ESTIMATE OF THE CONFORMAL SCALAR CURVATURE EQUATION VIA THE METHOD OF MOVING PLANES. II

CHIUN-CHUAN CHEN \& CHANG-SHOU LIN

1. Introduction

In this paper, we consider a sequence of positive C^{2} solutions u_{i} of

$$
\begin{equation*}
\Delta u_{i}+K_{i}(x) u_{i}^{p_{i}}=0 \quad \text { in } B_{2}, \tag{1.1}
\end{equation*}
$$

where $K_{i}(x)$ is a sequence of C^{1} positive functions defined in \bar{B}_{2}, the ball with center at 0 and radius $2, \Delta=\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}$ denotes the Laplacian of \mathbb{R}^{n} with $n \geq 3$, and $1<p_{i} \uparrow \frac{n+2}{n-2}$. Throughout this paper, we always assume that K_{i} is bounded between two fixed positive constants. One of the motivations in studying equation (1.1) arises from the problem of finding a metric conformal to the standard metric of \mathbb{R}^{n} such that $K(x)$ is the scalar curvature of the new metric. Recently, there have been many works devoted to this problem. For details please see [2], [3], [6], [11], [15], [16], [23], \cdots, and the references therein. It has been shown that for a sequence of solution u_{i} of (1.1), the blow-up does not occur at a noncritical point of $\left\{K_{i}\right\}$. We refer [15] and [8] for a proof of this statement. Hence in this article, we will assume that 0 is the only critical point of $\left\{K_{i}\right\}$, that is, K_{i} satisfies the following:
(1.2) For any $\epsilon>0$, there exists $c(\epsilon)>0$ such that

$$
c(\epsilon) \leq\left|\nabla K_{i}(x)\right| \leq c_{1}
$$

for $|x| \geq \epsilon$, where c_{1} is a positive constant independent of i and ϵ.

[^0]Assume that the order of the flatness of K_{i} at 0 is no less than $n-2$. The authors in [8] have proved that there exists a constant $c>0$ such that the inequality

$$
\begin{equation*}
u_{i}\left(x+x_{i}\right) \leq c M_{i}^{-1}|x|^{-n+2} \tag{1.3}
\end{equation*}
$$

holds for $|x| \leq 1$, where $M_{i}=\max _{\bar{B}_{1}} u_{i}=u_{i}\left(x_{i}\right) \rightarrow \infty$ for some $x_{i} \in B_{1}$. Inequality (1.3) was also derived in [15] and [24] where a global solution of (1.1) on S^{n} was considered. In the same paper, we also showed by examples that, in order to have (1.3) hold, the assumption on the order of flatness of K at its critical points is optimal. In this paper, we want to consider the situation when the flatness of K_{i} at its critical points is less than or equal to $n-2$. To state our result, we assume that $K_{i} \in C^{1}\left(\bar{B}_{2}\right)$ and satisfies the following conditions:

$$
\left\{\begin{array}{l}
K_{i}(x)=K_{i}(0)+Q_{i}(x)+R_{i}(x) \text { in a neighborhood of } \\
0, \text { where } Q_{i}(x) \text { is a } C^{1} \text { homogeneous function of order } \\
\alpha_{i} \text { satisfying } \\
\qquad c_{1}|x|^{\alpha_{i}-1} \leq\left|\nabla Q_{i}(x)\right| \leq c_{2}|x|^{\alpha_{i}-1} \\
\text { for some } \alpha_{i}>1 \text {, and } R_{i}(x) \text { satisfies } \\
\qquad \sum_{s=0}^{1}\left|\nabla^{s} R_{i}(x)\right||x|^{-\alpha_{i}+s} \rightarrow 0 \tag{1.4}\\
\text { as }|x| \rightarrow 0 \text { uniformly in } i \text {. Furthermore, we assume } \\
\text { that } K_{i}(x) \text { converges uniformly to } K(x) \text { as } i \rightarrow+\infty, \\
\lim _{i \rightarrow+\infty} \alpha_{i}=\alpha>1 \text { and } Q_{i}(x) \text { converges to } Q(x) \text { in } \\
C^{1}\left(S^{n-1}\right) \text { as } i \rightarrow+\infty, \text { where } Q(x) \text { is a } C^{1} \text { homoge- } \\
\text { neous function of order } \alpha . \text { For simplicity, we assume } \\
K(0)=n(n-2) \text { throughout this paper. }
\end{array}\right.
$$

Let U_{0} be the positive smooth solution of

$$
\left\{\begin{array}{l}
\Delta U_{0}(y)+n(n-2) U_{0}^{(n+2) /(n-2)}=0 \quad \text { in } \mathbb{R}^{n} \tag{1.5}\\
U_{0}(0)=\max _{\mathbb{R}^{n}} U_{0}(x)=1
\end{array}\right.
$$

By a theorem of Caffarelli-Gidas-Spruck (see Corollary 8.2 and Theorem 8.1 in $[5]), U_{0}(y)$ is radially symmetric with respect to 0 . Hence, (1.5) leads to $U_{0}(y)=\left(1+|y|^{2}\right)^{-(n-2) / 2}$. In addition to (1.4), we also assume
that Q satisfies

$$
\begin{equation*}
\binom{\int_{\mathbb{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y}{\int_{\mathbb{R}^{n}} Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y} \neq 0 \quad \text { for all } \xi \in \mathbb{R}^{n} \tag{1.6}
\end{equation*}
$$

Our first result is
Theorem 1.1. Suppose u_{i} is a sequence of positive C^{2} solution of (1.1) with $p_{i} \leq \frac{n+2}{n-2}$ and $\lim _{i \rightarrow+\infty} p_{i}=\frac{n+2}{n-2}$. Assume (1.2), (1.4) and (1.6) are satisfied with $1<\alpha<n-2$. If we further assume that for any solution ξ of $\int_{\mathbb{R}^{n}} \nabla Q(x+\xi) U_{0}^{2 n /(n-2)}(y) d y=0$, we have $\int_{\mathbb{R}^{n}} Q(\xi+x) U_{0}^{2 n /(n-2)}(x) d x>0$. Then u_{i} is uniformly bounded in \bar{B}_{1}.

Throughout this paper, $B(x, r)$ always denotes the open ball with center x and radius r. When $x=0$, we simply use B_{r} for $B(x, r)$. Suppose u_{i} is a sequence of solutions of (1.1) with $\frac{\max _{\bar{B}_{1}}}{} u_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$.
Let $S=\left\{x| | x \mid \leq 1\right.$, and there exists $x_{i} \rightarrow x$ such that $\overline{\lim }_{i \rightarrow+\infty} u_{i}\left(x_{i}\right)$ $=+\infty\}$ be the blow-up set of $\left\{u_{i}\right\}$. Assume (1.2) holds. Then, as mentioned above, we have $S=\{0\}$. The blow-up point 0 is called isolated, if there exists a positive constant c such that

$$
u_{i}(x) \leq c\left|x-x_{i}\right|^{-\frac{2}{p_{i}-1}}
$$

for $|x| \leq 1$, where $u_{i}\left(x_{i}\right)=\frac{\max }{B_{1}} u_{i}$. The concept of an isolated blow-up point was first introduced by R. Schoen.

Theorem 1.2. Assume that (1.2) and (1.4) are satisfied with $1<$ $\alpha_{i}, \alpha \leq n-2$. Let u_{i} be a sequence of solutions of (1.1) with $p_{i} \leq \frac{n+2}{n-2}$, $\lim _{i \rightarrow+\infty} p_{i}=\frac{n+2}{n-2}$ and $\max _{\bar{B}_{1}} u_{i} \rightarrow+\infty$. Then 0 is an isolated blow-up point.

In fact, we are going to prove

$$
\begin{equation*}
u_{i}(x)|x|^{\frac{n-2}{2}} \leq c, \tag{1.7}
\end{equation*}
$$

a stronger result than Theorem 1.2. In particular, we have

$$
\begin{equation*}
\left|x_{i}\right| \leq c M_{i}^{-\frac{p_{i}-1}{2}}, \tag{1.8}
\end{equation*}
$$

where $u_{i}\left(x_{i}\right)=\max _{\bar{B}_{1}} u_{i}=M_{i}$. Let $\xi=\lim _{i \rightarrow+\infty} M_{i}^{\frac{p_{i}-1}{2}} x_{i}$ and $\tau_{i}=\frac{n+2}{n-2}-p_{i}$. In Section 3, we will prove that ξ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y=0 \tag{1.9}
\end{equation*}
$$

and τ_{i} satisfies

$$
\begin{equation*}
\tau_{i} \leq c M_{i}^{-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} \tag{1.10}
\end{equation*}
$$

which, in turns, implies

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} M_{i}^{\tau_{i}}=1 \tag{1.11}
\end{equation*}
$$

The inequality (1.8) is important when we come to calculate integrals involving the term $u_{i}^{\frac{2 n}{n-2}}$. When $\alpha \geq n-2$, we can show that 0 is a simple blow-up point. For a proof of this statement, we refer the reader to [8], [15] and [24].

Rewrite the equation (1.1) into $\Delta u_{i}+c_{i}(x) u_{i}=0$, where $c_{i}(x)=$ $K_{i}(x) u_{i}^{p_{i}-1}(x) \leq c|x|^{-2}$ by (1.7). Then, the Harnack inequality can be applied to u_{i}, i.e., there exists a constant $c>0$ such that

$$
\begin{equation*}
\max _{|x|=r} u_{i} \leq c \min _{|x|=r} u_{i} \tag{1.12}
\end{equation*}
$$

With the help of the Pohozaev identity, we have
Theorem 1.3. Suppose that (1.2), (1.4) and (1.6) are satisfied with $\frac{n-2}{2} \leq \alpha_{i} \leq n-2$, and u_{i} is a sequence of C^{2} positive solutions of (1.1) with $p_{i}=\frac{n+2}{n-2}$. Suppose $M_{i}=\max _{\bar{B}_{1}} u_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$. Let $m_{i}=\min _{\bar{B}_{1}} u_{i}$. Then there exists a constant $c>0$ such that the followings hold:

$$
\begin{equation*}
u_{i}\left(x+x_{i}\right) \leq c M_{i}^{-1}|x|^{2-n} \quad \text { for }|x| \leq M_{i}^{-\beta_{i}} \tag{1.13}
\end{equation*}
$$

where $u_{i}\left(x_{i}\right)=M_{i}$ and $\beta_{i}=\frac{2}{n-2}\left(1-\frac{\alpha_{i}}{n-2}\right) \geq 0$.

$$
\begin{equation*}
c^{-1} M_{i}^{1-\frac{2 \alpha_{i}}{n-2}} \leq u_{i}(x) \leq c M_{i}^{1-\frac{2 \alpha_{i}}{n-2}} \quad \text { for }|x| \geq \frac{1}{2} M_{i}^{-\beta_{i}} \tag{1.14}
\end{equation*}
$$

In particular,

$$
\begin{cases}\lim _{i \rightarrow+\infty} m_{i}=0 & \text { if } \alpha>\frac{n-2}{2}, \tag{1.15}\\ c^{-1} \leq m_{i} \leq c & \text { if } \alpha_{i}=\frac{n-2}{2} .\end{cases}
$$

And for the energy, we have

$$
\left\{\begin{array}{c}
\lim _{i \rightarrow+\infty} \int_{B_{1}} K_{i}(x) u_{i}^{\frac{2 n}{n-2}}(x) d x=\left(\frac{S_{n}}{n(n-2)}\right)^{\frac{n}{2}} \tag{1.16}\\
\text { if } \alpha>\frac{n-2}{2} \\
\lim _{i \rightarrow+\infty} \int_{B_{r}} K_{i}(x) u_{i}^{\frac{2 n}{n-2}}(x) d x=\left(\frac{S_{n}}{n(n-2)}\right)^{\frac{n}{2}}(1+o(1)) \\
\text { if } \alpha=\frac{n-2}{2},
\end{array}\right.
$$

where S_{n} is the best Sobolev constant and $o(1) \rightarrow 0$ as $r \rightarrow 0$.
For $\alpha<\frac{n-2}{2}$, we have
Theorem 1.4. Suppose the assumption of Theorem 1.3 holds except that α satisfies $1<\alpha<\frac{n-2}{2}$. Let u_{i} be a sequence of solutions of (1.1) with $p_{i}=\frac{n+2}{n-2}$ and $\frac{\max _{\overline{B_{1}}}}{} u_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$. Then

$$
\lim _{i \rightarrow+\infty} \int_{B_{1}} u_{i}^{\frac{2 n}{n-2}}(x) d x=+\infty
$$

Furthermore, there exists a subsequence of u_{i} (still denoted by u_{i}) such that u_{i} converges to a singular solution u of (1.1) with a nonremovable singularity at 0 . The conformal metric $d s^{2}=u^{\frac{4}{n-2}}|d x|^{2}$ is complete in $\bar{B}_{1} \backslash\{0\}$ and has unbounded curvature near 0 . If we assume 0 is the only zero of

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y=0 \tag{1.17}
\end{equation*}
$$

Then $u(x)=\bar{u}(|x|)(1+o(1))$ as $x \rightarrow 0$, where $\bar{u}(r)$ denotes the integral average of u over the sphere $|x|=r$.

Let u be the singular solution in Theorem 1.4 and

$$
\begin{gather*}
P(r, u)=\int_{|x|=r}\left(\frac{n-2}{2} u(x) \frac{\partial u}{\partial \nu}-\frac{|x|}{2}|\nabla u|^{2}+|x|\left|\frac{\partial u}{\partial \nu}\right|^{2}\right. \tag{1.18}\\
\left.+\frac{n-2}{2 n} K(x)|x| u^{\frac{2 n}{n-2}}(x)\right) d \sigma
\end{gather*}
$$

By the Pohozaev identity, we have for $r \geq s$,

$$
\begin{equation*}
P(r ; u)-P(s ; u)=\int_{s \leq|x| \leq r}(x \cdot \nabla K(x)) u^{\frac{2 n}{n-2}}(x) d x \tag{1.19}
\end{equation*}
$$

Since $u(x) \leq c|x|^{-\frac{n-2}{2}}$ by Theorem $1.2,(x \cdot \nabla K(x)) u^{\frac{2 n}{n-2}} \in L^{1}\left(B_{1}\right)$. Thus, $\lim _{r \rightarrow 0} P(r ; u)=D$ is always well-defined. Since u is a limit of a sequence of smooth solutions of (1.1), we can prove

$$
\begin{equation*}
D=0 . \tag{1.20}
\end{equation*}
$$

This is a new phenomenon different from the case with a constant K. When $K(x) \equiv 1$ and u is a singular solution of

$$
\Delta u+u^{\frac{n+2}{n-2}}=0 \quad \text { in } \quad B_{1} \backslash\{0\}
$$

the famous theorem of Caffarelli-Gidas-Spruck says that if 0 is a nonremovable singularity, then there exists an entire singular solution $u_{0}(x)=$ $u_{0}(|x|)$ of

$$
\left\{\begin{array}{l}
\Delta u_{0}(x)+u_{0}^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbb{R}^{n} \backslash\{0\} \tag{1.21}\\
\lim _{|x| \rightarrow 0} u_{0}(x)=+\infty
\end{array}\right.
$$

satisfying

$$
\begin{equation*}
u(x)=u_{0}(|x|)(1+o(1)) \tag{1.22}
\end{equation*}
$$

Since the Pohozaev constant $D<0$ for any solution u_{0} of (1.21), as a consequence of (1.20), there exist no entire solutions of (1.21) satisfying (1.22) for this particular u of Theorem 1.4. However, if $\alpha \geq \frac{n-2}{2}$, then the result of Caffarelli-Gidas-Spruck still holds true. We refer the interested readers to [9] for related results.

The estimates of Theorem 1.3 and Theorem 1.4 are important when we want to find an apriori bound for solutions of (1.1) globally defined on S^{n}. As an application of Theorem 1.3, we proved the following theorem in [10].

Theorem A. Let K be a positive C^{1} function on S^{n}. Suppose for each critical point P of K, when using the coordinate in \mathbb{R}^{n} of the stereographic projection from S^{n} with P as the South pole, K satisfies
(1.4) and (1.6) with $\frac{n-2}{2}<\alpha<n-2$. Then there exists a constant $c>0$ such that

$$
u(x) \leq c
$$

for all $x \in S^{n}$ and for all positive solutions of

$$
\begin{equation*}
\frac{4(n-1)}{n-2} \Delta_{0} u+n(n-1) u+K(x) u^{\frac{n+2}{n-2}}=0 \tag{1.23}
\end{equation*}
$$

where Δ_{0} is the Beltrami-Laplacian operator of the standard S^{n}.
A special case of Theorem A is
Corollary 1.5. Suppose K is a positive Morse function in S^{n} with $\Delta K(P) \neq 0$ for any critical point P of K. There exists a constant $c>0$ such that for any solution u of (1.23), we have

$$
\begin{cases}u(x) \leq c & \text { for } n=5 \tag{1.24}\\ \int_{S^{n}}|\nabla u|^{2}+\int_{S^{n}} u^{\frac{2 n}{n-2}} \leq c & \text { for } n=6\end{cases}
$$

At the first sight, we might apply the degree theory developed by Chang-Yang [11] and Li [15] to find a solution of (1.23). However, a study of radial solutions suggests that the Leray-Schauder degree might be zero in the situation of Theorem A. In a forthcoming paper, we will compute the degree for all solutions of equation (1.23). An immediate consequence of Theorem 1.4 is

Corollary 1.6. Suppose K is a Morse function in S^{n} and satisfies $\Delta K(P) \neq 0$ for any critical point P of K. Let u_{i} be a sequence of solutions of (1.23) with $\max _{S^{n}} u_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$. Then

$$
\lim _{i \rightarrow+\infty} \int_{S^{n}} K(x) u_{i}^{\frac{2 n}{n-2}}(x) d x=+\infty
$$

if $n \geq 7$.
The possibility of blowing-up with infinite energy was first mentioned in [21]. It should be an interesting queation whether we can find a blowing-up sequence of solutions in the situation of Corollary 1.6. For the existence of solutions of (1.23) for $n \geq 7$, we refer [11], [1] and [24].

As in [8], there are two main ingradients in our approach. One is the blowing-up anaysis, introduced first by Schoen. Another one is the well-known "method of moving planes", which was first invented
by A. D. Alexandrov and has been further developed by Serrin, Gidas-Ni-Nirenberg and Caffarelli-Gidas-Spruck. In this paper, the method of moving planes is used to show that how large of the domain where rescaled solutions can be compared to $U_{0}(y)$ of (1.5). This is the major step in our approach. See Lemma 3.1 in Section 3.

This paper is organized as follows. In Section 2, we will collect some preliminary results for later uses. Most of them are well-known. However, we will present their proofs here to make the paper self-contained. In Section 3, Theorem 1.1 is proved. Theorem 1.2 will be proved in Section 4. In the final section, both Theorem 1.3 and Theorem 1.4 are proved. In forthcoming papers, we will present some applications of our estimates to equation of (1.1) on S^{n}.

