurface) coordinate. Thus we can compare 

= 0, 

= 0, 

= 1, 
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the two quantities h (r, 9) and hK (r) at the same distance r from the 
reference point (or hypersurface). These mean curvatures satisfy 

drco = hco, 
h2 

dr h-\ < —Ric_, 
n — 1 

a; (0,0) = 0, MO,0) = 1), 

h (0,6) = +00 , (h (0,6) <h0), 

drtoK = hKLOK, 
h2 

dr hK + —^- = - ( n - l ) K , 
n — 1 

u>K(0,6) = 0, (uK(0,6) = l), 

hK{0,6) = +00 , (hK(0,6) = h0), 

where LO denotes the volume form, and the initial values inside the paren
theses are for the hypersurface case. From these formulae it follows that 
if Ric_ > (n — 1) K, then h (r,6) < hK (r). In order to generalize this, 
we define 

xj>(r,6) = (h(r,6)-hK(r))+, 

p(r,6) = ((n — 1) K — Ric_)+ , 

where (u)+ = max{0, u} is the positive part of the function. These 
quantities, in both the point and hypersurface situations, satisfy 

drto < i\)io + hKLO, 

4>2 2hKil> 
drip H 7 H 7 < P, 

n—\ n—\ 
•4>(0,6) = 0. 

We can now prove the desired mean curvature estimates. 

Theorem 2.1. With notation as above, we have for all n > 2, 
p > n/2, K > 0, r + ro < 7T jpn an estimate of the form 

r 

tß2p (t, 9) codt < C (n, p, K,r) (p (t, 9) todt, 
o 

where C(n,p,K,r) is an explicit constant depending only on the vari
ables indicated, and 9 is fixed. 
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Proof. There is no difference in treating the point and hypersurface 
cases. Nevertheless, for simplicity we only worry about the point case 
and thus assume that ro = 0. We shall use the inequality 

(2.1) v' + -^i>2 + — ^ -h<p. 
n—\ n—\ 

If we multiply this by ip2p~2LO and integrate from 0 to r Z we obtain 

< r p^2p-2-u;. 
o 

Here, all but the third term on the left-hand side are positive. Thus we 
have that 

(2.3) 

n 

1 

- 1 

< 

1 

2p-

p-ip 
0 

-h (r) 

(Z p 

-h (r) 

l 

2p-

n 

• LO 

n 

r 

Jo 
2-LO 

2 

- 1 

) p ( 

2 

- 1 

4>2p-L0 

1 

2p-

r 

i 

2 p -

l 

• LO 

l 

r 
\ 4>2p-
o 

1 - Ì 
) p 

r 
\ 4>2p-
o 

1 

1 

Note that if r < n/ (2pK) then the last term can be ignored, since in 
this case it is negative. Thus one immediately gets a bound of the form 
(see also [35, Lemma 2.2]) 

r i>2p • LO < (— — \ r fp-co. 
o - n - i 2p- i j0

 r 

When r > 7r/ ( 2 p K ) , however, considerably more work is needed. 
If in the above inequality (2.1) we drop the ip2 term and multiply 

through by ip2p~2, then we obtain 

tf . ̂ p-2 + _J_^p-l .hR<p. ^p-\ 
n 1 
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Again, we can use that hK is decreasing on [0, r] to get 

iß' • iß2p~2 + hK ( r ) — ^ - V 2 p _ 1 < P • i>2p~2-
n — 1 

Now we can multiply this by (2p — 1) and the integrating factor 

0(t) = expfh K ( r ) 2 ( 2 p" 1 ) t 
n — 1 

and write this as 

{</> • ip2p-1)' < {2p - 1) • <j> • p • 4>2p~2 

< {2p - 1) • p • ip2p~2. 

If we then multiply this inequality by LO and integrate, we get 

{<l>-il>2p~1-co)\r a - h • <P • il?p-1 • LO < {2p - 1) p - V 2 p " 2 -
a a 

which can be reduced to 

( 0 - p - 1 - ) l r 
< (2p - 1 ) ( r h+ • 4>2p~i -LO+ r p- i\)2p-2 • LO 

We now let a = 7r/2pK and try to estimate the two terms 

(p- 1 - )L / ( 2p) 
and 

r h+ • if2p-1 • LO. 