2. Preliminary results

In this section, we will collect several lemmas which are useful later. First, we formulate a modified version of the well-known methods of moving planes. Let Ω be a smooth open domain in \mathbb{R}^{n} such that the complement set Ω^{c} of Ω is compact. Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a positive solution of

$$
\Delta u+f(x, u)=0 \quad \text { in } \Omega
$$

where $f(x, u)$ is a nonnegative function, Hölder in x, C^{1} in $u>0$ and is defined on $\bar{\Omega} \times[0, \infty)$. For $\lambda<0$, we denote $T_{\lambda}=\left\{x \in \mathbb{R}^{n} \mid x_{1}=\lambda\right\}$, $\Sigma_{\lambda}=\left\{x \in \mathbb{R}^{n} \mid x_{1}>\lambda\right\}$ and $x^{\lambda}=\left(2 \lambda-x_{1}, x_{2}, \cdots, x_{n}\right)$ as the reflection point of x with respect to T_{λ}. Let

$$
\left\{\begin{array}{l}
\lambda^{*} \equiv \sup \left\{\lambda \mid \lambda<0 \quad \text { and } \quad \Omega^{c} \subset \Sigma_{\lambda}\right\} \tag{2.1}\\
\Sigma_{\lambda}^{\prime}=\Sigma_{\lambda} \cap \Omega \text { for } \lambda<\lambda^{*}, \text { and } \\
w_{\lambda}(x)=u(x)-u_{\lambda}(x) \equiv u(x)-u\left(x^{\lambda}\right) \text { for } x \in \Sigma_{\lambda}^{\prime}
\end{array}\right.
$$

For any continuous function $b_{\lambda}(x)$, we have

$$
\begin{equation*}
\Delta w_{\lambda}(x)+b_{\lambda}(x) w_{\lambda(x)} \equiv Q\left(x, b_{\lambda}(x)\right) \text { in } \Sigma_{\lambda}^{\prime} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
Q\left(x, b_{\lambda}(x)\right)=f\left(x^{\lambda}, u^{\lambda}(x)\right)-f(x, u(x))+b_{\lambda}(x) w_{\lambda}(x) \tag{2.3}
\end{equation*}
$$

Suppose that $h_{\lambda}(x)$ and $b_{\lambda}(x)$ are two families of continuous nonnegative functions defined for $x \in \bar{\Omega}$ and $\lambda_{1} \leq \lambda \leq \lambda_{0}$ with two constants λ_{0} and
$\lambda_{1}<\lambda^{*}$ such that the following conditions are satisfied.

$$
\begin{equation*}
0 \leq b_{\lambda}(x) \leq C(x)|x|^{-2} \quad \text { for } x \in \Sigma_{\lambda}^{\prime}, \tag{2.4}
\end{equation*}
$$

where $C(x)$ is independent of λ and tends to zero as $|x| \rightarrow+\infty$.
The function $h_{\lambda}(x)$ is $C^{1}\left(\bar{\Sigma}_{\lambda}^{\prime}\right)$ and satisfies

$$
\begin{cases}\Delta h_{\lambda}(x) \geq Q\left(x, b_{\lambda}(x)\right) & \text { in } \Sigma_{\lambda}^{\prime} \tag{2.5}\\ h_{\lambda}(x)>0 & \text { in } \Sigma_{\lambda}^{\prime}\end{cases}
$$

in the distributional sense for $\lambda \in\left[\lambda_{1}, \lambda_{0}\right]$.

$$
\begin{equation*}
h_{\lambda}(x)=0 \text { on } T_{\lambda} \text { and } h_{\lambda}(x)=O\left(|x|^{-\tau_{1}}\right) \text { as }|x| \rightarrow+\infty \text { for some } \tag{2.6}
\end{equation*}
$$ constant $\tau_{1}>0$.

$$
\begin{cases}h_{\lambda}(x)<w_{\lambda}(x) & \text { for } x \in \partial \Omega, \lambda_{1} \leq \lambda \leq \lambda_{0} \text { and } \tag{2.7}\\ h_{\lambda_{1}}(x) \leq w_{\lambda_{1}}(x) & \text { for } x \in \Sigma_{\lambda_{0}}^{\prime}\end{cases}
$$

(2.8) Both $h_{\lambda}(x)$ and $\nabla_{x} h_{\lambda}(x)$ are continuous with respect to both variables x and λ on $\bar{\Sigma}_{\lambda}^{\prime}$.

Lemma 2.1. Let u be a solution of (2.1) satisfying $u(x)=O\left(|x|^{-\tau_{2}}\right)$ at ∞ for some $\tau_{2}>0$. Suppose there are two families of continuous nonnegative functions $b_{\lambda}(x)$ and $h_{\lambda}(x)$ satisfying (2.4) \sim (2.8) for $\lambda_{1} \leq$ $\lambda \leq \lambda_{0}$ with $\lambda_{0}<\lambda^{*}$. Then $w_{\lambda}(x)>0$ for $x \in \Sigma_{\lambda}^{\prime}$ and $\lambda \in\left[\lambda_{0}, \lambda_{1}\right]$.

Proof. Lemma 2.1 is a special case of Lemma 2.1 in [8]. For the reader's convenience, we reproduce the proof here.

Step 1. There exists $R_{0}>0$, independent of λ, such that if ($w_{\lambda}-$ $\left.h_{\lambda}\right)(x)$ is negative somewhere in $\Sigma_{\lambda}^{\prime}$, and $x_{0} \in \Sigma_{\lambda}^{\prime}$ is a minimum point of $w_{\lambda}-h_{\lambda}$, then $\left|x_{0}\right|<R_{0}$.

By (2.2) and (2.5), we have

$$
\begin{equation*}
\Delta\left(w_{\lambda}-h_{\lambda}\right)+b_{\lambda}\left(w_{\lambda}-h_{\lambda}\right) \leq-b_{\lambda} h_{\lambda} \leq 0 \tag{2.9}
\end{equation*}
$$

in $\Sigma_{\lambda}^{\prime}$. Let $0<\sigma<\min \left(\tau_{1}, \tau_{2}, n-2\right)$ and $g(x)=|x|^{-\sigma}$. Set $\phi(x)=$ $\frac{w_{\lambda}(x)-h_{\lambda}(x)}{g(x)}$. Then ϕ satisfies

$$
\begin{equation*}
\Delta \phi+2 \frac{\nabla g}{g} \cdot \nabla \phi+\left(b_{\lambda}(x)+\frac{\Delta g}{g}\right) \phi \leq 0 \tag{2.10}
\end{equation*}
$$

By (2.4), we note that

$$
b_{\lambda}(x)+\frac{\Delta g}{g(x)}=(C(x)-\sigma(n-2-\sigma))|x|^{-2}<0
$$

for large $|x|$. Hence, there is a large R_{0} with $\Omega^{c} \subseteq B_{R_{0}}$ such that

$$
\begin{equation*}
b_{\lambda}(x)+\frac{\Delta g(x)}{g}<0 \tag{2.11}
\end{equation*}
$$

for $|x| \geq R_{0}$. Now suppose $w_{\lambda}-h_{\lambda}\left(x_{0}\right)=\inf _{\Sigma_{\lambda}^{\prime}}\left(w_{\lambda}-h_{\lambda}\right)<0$ for some $x_{0} \in \Sigma_{\lambda}^{\prime}$. Then we want to show $\left|x_{0}\right|<R_{0}$.

Since $\lim _{|x| \rightarrow+\infty} \phi(x)=0$ and $\phi(x) \geq 0$ on $\partial \Sigma_{\lambda}^{\prime}$, there exists \bar{x}_{0} such that ϕ has its minimum at \bar{x}_{0}. By applying the maximum principle at $\bar{x}_{0},(2.10)$ implies

$$
b_{\lambda}\left(\bar{x}_{0}\right)+\frac{\Delta g\left(\bar{x}_{0}\right)}{g} \geq 0
$$

By (2.11), we have $\left|\bar{x}_{0}\right| \leq R_{0}$. Since

$$
\begin{aligned}
\frac{w_{\lambda}\left(x_{0}\right)-h_{\lambda}\left(x_{0}\right)}{g\left(\bar{x}_{0}\right)} & \leq \frac{\left(w_{\lambda}-h_{\lambda}\right)\left(\bar{x}_{0}\right)}{g\left(\bar{x}_{0}\right)}=\phi\left(\bar{x}_{0}\right) \\
& \leq \phi\left(x_{0}\right)=\frac{w_{\lambda}\left(x_{0}\right)-h_{\lambda}\left(x_{0}\right)}{g\left(x_{0}\right)}
\end{aligned}
$$

we have $\left|x_{0}\right| \leq\left|\bar{x}_{0}\right| \leq R_{0}$. Hence Step 1 is proved.
From (2.7) and (2.9), it follows that $w_{\lambda_{1}}-h_{\lambda_{1}}$ is a nonegative superharmonic function in $\Sigma_{\lambda_{1}}^{\prime}$ and is strictly positive on $\partial \Omega$. Hence, by the maximum principle, $w_{\lambda_{1}}-h_{\lambda_{1}}>0$ in $\Sigma_{\lambda_{1}}^{\prime}$. Let

$$
\tilde{\lambda}=\sup \left\{\lambda \geq \lambda_{0} \mid\left(w_{\mu}-h_{\mu}\right)(x)>0 \text { in } \Sigma_{\mu}^{\prime} \text { for all } \lambda_{1} \leq \mu \leq \lambda\right\}
$$

It suffices to prove
Step 2. $\tilde{\lambda}=\lambda_{0}$.
We prove Step 2 by contradiction. Suppose $\tilde{\lambda}<\lambda_{0}$. Then there exists $\lambda_{n} \downarrow \tilde{\lambda}$ with $\lambda_{n}<\lambda_{0}$, and $\inf _{\Sigma_{\lambda_{n}}^{\prime}}\left(w_{\lambda_{n}}-h_{\lambda_{n}}\right)=\left(w_{\lambda_{n}}-h_{\lambda_{n}}\right)\left(x_{n}\right)<0$ for some $x_{n} \in \Sigma_{\lambda_{n}}^{\prime}$, because $w_{\lambda_{n}}-h_{\lambda_{n}} \geq 0$ on $\partial \Sigma_{\lambda}^{\prime}$ and $\lim _{|x| \rightarrow \infty}\left(w_{\lambda_{n}}-h_{\lambda_{n}}\right)(x)=0$. By Step 1, we have $\left|x_{n}\right| \leq R_{0}$. Without loss of generality, we may assume $\lim _{n \rightarrow+\infty} x_{n}=x_{0} \in \bar{\Sigma}_{\tilde{\lambda}}^{\prime}$. Thus,

$$
\begin{equation*}
\nabla\left(w_{\tilde{\lambda}}-h_{\tilde{\lambda}}\right)\left(x_{0}\right)=0 \text { and }\left(w_{\tilde{\lambda}}-h_{\tilde{\lambda}}\right)\left(x_{0}\right) \leq 0 \tag{2.12}
\end{equation*}
$$

Since $\left(w_{\tilde{\lambda}}-h_{\tilde{\lambda}}\right)(x) \geq 0$ for $x \in \Sigma_{\tilde{\lambda}}^{\prime}$, we have

$$
\Delta\left(w_{\tilde{\lambda}}-h_{\tilde{\lambda}}\right) \leq-b_{\lambda}\left(w_{\tilde{\lambda}}-h_{\tilde{\lambda}}\right) \leq 0
$$

in $\Sigma_{\hat{\lambda}}^{\prime}$. From the first part of (2.7) and the maximum principle, it follows that

$$
w_{\tilde{\lambda}}-h_{\tilde{\lambda}}(x)>0 \quad \text { for } x \in \Sigma_{\tilde{\lambda}}^{\prime} .
$$

Therefore, we have $x_{0} \in T_{\tilde{\lambda}}$. However, the first part of (2.12) yields a contradiction to Hopf's boundary point Lemma. Hence, the proof of Lemma 2.1 is finished. q.e.d.

To apply Lemma 2.1 in the proofs of our theorems, we need the following lemma about the Green function $G^{\lambda}(x, \eta)$ of $-\Delta$ on Σ_{λ} with the Dirichlet boundary condition. The Green function has the form of

$$
\begin{equation*}
G^{\lambda}(x, \eta)=c_{n}\left(\frac{1}{|\eta-x|^{n-2}}-\frac{1}{\left|\eta-x^{\lambda}\right|^{n-2}}\right) \tag{2.13}
\end{equation*}
$$

for $x, \eta \in \bar{\Sigma}_{\lambda}$, where c_{n} is a positive constant depending on n only.
Lemma 2.2. There exists positive constants c_{1} and c_{2}, depending on n only, such that the following statements hold:
(i)

$$
G^{\lambda}(x, 0) \geq c_{1} \begin{cases}|x|^{2-n} & \text { for }|x| \leq \frac{|\lambda|}{2}, \\ \frac{|\lambda|\left|x_{1}-\lambda\right|}{|x|^{n}} & \text { for }|x| \geq \frac{|\lambda|}{2} .\end{cases}
$$

(ii)
$G^{\lambda}(x, \eta) \leq c_{2} \min \left(|x-\eta|^{2-n},\left(x_{1}-\lambda\right)|x-\eta|^{1-n}, \frac{\left(x_{1}-\lambda\right)\left(\eta_{1}-\lambda\right)}{|x-\eta|^{n}}\right)$.

The proof of Lemma 2.2 is elementary. Please see, for example, [8] for a proof.

Lemma 2.3. Suppose that u is a positive smooth solution of

$$
\Delta u+K(x) u^{p}=0 \quad \text { in } B_{r_{0}},
$$

where $0<a \leq K(x) \leq b$ in $B_{r_{0}}$ and $1<p \leq \frac{n+2}{n-2}$. Then there exists a small positive number ϵ_{0}, depending on a, b and n only such that if $\|u\|_{L^{p^{*}}} \leq \epsilon_{0}$ with $p^{*}=\frac{(p-1) n}{2}$, then the Harnack inequality

$$
u(x) \leq c u(y)
$$

holds for $|x|,|y| \leq \frac{r_{0}}{4}$, where c is a positive constant depending on a, b and n.

Proof. Let $v(y)=r_{0}^{\frac{2}{p-1}} u\left(r_{0} y\right)$ for $|y|<1$. Then v satisfies

$$
\Delta v+\tilde{K}(y) v^{p}=0 \quad \text { in }|y|<1
$$

where $\tilde{K}(y)=K\left(r_{0} y\right)$. By the assumption, we have

$$
\int_{B_{1}} v^{p^{*}}(y) d y=\int_{B_{T_{0}}} u^{p^{*}} d y \leq \epsilon_{0}
$$

Then we can apply the standard iteration technique due to Moser, as shown in [14] (see Lemma 6 in [14]), to obtain

$$
\int_{|y| \leq \frac{1}{2}+\frac{1}{2^{k}}}|v|^{p^{*}\left(\frac{n}{n-2}\right)^{k}} d y \leq c_{k} \int_{|y| \leq \frac{1}{2}+\frac{1}{2^{k-1}}}|v|^{p^{*}\left(\frac{n}{n-2}\right)^{k-1}} d y
$$

for $k=1,2, \cdots$. Hence, after a finite number of iteration steps, we have $v^{p} \in L^{q}\left(B_{R_{0}}\right)$ for some $q>\frac{n}{2}$ and some $R_{0}>\frac{1}{2}$. By elliptic L^{q} theory, we have $\max _{B_{\frac{1}{2}}} v \leq c$ for some constant. Applying Corollary 8.21 in [13] shows that there exists a constant $c_{1}>0$ such that

$$
v(y) \leq c_{1} v\left(y^{\prime}\right)
$$

for $|y|,\left|y^{\prime}\right| \leq \frac{1}{4}$. Obviously, Lemma 2.3 follows immediately. q.e.d.
Lemma 2.4. Suppose $\phi(y)$ satisfies

$$
\begin{equation*}
\Delta \phi(y)+n(n+2) U_{0}^{\frac{4}{n-2}}(y) \phi(y)=0 \text { in } \mathbb{R}^{n} \tag{2.14}
\end{equation*}
$$

with $\phi(y) \rightarrow 0$ as $|y| \rightarrow+\infty$, where $U_{0}(y)$ is the solution of (1.5). Then $\phi(y)$ can be written as

$$
\phi(y)=c_{0} \psi_{0}(y)+\sum_{j=1}^{n} c_{j} \psi_{j}(y)
$$

for constants $c_{j} \in \mathbb{R}, j=0,1, \cdots, n$, where $\psi_{j}(y)=\frac{\partial U_{0}}{\partial y_{j}}$ for $1 \leq j \leq n$ and $\psi_{0}(y)=\frac{n-2}{2} U_{0}(y)+y \cdot \nabla U_{0}(y)$.

Proof. Let $\Phi_{k}(w)$ denote a spherical harmonic of degree k on S^{n-1} and $\phi_{k}(r)=\int_{|w|=1} \phi(r w) \Phi_{k}(w) d s$. We want to prove $\phi_{k}(r) \equiv 0$ for $k \geq 2$. Then the conclusion of Lemma 2.4 follows immediately.

It is obvious to see that ϕ_{k} satisfies

$$
\left\{\begin{array}{l}
\phi_{k}^{\prime \prime}+\frac{n-2}{r} \phi_{k}^{\prime}+\left(n(n+2) U_{0}^{\frac{4}{n-2}}(r)-\frac{k(n+k-2)}{r^{2}}\right) \phi_{k}=0, \tag{2.15}\\
\phi_{k}(0)=0 \text { and } \phi_{k}^{\prime}(0)=0 .
\end{array}\right.
$$

Let $\psi(r)=-U^{\prime}(r)$. Differentiating (1.5) with respect to r, we have

$$
\left\{\begin{array}{l}
\psi^{\prime \prime}(r)+\frac{n-1}{r} \psi^{\prime}(r)+\left(n(n+2) U_{0}^{\frac{4}{n-2}}(r)-\frac{n-1}{r^{2}}\right) \psi(r)=0, \tag{2.16}\\
\psi(r)>0 \text { for } r>0
\end{array}\right.
$$

Since $\psi(r)>0$ for $r>0$, by the Sturm-Liouville comparison Theorem, $\phi_{k}(r)$ does not change its sign for all $r \geq 0$ unless $\phi_{k}(r) \equiv 0$. We may assume $\phi_{k}(r)>0$ for all $r>0$. For any $R>0$, we have

$$
\begin{align*}
R^{n-1} & \left(\psi(R) \phi_{k}^{\prime}(R)-\phi_{k} \psi^{\prime}(R)\right) \\
\quad= & \int_{0}^{R}\left(\psi(r) \Delta \phi_{k}-\phi_{k} \Delta \psi(r)\right) r^{n-1} d r \tag{2.17}\\
\quad= & {[k(n+k-2)-(n-1)] \int_{0}^{R} \frac{\phi_{k}(r) \psi(r)}{r^{2}} r^{n-1} d r>0 . }
\end{align*}
$$

Since $\psi^{\prime}(R)=O\left(R^{-n}\right)$ at ∞ and $\phi_{k}(\infty)=0$, there exists $R_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$ such that $\phi_{k}^{\prime}\left(R_{i}\right) \leq 0$ and

$$
\overline{\lim }_{i \rightarrow+\infty} R_{i}^{n-1}\left(\psi\left(R_{i}\right) \phi_{k}^{\prime}\left(R_{i}\right)-\phi_{k}\left(R_{i}\right) \psi^{\prime}\left(R_{i}\right)\right) \leq 0,
$$

which yields a contradiction to (2.17). Hence Lemma 2.4 is proved. q.e.d.

3. Applications of the method of moving planes

In this section, we are mainly concerned with the proof of Theorem 1.1. The proof will be divided into several lemmas. The first one Lemma 3.1 - is very important in our approach, and will be very useful later. To state it, we consider a sequence solution u_{i} of (1.1) and let x_{i} be a local maximum point of u_{i} in \bar{B}, with $M_{i}=u_{i}\left(x_{i}\right) \rightarrow+\infty$ as $i \rightarrow+\infty$. We assume K_{i} satisfies (1.2), (1.4) with $\alpha_{i} \leq n-2$. Let

$$
\begin{equation*}
v_{i}(y)=M_{i}^{-1} u_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right) . \tag{3.1}
\end{equation*}
$$

Obviously, $v_{i}(y)$ is defined in $|y| \leq M_{i}^{\frac{p_{i}-1}{2}}$. In Lemma 3.1, v_{i} is always assumed to satisfy

$$
\begin{equation*}
v_{i}(y) \text { is uniformly bounded in any bounded set of } \mathbb{R}^{n} . \tag{3.2}
\end{equation*}
$$

Suppose v_{i} satisfies (3.2). Without loss of generality, we may assume $v_{i}(y)$ uniformly converges to $U_{0}(y)$ in any compact set of \mathbb{R}^{n}. Since v_{i} satisfies

$$
\begin{equation*}
\Delta v_{i}(y)+\tilde{K}_{i}(y) v_{i}^{p_{i}}(y)=0 \quad \text { in } \quad|y| \leq M_{i}^{\frac{p_{i}-1}{2}} \tag{3.3}
\end{equation*}
$$

where $\tilde{K}_{i}(y)=K_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right), U_{0}$ must satisfy

$$
\left\{\begin{array}{l}
\Delta U_{0}+n(n-2) U_{0}^{\frac{n+2}{n-2}}=0 \tag{3.4}\\
U_{0}(0)=1, \text { and } 0 \text { is a critical point of } U_{0}
\end{array} \quad \text { in } \mathbb{R}^{n}\right.
$$

By a theorem of Caffarelli-Gidas-Spruck, U_{0} is radially symmetric with respect to 0 , and

$$
\begin{equation*}
U_{0}(y)=\left(1+|y|^{2}\right)^{-\frac{n-2}{2}} \tag{3.5}
\end{equation*}
$$

In the followings, we let

$$
\begin{equation*}
L_{i}=\min \left\{\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|^{1-\alpha_{i}}\right)^{\frac{1}{n-2}}, M_{i}^{\frac{\left(p_{i}-1\right) \alpha_{i}}{2(n-2)}}\right\} \tag{3.6}
\end{equation*}
$$

Obviously, $\lim _{i \rightarrow+\infty} L_{i}=+\infty$. Since

$$
\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|^{1-\alpha_{i}}\right)^{\frac{1}{n-2}}=M_{i}^{\frac{\left(p_{i}-1\right)\left(\alpha_{i}\right)}{2(n-2)}}\left(M_{i}^{\frac{\left(p_{i}-1\right)}{2}}\left|x_{i}\right|\right)^{1-\alpha_{i}}
$$

we have $L_{i}=\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|^{1-\alpha_{i}}\right)^{\frac{1}{n-2}}$ if $M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right| \geq 1$. From (3.6) and $\alpha_{i} \leq n-2$, we always have $M_{i}^{\frac{p_{i}-1}{2}} \geq L_{i}$. Thus, $v_{i}(y)$ is well-defined for $|y| \leq L_{i}$.

Lemma 3.1. Assume v_{i} satisfies (3.2). Then, for any $\epsilon>0$ there exist $\delta_{1}=\delta_{1}(\epsilon)>0$ and a positive integer $i_{0}=i_{0}(\epsilon)$ such that for $i \geq i_{0}$, the inequality

$$
\min _{|y| \leq r} v_{i}(y) \leq(1+\epsilon) r^{2-n}
$$

holds for all $0 \leq r \leq \delta_{1} L_{i}$.
Proof. We will prove the lemma by contradiction. Suppose there exists $\epsilon_{0}>0$ such that $\min _{|y| \leq r_{i}} v_{i}(y) \geqq\left(1+2 \epsilon_{0}\right) r_{i}^{2-n}$ for some $r_{i} \leq \delta L_{i}$, where δ is a small positive number which will be chosen later. Since $v_{i}(y)$ uniformly converges to $U_{0}(y)$ in any compact set of \mathbb{R}^{n}, we have $r_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$. Let

$$
\tilde{v}_{i}(y)=v_{i}\left(y+e_{1}\right) \text { with } \epsilon_{1}=(1,0, \cdots, 0) .
$$

Thus,

$$
\begin{equation*}
\tilde{v}_{i}(y) \geqq\left(1+\epsilon_{0}\right) r_{i}^{2-n} \tag{3.7}
\end{equation*}
$$

for $|y| \leq r_{i}$. Let $\bar{v}_{i}(y)$ be the Kelvin transformation of \tilde{v}_{i}, that is,

$$
\begin{equation*}
\bar{v}_{i}(y)=|y|^{2-n} \tilde{v}_{i}\left(\frac{y}{|y|^{2}}\right) . \tag{3.8}
\end{equation*}
$$

Then \bar{v}_{i} satisfies

$$
\begin{equation*}
\Delta \bar{v}_{i}+\bar{K}_{i}(y) \bar{v}_{i}^{p_{i}}=0 \quad \text { for } \quad|y| \geq M_{i}^{-\frac{p_{i}-1}{2}} \tag{3.9}
\end{equation*}
$$

where $\bar{K}_{i}(y)=\widetilde{K}_{i}(y)|y|^{-\tau_{i}} \equiv K_{i}\left(x_{i}+M_{i}^{--\frac{p_{i}-1}{2}} \frac{y}{|y|^{2}}\right)|y|^{-\tau_{i}}$ and $\tau_{i}=$ $(n+2)-(n-2) p_{i} \geq 0$. Since $\tilde{v}_{i}(y)$ converges to $U_{0}(y+e), \bar{v}_{i}(y)$ converges to $\bar{U}_{0}(y)$ in C^{2} in any compact set of $\mathbb{R}^{n} \cup\{\infty\} \backslash\{0\}$, where $\bar{U}_{0}(y)=$ $|y|^{2-n} U_{0}\left(\frac{y}{|y|^{2}}+e\right)$. By a straightforward computation, we can prove that $\bar{U}_{0}(y)$ is radially symmetric with respect to $y_{0}=\left(-\frac{1}{2}, 0, \cdots, 0\right)$. Therefore, $\bar{v}_{i}(y)$ has a local maximum y_{i} near y_{0} for large i.

Let $-\frac{1}{2}<\lambda_{0} \leq-\frac{1}{4}$, where λ_{0} will be chosen to be sufficiently close to $-\frac{1}{2}$. For $\lambda \leq \lambda_{0}$, as in Section 2, let $T_{\lambda}=\left\{x \mid x_{1}=\lambda\right\}, \Sigma_{\lambda}^{\prime}=\left\{x \mid x_{1}>\right.$ $\left.\lambda,|x| \geq r_{i}^{-1}\right\}$ and $x^{\lambda}=\left(2 \lambda-x_{1}, \cdots, x_{n}\right)$ denote the reflection point of x with respect to T_{λ}. We claim for large i,

$$
\begin{equation*}
\bar{v}_{i}\left(y^{\lambda}\right)<\bar{v}_{i}(y) \tag{3.10}
\end{equation*}
$$

holds for $y \in \Sigma_{\lambda}^{\prime}$ and $\lambda \leq \lambda_{0}$. Obviously, (3.10) yields a contradiction to the fact that $\bar{v}_{i}(y)$ has a local maximum at y_{i}.

Let $w_{\lambda}(y)=\bar{v}_{i}(y)-\bar{v}_{i}\left(y^{\lambda}\right)$. (The index i is omitted for the sake of simplicity.) Then w_{λ} satisfies

$$
\begin{equation*}
\Delta w_{\lambda}+b_{\lambda}(y) w_{\lambda}(y)=Q_{\lambda}(y) \quad \text { in } \quad \Sigma_{\lambda}^{\prime}, \tag{3.11}
\end{equation*}
$$

where $b_{\lambda}(y)=\bar{K}_{i}(y)\left(\bar{v}_{i}(y)^{p_{i}}-\bar{v}_{i}\left(y^{\lambda}\right)^{p_{i}}\right)\left(\bar{v}_{i}(y)-\bar{v}_{i}\left(y^{\lambda}\right)\right)^{-1}, \quad$ and $Q_{\lambda}(y)=\left(\bar{K}_{i}\left(y^{\lambda}\right)-\bar{K}_{i}(y)\right)\left(\bar{v}_{i}\left(y^{\lambda}\right)\right)^{p_{i}}$.

By (3.7) and (3.8), for $|y|=r_{i}^{-1}$ we have

$$
\begin{equation*}
\bar{v}_{i}(y) \geq r_{i}^{n-2} \min _{|y| \leq r_{i}} \tilde{v}_{i} \geq 1+\epsilon_{0} \tag{3.12}
\end{equation*}
$$

On the other hand, $\bar{v}_{i}\left(y^{-\frac{1}{2}}\right)$ uniformly converges to $\bar{U}_{0}\left(0^{-\frac{1}{2}}\right)=\bar{U}_{0}(0)=$ 1 for $|y|=r_{i}^{-1}$, where $y^{-\frac{1}{2}}$ and $0^{-\frac{1}{2}}$ are the reflection point of y and 0 with respect to the hyperplane $T_{-\frac{1}{2}}$ respectively. Hence, there exists $-\frac{1}{4} \geq \lambda_{0}>-\frac{1}{2}$ such that

$$
\begin{equation*}
\bar{v}_{i}\left(y^{\lambda}\right) \leq 1+\frac{\epsilon_{0}}{2} \tag{3.13}
\end{equation*}
$$

for $|y|=r_{i}^{-1}, \lambda \leq \lambda_{0}$ and large i. Together with (3.12), it implies that when $|y|=r_{i}^{-1}$, we have

$$
\begin{equation*}
w_{\lambda}(y) \geq \frac{\epsilon_{0}}{2} \tag{3.14}
\end{equation*}
$$

for $\lambda \leq \lambda_{0}$ and large i. In the followings, $\lambda_{0}>-\frac{1}{2}$ is chosen so that the inequality

$$
\begin{equation*}
w_{\lambda}(y) \geq \frac{\epsilon_{0}}{2} \geq c_{0} r_{i}^{-(n-2)} G^{\lambda}(y, 0) \tag{3.15}
\end{equation*}
$$

holds for $|y|=r_{i}^{-1}, \lambda \leq \lambda_{0}$ and large i, where c_{0} is a constant depending on ϵ_{0} and n only.

Since \bar{v}_{i} has a harmonic asymptotic expansion at ∞, we have

$$
\left\{\begin{array}{l}
\bar{v}_{i}(y)=|y|^{2-n}\left(\bar{c}_{0, i}+\sum_{j=1}^{n} \bar{c}_{j, i} \frac{y_{i}}{|y|^{2}}\right)+O\left(\frac{1}{|y|^{n}}\right) \tag{3.16}\\
\frac{\partial \bar{v}_{i}}{\partial y_{1}}(y)=-(n-2) \frac{c_{0, i} y_{1}}{|y|^{n}}+O\left(\frac{1}{|y|^{n}}\right)
\end{array}\right.
$$

where constants $\bar{c}_{0, i}$ and $\bar{c}_{j, i}$ converge to some $\bar{c}_{0}>0$ and \bar{c}_{j} as $i \rightarrow+\infty$. By elementary calculations and Lemma 2.2, there are constants c_{1} and $c_{2}>0$ such that

$$
\begin{align*}
w_{\lambda}(y) & =\bar{v}_{i}(y)-\bar{v}_{i}\left(y^{\lambda}\right) \\
& \geq c_{1} \begin{cases}\frac{\left(y_{1}-\lambda\right)|\lambda|}{|y|^{n}} & \text { if }\left|y^{\lambda}\right| \leq 2|y| \\
\frac{1}{|y|^{n-2}} & \text { if }\left|y^{\lambda}\right| \geq 2|y|\end{cases} \tag{3.17}\\
& \geq c_{2} G^{\lambda}(y, 0)
\end{align*}
$$

for $y \in \Sigma_{\lambda}, \lambda \leq \lambda_{1}<0$ and $|y| \geq R$ if both $\left|\lambda_{1}\right|$ and R are sufficiently large, but independent of i. (For a proof, see Lemma 2.3 in [5].) Since \bar{v}_{i} is superharmonic in $\Sigma_{\lambda}^{\prime}$ and $\bar{v}_{i} \geq 1$ on $|y|=r_{i}^{-1}$, for $r_{i}^{-1} \leq|y| \leq R$ and $y \in \Sigma_{\lambda}^{\prime}$ we have

$$
\bar{v}_{i}(y) \geq \inf _{|y|=R} \bar{v}_{i} \geq c_{3}>0,
$$

where c_{3} is a constant independent of i. Hence, if $\left|\lambda_{1}\right|$ is sufficiently large, then

$$
w_{\lambda}(y) \geq \frac{c_{3}}{2}
$$

for $r_{i}^{-1} \leq|y| \leq R$ and $\lambda \leq \lambda_{1}<0$. Since w_{λ} is superharmonic in $\Sigma_{\lambda}^{\prime}$ for $\lambda \leq \lambda_{1}$, by (3.15), we have for large i

$$
\begin{equation*}
w_{\lambda}(y) \geq c_{0} r_{i}^{-(n-2)} G^{\lambda}(y, 0) \tag{3.18}
\end{equation*}
$$

for $y \in \Sigma_{\lambda}^{\prime}$ and $\lambda \leq \lambda_{1}$.
Let $Q_{\lambda}^{+}=\max \left(0, Q_{\lambda}\right)$, and set

$$
\begin{equation*}
h_{\lambda}(y)=A L_{i}^{n-2} G^{\lambda}(y, 0)-\int_{\Sigma_{\lambda}} G^{\lambda}(y, \eta) Q_{\lambda}^{+}(\eta) d \eta \tag{3.19}
\end{equation*}
$$

where $G^{\lambda}(y, \eta)$ is the Green's function in Section 2, and A is a positive constant to be chosen later. Obviously, h_{λ} satisfies

$$
\begin{equation*}
\Delta h_{\lambda}=Q_{\lambda}^{+}(y) \geq Q_{\lambda}(y) \text { in } \quad \Sigma_{\lambda}^{\prime} . \tag{3.20}
\end{equation*}
$$

Since $\left|\eta^{\lambda}\right| \geq|\eta|$ for $\eta \in \Sigma_{\lambda}$ and $\lambda \leq \lambda_{0} \leq-\frac{1}{4}$, we have

$$
\begin{aligned}
Q_{\lambda}(y) & =\left(\widetilde{K}_{i}\left(\frac{\eta^{\lambda}}{\left|\eta^{\lambda}\right|^{2}}\right)\left|\eta^{\lambda}\right|^{-\tau_{i}}-\widetilde{K}_{i}\left(\frac{\eta}{|\eta|^{2}}\right)|\eta|^{-\tau_{i}}\right) \bar{v}_{i}^{p_{i}}\left(\eta^{\lambda}\right) \\
& \leq\left(\widetilde{K}_{i}\left(\frac{\eta^{\lambda}}{\left|\eta^{\lambda}\right|^{2}}\right)-\widetilde{K}_{i}\left(\frac{\eta}{|\eta|^{2}}\right)\right)\left|\eta^{\lambda}\right|^{-\tau_{i}} \bar{v}_{i}^{p_{i}}\left(\eta^{\lambda}\right)
\end{aligned}
$$

Hence,

$$
\begin{align*}
Q_{\lambda}^{+}(y) & \leq 4^{\tau_{i}}\left|\widetilde{K}_{i}\left(\frac{\eta^{\lambda}}{\left|\eta^{\lambda}\right|^{2}}\right)-\widetilde{K}_{i}\left(\frac{\eta}{|\eta|^{2}}\right)\right| \bar{v}_{i}^{p_{i}}\left(\eta^{\lambda}\right) \tag{3.21}\\
& \leq 2\left|\widetilde{K}\left(\frac{\eta^{\lambda}}{\left|\eta^{\lambda}\right|^{2}}\right)-\widetilde{K}_{i}\left(\frac{\eta}{|\eta|^{2}}\right)\right|\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}}
\end{align*}
$$

From (1.4) it follows that, for $|y| \geq r_{i}^{-1}$,

$$
\begin{aligned}
& \left|\widetilde{K}_{i}\left(\frac{y}{|y|^{2}}\right)-K_{i}\left(x_{i}\right)\right| \\
\leq & c_{1}\left\{\left|x_{i}\right|^{\alpha_{i}-1}+M_{i}^{-\frac{\left(p_{i}-1\right)\left(\alpha_{i}-1\right)}{2}}\left(1+|y|^{1-\alpha_{i}}\right)\right\}\left\{M_{i}^{-\frac{p_{i}-1}{2}}\left(1+|y|^{-1}\right)\right\} \\
\leq & c_{2}\left\{\left|x_{i}\right|^{\alpha_{i}-1} M_{i}^{-\frac{p_{i}-1}{2}}\left(1+|y|^{-1}\right)+M_{i}^{-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}}\left(1+|y|^{-\alpha_{i}}\right)\right\} .
\end{aligned}
$$

If $M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right| \geq 1$, then

$$
M_{i}^{-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}}=M_{i}^{-\frac{p_{i}-1}{2}}\left|x_{i}\right|^{\alpha_{i}-1}\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|\right)^{1-\alpha_{i}} \leq L_{i}^{-(n-2)}
$$

If $M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right| \leq 1$, then

$$
M_{i}^{-\frac{p_{i}-1}{2}}\left|x_{i}\right|^{\alpha_{i}-1} \leq M_{i}^{-\frac{\alpha_{i}\left(p_{i}-1\right)}{2}}=L_{i}^{-(n-2)} .
$$