The first one is handled by 2.2: 

1 / 1 1 \ 'T / (2pK) 

_L(^.„)( l / lp) + (_i___LjZ p.u 

o 
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Now, hK is positive on the given interval, so the second and third terms 
on the left-hand side can be eliminated to get that 

p - x ( ^ • a,) (*/(2p*)) 

(2.5) < Z p-iP2p-2-io 
o 

p / Z 1 \ p 

For the other term we introduce the auxiliary functions 

h t<n/(2p) 
h" 0 t>irl{2pK) 

and 

ï> = h - hK) . 

Thus ip = h+ whenever t > 7r/(2pK). Moreover since h+ satisfies 

1 

n — 1 

we have 

h' + T hi < (-Ric_)+, 

1 9 2 ~ 
V> + 7 ^ + 7 ^ - h < P, 

n — 1 n — 1 
^ (0) = 0. 

Multiplying this equation by ip2p~lco and integrating, we obtain as above 
that 

Pp»<(^-1-T
J—)~p Z r<p«>• 

0 n - 1 2 p - i 0 

In particular, 

T / ( 2 p ) 

2p r 2p 

(2.6) < p • w ip2p-iü 

^ - ^ ) r p-)pUr-")'"p 
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Thus by 2.4, 2.5, and 2.6 we obtain 

(4> • 4>2p~l • u)) ( r ) 

<{xl)2p-l-u){*H2pK)) 

+ (2p-l) f r h+ • 4>2p~1 • LO + Ir p-^-2-LO 
\TT/(2pK) O 

0 

at least for r > n/(2pK). However, for r < 7r/(2pK) we already know 
that 

- l—-

V2p_1 • w (r) < (2p - 1) p • w p C r V2p • ^ 

so all in all we definitely get an estimate of the form 

{p-1-u)(r) < Ci(p ,n , r ,K)f r y p - w ) p ( 7 r p • ^ 

To obtain the desired estimate for JQr ip2p-LO, we use the original equation 
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(2.3): 

^ uZ r . . 
n - 1 Z p - l J 0 ^ 

-h"r)(n Z - ^ î r ^ ' -

" h (r) ( n 3 1 - Z ^ 1 'r 'C l p'n'r' ̂  

fp • co p ( r v2p • w 

o 

^ • c / " p 
0 

1 r 1-
2p <C 2 (p ,n , r ,K) p-w V2p-w 

i ; r 
2p 

-̂ - 1 —-1. 
r 2p r 2p + C2(p,n,r,K) fpu> ^-w 

This is an inequality of the form 

1 - - 1 - — 

ax < cx p + bx 2p , 
- i + -where all of the coefficients are positive. If we multiply this by x p, 

we get 

j_ j _ 

ax p < c + bx2p. 

The quadratic equation then tells us that 

j _ b + p b2 + 4ac 
x 2 p < 

2a 
b max {b, p4ac) 

< — + — -
2a a 



d i s t a n c e b o u n d s 281 

In the situation at hand, we have that 

1 1 

so that 

or, 

n — 1 2p 1 

C2 (p,n,r,n) fp -co 

i 

C2 (p,n,r,K) fp -co 

rp2p-uX2p <C3(p,n,r,K) (Z r p - u } 2 p 

ip2p • u) < C4 (p, n,r,K) fp • to, 
o o 

as desired, q.e.d. 

3. Distance bounds 

First, we need to recall a result from [36, Section 2]. Given that 
k(p,K,Ri) is small for some R\, one can for any other R2 show that 
k(p,K,R2) < C (n,p, Ri,R2) • k (p, K, R\). Thus it doesn't matter on 
which scale we make averaged curvature assumptions. The other thing 
that we must use is the generalized maximum principle from [36, Section 
3]. 