In any case,

$$
\begin{equation*}
\left|\widetilde{K}_{i}\left(\frac{y}{|y|^{2}}\right)-K_{i}\left(x_{i}\right)\right| \leq c_{2} L_{i}^{-(n-2)}\left(1+|y|^{-\alpha_{i}}\right) . \tag{3.22}
\end{equation*}
$$

Thus, by (3.21) and (3.22), we have

$$
\begin{equation*}
Q_{\lambda}^{+}(\eta) \leq c_{3} L_{i}^{-(n-2)}\left(1+|\eta|^{-\alpha_{i}}\right)\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}} \tag{3.23}
\end{equation*}
$$

For $0<\beta<n$, we want to estimate

$$
S_{\beta}(y)=\int_{\Sigma_{\lambda}} G^{\lambda}(y, \eta)|\eta|^{-\beta}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}} d \eta
$$

Case 1: $|y| \leq \frac{|\lambda|}{2}$.
By Lemma 2.2, we obtain $G^{\lambda}(y, \eta) \leq c|y-\eta|^{2-n}$. Hence

$$
S_{\beta}(y) \leq \int_{\Sigma_{\lambda}}|y-\eta|^{2-n}|\eta|^{-\beta}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}} d \eta
$$

Decompose

$$
\begin{aligned}
\mathbb{R}^{n}= & \left\{\eta\left||y-\eta| \leq \frac{|y|}{2}\right\} \cup\left\{\left.\eta\left||y-\eta| \geq \frac{|y|}{2},|\eta| \leq 2\right| y \right\rvert\,\right\}\right. \\
& \cup\left\{\left.\eta\left||y-\eta| \geq \frac{|y|}{2},|\eta| \geq 2\right| y \right\rvert\,\right\} \equiv A_{1} \cup A_{2} \cup A_{3}
\end{aligned}
$$

Elementary calculations give

$$
\begin{aligned}
& \int_{A_{1}}|y-\eta|^{2-n}|\eta|^{-\beta}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}} d \eta \leq c_{1}|y|^{2-\beta}(1+|\lambda|)^{-(n-2) p_{i}} \\
& \int_{A_{2}}|\eta-y|^{2-n}|\eta|^{-\beta}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}} d \eta \leq c_{1}|y|^{2-\beta}(1+|\lambda|)^{-(n-2) p_{i}}
\end{aligned}
$$

For $|y| \leq 1$,

$$
\int_{A_{3}}|y-\eta|^{2-n}|\eta|^{-\beta}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}} d \eta \leq c_{3} \begin{cases}|y|^{2-\beta} & \text { if } \beta>2 \\ \log \frac{2}{|y|} & \text { if } \beta=2 \\ 1 & \text { if } \beta<2\end{cases}
$$

For $|y| \geq 1$,

$$
\begin{aligned}
\int_{A_{3}} \mid y & -\left.\eta\right|^{2-n}|\eta|^{-\beta}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}} d \eta \\
& \leq c_{4} \int_{A_{3}}|\eta|^{-2 n-\beta+\tau_{i}} d \eta \leq c_{5}|y|^{-n-\beta+\tau_{i}}
\end{aligned}
$$

We also note that, for $1 \leq|y| \leq \frac{|\lambda|}{2}$,

$$
\begin{aligned}
|y|^{2-\beta}(1+|\lambda|)^{-(n-2) p_{i}} & =|y|^{-n}|y|^{n+2-\beta}(1+|\lambda|)^{-(n-2) p_{i}} \\
& \leq c_{4}|y|^{-n+\tau_{i}}
\end{aligned}
$$

In conclusion, we have for $|y| \leq 1$,

$$
S_{\beta}(y) \leq c_{3} \begin{cases}|y|^{2-\beta} & \text { if } \beta>2 \tag{3.24}\\ \log \frac{2}{|y|} & \text { if } \beta=2 \\ 1 & \text { if } \beta<2\end{cases}
$$

and for $|y| \geq 1$,

$$
\begin{equation*}
S_{\beta}(y) \leq c_{4}|y|^{-n+\tau_{i}} \tag{3.25}
\end{equation*}
$$

Case 2. $|y| \geq \frac{|\lambda|}{2}$
As before, let $A_{1}=\left\{\eta| | y-\eta \left\lvert\, \leq \frac{|y|}{2}\right.\right\}$ and $A_{2}=\left\{\eta| | y-\eta \left\lvert\, \geq \frac{|y|}{2}\right.\right\}$. For $\eta \in A_{1}$, by Lemma 2.2 , we have

$$
G^{\lambda}(y, \eta) \leq c\left(y_{1}-\lambda\right)|y-\eta|^{1-n} .
$$

Thus,

$$
\begin{aligned}
\int_{A_{1}} & G^{\lambda}(y, \eta)|\eta|^{-\beta}(1+|\eta|)^{-(n-2) p_{i}} d \eta \\
& \leq c\left(y_{1}-\lambda\right)(1+|y|)^{-(n-2) p_{i}} \int_{A_{1}}|y-\eta|^{1-n} d \eta \\
& \leq c_{1}\left(y_{1}-\lambda\right)|y|^{-n+\tau_{i}} .
\end{aligned}
$$

For $\eta \in A_{2}$, we apply $G^{\lambda}(y, \eta) \leq c\left(y_{1}-\lambda\right)\left(\eta_{1}-\lambda\right)|y-\eta|^{-n}$. Then,

$$
\begin{aligned}
\int_{A_{2}} & G^{\lambda}(y, \eta)|\eta|^{-\beta}\left(1+\left|\eta^{\lambda}\right|\right)^{-(n-2) p_{i}} \\
& \leq c_{1}\left(y_{1}-\lambda\right)|y|^{-n} \int_{\mathbb{R}^{n}}|\eta|^{-\beta}(1+|\eta|)^{1-(n-2) p_{i}} d \eta \\
& =c_{2}\left(y_{1}-\lambda\right)|y|^{-n}
\end{aligned}
$$

Combining these two estimates together yields

$$
\begin{equation*}
S_{\beta}(y) \leq c_{2}\left(y_{1}-\lambda\right)|y|^{-n+\tau_{i}} \tag{3.26}
\end{equation*}
$$

By (3.23) $\sim(3.26)$ and Lemma 2.2, we obtain

$$
\begin{equation*}
\int_{\Sigma_{\lambda}^{\prime}} G^{\lambda}(y, \eta) Q_{\lambda}^{+}(\eta) d \eta \leq c_{6} L_{i}^{-n+2} G^{\lambda}(y, 0) \tag{3.27}
\end{equation*}
$$

for some constant $c_{6}>0$. Set $A=2 c_{6}$ in (3.19). By (3.27), we have

$$
\begin{equation*}
0<c_{6} L_{i}^{2-n} G^{\lambda}(y, 0) \leq h_{\lambda}(y) \leq 2 c_{6} L_{i}^{2-n} G^{\lambda}(y, 0) . \tag{3.28}
\end{equation*}
$$

Recall $r_{i} \leq \delta L_{i}$. Choose δ to be sufficiently small such that $\delta^{-(n-2)} \geq$ $\frac{3 c_{6}}{c_{0}}$, where c_{0} is the constant in (3.18). Then, when i is large,

$$
w_{\lambda}(y)>h_{\lambda}(y)
$$

holds for $|y|=r_{i}^{-1}$ and $\lambda \leq \lambda_{0}$, and holds for $y \in \Sigma_{\lambda_{1}}^{\prime}$. It is obvious that $h_{\lambda}(y)$ satisfies the assumption of Lemma 2.1 for $\lambda_{1} \leq \lambda \leq \lambda_{0}$ and
large i. Applying Lemma 2.1 gives (3.10). Thus, the proof of Lemma 3.1 is finished. q.e.d.

Lemma 3.2. Suppose $v_{i}(y)$ satisfies (3.2) and $v_{i}(y) \leq 2$ for $|y| \leq$ $c_{0} L_{i}$. Then there exist positive constants δ_{2} and c such that

$$
v_{i}(y) \leq c U_{0}(y)
$$

for $|y| \leq \delta_{2} L_{i}$, where c is a constant depending on n only.
Proof. Let $G_{i}(y, \eta)$ be the Green's function of the Laplacian operator in the ball $B_{i}=\left\{\eta| | \eta \mid \leq L_{i}\right\}$ with zero boundary value. For any $\epsilon>0$, let δ_{1} be the positive number stated in Lemma 3.1. Let $\bar{\delta}$ be sufficiently small (independent of i) such that

$$
G_{i}(y, \eta) \geq \frac{1-\epsilon}{\sigma_{n}(n-2)}|y-\eta|^{2-n}
$$

for $|y|=\delta_{1} L_{i}$ and $|\eta| \leq \bar{\delta} L_{i}$, where σ_{n} denotes the area of the unit sphere S^{n-1}.

Let $\left|y_{i}\right|=\delta_{1} L_{i}$ satisfy $v_{i}\left(y_{i}\right)=\min _{|y| \leq \delta L_{i}} v_{i}(y)$. Then, by Lemma 3.1, we have

$$
\begin{aligned}
\frac{1+\epsilon}{\delta_{1}^{n-2} L_{i}^{n-2}} & \geq v_{i}\left(y_{i}\right) \geq \int_{B_{i}} G_{i}\left(y_{i}, \eta\right) \bar{K}_{i}(\eta) v_{i}^{p_{i}}(\eta) d \eta \\
& \geq \frac{n(n-2)(1-2 \epsilon)}{\sigma_{n}(n-2)\left(\delta_{1}+\bar{\delta}\right)^{n-2} L_{i}^{n-2}} \int_{|\eta| \leq \bar{\delta}_{i} L_{i}} v_{i}^{p_{i}}(\eta) d \eta .
\end{aligned}
$$

Let $\bar{\delta} \ll \delta_{1}$. Then

$$
\begin{equation*}
\int_{|\eta| \leq \bar{\delta} L_{i}} v_{i}^{p_{i}}(\eta) d \eta \leq \frac{\sigma_{n}}{n}(1+4 \epsilon) . \tag{3.29}
\end{equation*}
$$

Since v_{i} uniformly converges to $U_{0}(y)$ in any compact set of \mathbb{R}^{n} and $U_{0}(y)$ satisfies

$$
\int_{\mathbb{R}^{n}} U_{0}^{\frac{n+2}{n-2}}(y) d y=\frac{\sigma_{n}}{n},
$$

there exists a large R such that

$$
\begin{equation*}
\int_{R \leq|\eta| \leq \bar{\delta} L_{i}} v_{i}^{p_{i}}(\eta) d \eta \leq \frac{5 \sigma_{n} \epsilon}{n} \tag{3.30}
\end{equation*}
$$

holds for large i. Since $v_{i}(y) \leq 2$, we have

$$
\begin{equation*}
\int_{R \leq|\eta| \leq \bar{\delta} L_{i}} v_{i}^{p_{i}^{*}}(\eta) d \eta \leq \frac{10 \sigma_{n} \epsilon}{n} . \tag{3.31}
\end{equation*}
$$

Let ϵ be sufficiently small such that $\frac{10 \sigma_{n} \epsilon}{n} \leq \epsilon_{0}$, where ϵ_{0} is the small number in Lemma 2.3. An applying of Lemma 2.3 shows that there exists a constant $c>0$ such that

$$
\begin{equation*}
\max _{|y|=r} v_{i}(y) \leq c \min _{|y|=r} v_{i}(y) \tag{3.32}
\end{equation*}
$$

holds for $2 R \leq r \leq \frac{\bar{\delta}}{2} L_{i}$. By Lemma 3.1, we have

$$
\begin{equation*}
v_{i}(y) \leq c U_{0}(y) \tag{3.33}
\end{equation*}
$$

for $2 R \leq|y| \leq \frac{\bar{\delta}}{2} L_{i}$. Obviously, (3.33) holds true for $|y| \leq 2 R$ also. Hence we have finished the proof of Lemma 3.2. q.e.d.

Let $l_{i}=\delta_{2} L_{i}$, where δ_{2} is the positive constant stated in Lemma 3.2.
Lemma 3.3. Suppose v_{i} satisfies the assumptions of Lemma 3.2. Then there exists a constant $c>0$ such that

$$
\max _{|y| \leq l_{i}}\left|v_{i}(y)-U_{i}(y)\right| \leq c l_{i}^{-(n-2)}
$$

where $U_{i}(y)$ is the C^{2} positive solution of

$$
\left\{\begin{array}{l}
\Delta U_{i}+K_{i}\left(x_{i}\right) U_{i}^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbb{R}^{n}, \\
U_{i}(0)=1=\max _{\mathbb{R}^{n}} U_{i}(y) .
\end{array}\right.
$$

Proof. Rewrite equation (3.3) into

$$
\Delta v_{i}+c_{i}(y) v_{i}(y)=0 \quad \text { for }|y| \leq l_{i}
$$

with $c_{i}(y)=\tilde{K}_{i}(y) v_{i}^{p_{i}-1}(y) \leq c(1+|y|)^{-\left(p_{i}-1\right)(n-2)}$ by Lemma 3.2. Note that $\left(p_{i}-1\right)(n-2)>2$ for large i. Hence, by applying the gradient estimates for the linear elliptic equations, we obtain

$$
\begin{equation*}
\left|\nabla v_{i}(y)\right| \leq c_{1} v_{i}(y)(1+|y|)^{-1} \tag{3.34}
\end{equation*}
$$

for $|y| \leq \frac{l_{i}}{2}$. In particular, we have

$$
\begin{equation*}
\left|\nabla v_{i}(y)\right| \leq c_{1} l_{i}^{-n+1} \tag{3.35}
\end{equation*}
$$

for $|y|=\frac{l_{i}}{2}$.
By (3.3) and the Pohozaev identity, from (3.35) we conclude

$$
\begin{aligned}
&\left(\frac{n}{p_{i}+1}-\frac{n-2}{2}\right) \int_{|y| \leq \frac{l_{i}}{2}} \widetilde{K}_{i}(y) v_{i}^{p_{i}+1}(y) d y \\
&+\frac{1}{p_{i}+1} \int_{|y| \leq \frac{l_{i}}{2}}\left(y \cdot \nabla \widetilde{K}_{i}(y)\right) v_{i}^{p_{i}+1} d y \\
&= \int_{|y|=\frac{l_{i}}{2}} \frac{n-2}{2} v_{i} \frac{\partial v_{i}}{\partial r}+\left|\frac{\partial v_{i}}{\partial r}\right|^{2}|y| \\
&-\frac{1}{2}\left|\nabla v_{i}\right|^{2}|y|+\frac{|y|}{p_{i}+1} \widetilde{K}_{i}(y) v_{i}^{p_{i}+1} d \sigma \\
& \leq c l_{i}^{-n+2} .
\end{aligned}
$$

Since

$$
\begin{align*}
\mid y & \cdot \nabla \widetilde{K}_{i}(y) \mid \\
& \leq M_{i}^{-\frac{p_{i}-1}{2}}\left(\left|x_{i}\right|^{\alpha_{i}-1}+M_{i}^{-\frac{p_{i}-1}{2}\left(\alpha_{i}-1\right)}|y|^{\alpha_{i}-1}\right)|y| \tag{3.36}\\
& \leq c l_{i}^{-(n-2)}\left(1+|y|^{\alpha_{i}}\right)
\end{align*}
$$

we have

$$
\begin{aligned}
\int_{|y| \leq \frac{l_{i}}{2}} & \left|y \cdot \nabla \widetilde{K}_{i}(y)\right| v_{i}^{p_{i}+1}(y) d y \\
& \leq c l_{i}^{-(n-2)} \int_{\mathbb{R}^{n}}\left(1+|y|^{\alpha_{i}}\right)(1+|y|)^{-(n-2)\left(p_{i}+1\right)} d y \\
& \leq c l_{i}^{-(n-2)}
\end{aligned}
$$

Thus

$$
\begin{equation*}
\tau_{i}=(n+2)-(n-2) p_{i} \leq c l_{i}^{-(n-2)}, \tag{3.37}
\end{equation*}
$$

which implies $\lim _{i \rightarrow+\infty} l_{i}^{T_{i}}=1$.
Let $\Lambda_{i}=\max _{|y| \leq l_{i}}\left|v_{i}-U_{i}\right|=v_{i}\left(y_{i}\right)-U_{i}\left(y_{i}\right)$ for some $\left|y_{i}\right| \leq l_{i}$. Suppose the conclusion of Lemma 3.3 does not hold true, i.e., $\Lambda_{i} l_{i}^{n-2} \rightarrow+\infty$ as $i \rightarrow+\infty$. Let $w_{i}(y)=\Lambda_{i}^{-1}\left(v_{i}(y)-U_{i}(y)\right)$. By (3.3), w_{i} satisfies

$$
\begin{equation*}
\Delta w_{i}+b_{i} w_{i}=\widetilde{Q}_{i}(y) \tag{3.38}
\end{equation*}
$$

where $b_{i}(y)=\tilde{K}_{i}(y)\left(\frac{v_{i}^{p_{i}}-U_{i}^{p_{i}}}{v_{i}-U_{i}}\right)$ and

$$
\begin{gather*}
\widetilde{Q}_{i}(y)=\Lambda_{i}^{-1}\left\{\left(K_{i}\left(x_{i}\right)-K_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right)\right) U_{i}^{p_{i}}(y)\right. \\
\left.+K_{i}\left(x_{i}\right)\left(U_{i}^{\frac{n+2}{n-2}}-U_{i}^{p_{i}}\right)\right\} \tag{3.39}
\end{gather*}
$$

By Lemma 3.2 and (3.37), we have

$$
\begin{equation*}
b_{i}(y) \leq c(1+|y|)^{-4} \quad \text { for } \quad|y| \leq l_{i} \tag{3.40}
\end{equation*}
$$

By a straightforward calculations,

$$
\begin{align*}
\left|\widetilde{Q}_{i}(y)\right| \leq & c \Lambda_{i}^{-1}\left\{L_{i}^{-(n-2)}(1+|y|)^{-\left(n+2-\alpha_{i}\right)}\right. \\
& \left.\quad+\tau_{i}(1+|y|)^{-(n+2)}\left|\log U_{i}\right|\right\} \tag{3.41}\\
\leq & c \Lambda_{i}^{-1} l_{i}^{2-n}(1+|y|)^{-4}
\end{align*}
$$

for $|y| \leq l_{i}$.
Applying the Green representation's Theorem leads to
$w_{i}(y)=\int_{B_{i}} G_{i}(y, \eta)\left(b_{i}(\eta) w_{i}(\eta)+\widetilde{Q}_{i}(\eta)\right) d \eta-\int_{\partial B_{i}} \frac{\partial G_{i}}{\partial \nu}(y, \eta) w_{i}(\eta) d s$,
where $B_{i}=B\left(0, l_{i}\right)$, and G_{i} is the Green function of Δ in B_{i}. Thus, by (3.40) and (3.41), we obtain

$$
\begin{align*}
\left|w_{i}(y)\right| & \leq c_{1}\left\{\int_{B_{i}}|y-\eta|^{2-n}(1+|\eta|)^{-4} d \eta+\Lambda_{i}^{-1} l_{i}^{-(n-2)}\right\} \tag{3.42}\\
& \leq c_{2}\left\{(1+|y|)^{-2}+\Lambda_{i}^{-1} l_{i}^{-(n-2)}\right\}
\end{align*}
$$

where we note that $\left|w_{i}(\eta)\right| \leq \Lambda_{i}^{-1} l_{i}^{-(n-2)}$ for $|\eta|=l_{i}$ by Lemma 3.2.
Since w_{i} is bounded in $C_{l o c}^{2}$, there exists a subsequence of w_{i} (still denoted by w_{i}) such that w_{i} converge to w in $C_{l o c}^{2}$ by elliptic estimates, where w satisfies

$$
\left\{\begin{array}{l}
\Delta w+n(n+2) U_{0}^{\frac{4}{n-2}}(y) w(y)=0 \quad \text { in } \mathbb{R}^{n} \\
|w(y)| \leq c(1+|y|)^{-2}
\end{array}\right.
$$

By Lemma 2.4, we get $w(y)=\sum_{j=1}^{n} c_{j} \frac{\partial U_{0}}{\partial y_{j}}+c_{0}\left(|y| U_{0}^{\prime}(|y|)+\frac{n-2}{2} U_{0}(|y|)\right)$.
Since $w(0)=\frac{\partial w}{\partial y_{j}}(0)=0$, we must have $c_{j}=0$ for $0 \leq j \leq n$, namely, $w(y) \equiv 0$. Hence $\lim _{i \rightarrow+\infty}\left|y_{i}\right|=+\infty$.

Applying (3.42) at $y=y_{i}$ gives

$$
1=\left|w_{i}\left(y_{i}\right)\right| \leq\left\{\left(1+\left|y_{i}\right|\right)^{-2}+\Lambda_{i}^{-1} l_{i}^{-(n-2)}\right\}
$$

which obviously yields a contradiction. Thus, $\Lambda_{i} l_{i}^{n-2}$ must be bounded.
q.e.d.

Let $x_{i} \in \bar{B}_{1}$ satisfy $u_{i}\left(x_{i}\right)=\max _{\bar{B}_{1}} u_{i}\left(x_{i}\right)=M_{i}$. Suppose $M_{i} \rightarrow+\infty$. For this sequence of maximum points x_{i} of u_{i}, the rescaled function $v_{i}(y)$, defined in (3.1), obviously satisfies (3.2) and $v_{i}(y) \leq 1$ for $|y| \leq$ $M_{i}^{\frac{p_{i}-1}{2}}$. We have

Lemma 3.4. Let x_{i} satisfy $u_{i}\left(x_{i}\right)=\max _{\bar{B}_{1}} u_{i}\left(x_{i}\right)=M_{i}$. Then $M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|$ is bounded.

Proof. Suppose $\lim _{i \rightarrow+\infty} M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|=+\infty$. By (3.6), we have $L_{i}=$ $\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|^{1-\alpha_{i}}\right)^{\frac{1}{n-2}}$. By Lemma 3.3, $w_{i}(y)=l_{i}^{n-2}\left(v_{i}(y)-U_{i}(y)\right)$ is uniformly bounded in $|y| \leq l_{i}$. Thus, we may assume $w_{i}(y)$ uniformly converges to $w(y)$. By (3.35), we have

$$
\begin{equation*}
\left|\nabla w_{i}(y)\right| \leq c_{1} l_{i}^{-1} \tag{3.43}
\end{equation*}
$$

for $|y|=\frac{1}{2} l_{i}$.
Let $e_{i}=\left|\nabla K_{i}\left(x_{i}\right)\right|^{-1} \nabla K_{i}\left(x_{i}\right)$. Without loss of generality, we may assume $\lim _{i \rightarrow+\infty} e_{i}=(1,0, \cdots, 0)$. For any $R>0$, from (3.39) it follows that

$$
\begin{align*}
\widetilde{Q}_{i}(y)= & l_{i}^{n-2} M_{i}^{-\frac{p_{i}-1}{2}}\left|\nabla K_{i}\left(x_{i}\right)\right|\left\{\left(e_{i}, y\right)+o(1)\right\} U_{i}^{\frac{n+2}{n-2}}(y) \\
& +l_{i}^{n-2} K_{i}\left(x_{i}\right)\left(U_{i}^{\frac{n+2}{n-2}}-U_{i}^{p_{i}}\right) \tag{3.44}
\end{align*}
$$

for $|y| \leq R$ and large i. For $|y| \geq R$, by (3.41) we have

$$
\begin{equation*}
\left|\widetilde{Q}_{i}(y)\right| \leq c(1+|y|)^{-4} \tag{3.45}
\end{equation*}
$$

for a constant c independent of i.
Thus, by (3.44) and (3.45) it is easy to see that

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \int_{|y| \leq \frac{l_{i}}{2}} \widetilde{Q}_{i}(y) \psi_{1}(y) d y=c_{1} \int_{\mathbb{R}^{n}} \psi_{1}(y) y_{1} U_{0}^{\frac{n+2}{n-2}}(y) d y \tag{3.46}
\end{equation*}
$$

for some constant $c_{1}>0$, where

$$
c_{1}=\lim _{i \rightarrow+\infty} l_{i}^{n-2} M_{i}^{-\frac{p_{i}-1}{2}}\left|\nabla K\left(x_{i}\right)\right|=\delta_{2}^{n-2} \lim _{i \rightarrow+\infty}\left|x_{i}\right|^{1-\alpha_{i}}\left|\nabla K_{i}\left(x_{i}\right)\right|
$$

and $\psi_{1}=\frac{\partial U_{0}}{\partial y_{1}}$.
On the other hand, multiplying ψ_{1} on both sides of (3.38) gives

$$
\begin{align*}
\int_{|y| \leq \frac{l_{i}}{2}} w_{i}(y) & \left(\Delta \psi_{1}+b_{i}(y) \psi_{1}(y)\right) d y \\
& +\int_{|y|=\frac{t_{i}}{2}}\left(\psi_{1} \frac{\partial w_{i}}{\partial \nu}-w_{i} \frac{\partial \psi_{1}}{\partial \nu}\right) d s \tag{3.47}\\
= & \int_{|y| \leq \frac{l_{i}}{2}} \widetilde{Q}_{i}(y) \psi_{1}(y) d y .
\end{align*}
$$

By (3.43), the boundary term of the above tends to 0 as $i \rightarrow+\infty$. Since $\left|w_{i}(y)\right| \leq c$, we can easily prove

$$
\begin{align*}
& \lim _{i \rightarrow+\infty} \int_{|y| \leq \frac{l_{i}}{2}} w_{i}(y)\left(\Delta \psi_{1}(y)+b_{i}(y) \psi_{1}(y)\right) d y \\
& \quad=\int_{\mathbb{R}^{n}} w(y)\left(\Delta \psi_{1}+n(n+2) U_{0}^{\frac{4}{n-2}} \psi_{1}\right) d y \tag{3.48}\\
& \quad=0
\end{align*}
$$

which obviously yields a contradiction to (3.47). Thus, the proof of Lemma 3.4 is finished. q.e.d.

Remark 3.5. Since $M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|$ is bounded,

$$
c M_{i}^{\frac{\left(p_{i}-1\right) \alpha_{i}}{2(n-2)}} \leq L_{i} \leq M_{i}^{\frac{\left(p_{i}-1\right) \alpha_{i}}{2(n-2)}}
$$

for some positive constant c. By (3.37), we have

$$
\begin{equation*}
\tau_{i}=O(1)\left(\max _{\bar{B}_{1}} u_{i}\right)^{-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} . \tag{3.49}
\end{equation*}
$$

By Lemma 3.4, without loss of generality, we may assume

$$
\begin{equation*}
\xi=\lim _{i \rightarrow+\infty} M_{i}^{\frac{p_{i}-1}{2}} x_{i} \tag{3.50}
\end{equation*}
$$

Lemma 3.6. Let x_{i} satisfy $u_{i}\left(x_{i}\right)=\max _{B_{1}} u_{i}(x) \rightarrow+\infty$ as $i \rightarrow+\infty$ and ξ be the vector in \mathbb{R}^{n}, given by (3.50). Then ξ satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q(y+\xi) U_{0}^{\frac{2 n}{n-2}}(y) d y=0 \tag{3.51}
\end{equation*}
$$

Proof. Following the notation of Lemma 3.3 and Lemma 3.4, let $w_{i}(y)=l_{i}^{n-2}\left(v_{i}(y)-U_{i}(y)\right)$, where $l_{i}=\delta_{2} L_{i}$. Then w_{i} satisfies

$$
\begin{equation*}
\Delta w_{i}+b_{i}(y) w_{i}=\widetilde{Q}_{i}(y) \tag{3.52}
\end{equation*}
$$

where

$$
\begin{aligned}
\widetilde{Q}_{i}(y)= & l_{i}^{n-2}\left(K_{i}\left(x_{i}\right)-K_{i}\left(x_{i}+M_{i}^{-\frac{p-1}{2}} y\right)\right) U_{i}^{p_{i}}(y) \\
& +K_{i}\left(x_{i}\right)\left(U_{i}^{\frac{n+2}{n-2}}-U_{i}^{p_{i}}\right)
\end{aligned}
$$

By (3.49) and (1.4), we have

$$
\begin{align*}
& K_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right)-K_{i}(0) \\
& \quad=Q_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right)+R_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right) \tag{3.53}\\
& \quad=M_{i}^{-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}}\left(Q_{i}\left(\xi_{i}+y\right)+o(1)\left(1+|y|^{\alpha_{i}}\right)\right)
\end{align*}
$$

for $|y| \leq l_{i}$ with $\xi_{i}=M_{i}^{\frac{p-1}{2}} x_{i}$.
By Lemma 3.3 and Remark 3.5, $M_{i}^{\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} l_{i}^{2-n}$ is bounded and $w_{i}(y)$ is uniformly bounded in $|y| \leq \frac{1}{2} l_{i}$. Without loss of generality, we may assume $c=\lim _{i \rightarrow+\infty} M_{i}^{\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} l_{i}^{2-n}>0$ and w_{i} converges to w uniformly in any compact set of \mathbb{R}^{n}. Let $\psi_{j}(y)=\frac{\partial U_{0}}{\partial y_{j}}$ for $1 \leq j \leq n$. Since

$$
\begin{aligned}
& \int_{|y| \leq \frac{l_{i}}{2}} \psi_{j}(y)\left[\left(K_{i}(0)-K_{i}\left(x_{i}\right)\right) U_{i}^{p_{i}}(y)\right] \\
& \quad+K_{i}\left(x_{i}\right)\left[U_{i}^{\frac{n+2}{n-2}}(y)-U_{i}^{p_{i}}(y)\right] d y=0
\end{aligned}
$$

by (3.53) we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} Q(\xi+y) U_{0}^{\frac{n+2}{n-2}}(y) \psi_{j}(y) d y \\
& \quad=\lim _{i \rightarrow+\infty} M_{i}^{\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} l_{i}^{2-n} \int_{|y| \leq \frac{l_{i}^{2}}{2}} Q_{i}(y) \psi_{j}(y) d y \\
& =c\left(\lim _{i \rightarrow+\infty} \int_{|y| \leq \frac{l_{i}}{2}} \psi_{j}\left(\Delta w_{i}+b_{i} w_{i}\right) d y\right) \\
& =c\left(\lim _{i \rightarrow+\infty} \int_{|y| \leq \frac{l_{i}}{2}} w_{i}\left(\Delta \psi_{j}+b_{i}(y) \psi_{j}\right) d y+\text { boundary term }\right) \\
& =c \int_{\mathbb{R}^{n}} w\left(\Delta \psi_{j}+n(n+2) U_{0}^{\frac{4}{n-2}} \psi_{j}(y)\right) d y=0
\end{aligned}
$$

Applying the integration by part gives
$\frac{n-2}{2 n} \int_{\mathbb{R}^{n}} \frac{\partial}{\partial y_{j}} Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y=\int_{\mathbb{R}^{n}} Q(\xi+y) U_{0}^{\frac{n+2}{n-2}}(y) \psi_{j}(y) d y=0$.
Hence, Lemma 3.6 is proved. q.e.d.
Lemma 3.7. Let x_{i} satisfy $u_{i}\left(x_{i}\right)=\max _{\bar{B}_{1}} u_{i}(x) . \quad$ Suppose $\alpha<$ $n-2$. Then for any $R>0$, there exists a constant $c>0$ such that $u_{i}\left(x_{i}+y\right)|y|^{\frac{n-2}{2}} \leq c$ for $|y| \leq R M_{i}^{-\beta_{i}}$, where $\beta_{i}=\frac{p_{i}-1}{2}\left(1-\frac{\alpha_{i}}{n-2}\right)$.

Proof. By Lemma 3.1 and Lemma 3.2, there exist δ_{2} and c_{1} such that

$$
\begin{equation*}
v_{i}(y) \leq c_{1} U_{0}(y) \tag{3.54}
\end{equation*}
$$

holds for $|y| \leq \delta_{2} L_{i}$. Since $v_{i}(y)$ is superharmonic, it is easy to show

$$
\begin{equation*}
v_{i}(y) \geq c_{2} U_{0}(y) \tag{3.55}
\end{equation*}
$$

for some constant $c_{2}>0$ and $|y| \leq \delta_{2} L_{i}$. Therefore

$$
\begin{equation*}
c_{2} M_{i}^{1-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} \leq u_{i}\left(x_{i}+y\right) \leq c_{1} M_{i}^{1-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} \tag{3.56}
\end{equation*}
$$

for $|y|=\delta_{2} M_{i}^{-\beta_{i}}$ and for two constants c_{1} and c_{2} which is independent of i, and also (by 3.54),

$$
\begin{equation*}
u_{i}\left(x_{i}+y\right)|y|^{\frac{2}{p_{i}-1}}=v_{i}\left(M_{i}^{\frac{p_{i}-1}{2}} y\right)\left(M_{i}^{\frac{p_{i}-1}{2}}|y|\right)^{\frac{2}{p_{i}-1}} \leq c_{1} \tag{3.57}
\end{equation*}
$$

for $|y| \leq \delta_{2} M_{i}^{-\beta_{i}}$.
Now suppose the conclusion of Lemma 3.7 does not hold. Then we can apply a blow-up argument due to R. Schoen (see [17] or the proof of Lemma 4.1 in $\S 4$) to show that there exists a sequence y_{i} such that the followings hold:

1. $u_{i}\left(x_{i}+y_{i}\right)\left|y_{i}\right|^{\frac{2}{p_{i}-1}} \rightarrow+\infty$ as $i \rightarrow+\infty$,
2. $u_{i}\left(x_{i}+y\right)$ has a local maximum at y_{i},
3. The function $\widetilde{v}_{i}(z)=\widetilde{M}_{i}^{-1} u_{i}\left(x_{i}+y_{i}+\widetilde{M}_{i}^{-\frac{p_{i}-1}{2}} z\right)$ uniformly converges to $U_{0}(z)$ in $C_{l o c}^{2}\left(\mathbb{R}^{n}\right)$, where $\widetilde{M}_{i}=u_{i}\left(x_{i}+y_{i}\right)$, and
4. $\delta_{0} M_{i}^{-\beta_{i}} \leq\left|y_{i}\right| \leq 2 R M_{i}^{-\beta_{i}}$.

Since \widetilde{v}_{i} is superharmonic, by the maximum principle, we have

$$
\begin{equation*}
\widetilde{v}_{i}(z) \geq c_{3}|z|^{2-n} \tag{3.58}
\end{equation*}
$$

for some constant c_{3} when $1 \leq|z| \leq \frac{1}{2} \widetilde{M}_{i}^{\frac{p_{i}-1}{2}}$.
Let $S_{i}=\left\{y| | y \left\lvert\,=\frac{\delta_{0}}{2} M_{i}^{-\beta_{i}}\right.\right\}$ and $\bar{y}_{i} \in S_{i}$ satisfy $\left|y_{i}-\bar{y}_{i}\right|=d\left(y_{i}, S_{i}\right)$. Set $z_{i}=\widetilde{M}_{i}^{\frac{p_{i}-1}{2}}\left(\bar{y}_{i}-y_{i}\right)$. By (3.56) and (3.58), we have

$$
c_{3}\left|z_{i}\right|^{2-n} \widetilde{M}_{i} \leq u_{i}\left(x_{i}+\bar{y}_{i}\right) \leq c_{1} M_{i}^{1-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} .
$$

Then

$$
\widetilde{M}_{i}^{1-\frac{\left(p_{i}-1\right)(n-2)}{2}} \leq c_{4} M_{i}^{1-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}}\left|y_{i}-\bar{y}_{i}\right|^{n-2} \leq c_{5} M_{i}^{1-\frac{\left(p_{i}-1\right)(n-2)}{2}},
$$

where $\left|y_{i}-\bar{y}_{i}\right| \leq\left|y_{i}\right|+\left|\bar{y}_{i}\right| \leq\left(R+\delta_{0}\right) M_{i}^{-\beta_{i}}$. Since $1-\frac{\left(p_{i}-1\right)(n-2)}{2}<0$, we have

$$
\begin{equation*}
M_{i} \leq c_{5} \widetilde{M}_{i}, \tag{3.59}
\end{equation*}
$$

which implies $\widetilde{v}_{i}(z) \leq c_{5}$ for $|z| \leq \widetilde{M}_{i}^{\frac{p_{i}-1}{2}}$. Following the proof of Lemma 3.4 with x_{i} replaced by $x_{i}+y_{i}$, we can show the identity

$$
\int_{\mathbb{R}^{n}} \psi_{1}(y) y_{1} U_{0}^{\frac{n+2}{n-2}}(y) d y=0
$$

holds, where we assume $\lim _{i \rightarrow+\infty} \nabla K\left(x_{i}+y_{i}\right)\left|\nabla K\left(x_{i}+y_{i}\right)\right|^{-1}=(1,0, \cdots, 0)$. Obviously, it yields a contradiction. Hence the proof of Lemma 3.7 is finished. q.e.d.