Theorem 3.1. Let O C M be a bounded domain in an n-dimensional 
Riemannian manifold. Then for any function u on Q with Au > —f, 
where f is nonnegative on Q satisfies 

(3.1) supu<supu + K- (—— Z f q q 
n an volll n 

for any q > n/2. Here K depends on n,q > p > n/2, and on the 

constant that appears in the Sobolev embedding C (Q) C L2p-iy (Q) for 
functions which vanish on dQ. Moreover, in case p > n/2 and k (p, K, R) 
is small for some R we have a bound for this Sobolev constant from [17]. 
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Actually the above-mentioned bound for the Sobolev constant for 
Dirichlet boundary conditions is most easily gotten by assuming that 
one has a global Sobolev constant bound for the entire manifold and 
that volO < (volM)/2. In fact Gallot gets a bound for the global 
Sobolev constant provided we have a diameter bound and smallness for 
k. Thus we include a preliminary lemma which bounds the diameter of 
the manifold by a value close to 2-K. After this is done we can then go on 
to establish the optimal diameter bounds mentioned in the introduction. 

Lemma 3.2 Let n > 2, p > n ; R > 0, and K > 0. Then there 
is D = D(n,n), e = e(n,p,n,R) such that any complete Riemannian 
manifold with k{p,K,R) < e satisfies diamM < D. 

Proof. Let y,z G M, xo be a midpoint between y and z, and consider 
the excess function 

(3.2) e(-) = d(y,-) + d(;z)-d(y,z). 

Note that e > 0 on M and e < 2r on B(xo, r) by the triangle inequality. 
From the above mean curvature estimates, by using a suitably large 

comparison sphere we may choose D large enough so that if d(y, z) > D, 
then Ae < —K + ipi, on B(xo,r), where K is a large positive constant 
to be determined, and ipi denotes an error term controlled in L2p by k 
as before. 

Let fîi be a sequence of smooth star-shaped domains which converge 
to B(xo,r) — Cut(xo), f j a sequence of smooth functions such that 
jf j - ej < j - \ jVf j j2 < 2 + j - \ and Af j < Ae + j ~ l on B(xQ,r) (see, 
for instance [14]). 

Letting h = d2(xQì-) — r2, we have that h is smooth on fìi, so by 
Green's Theorem 

(3.3) Z (A.j)h- Z f j(Ah)= Z h(vf j)- Z f j{uh), 

where v is the outward unit normal to fìi. Thus, 

Z (-K + Vi + j ^ h - 3r Z (2n + tß2) 

< Z h 2 + j - 1 ) - Z f j(uh). 

By the dominated convergence theorem, the two integrals on the right-
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hand side of the above converge as j —> oo, and we get 

(3.5) Z (-K + V i ) h - 3 r Z (2n + V>2) < 2 Z h - Z e{vh). 

Now, 

(-K + ipJh-Sr (2n + ip2) 
B(xo,r) B(xo,r) 

(3.6) - r ) Kvol(B(xo,r/2))-6nrvol(B(xo,r)) 

ripi + 3rip2-
B(xo,r) 

By relative volume comparison ([36]) we have that for k(p,0,R) small 
enough, vol(B(xo,r/2)) > 2~(n R>vol(B(xo,r)). Moreover, we can choose 
k(p, K, R) small enough so that fR( -, ripi + 3rip2 < nrvol(B(xo,r)). 

Thus for K > n2 (-n+ 5r_ 1 , the above quantity is positive. Therefore 
^ Ron- h ~ Ron- eiuh) becomes positive as i —> oo. However the first of 
these integrals goes to 0 as i —> oo, while in the second we have that 
uh > 0 on dQi for all i, as fîi is star-shaped. This implies that e must 
be become negative on B(xo,r), which is a contradiction. So d(y,z) 
must be < D. q.e.d. 

There are two types of diameter bounds that we are after when 
k (p, K, R) is small. One is a global diameter bound, while the other 
is for domains in general. Since the latter is more general and needed 
for our later results, we emphasize this here. Suppose that we have 
a domain Q C M with smooth boundary dû, and that for some p > 
n/2 and R > 0 we have that k (p, K,R)<E is small. Furthermore, 
assume that the mean curvature with respect to the normal pointing 
into il is < ho. In the space form S n choose a ball B (xo,ro) whose 
boundary has mean curvature ho with respect to the inward pointing 
normal. From standard Ricci curvature comparison it is easily seen that 
$1 C B (dQ, ro) , provided that Ric > (n — 1) K. Our main result asserts 
that this almost holds when k (p, K,R) < e is small. 

Theorem 3.3. For every ö > 0 there is an e (n,p, K, R, ro) > 0 such 
that if k (p, K, R) < e, then l i e B (90, ro + 6) . 

Proof. Take a point y G Q such that d(y,dQ) > ro + ö > ro, 
and select a segment a from dû to y parametrized by arclength. Now 
consider the two distance functions f\ (x) = d (90, x) and f2 (x) = 
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d (x, y), and with those the excess function e (x) = f (x) + f2 (x) — 
d(y,dQ) . If we consider a ball B(xo,r) where xo is chosen near the 
midpoint of a and r < ro/4, then this excess function is > 0 on B (xo, r ) , 
and attains its minimum 0 at xo. Thus Ae(xo) > 0. Using the mean 
curvature estimates from the previous section, we shall now show that 
e cannot have an interior minimum on B(xo,r), provided that e is 
sufficiently small. Note that xo can be chosen so that volB(xo,r) < 
±volM. 

From above we have the following Laplacian estimates for f i on Q: 

Afi < c t K ( f i - r 0 ) + V i , 

Af2 < ctK(f2)+V>2, 

where ctK (—ro) = ho, and 

/ p < Cin^^R) [ 
B(dn.R) B 

<p, 
B(diì,R) J B(dn,R) 

B(y,R) B{y,R) 

where since n > 0, there is a restriction on how large R can be. Since 
we are interested in what happens on B (xo,r) and ô is assumed to be 
small, we can by picking r < min{ro/3,R} ensure that ipi are bounded 
in on this ball in terms of the curvature. Thus we have that 

ii p < C2(n,p,K,R,r) —— — / fp 
volB (x0 ,r) B(x0,r) i volB (x0,R) B(x0,R) 

< C2 (n,p,K,R,r) • e. 

The excess function therefore satisfies 

Ae < ct« (fi - r0) + ct« (f2) + Vi + ^h-

Since f1 + f2 > ro + ö and ctK is decreasing we get 

ct« (f1 - r0) + ct« (f2) < ct« (Ô - f2) + ctK (f2) 

As long as the range of f2 is restricted to [26, (TT/pK) — ô], this function 
has a negative maximum, which is < —C3 (n, K) • ô. Therefore 

Ae < - C 3 (n, K) • ô + V, 
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where 

V2p < C2 • s. 
volB{x0,r) B(x0,r) 

Here we should point out that in the case of Ric > (n — 1) K, we would 
have that ipi = 0. Hence we have already arrived at a contradiction at 
this point, since e would then have negative Laplacian at a minimum. 

Now pick u such that 

Au = C3 (n, K) • ö, 

u = 0 on dB (xo,r). 

By the standard maximum principle such a u must be negative on 
B (xo, r). So if we consider the function e + u then 

A(e + u) < iß, 

e (x) + u (x) = e (x) > 0 on dB (xo,r), 

e (xo) + u (xo) = u(xo)<0. 

Thus it must have an interior minimum on B (xQ, r) , which by the above 
maximum principle (Theorem 3.1) satisfies 

i 
2p 

inf (e + u) > inf (e + u) - K • — — ^ p 
B(x0,r) dB(x0,r) v o l B [xQ, r)B(x0,r) 

> inf (e + u) - K • (C2e)p 
dB(xo,r) 

> -K-(C2e)p. 

Therefore, we obtain the following lower bound 

i 
u (x0) = e (x0) + u (x0) > -K • (C2e)2p . 

We shall now derive a negative upper bound for u (xo) which depends 
on ö. In S n consider a metric ball B(xo,r). On this ball we have a 
rotationally symmetric function if o d (xo, •) such that 

Aipod(x0,-) = C3(n,K)-ö, 

ipod(xo,-) = 0 on dB (xo,r). 
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Thus ip : [0,r] —> [—oo,0] is the function which satisfies 

p + (n-l)ctK(t)p = C3(n,K,)-ö, 

<p(r) = 0. 