Now we are in the position to prove Theorem 1.1.
Proof of Theorem 1.1. Suppose $M_{i}=\frac{\max }{\bar{B}_{1}} u_{i}=u_{i}\left(x_{i}\right) \rightarrow+\infty$ as $i \rightarrow+\infty$. Let $r_{i}=M_{i}^{-\beta_{i}}$ and $u_{i}^{*}(y)=r_{i}^{\frac{2}{p_{i}-1}} u\left(x_{i}+r_{i} y\right)$, where we recall $\beta_{i}=\frac{p_{i}-1}{2}\left(1-\frac{\alpha_{i}}{n-2}\right)$. Then $u_{i}^{*}(0)=M_{i} r_{i}^{\frac{2}{p_{i}-1}}=M_{i}^{\frac{\alpha_{i}}{n-2}} \rightarrow+\infty$ as $i \rightarrow+\infty$. By Lemma 3.2, we have

$$
\begin{equation*}
u_{i}^{*}(y) \leq c u_{i}^{*}(0)^{-1}|y|^{-n+2} \tag{3.60}
\end{equation*}
$$

for $|y| \leq \delta_{0}$. By Lemma 3.7, $u_{i}^{*}(y)|y|^{\frac{n-2}{2}}$ is uniformly bounded in any compact set of \mathbb{R}^{n}. Applying the Harnack inequality and (3.60), $u_{i}^{*}(0) u_{i}^{*}(y)$ is uniformly bounded in any compact set of $\mathbb{R}^{n} \backslash\{0\}$. Therefore, there exists a subsequence $u_{i}^{*}(0) u_{i}^{*}(y)$ (still denoted by $u_{i}^{*}(0) u_{i}^{*}(y)$) such that $u_{i}^{*}(0) u_{i}^{*}(y)$ converges to $h(y)$ in C^{2} topology in any compact set of $\mathbb{R}^{n} \backslash\{0\}$. It is not difficult to see $h(y)$ is harmonic in $\mathbb{R}^{n} \backslash\{0\}$; thus,

$$
h(y)=\frac{a}{|y|^{n-2}}+b
$$

with both a and $b \geq 0$.
Applying the Pohozaev identity, we have

$$
\begin{align*}
& \frac{1}{p_{i}+1} r_{i} \int_{B_{1}}\left(y \cdot \nabla K_{i}\left(x_{i}+r_{i} y\right)\right) u_{i}^{*}(y)^{p_{i}+1} d y \\
& =P\left(1 ; u_{i}^{*}\right)-\left(\frac{n}{p_{i}+1}-\frac{n-2}{2}\right) \int K_{i}\left(x_{i}+r_{i} y\right) u_{i}^{*}(y)^{p_{i}+1} d y \tag{3.61}\\
& \leq p\left(1 ; u_{i}^{*}\right)
\end{align*}
$$

where

$$
\begin{aligned}
P\left(1 ; u_{i}^{*}\right)=\int_{\partial B_{1}} & \left(\frac{n-2}{2} u_{i}^{*} \frac{\partial u_{i}^{*}}{\partial \nu}-\frac{1}{2}\left|\nabla u_{i}^{*}\right|^{2}\right. \\
& \left.+\left|\frac{\partial u_{i}^{*}}{\partial \nu}\right|^{2}+\frac{1}{p_{i}+1} K_{i}\left(x_{i}+r_{i} y\right) u_{i}^{p_{i}+1}\right) d y
\end{aligned}
$$

Since $u_{i}^{*}(0) u_{i}^{*}(y)$ converges to $h(y)$, a simple calculation leads to

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} u_{i}^{*^{2}}(0) P\left(1 ; u_{i}^{*}\right)=-(n-2) \sigma_{n} a b \leq 0 \tag{3.62}
\end{equation*}
$$

where σ_{n} denotes the area of the unit sphere S^{n-1}. On the other hand, the left hand side of (3.61) tends to

$$
\begin{align*}
& \lim _{i \rightarrow+\infty} u_{i}^{*^{2}}(0) r_{i} \int_{B_{1}}\left(y \cdot \nabla K_{i}\left(x_{i}+r_{i} y\right)\right) u_{i}^{*}(y)^{p_{i}+1} d y \\
= & \lim _{i \rightarrow+\infty} M^{\frac{2\left(\alpha_{i}-1\right)}{n-2}} \int_{|y| \leq L_{i}} y \cdot \nabla K_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right) v_{i}^{p_{i}+1} d y \tag{3.63}\\
= & \int_{\mathbb{R}^{n}}(y \cdot \nabla Q(\xi+y)) U_{0}^{p_{i}+1}(y) d y,
\end{align*}
$$

where $\lim _{i \rightarrow+\infty} M_{i}^{\tau_{i}}=1$ is utilized.
Applying Lemma 3.6, (3.62) and (3.63), we have
$0<\int_{\mathbb{R}^{n}} Q(\xi+y) U_{0}^{p_{i}+1}(y) d y=\frac{1}{\alpha} \int_{\mathbb{R}^{n}}(y+\xi) \cdot \nabla Q(y+\xi) U_{0}^{p_{i}+1}(y) d y \leq 0$,
which yields a contradiction. Therefore, the proof of Theorem 1.1 is completely finished. q.e.d.

4. Isolated Blowing-UP

Suppose that Theorem 1.2 does not hold, that is,

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \sup _{\bar{B}_{1}}\left(u_{i}(x)|x|^{\frac{p_{i}-1}{2}}\right)=+\infty \tag{4.1}
\end{equation*}
$$

Let x_{i} be a local maximum point of u_{i}. Following the notation in previous sections, we set

$$
\left\{\begin{array}{l}
v_{i}(y)=M_{i}^{-1} u_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right) \tag{4.2}\\
\tilde{v}_{i}(y)=v_{i}\left(y+e_{1}\right), \text { and } \\
\bar{v}_{i}(y)=|y|^{2-n} \tilde{v}_{i}\left(\frac{y}{|y|^{2}}\right)
\end{array}\right.
$$

where $M_{i}=u_{i}\left(x_{i}\right)$ and $e_{1}=(1,0,0, \cdots)$. Similarly, we define

$$
\begin{equation*}
\bar{U}_{0}(y)=|y|^{2-n} U_{0}\left(\frac{y}{|y|^{2}}+e_{1}\right) \tag{4.3}
\end{equation*}
$$

It is easy to see that $\bar{U}_{0}(y)=\left(\frac{2}{1+4\left|y-\bar{y}_{0}\right|^{2}}\right)^{\frac{n-2}{2}}$ and $\bar{U}_{0}(0)=\bar{U}_{0}\left(-e_{1}\right)=1$ where $\bar{y}_{0}=\left(-\frac{1}{2}, 0, \cdots, 0\right)$.

Given $\epsilon_{0}>0$ with $\epsilon_{0} \ll 1$, there exists $\lambda_{0}=\lambda_{0}\left(\epsilon_{0}\right)<0$ and $c_{n}>0$ such that

$$
\left\{\begin{array}{l}
-\frac{1}{2}<\lambda_{0}\left(\epsilon_{0}\right) \leq-\frac{1}{4}, \quad \text { and } \tag{4.4}\\
\bar{U}_{0}\left(y^{\lambda}\right) \leq 1+\frac{\epsilon_{0}}{2}
\end{array}\right.
$$

for $|y| \leq c_{n} \epsilon_{0}$ and $\lambda \leq \lambda_{0}\left(\epsilon_{0}\right)$, where c_{n} depends on n only.
In the followings, $\delta_{0}<\frac{1}{2}$ is a fixed positive number, but small enough such that (4.13), (4.15) and (4.16) below are satisfied.

Lemma 4.1. Given ϵ_{0}, R_{0} where $\epsilon_{0} \ll 1 \ll R_{0}$ and $R_{0}^{-1} \leq c_{n} \epsilon_{0}$, there exists a positive constant $C_{0}>0$ such that the following statements hold true.
(i) If $u_{i}(x)|x|^{\frac{2}{p_{i}-1}} \geq C_{0}$, then there exists a local maximum point $x_{i} \in B\left(x, \delta_{0}|x|\right)$ of u_{i} with $u_{i}\left(x_{i}\right) \geq u_{i}(x)$ such that the rescaled function v_{i} of (4.2) satisfies (4.5) - (4.7).
(4.5) The origin 0 is the only local maximum of v_{i} in $B\left(0,4 R_{0}\right)$.

$$
\begin{equation*}
\left|v_{i}(y)-U_{0}(y)\right|_{C^{2}\left(B\left(0,4 R_{0}\right)\right)} \leq \epsilon_{0}\left(4 R_{0}\right)^{2-n} \tag{4.6}
\end{equation*}
$$

(4.7) $\bar{v}_{i}(y)$ has a local maximum point \bar{y}_{i} near \bar{y}_{0} such that $\bar{y}_{i, 1} \leq \frac{1}{2}\left(\lambda_{0}-\frac{1}{2}\right)<\lambda_{0}$ for all i where $\bar{y}_{i, 1}$ denotes the x_{1}-coordinate of \bar{y}_{i} and λ_{0} is the constant in (4.4).
(ii) Let $\left\{x_{j}^{i}\right\}_{j=1}^{m_{i}}$ denote all local maximum points of u_{i} with $u_{i}\left(x_{j}^{i}\right) \left\lvert\, x_{j}^{i} \frac{p_{i}-1}{2} \geq C_{0}\right.$ such that (4.5), (4.6) and (4.7) hold. Then

$$
\begin{equation*}
u_{i}(x) \leq 2 C_{0}|x|^{-\frac{2}{p_{i}-1}} \quad \text { for all } x \notin \Omega_{i} \tag{4.8}
\end{equation*}
$$

where $\Omega_{i}=\cup_{j} B\left(x_{j}^{i}, 2 \delta_{0}\left|x_{j}^{i}\right|\right)$. Furthermore,

$$
\begin{equation*}
\left|x_{j}^{i}-x_{k}^{i}\right| \geq 4 R_{0} u_{i}\left(x_{j}^{i}\right)^{-\frac{p_{i}-1}{2}} \tag{4.9}
\end{equation*}
$$

for $j \neq k$.
Proof of part(i). We will prove (i) by a blow-up argument, which was originally due to R. Schoen. Suppose the conclusion of (i) of Lemma 4.1 does not hold true. Then there exists a subsequence of u_{i} (still denoted by u_{i}) and x_{i} with $u_{i}\left(x_{i}\right) \left\lvert\, x_{i} \frac{n-2}{2} \rightarrow+\infty\right.$ such that u_{i} has no local maximum which is no less than $u_{i}\left(x_{i}\right)$ in $B\left(x_{i},\left|x_{i}\right| \delta_{0}\right)$ and satisfies (4.5), (4.6) and (4.7).

Let $l_{i}=\delta_{0}\left|x_{i}\right|$, and

$$
\begin{equation*}
S_{i}(x)=u_{i}(x)\left(l_{i}-\left|x-x_{i}\right|\right)^{\frac{2}{p_{i}-1}} . \tag{4.10}
\end{equation*}
$$

Let \bar{x}_{i} satisfy

$$
S_{i}\left(\bar{x}_{i}\right)=\sup _{\left|x-x_{i}\right| \leq l_{i}} S_{i}(x)
$$

Set

$$
\begin{align*}
v_{i}(y) & =\bar{M}_{i}^{-1} u_{i}\left(\bar{x}_{i}+\bar{M}_{i}^{-\frac{p_{i}-1}{2}} y\right) \\
& =\frac{S_{i}(x)}{S_{i}\left(\bar{x}_{i}\right)}\left(\frac{l_{i}-\left|\bar{x}_{i}-x_{i}\right|}{l_{i}-\left|x-x_{i}\right|}\right)^{\frac{2}{p_{i}-1}} \tag{4.11}
\end{align*}
$$

where $\bar{M}_{i}=u_{i}\left(\bar{x}_{i}\right)$ and $x=\bar{x}_{i}+\bar{M}_{i}^{-\frac{p_{i}-1}{2}} y$. For

$$
\begin{align*}
|y| \leq & \frac{1}{2} \bar{M}_{i}^{\frac{p_{i}-1}{2}}\left(l_{i}-\left|\bar{x}_{i}-x_{i}\right|\right), \\
l_{i}-\left|x-x_{i}\right| & \geq l_{i}-\left|\bar{x}_{i}-x_{i}\right|-\bar{M}_{i}^{-\frac{p_{i}-1}{2}}|y| \\
& \geq \frac{1}{2}\left(l_{i}-\left|\bar{x}_{i}-x_{i}\right|\right) . \tag{4.12}
\end{align*}
$$

Since $\bar{M}_{i}^{\frac{p_{i}-1}{2}}\left(l_{i}-\left|\bar{x}_{i}-x_{i}\right|\right) \geq u_{i}^{\frac{p_{i}-1}{2}}\left(x_{i}\right) l_{i} \rightarrow+\infty$ as $i \rightarrow+\infty, v_{i}(y)$ is uniformly bounded in any compact set of \mathbb{R}^{n}. Therefore, there exists a subsequence of v_{i} (still denoted by v_{i}) which converges to $V_{0}(y)$ in $C_{l o c}^{2}\left(\mathbb{R}^{n}\right)$, where $V_{0}(y)$ is a positive entire smooth solution of

$$
\Delta V_{0}(y)+n(n-2) V_{0}^{\frac{n+2}{n-2}}=0 \quad \text { in } \quad \mathbb{R}^{n}
$$

Applying a theorem of Caffarelli-Gidas-Spruck, $V_{0}(y)$ is radially symmetric about some point y_{0} in \mathbb{R}^{n}, and $V_{0}(y)$ has a nondegenerate maximum at y_{0}. Thus, for large $i, v_{i}(y)$ has a local maximum at y_{i} near y_{0}. Going back to u_{i}, we have found a local maximum point x_{i}^{*} of u_{i} with $\left|x_{i}^{*}-\bar{x}_{i}\right| \leq c \bar{M}_{i}^{-\frac{p_{i}-1}{2}}$ for some constant $c>0$, and

$$
u_{i}\left(x_{i}^{*}\right) \geq u_{i}\left(\bar{x}_{i}\right) \geq u_{i}\left(x_{i}\right) .
$$

Obviously, $\left|x_{i}^{*}-\bar{x}_{i}\right| \leq c \bar{M}_{i}^{-\frac{p_{i}-1}{2}}=o(1)\left(l_{i}-\left|\bar{x}_{i}-x_{i}\right|\right)$. It is easy to see that x_{i}^{*} satisfies all conditions in (i) when i is large. Hence we have a contradiction, and (i) is proved.

Proof of part (ii). Recall $\Omega_{i}=\cup_{j} B\left(x_{j}^{i}, 2 \delta_{0}\left|x_{j}^{i}\right|\right)$ where $\left\{x_{j}^{i}\right\}_{j=1}^{m_{i}}$ is the set of local maximum points of u_{i} which satisfy the conditions in part (i). Suppose that x satisfies $u_{i}(x)|x|^{\frac{2}{p_{i}-1}} \geq 2 C_{0}$. By (i), there exists a local maximum point $x_{i} \in B\left(x, \delta_{0}|x|\right)$ with $u_{i}\left(x_{i}\right) \geq u_{i}(x)$ such that (4.5)-(4.7) are satisfied. Since $\left|x_{i}\right| \geq\left(1-\delta_{0}\right)|x|$, we have

$$
\begin{aligned}
u_{i}\left(x_{i}\right)\left|x_{i}\right|^{\frac{2}{p_{i}-1}} & \geq\left(1-\delta_{0}\right)^{\frac{2}{p_{i}-1}} u_{i}(x)|x|^{\frac{2}{p_{i}-1}} \\
& \geq 2\left(1-\delta_{0}\right)^{\frac{2}{p_{i}-1}} C_{0} \geq C_{0}
\end{aligned}
$$

if δ_{0} is small such that

$$
\begin{equation*}
2\left(1-\delta_{0}\right)^{\frac{2}{p_{i}-1}}>1 \tag{4.13}
\end{equation*}
$$

Hence $x_{i}=x_{j}^{i}$ for some j. Since $\left|x_{j}^{i}\right| \geq\left(1-\delta_{0}\right)|x|$ and $\delta_{0}<\frac{1}{2}$, we have

$$
\left|x_{j}^{i}-x\right| \leq \delta_{0}|x| \leq \frac{\delta_{0}}{1-\delta_{0}}\left|x_{j}^{i}\right|<2 \delta_{0}\left|x_{j}^{i}\right|
$$

Thus $x \in \Omega_{i}$, and (4.8) is proved. The inequality (4.9) is an immediate consequence of (4.5). q.e.d.

Let $\left\{x_{j}^{i}\right\}_{j=1}^{m_{i}}$ be the set of local maximum points of u_{i} in Lemma 4.1. Points x_{j}^{i} can be ordered by $u_{i}\left(x_{1}^{i}\right) \geq u_{i}\left(x_{2}^{i}\right) \geq \cdots \geq u_{i}\left(x_{m_{i}}^{i}\right)$. Assume (4.1). Then there is a subsequence of u_{i} (still denoted by u_{i}) and $x_{j_{i}}^{i}$ such that $u_{i}\left(x_{j_{i}}^{i}\right)\left|x_{j_{i}}^{i}\right|^{\frac{2}{p_{i}-1}} \geq i$ and $u_{i}\left(x_{j}^{i}\right)\left|x_{j}^{i}\right|^{\frac{2}{p_{i}-1}}<i$ for $1 \leq j<j_{i}$. It is obvious that $u_{i}\left(x_{j}^{i}\right) \rightarrow+\infty$ as $i \rightarrow+\infty$ for $j \leq j_{i}$. Hence $\left|x_{j}^{i}\right| \rightarrow 0$ for $j \leq j_{i}$.

Lemma 4.2. There exists a positive integer i_{0} such that, for $i \geq i_{0}$, $u_{i}(x) \leq 2 u_{i}\left(x_{j}^{i}\right)$ for $x \in B\left(x_{j}^{i}, 2 \delta_{0}\left|x_{j}^{i}\right|\right)$ with $j \leq j_{i}$ and for $i \geq i_{0}$.

Proof. Suppose the conclusion of Lemma 4.2 does not hold true. Then we claim that there is a subsequence of u_{i} (still denoted by u_{i}) and $k_{i}<l_{i} \leq j_{i}$ such that (i) $\left|x_{l_{i}}^{i}\right| \leq 2\left|x_{k_{i}}^{i}\right|$, and (ii) $u_{i}(x) \leq 2 u_{i}\left(x_{k_{i}}^{i}\right)$ for all $x \in B\left(x_{k_{i}}^{i}, 2 \delta_{0}\left|x_{k_{i}}^{i}\right|\right)$.