In particular, ip (0) < 0 is a number which only depends on n, K, r, and 
Ô. 

In B (xo,r) consider the function 

v (x) = tp o d(xo,x). 

This function satisfies 

A v = ip o d + Ad -pod 

< C3 (n, K) • 8 + ip • (p o d 

< C3 (n, K) • (5 + V>, 

where 

— — - Z x\)lv < C4(n,p,K,R,r) • e. 
volB(x0,r) B(X0,T) 

Thus the difference v — u satisfies 

A (v — u) < ip, 

v — u = 0 on dB (xo,r). 

Again by the maximum principle (3.1) we therefore get 

v (xo) - u {xo) > —K • (C4e) 2p . 

In other words, 

u(xo) < <p (0) + K • ( C 4 e ) p , 

which becomes negative as e —> 0. This, together with the lower bound 

u (xo) > —K • {C2S) 2p we obtained above, will clearly give us a contra
diction unless ô —> 0 as e —> 0. q.e.d. 

From this theorem we get two fairly immediate consequences. One is 
the diameter bound in positive curvature. The other is a generalization 
of the sphere theorem in [31]. 
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Corollary 3.4. Let n > 2 be an integer, p > n/2, R > 0, and 
K > 0. For every ö > 0 there is an e (n,p,n,R) > 0 such that any 
complete Riemannian n-manifold M with k (p, K,R) < e has diamM < 
(^^/pK) + ö. In particular, M is compact. 

Proof. To see this we can simply use the above proof. Take two 
points p,q G M with d(xo,yo) = (^^/pK) + ö and consider the excess 
function e(x) = d(x,xo) + d(x,yo) — d(xo,yo). Again we have the 
appropriate estimates on the Laplacian of e from the mean curvature 
estimates in the above section. Thus the proof works without further 
change, q.e.d. 

Corollary 3.5. Let n > 2 be an integer, R > 0, K > 0, and 
K > 0. We can then find ö (n,n,K,R), e (n,K,K,R) > 0 such that 
any Riemannian n-manifold M with k(l,K,R) < e, sec > — K2, and 
diamM > (^^/pK) — ô, is a twisted sphere. 

Proof. The proof is as in the original paper. First note that given 
the pointwise lower bound for the sectional curvature we can as in [39] 
assume that k (p, K, R) is small for some arbitrary but fixed p > n/2. 
The only modification is that if d (xo,yo) = diamM and we consider the 
distance function f (x) = d (x, yo) , then the Laplacian will not neces
sarily go to —oo as we approach xo. Instead we can use the above bound 
on the Laplacian which gives the same upper bound plus an error which 
is small in L2p. We can then extract a contradiction in the same manner 
as in the above proof, q.e.d. 

4. Volume comparison 

We are now ready to prove the first part of the volume comparison 
results. We consider the volume of balls or (half) tubes: 

volB (xo,r) 

volB {H, r) 

v o l ( B ( x o , r ) c S n) 

S « - 1 O 

u) (t, 9) dtdO, 

u {t, 9) dtd9, 
H O 

v (n, K,r) 

u)R (t, 9) dtd9 
S«-1 o 

S«-1 o 
sn ̂ "1 (t) dtdO, 
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vol (B (H, r) C S n) = v (n, K, ro + r) — v (n, K, ro) . 