To see this, suppose $u_{i}(x)=\max _{\bar{B}_{i}} u_{i} \geq 2 u\left(x_{j}^{i}\right)$ for some i and $j \leq j_{i}$ and for some $x \in \bar{B}_{i}$ where $B_{i}=B\left(x_{j}^{i}, 2 \delta_{0}\left|x_{j}^{i}\right|\right)$. Then, by Lemma 4.1, there exists $x_{k}^{i} \in B\left(x, \delta_{0}|x|\right)$ such that $u\left(x_{k}^{i}\right) \geq u_{i}(x) \geq 2 u\left(x_{j}^{i}\right)$. By the ordering on $\left\{x_{j}^{i}\right\}$, we have $k<j \leq j_{i}$. Since

$$
\left|x_{k}^{i}\right| \geq\left(1-\delta_{0}\right)|x| \geq\left(1-\delta_{0}\right)\left(1-2 \delta_{0}\right)\left|x_{j}^{i}\right|
$$

we have

$$
\begin{align*}
u_{i}\left(x_{k}^{i}\right)\left|x_{k}^{i}\right|^{\frac{2}{p_{i}-1}} & \geq 2\left(\left(1-\delta_{0}\right)\left(1-2 \delta_{0}\right)\right)^{\frac{2}{p_{i}-1}} u\left(x_{j}^{i}\right)\left|x_{j}^{i}\right|^{\frac{2}{p_{i}-1}} \\
& \geq\left(\frac{3}{2}\right) u\left(x_{j}^{i}\right)\left|x_{j}^{i}\right|^{\frac{2}{p_{i}-1}} \tag{4.14}
\end{align*}
$$

if δ_{0} satisfies

$$
\begin{equation*}
\left[\left(1-\delta_{0}\right)\left(1-2 \delta_{0}\right)\right]^{\frac{2}{p_{i}-1}} \geq \frac{3}{4} . \tag{4.15}
\end{equation*}
$$

If $u_{i}(x) \leq 2 u_{i}\left(x_{k}^{i}\right)$ for all $x \in B\left(x_{k}^{i}, 2 \delta_{0}\left|x_{k}^{i}\right|\right)$, then we let $k_{i}=k$ and $l_{i}=j$. Thus, the claim is proved. If there exists $x \in B\left(x_{k}^{i}, 2 \delta_{0}\left|x_{k}^{i}\right|\right)$ such that $u_{i}(x) \geq 2 u_{i}\left(x_{k}^{i}\right)$, then we can repeat the argument above to have $k_{m}<k_{m-1}<\cdots<k_{1}<j$ such that

$$
\left|x_{k_{m}}^{i}\right| \geq\left(1-\delta_{0}\right)\left(1-2 \delta_{0}\right)\left|x_{k_{m-1}}^{i}\right| \geq\left[\left(1-\delta_{0}\right)\left(1-2 \delta_{0}\right)\right]^{m}\left|x_{j}^{i}\right|,
$$

and by (4.14),

$$
\begin{aligned}
i & \geq u_{i}\left(x_{k_{m}}^{i}\right)\left|x_{k_{m}}^{i}\right|^{\frac{2}{p_{i}-1}} \geq\left(\frac{3}{2}\right)^{m} u\left(x_{j}^{i}\right)\left|x_{j}^{i}\right|^{\frac{2}{p_{i}-1}} \\
& \geq\left(\frac{3}{2}\right)^{m} C_{0}
\end{aligned}
$$

Thus, after finite steps, we can find $k_{i} \in N$, such that

$$
\left|x_{k_{i}}^{i}\right| \geq\left(1-\delta_{0}\right)\left(1-2 \delta_{0}\right)\left|x_{k_{i-1}}^{i}\right|,
$$

and,

$$
u_{i}(x) \leq 2 u_{i}\left(x_{k_{i}}^{i}\right)
$$

for $x \in B\left(x_{k_{i}}^{i}, 2 \delta_{0}\left|x_{k_{i}}^{i}\right|\right)$. Let δ_{0} satisfy

$$
\begin{equation*}
\left(1-\delta_{0}\right)\left(1-2 \delta_{0}\right) \geq \frac{1}{2} \tag{4.16}
\end{equation*}
$$

Then our claim is proved.
However, by Lemma 4.4 below, we have $\left|x_{k_{i}}^{i}\right|=o(1)\left|x_{l_{i}}^{i}\right|$, which yields a contradiction to the claim above. Hence the proof of Lemma 4.2 is finished. q.e.d.

To complete the proof of Lemma 4.2, we need the following two lemmas.

Lemma 4.3. Let $k_{i} \leq j_{i}$ be a sequence of positive integers, and suppose that $u_{i}(x) \leq 2 u_{i}\left(x_{k_{i}}^{i}\right)$ for $x \in B\left(x_{k_{i}}^{i}, 2 \delta_{0}\left|x_{k_{i}}^{i}\right|\right)$. Then

$$
\lim _{i \rightarrow+\infty} L_{i}\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{k_{i}}^{i}\right|\right)^{-1}=+\infty
$$

where $L_{i}=\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{k_{i}}^{i}\right|^{1-\alpha_{i}}\right)^{\frac{1}{n-2}}$ and $M_{i}=u_{i}\left(x_{k_{i}}^{i}\right)$.
Proof. Suppose $\underline{\lim }_{i \rightarrow+\infty} L_{i}\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{k_{i}}^{i}\right|\right)^{-1}<+\infty$. Without loss of generality, we may assume

$$
\begin{equation*}
L_{i} \leq c_{1} M_{i}^{\frac{p_{i}-1}{2}}\left|x_{k_{i}}^{i}\right| \tag{4.17}
\end{equation*}
$$

for all i and some constant c_{1} independent of i. Since

$$
u\left(x_{k_{i}}^{i}\right) \geq u\left(x_{j_{i}}^{i}\right) \rightarrow+\infty
$$

as $i \rightarrow+\infty$, we have $\lim _{i \rightarrow+\infty} x_{k_{i}}^{i}=0$ and

$$
\lim _{i \rightarrow+\infty} M_{i}^{\frac{p_{i}-1}{2}}\left|x_{k_{i}}^{i}\right| \geq c_{1}^{-1} \lim _{i \rightarrow+\infty} L_{i}=+\infty
$$

Hence, the scaled function $v_{i}(y)=M_{i}^{-1} u_{i}\left(x_{k_{i}}^{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right)$ uniformly converges to $U_{0}(y)$ in any compact set of \mathbb{R}^{n} as $i \rightarrow+\infty$. Therefore, by Lemma 3.1 we have for any $\epsilon>0$, there exists $\delta_{1}=\delta_{1}(\epsilon)>0$ such that

$$
\min _{|y|=r} v_{i}(y) \leq(1+\epsilon) U_{0}(r)
$$

holds for all $0 \leq r \leq \delta_{1} L_{i}$. As in the proof of Lemma 3.2 (See (3.30)), there exists a $\delta_{2}>0$ such that

$$
\begin{equation*}
\int_{R \leq|y| \leq \delta_{2} L_{i}} v_{i}^{p_{i}}(y) d y \leq \frac{5 \sigma_{n}}{n} \epsilon \tag{4.18}
\end{equation*}
$$

for some $R=R(\epsilon)>0$, which is independent of i. By (4.17) δ_{2} may be choosen small such that $\delta_{2} L_{i} \leq 2 \delta_{0} M_{i}^{\frac{p_{i}-1}{2}}\left|x_{k_{i}}^{i}\right|$. Hence $v_{i}(y) \leq 2$ for $|y| \leq \delta_{2} L_{i}$. Recall $p_{i}^{*}=\frac{n}{2}\left(p_{i}-1\right)>p_{i}$ and $p_{i}^{*}-p_{i} \leq 1$. By (4.18),

$$
\begin{equation*}
\int_{R \leq|y| \leq \delta_{2} L_{i}} v_{i}^{p_{i}^{*}}(y) d y \leq \frac{10 \sigma_{n}}{n} \epsilon \tag{4.19}
\end{equation*}
$$

If ϵ is choosen small, then, by Lemma 2.3 and the Harnack inequality, we have

$$
\begin{equation*}
v_{i}(y) \leq c_{2} U_{0}(y) \tag{4.20}
\end{equation*}
$$

for all $|y| \leq \delta_{2} L_{i}$ and for some constant c_{2} independent of i. By (4.20), Lemma 3.3 holds for v_{i} also. Repeating the proofs of (3.44), (3.46) and (3.47) in Lemma 3.4, we can obtain

$$
\int_{\mathbb{R}^{n}} \psi_{1}(y) y_{1} U_{0}^{\frac{2 n}{n-2}}(y) d y=0
$$

which yields a contradiction. Hence Lemma 4.3 is proved. q.e.d.
Lemma 4.4. Let $k_{i} \leq l_{i} \leq m_{i}$ be two sequences of positive integers. Suppose $u_{i}(x) \leq 2 u_{i}\left(x_{k_{i}}^{i}\right)$ for $x \in B\left(x_{k_{i}}^{i}, 2 \delta_{0}\left|x_{k_{i}}^{i}\right|\right)$. Then, for any $\epsilon>0$, there exists a positive integer $i_{0}=i_{0}(\epsilon)$ such that

$$
\left|x_{k_{i}}^{i}\right| \leq \epsilon\left|x_{l_{i}}^{i}\right|
$$

for $i \geq i_{0}$.
Proof. Suppose the claim of Lemma 4.4 does not hold. Without loss of generality, we may assume

$$
\begin{equation*}
\left|x_{l_{i}}^{i}\right| \leq c_{1}\left|x_{k_{i}}^{i}\right| \tag{4.21}
\end{equation*}
$$

for all i and some $c_{1}>0$ independent of i.
Let ϵ_{0} and R_{0} be the constants in Lemma 4.1. Let $v_{i}(y)=M_{i}^{-1} u_{i}\left(x_{k_{i}}^{i}+\right.$ $M_{i}^{-\frac{p_{i}-1}{2}} y$) with $M_{i}=u_{i}\left(x_{k_{i}}^{i}\right)$. First, we note that, by (4.5)-(4.7), Lemma 3.1 holds for $v_{i}(y)$ also, that is, there exist $\delta_{1}=\delta_{1}\left(\epsilon_{0}\right)$ and $i=i_{0}\left(\epsilon_{0}\right)$ such that

$$
\begin{equation*}
\min _{|y|=r} v_{i}(y) \leq\left(1+2 \epsilon_{0}\right) U_{0}(r) \tag{4.22}
\end{equation*}
$$

for $0 \leq r \leqq \delta_{1} L_{i}$ and $i \geq i_{0}$, where $L_{i}=\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{k_{i}}^{i}\right|^{1-\alpha_{i}}\right)^{\frac{1}{n-2}}$.
Since L_{i} is not tending to $+\infty$ in general as $i \rightarrow+\infty$, the claim of (4.22) is viewed as a "finite" version of Lemma 3.1. Under conditions of (4.5) - (4.7), however, the proof of (4.22) can go through as in Lemma 3.1 without too much modification. In the followings, we would like to sketch its proof briefly.

Suppose (4.22) does not hold true for a subsequence of v_{i} (still denoted by v_{i}), i.e., there exists a sequence of r_{i} such that

$$
\min _{|y|=r_{i}} v_{i}(y) \geq\left(1+2 \epsilon_{0}\right) U_{0}\left(r_{i}\right)
$$

for some $r_{i} \leq \delta_{1} L_{i}$, where δ_{1} will be chosen later. By Lemma 4.1, we have $r_{i} \geq 4 R_{0}$. Let \tilde{v}_{i} and \bar{v}_{i} be defined as in (4.1). Thus, we have $\min _{|y|=r_{i}-1} \tilde{v}_{i}(y) \geq\left(1+2 \epsilon_{0}\right) U_{0}\left(r_{i}\right) \geq\left(1+\epsilon_{0}\right) U_{0}\left(r_{i}-1\right)$, if $R_{0}^{-1} \leq c_{n} \epsilon_{0}$ where c_{n} is independent of i. For simplicity of notation, we replace $r_{i}-1$ by r_{i}, i.e., we have

$$
\begin{equation*}
\min _{|y|=r_{i}} \tilde{v}_{i}(y) \geq\left(1+\epsilon_{0}\right) U_{0}\left(r_{i}\right), \tag{4.23}
\end{equation*}
$$

and r_{i} satisfies

$$
\begin{equation*}
2 R_{0} \leq r_{i} \leq \delta_{1} L_{i} \tag{4.24}
\end{equation*}
$$

By (4.23), we have

$$
\begin{equation*}
\bar{v}_{i}(y) \geq r_{i}^{n-2} \min _{|y| \leq r_{i}} \tilde{v}_{i} \geq\left(1+\epsilon_{0}\right) \quad \text { for } \quad|y|=r_{i}^{-1} \tag{4.25}
\end{equation*}
$$

Let $\lambda_{0}=\lambda_{0}\left(\epsilon_{0}\right)$ be the number defined in (4.4). For $|y| \geq \frac{1}{4}$, by (4.6) we have

$$
\left|\bar{v}_{i}(y)-\bar{U}_{0}(y)\right| \leq \epsilon_{0}|y|^{2-n}\left(4 R_{0}\right)^{2-n}
$$

which implies

$$
\bar{v}_{i}(y) \leq \bar{U}_{0}(y)+\epsilon_{0} R_{0}^{2-n} .
$$

By (4.4), for $|y|=r_{i}^{-1}$ and $\lambda \leq \lambda_{0}$ we have

$$
\begin{align*}
\bar{v}_{i}\left(y^{\lambda}\right) & \leq \bar{U}_{0}\left(y^{\lambda}\right)+\epsilon_{0} R_{0}^{2-n} \\
& \leq 1+\frac{\epsilon_{0}}{2}+\epsilon_{0} R_{0}^{2-n} \leq 1+\frac{3}{4} \epsilon_{0} . \tag{4.26}
\end{align*}
$$

Let $w_{\lambda}(y)=\bar{v}_{i}(y)-v_{i}\left(y^{\lambda}\right)$. Applying (4.25) and (4.26) together gives

$$
\begin{align*}
w_{\lambda}(y) & \geq \frac{\epsilon_{0}}{4} \geq c_{0} r_{i}^{2-n} G^{\lambda}(y, 0) \tag{4.27}\\
& =c_{0} \delta_{1}^{2-n} L_{i}^{2-n} G^{\lambda}(y, 0)
\end{align*}
$$

for $|y|=r_{i}^{-1}$ and $\lambda \leq \lambda_{0}$, where c_{0} depends on n and ϵ_{0} only.

As in the proof of Lemma 3.1, \bar{v}_{i} has a harmonic asymptotic expansion (3.16) at ∞,

$$
\left\{\begin{array}{l}
\bar{v}_{i}(y)=|y|^{2-n}\left(\bar{c}_{0, i}+\sum \bar{c}_{j, i} \frac{y_{i}}{\left.y\right|^{2}}\right)+O_{i}\left(\frac{1}{|y|^{n}}\right), \\
\bar{v}_{i y_{i}}=-(n-2) \frac{\bar{c}_{0, i} y^{\prime}}{|y|^{n}}+O_{i}\left(\frac{1}{|y|^{n}}\right)
\end{array}\right.
$$

where $\bar{c}_{0, i} \rightarrow \bar{c}_{0}, \bar{c}_{j, i}$ are uniformly bounded as $i \rightarrow+\infty$, and $O_{i}\left(|y|^{-n}\right) \leq$ $c|y|^{-n}$ for some constant $c>0$ independent of i, by (4.6). Therefore, as in (3.17), there exists $\lambda_{1}<0$, independent of i, such that

$$
\begin{equation*}
w_{\lambda}(y) \geq c_{1} G^{\lambda}(y, 0) \tag{4.28}
\end{equation*}
$$

for all $\lambda \leq \lambda_{1}$ and $y \in \Sigma_{\lambda}^{\prime}=\left\{y \mid y_{1}>\lambda\right.$ and $\left.|y| \geq r_{i}^{-1}\right\}$.
As in Lemma 3.1, we let

$$
\begin{equation*}
h_{\lambda}(y)=A L_{i}^{2-n} G^{\lambda}(y, 0)-\int_{\Sigma_{\lambda}^{\prime}} G^{\lambda}(y, \eta) Q_{\lambda}^{+}(y) d \eta \tag{4.29}
\end{equation*}
$$

By the same estimates in Lemma 3.1, we can find a constant A, independent of i, such that $h_{\lambda}(y)>0$ in $\Sigma_{\lambda}^{\prime}$. Furthermore, we have

$$
c_{2} L_{i}^{2-n} G^{\lambda}(y, 0) \leq h_{\lambda}(y) \leq c_{3} L_{i}^{2-n} G^{\lambda}(y, 0),
$$

for $y \in \Sigma_{\lambda}^{\prime}, \lambda \leq \lambda_{0}$ and two constants c_{2} and c_{3}, independent of i. Hence, if δ_{1} satisfies $\delta_{1}^{2-n} \geq \frac{2 c_{3}}{c_{0}}$, then, by (4.27), (4.28) and Lemma 2.1, we have

$$
w_{\lambda}(y)>0
$$

for $y \in \Sigma_{\lambda}^{\prime}$ and $\lambda \leq \lambda_{0}\left(\epsilon_{0}\right)$. However, it yields a contradiction to the fact that \bar{v}_{i} has a local maximum point \bar{y}_{i} with $\bar{y}_{i, 1} \leq \frac{1}{2}\left(\lambda_{0}-\frac{1}{2}\right)<\lambda_{0}$. Hence, (4.22) is proved.