Consider the ratio 

{ vo (,xo,rj in the point case, 

v(n,K,r) ' 
volB(H,r) f -7 :—e—y r in the hypersurace case. v(n,K,r+ro)—v(n,K,ro) 

It follows from L'Hospital's rule that 

{ 1 in the point case, 

area^Bxro)) in the hypersurface case. 
To estimate these ratios, we use that the ratios of the volume forms 
satisfy 

limiîM = 1. 
r^O WK(r) 

As in [35, Lemma 2.1], we see that the volume ratio satisfies 

1 

y' {r) <C{n,K,r) • Z ip2p dvol • (v (n, K, r )) 2p • (y (r)) 2p , 
\ B ( x 0 , r ) / 

where 

C (n, K, r) = max 
R0 m a x - j a ^ p s ) , ^ ( t )}ds 

te[o,r] tw K ( s )ds 

The only slight difference is that in [35] we used that LOK (r) is mono-
tonically increasing, which may not be true in the present situation, 
and thus the need for the maximum inside the integral. Using that the 
quantity 

C (n, K,r) • Z ip2p dvol 
\ B ( x 0 or H,r) J 

is increasing in r, we see that on [0, R] the volume ratio y satisfies 

y' < K • f (r) • y1'p, 

K = C(n,K,R)- I Z tß2p dvol) 
\B(x0 or H,R) J 

2p 
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Direct integration over [a, b] C [0, R] then gives us that 

j _ j _ Z b _ J _ 

y2p (b) < y2p(a) + 2p-K- (v(n,K,t)) 2p dt 
Z a 

j , R -A. 
< y2p (a) + 2p- K • (v(n,K,t)) 2p dt. 

o 

We can now collect the three terms 2p, C (n, K, r), RQr (v (n, K, t))~ 2p dt 
into a new constant C (n,p,K,r), which is increasing in r. Therefore y 
satisfies 

y p (b) <y ^p (a) + C(n,p,K,R) • ( / tß2p dvol I . 
\ B ( x 0 or H,R) J 

With this we can now generalize the classical Heintze-Karcher vol
ume comparison result for hypersurfaces. First some notation. Suppose 
that H C M is a hypersurface, but now with constant mean curvature 
r] > 0, and that H divides M into two domains Q±, where 0 + is the 
domain in which the mean curvature is positive. Furthermore, select 
d± > 0 such that d+ + d- < diamM < D and tt± C B (H, ±d±) . 
In the space form S n, pick the distance sphere H = S (xo,ro) of con
stant positive mean curvature 77, and let Ù+ = B (xo,D) — B (xo,ro), 
Q_ = B {xQ,rQ) . Finally assume that d+ < D — ro and d- < r$. In the 
previous section we saw that if k (p, K,R) < e is small, then it follows 
that d- < ro + O (e) . Thus by decreasing K slightly we can assume that 
the condition on d± is satisfied, and also that diamM < diamS™ + O (e). 
So by decreasing K further we can suppose that both of Cl± are metric 
balls of radii < d±. In this situation we can now prove our generalization 
of the Heintze-Karcher volume comparison (see [21]). 

Lemma 4.1. For any a > 1, there is an e(n,p,a,K) > 0 such that 
if k (p, K) < e, then 

.^ . area (H) , x vol n± < a ^ - v o l (fi± . 
area [H) 

Proof. Let Q denote the domain with volQ > volM/2. From above 
we get that 

/ v o l O \ p fvolB(H,r) ^ n < ^ 
- I I v ' < C- (k(p, K))2p 

volO volB(H,r) 
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which implies 

volB H , r ) p ( volB (H,r)\p 

volO volO 

, C . v o l B ( H , r ) ) p . ( ^ ) ) 5 

< C . v o l B ( H , r ) ) p . ( 2 v o l M ) 

< C" • (volB (H, r))p (k (p, «)) p . 

Now pick e so that 

2p 

C'-e2p < 1 - ( -
a volO 

Then, 

volB (H,r)2p (volB (H,r)\^ 

volQ \ volO 

from which it follows that 

volB (H, r) 1 volB H , r) 

volO ~~ a volo 

or, 

volB(H,r) = 
volft < a ^ - f v o l f ì . 

~ volB (H, r) 

By letting r —> 0, we then get the desired result. 
For the complementary domain M — Ci with volume < volM/2, we 

first have from the above that 

areaH f volO 1 volM 
=-

areaH a volO la vol (B (xQ, D)) 
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Moreover, 

i 

vol ( M - f i ) V p volB(H,r) 
volB(x0,D)-nvolB H , r 

so if we let r 0, then 

< C • (k(p,K))*p 

2p 
vol ( M - f i ) 2p areaH p i 

Therefore, if e is chosen so that 
i / i 

C- (e)2p < a2p - 1 (2avolB (xQ,D)) p , 

then we get 

/ vol (M - fi) \ 2p _ /areaH ^ 

I vol ( B ( x 0 , D ) - n ) ) ~ areaH 

a2p p l ì I 
v o l M \ 2p 

2avolB (x0, D) 
i 

a2p 1 
— \ areaH 2p 

areaH 

Consequently, 

as well, q.e.d. 

vol (M - fi) areaH 
a-vol B (xO, D) — fi areaH 

5. Applications 

The first result that we wish to look at is a generalization of Cheng's 
upper eigenvalue bounds from [11]. If we take a metric ball B (xQ,R) 
in 5n, where we assume that R < 7T/2pK when K > 0, then the first 
eigenvalue for the Dirichlet problem is denoted by XD (n, R, K) . The 
corresponding eigenfunctions are rotationally symmetric: f (x) = 4> (r) , 
where (f> satisfies 

<f>" + hK</>' + A i ( n , R , K) <f> = 0 , 

4> (0) is bounded and (f> (R) = 0. 
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For convenience, we take (f> to be the solution where 0(0) = 1. This 
means that 0 < (f> < 1, since 0' < 0 on [0, R]. 

Theorem 5.1. For every ö > 0, there is an e (n,p,n,R) > 0 such 
that any Riemannian n-manifold M with k (p, K,R) < e has the property 
that 

D (B (xo, R)) <(l + S) AD (n, K, R). 

Moreover, when K > 0 we have that 

, / s / r, , f d iamM\ 
A i ( M ) < ( l + <î)D ( n , « , — — ) 

and XD (n, K, R) —> nn as R —> ir/ (2pK) . 

Proof. To get the desired upper eigenvalue bound, it suffices to 
compute the Rayleigh quotient off (x) = (f> (d (xo, x)) . First we compute 
the square norm of the gradient: 

B(x0,R) 
|Vf|2dvol = 

= 

= 

= 

< 

r rR 
</>' w (t,0)dtd0 

S n-1 o 

Vw |R- RHM 
S n - 1 o 

r rR 
- <P </>" + h(j>' co 

S n-1 o 

r rR 
- <p </>" + hK</>' co 

S n-1 o 

r rR 
- (h-hK) 4>4>'LO 

S n-1 o 

r rR 
AD (n ,K,R) 4>2oo 

S n~1 o 

f fR 
+ (h-hK)+\<f)'\u). 

S n-1 o 

The Rayleigh quotient then satisfies 

Q 
B(x0,R) |Vf|2dvol 

B(x,R) f2dvol 

< xD n,.,R) + S n-iLR{h~hK)+mu;. 
— c cR JL9 

JS n-iJo <rw 
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Now if we take r = r (n, K, R) to be the first value where (f> (r) = 1/2, 
then the error term can be estimated as follows: 

R sn. lR0R(h-hK)+ \ ( f>'\u; < y/S n-i RoR (h - h ) \ u>y/S n-i RQR \<f>'\2 UJ 

R n-ïRoR ^ " q i v o l B ( x o , r ) R S n_1R0R^t i ; 

S n-iR R(h-hKq+u) r-

- 2 s volB(x0,r) p Q-

We now need to use the smallness of k (p, K, R) to conclude that we have 
a relative volume comparison estimate of the form 

1 4v (n, K, R) 1 

volB(xo,r) v (n,K,r) volB (xo,R) 

Inserting this in the above estimate for the error yields 

S n-iRoR (h-hK)+\<j/\u} 

< 4 
v (n, K,R) 

v (n, K,r) 

v (n, K,R) 

s R B{xo,R)(h-h«)+dvol 

volB(x0,R) 

(B(x0,R)(h-h^2+dvol 
~ v(n,K,r) volB (xo,R) 

< C (n,p, K,R) (k (p, K,R))p p Q. 

Thus we have an equality of the form 

Q < A D (n, K, R) + C (n,p, K, R) e2p p Q , 

which is easily turned into an inequality of the form 

Q < ( l + <J)AD (n,K,R) 

as desired. q.e.d. 

Gallot already obtained lower bounds for the first eigenvalue in case 
k (p, K, R) is small. However, the question of obtaining almost optimal 
lower bounds in the case K > 0 was still left open. Given that we have 
already established the necessary Heintze-Karcher volume comparison 
result, one can now proceed as in [18] (see also [15], [5], [4]) to show 
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Theorem 5.2. For any a < 1 and K > 0, there is an e (n,p, K) > 0 
such that any Riemannian n-manifold with k (p, K) < e and diamM < 
D < ir/pn satisfies 

(R p (cos (t-p n - ' d t 
Ai > anK ^ R D 

V J7 (cos ( t -p n-1dt 
The fact that we assume D < n jpn is not as bad as it looks. Namely, 

our diameter bounds from section 3 show that when k (p, K) < e, one 
always has a diameter bound of the form D < K JpK + O (e) . Thus 
we can, by decreasing n slightly, obtain almost optimal lower eigenvalue 
bounds. In addition, we see that if the first eigenvalue is almost minimal, 
then in fact the diameter must be almost maximal. The converse follows 
from the above generalization of Cheng's estimates. As pointed out in 
the introduction, Cheeger and Colding in [8] showed that either of these 
two conditions implies that the manifold is Gromov-Hausdorff close to a 
sine warped product, provided that Ric > n — 1. A similar result holds 
in this case, but we must assume that volM > v in addition to the 
smallness of k (p, 1) (see [36] for more details). 

In addition to the lower eigenvalue bound just mentioned, one also 
gets Sobolev constant bounds (see [16],[18],[24]). Specifically, the small
ness of k (p, K, R) gives an estimate of the form 

^ v o l B ^ R ) B(x,R) 

< S (n,p, K, R) ; IVfl dvol, 
volB (x, R) B{xyR) 

for functions f which vanish on dB (x, R), and smallness of k (p, K) 
together with diamM < D gives 

n-l 

( ^ M(lf-fln)dvol) n SS (np-D )volM M|VfIdvol' 

where f = volM R M f • dvol is the average of the function. 
It is worthwhile pointing out that the Sobolev constant bounds just 

mentioned also hold in case K < 0. In fact it is possible to obtain 
Sobolev constant bounds without the use of Gallot's bounds for the 
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weaker Sobolev constants. To see this requires some changes in the 
setup. First we observe that possibly scaling the metric it suffices to 
consider the case where K = 0. We then consider a manifold M with 
k(p,0) < £ and diam < D. Next we fix a hypersurface H C M of 
constant mean curvature 77 > 0 which divides M in to two parts il± of 
diameter d±, where d+ + d- < D. We now have to estimate the volume 
ratios 

volH 

volO-t 

There is not necessarily a clearly defined ratio in Euclidean space we 
can compare with as in the above situation. However, it is easy to find 
an explicit expression we can compare it with. Namely, consider the 
integrals 

volH Z ± (1 ± rit)n'1 dt 
o 

that correspond to the volumes of the corresponding domains in 
(—d-,d+) x H if we introduce a radially flat metric on this space such 
that the second fundamental form of {0} x H is 77/ (n — 1) . On slight 
problem occurs if d- > r/-1, corresponding to the fact that we haven't 
derived a diameter estimate for the region 0_ . In that case we use as 
comparion integral for volO_ the expression 

volH Z (l- -d-t] dt, 

which is actually larger than 

volH Z (1 - r/t)n"1 dt. 
o 

We now claim that for any a > 1 we can choose e (n,p, D) > 0 so small 
that 

volO+ < avolH (1 + ï?t)n_1 dt, 
o 

volO_ < avolH max l - ^ t dt, (I - rjt)n+
 l dt 

From these estimates one can then in standard fashion derive estimates 
for the classical Sobolev constant. To obtain these estimates one simply 
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has to redo the mean curvature estimates from Section 2 with K = O.The 
proofs of these estimates are virtually identical. 
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