As in (3.29), (4.22) implies that there exists $\delta_{2}=\delta_{2}\left(\epsilon_{0}\right)<\delta_{1}$ such that

$$
\begin{equation*}
\int_{|y| \leq \delta_{2} L_{i}} v_{i}^{p_{i}}(y) d y \leq \frac{\sigma_{n}}{n}\left(1+4 \epsilon_{0}\right) . \tag{4.30}
\end{equation*}
$$

Let

$$
B_{i}=\left\{x| | x-x_{l_{i}}^{i} \left\lvert\, \leq 2 R_{0} u\left(x_{l_{i}}^{i}\right)^{-\frac{p_{i}-1}{2}}\right.\right\}
$$

and

$$
\widetilde{B}_{i}=\left\{y \left\lvert\, x=x_{k_{i}}^{i}+M_{i}^{-\frac{p_{i}-1}{2}} y \in B_{i}\right.\right\} .
$$

For $y \in \widetilde{B}_{i}$, by (4.21) we have

$$
\begin{aligned}
M_{i}^{-\frac{p_{i}-1}{2}}|y| & \leq\left|x-x_{l_{i}}^{i}\right|+\left|x_{l_{i}}^{i}-x_{k_{i}}^{i}\right| \\
& \leq 2 R_{0} u\left(x_{l_{i}}^{i}\right)^{-\frac{p_{i}-1}{2}}+2 c_{1}\left|x_{k_{i}}^{i}\right| \\
& \left.=2 R_{0}\left(u\left(x_{l_{i}}^{i}\right)^{-\frac{p_{i}-1}{2}}\right)\left|x_{l_{i}}^{i}\right|^{-\mathbf{1}}\right)\left|x_{l_{i}}^{i}\right|+2 c_{1}\left|x_{k_{i}}^{i}\right| \\
& \leq c_{4}\left|x_{k_{i}}^{i}\right|
\end{aligned}
$$

where $c_{4}=2\left(1+R_{0} C_{0}^{-\frac{p_{i}-1}{2}}\right) c_{1}$. Thus, by Lemma 4.3,

$$
\begin{equation*}
|y| \leq c_{4} M_{i}^{\frac{p_{i}-1}{2}}\left|x_{k_{i}}^{i}\right| \leq \frac{\delta_{2}}{2} L_{i} \tag{4.31}
\end{equation*}
$$

for large i. On the other hand, we have

$$
\begin{aligned}
M_{i}^{-\frac{p_{i}-1}{2}}|y| & \geq\left|x_{k_{i}}^{i}-x_{l_{i}}^{i}\right|-\left|x_{l_{i}}^{i}-x\right| \\
& \geq\left|x_{k_{i}}^{i}-x_{l_{i}}^{i}\right|-2 R_{0} u\left(x_{l_{i}}^{i}\right)^{-\frac{p_{i}-1}{2}}
\end{aligned}
$$

Moreover, by Lemma 4.1 and $M_{i} \geq u_{i}\left(x_{l_{i}}^{i}\right)$,

$$
\begin{align*}
|y| & \geq u_{i}^{\frac{p_{i}-1}{2}}\left(x_{l_{i}}^{i}\right)\left|x_{k_{i}}^{i}-x_{l_{i}}^{i}\right|-2 R_{0} \tag{4.32}\\
& \geq 2 R_{0}
\end{align*}
$$

which combined together with (4.31) gives $\widetilde{B}_{i} \subset\left\{y\left|2 R_{0} \leq|y| \leq \frac{\delta_{1}}{2} L_{i}\right\}\right.$. From (4.5) and (4.6) it follows that $u_{i}(x) \leq u_{i}\left(x_{l_{i}}^{i}\right)$ for $x \in \bar{B}_{i}$. Since $u_{i}\left(x_{l_{i}}^{i}\right) \leq u_{i}\left(x_{k_{i}}^{i}\right)$, we have $v_{i}(y) \leq 1$ on \widetilde{B}_{i}, and therefore

$$
\begin{align*}
\int_{B_{i}} u_{i}^{p_{i}^{*}} d y & =\int_{\widetilde{B}_{i}} v_{i}^{p_{i}^{*}} d y \\
& \leq \int_{2 R_{0} \leq|y| \leq \delta_{2} L_{i}} v_{i}^{p_{i}} d y \tag{4.33}
\end{align*}
$$

Let R_{0} be sufficiently large such that

$$
\int_{|y| \leq 2 R_{0}} U_{0}^{p_{i}}(y) d y \geq \frac{\sigma_{n}}{n}\left(1-\epsilon_{0}\right)
$$

Then, by (4.6) and (4.30), we obtain

$$
\int_{2 R_{0} \leq|y| \leq \delta_{2} L_{i}} v_{i}^{p_{i}} d y \leq \bar{c}_{n} \epsilon_{0}
$$

for some constant \bar{c}_{n} depending on n only. Together with (4.33), the inequality above implies

$$
\frac{1}{2} \int_{\mathbb{R}^{n}} U_{0}^{\frac{2 n}{n-2}}(y) d y \leq \int_{B_{i}} u_{i}^{p_{i}^{*}}(y) d y \leq \bar{c}_{n} \epsilon_{0}
$$

which obviously yields a contradiction if ϵ_{0} is sufficiently small. Hence, Lemma 4.4 is proved. q.e.d.

Proof of Theorem 1.2. Suppose the conclusion of Theorem 1.2 does not hold true. Let $\epsilon_{0} \ll 1 \ll R_{0}$ be true positive constants satisfying $R_{0}^{-1} \leq c_{n} \epsilon_{0}$ for some small constant c_{n}. By Lemma 4.1 and Lemma 4.2, there exists a constant C_{0} and the set of local maximum points $\left\{x_{j}^{i}\right\}_{j=1}^{m_{i}}$ of u_{i} satisfying $u_{i}\left(x_{j}^{i}\right) \left\lvert\, x_{j}^{i} \frac{2}{p_{i}-1} \geq C_{0}\right.$, (4.5), (4.6) and (4.7). The set $\left\{x_{j}^{i}\right\}_{j=1}^{m_{i}}$ can be ordered by $u_{i}\left(x_{1}^{i}\right) \geq u_{i}\left(x_{2}^{i}\right) \geq \cdots \geq u_{i}\left(x_{m_{i}}^{i}\right)$. Without loss of generality, we may assume that, for each i, there exists a positive integer j_{i} such that $u_{i}\left(x_{j_{i}}^{i}\right)\left|x_{j_{i}}^{i}\right|^{\frac{2}{p_{i}-1}} \geq i$ and $u_{i}\left(x_{j}^{i}\right)\left|x_{j}^{i}\right|^{\frac{2}{p_{i}-1}}<i$. Let $\Omega_{i}=\cup_{j=1}^{m_{i}} B\left(x_{j}^{i}, 2 \delta_{0}\left|x_{j}^{i}\right|\right)$. Then

$$
\begin{equation*}
u_{i}(x) \leq 2 C_{0}|x|^{-\frac{2}{p_{i}-1}} \tag{4.34}
\end{equation*}
$$

for $x \notin \Omega_{i}$, and

$$
\begin{equation*}
u_{i}(x) \leq 2 u_{i}\left(x_{j}^{i}\right) \tag{4.35}
\end{equation*}
$$

for $x \in B\left(x_{j}^{i}, 2 \delta_{0}\left|x_{j}^{i}\right|\right)$ where $1 \leq j \leq j_{i}$.
By Lemma 4.3, we have

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} \inf _{j \leq j_{i}} L_{i, j}\left(M_{i, j}^{\frac{p_{i}-1}{2}}\left|x_{j}^{i}\right|\right)^{-1}=+\infty \tag{4.36}
\end{equation*}
$$

where $M_{i, j}=u_{i}\left(x_{j}^{i}\right)$ and $L_{i, j}=\left(u_{i}\left(x_{j}^{i}\right)^{\frac{p_{i}-1}{2}}\left|x_{j}^{i}\right|^{1-\alpha_{i}}\right)^{\frac{1}{n-2}}$. Moreover, by Lemma 4.4 , we can show that for any δ with $0<\delta \ll 1$, there exists $i_{0}=i_{0}(\delta)$ such that for $i \geq i_{0}$,

$$
\begin{equation*}
\left|x_{j-1}^{i}\right| \leq \frac{\delta}{2}\left|x_{j}^{i}\right| \tag{4.37}
\end{equation*}
$$

holds for $2 \leq j \leq j_{i}+1$, and

$$
\begin{equation*}
\left|x_{j i}^{i}\right| \leq \frac{\delta}{2}\left|x_{j}^{i}\right| \tag{4.38}
\end{equation*}
$$

for $j_{i}+1 \leq j \leq m_{i}$. From (4.37), (4.38) and Lemma 4.1 it follows that

$$
\begin{equation*}
u_{i}(x) \leq u_{i}\left(x_{j_{i}}^{i}\right) \quad \text { for }|x| \geq \delta\left|x_{j_{i}}^{i}\right| \tag{4.39}
\end{equation*}
$$

for $i \geq i_{1}=i_{1}(\delta) \geq i_{0}$. Obviously, (4.37) implies

$$
\begin{equation*}
\left|x_{j}^{i}\right| \leq\left(\frac{\delta}{2}\right)^{k}\left|x_{j_{i}}^{i}\right| \tag{4.40}
\end{equation*}
$$

for $j<j_{i}$ and $k=j_{i}-j$. By (4.22), (4.30) and (4.36), we obtain

$$
\begin{equation*}
\int_{B\left(x_{j}^{j}, 2 \delta_{0}\left|x x_{j}^{i}\right| \mid\right)} u_{i}^{p_{i}^{*}}(y) d y \leq 2 \int_{| | y \leq \delta_{2} L_{i, j}} v_{i, j}^{p_{i}}(y) d y \leq 2\left(\frac{\sigma_{n}}{n}\left(1+3 \epsilon_{0}\right)\right), \tag{4.41}
\end{equation*}
$$

for large i where $v_{i, j}(y)=M_{i, j}^{-1} u_{i}\left(x_{j}^{i}+M_{i, j}^{-\frac{p_{i}-1}{2}} y\right)$.
In the followings, both ϵ_{0} and R_{0} will be fixed. For the simplicity of notation, we let $x_{i}=x_{j_{i}}^{i}$. Note that $\lim _{i \rightarrow+\infty} u_{i}\left(x_{i}\right)\left|x_{i}\right|^{\frac{2}{p_{i}-1}}=+\infty$. As in (4.2), we let $v_{i}(y)=M_{i}^{-1} u_{i}\left(x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y\right)$ with $M_{i}=u_{i}\left(x_{i}\right)$. By Lemma 3.1 and Lemma 3.2, for any $\epsilon>0$ there exist $\delta_{2}=\delta_{2}(\epsilon)>0$ and a positive integer $i_{3}=i_{3}(\epsilon)$ such that for $i \geq i_{3}$,

$$
\min v_{i}(y) \leq(1+\epsilon) U_{0}(r)
$$

holds for $0 \leq r \leq \delta_{2} L_{i}$ and, by (3.29) we obtain

$$
\begin{equation*}
\int_{|y| \leq \delta_{2} L_{i}} v_{i}^{p_{i}}(y) d y \leq \frac{\sigma_{n}}{n}(1+4 \epsilon) \tag{4.42}
\end{equation*}
$$

where $L_{i}=\left(M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|^{1-\alpha_{i}}\right)^{\frac{1}{n-2}}$. In particular, there exists $R=$ $R(\epsilon)>0$ such that for $i \geq i_{3}$,

$$
\begin{equation*}
\int_{R \leq|y| \leq \delta_{2} L_{i}} v_{i}^{p_{i}}(y) d y \leq \frac{5 \sigma_{n} \epsilon}{n} \tag{4.43}
\end{equation*}
$$

Therefore, by Lemma 2.3 and (4.39), there exists a constant $c_{1}>0$ such that

$$
\begin{equation*}
v_{i}(y) \leq c_{1} U_{0}(y) \tag{4.44}
\end{equation*}
$$

for $|y| \geq 2 M_{i}^{\frac{p_{i}-1}{2}}\left|x_{i}\right|$ and large i.
Let $e_{i}=\left|\nabla K_{i}\left(x_{i}\right)\right|^{-1} \nabla K_{i}\left(x_{i}\right)$ and let y_{i} satisfy $x_{i}-y_{i}=\left|x_{i}\right| e_{i}$. Applying the Pohozaev identity, we obtain

$$
\begin{align*}
& \frac{n-2}{2 n} \int_{|x| \leq l_{i}}\left(x-y_{i}\right) \cdot \nabla K_{i}(x) u_{i}^{p_{i}+1}(x) d x \\
& \quad+\left(\frac{n}{p_{i}+1}-\frac{n-2}{2}\right) \int_{|x| \leq l_{i}} K_{i} \cdot u_{i}^{p_{i}+1} d x \tag{4.45}\\
& =\int_{|x|=l_{i}}\left[\left(x-y_{i}, \nabla u_{i}\right) \frac{\partial u_{i}}{\partial \nu}-\left(x-y_{i}, \nu\right) \frac{\left|\nabla u_{i}\right|^{2}}{2}+\frac{n-2}{2} u_{i} \frac{\partial u_{i}}{\partial \nu}\right. \\
& \left.\quad \quad+\frac{\left(x-y_{i}, \nu\right)}{p_{i}+1} K_{i}(x) u_{i}^{p_{i}+1}\right] d \sigma,
\end{align*}
$$

where $l_{i}=\frac{\delta_{2}}{2} L_{i} M_{i}^{-\frac{p_{i}-1}{2}}$. By (4.44) and the gradient estimates, we have for $|y|=\frac{\delta_{2}}{2} L_{i}$,

$$
\left|\nabla v_{i}(y)\right| \leq c_{1} v_{i}(y)|y|^{-1},
$$

which implies for $|x|=l_{i}$,

$$
\left\{\begin{array}{l}
u_{i}(x) \leq c_{2} M_{i} L_{i}^{-n+2} \tag{4.46}\\
\left|\nabla u_{i}(x)\right| \leq c_{2} M_{i}^{1+\frac{p_{i}-1}{2}} L_{i}^{-n+1}
\end{array}\right.
$$

By (3.49), we have

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} M_{i}^{\tau_{i}}=1 \tag{4.47}
\end{equation*}
$$

which and (4.46) lead to

$$
\text { the right-hand side of (4.45) } \begin{align*}
& \leq c_{3} L_{i}^{-n+2} \\
&=c_{3} M_{i}^{-\frac{p_{i}-1}{2}}\left|x_{i}\right|^{\alpha_{i}-1} \tag{4.48}\\
&=o(1)\left|x_{i}\right|^{\alpha_{i}} .
\end{align*}
$$

To estimate the left-hand side of (4.41), we decompose

$$
B\left(0, l_{i}\right)=B\left(0, \delta\left|x_{i}\right|\right) \cup A_{1} \cup A_{2} \cup A_{3},
$$

where

$$
A_{1}=\left\{x| | x-x_{i} \left\lvert\, \leq M_{i}^{-\frac{p_{i}-1}{2}} R\right.\right\}, \quad A_{2}=\left\{x| | x-x_{i} \left\lvert\, \geq M_{i}^{-\frac{p_{i}-1}{2}} R\right.\right.
$$

and

$$
\left.\delta\left|x_{i}\right| \leq|x| \leq 3\left|x_{i}\right|\right\}, \quad A_{3}=\left\{x|3| x_{i}\left|\leq|x| \leq l_{i}\right\},\right.
$$

and $R=R(\epsilon)$ in (4.43). It is easy to calculate

$$
\begin{align*}
\int_{A_{1}}\left(x-y_{i}\right) \cdot \nabla K_{i}\left(x_{i}\right) u_{i}^{p_{i}+1}(x) d x & \geq c_{4}\left|x_{i}\right|^{\alpha_{i}} \int_{|y| \leq 1} v_{i}^{p_{i}^{*}} d y \tag{4.49}\\
& \geq c_{5}\left|x_{i}\right|^{\alpha_{i}}
\end{align*}
$$

where c_{5} depends on n and the lower bound of $\left|\nabla K_{i}(x)\right||x|^{-\alpha_{i}+1}$.
Let $\widetilde{\Omega}_{i}=\cup_{j=1}^{j_{i}-1} B\left(x_{j}^{i}, 2 \delta_{0}\left|x_{j}^{i}\right|\right)$. Then from (4.37) it follows that

$$
\widetilde{\Omega}_{i} \subset B\left(0, \delta\left|x_{i}\right|\right)
$$

for $i \geq i_{0}(\delta)$. Since $u_{i}(x) \leq 2 C_{0}|x|^{-\frac{2}{p_{i}-1}}$ for $x \in B\left(0, \delta\left|x_{i}\right|\right) \backslash \widetilde{\Omega}_{i}$, by (4.47) we obtain

$$
\begin{gather*}
\int_{B\left(0, \delta\left|x_{i}\right|\right) \backslash \tilde{\Omega}_{i}}\left|x-y_{i}\right|\left|\nabla K_{i}(x)\right| u_{i}^{p_{i}+1}(x) d x \\
\leq c_{6}\left|x_{i}\right| \int_{B\left(0, \delta\left|x_{i}\right|\right)}|x|^{\alpha_{i}-1-\frac{2\left(p_{i}+1\right)}{p_{i}-1}} d x \tag{4.50}\\
\leq c_{7} \delta^{\alpha_{i}-1}\left|x_{i}\right|^{\alpha_{i}}
\end{gather*}
$$

for $i \geq i_{0}$. Let $B_{j}=B\left(x_{j}^{i}, 2 \delta_{0}\left|x_{j}^{i}\right|\right)$ and $k=j_{i}-j$. Then by (4.40) and (4.41) we have

$$
\begin{aligned}
& \int_{B_{j}}\left|x-y_{i}\right|\left|\nabla K_{i}(x)\right| u_{i}^{p_{i}+1}(x) d x \\
& \leq c_{8}\left|x_{i}\right|\left|x_{j}^{i}\right|^{\alpha_{i}-1} \int_{B_{j}} u_{i}^{p_{i}+1} d x \\
& \leq c_{9}\left|x_{i}\right|\left|x_{j}^{i}\right|^{\alpha_{i}-1} \leq c_{9}\left|x_{i}\right|^{\alpha_{i}} \delta^{k}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\int_{\widetilde{\Omega}_{j}}\left|x-y_{j}\right|\left|\nabla K_{i}(x)\right| u_{i}^{p_{i}+1}(x) d x \leq 2 c_{9}\left|x_{i}\right|^{\alpha_{i}} \delta \tag{4.51}
\end{equation*}
$$

Let δ be sufficiently small such that

$$
\begin{equation*}
\int_{B\left(0, \delta\left|x_{i}\right|\right)}\left|x-y_{i}\right|\left|\nabla K_{i}(x)\right| u_{i}^{p_{i}+1} d x \leq \frac{c_{5}}{2}\left|x_{i}\right|^{\alpha_{i}} \tag{4.52}
\end{equation*}
$$

holds for $i \geq i_{0}$. For the rest of the proof, δ will be fixed.
By (4.39), (4.43) and (4.47), for $i \geq \max \left(i_{2}(\delta) i_{3}(\epsilon)\right)$ we have

$$
\begin{align*}
\int_{A_{2}} \mid x- & y_{i}| | \nabla K_{i}(x) \mid u_{i}^{p_{i}+1} d x \\
& \leq c_{10}\left|x_{i}\right|^{\alpha_{i}} \int_{R \leq|y| \leq \delta_{2} L i} v_{i}^{p_{i}^{*}} d y \tag{4.53}\\
& \leq c_{10}\left|x_{i}\right|^{\alpha_{i}} \int_{R \leq|y| \leq \delta_{2} L_{i}} v_{i}^{p_{i}} d y \\
& \leq \frac{1}{4} c_{5}\left|x_{i}\right|^{\alpha_{i}},
\end{align*}
$$

if ϵ is sufficiently small.
For $x \in A_{3}$, let $x=x_{i}+M_{i}^{-\frac{p_{i}-1}{2}} y$. Then

$$
|y| \geq M_{i}^{\frac{p_{i}-1}{2}}\left|x-x_{i}\right| \geq \frac{1}{2} M_{i}^{\frac{p_{i}-1}{2}}|x|
$$

which implies $|x| \leq 2 M_{i}^{-\frac{p_{i}-1}{2}}|y|$. Together with (4.44) and (4.47), we have

$$
\begin{align*}
\int_{A_{3}} \mid x- & y_{i}| | \nabla K(x) \mid u_{i}^{p_{i}+1} d x \\
& \leq c_{10} M_{i}^{-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} \int_{R \leq|y| \leq \delta_{2} L_{i}}|y|^{\alpha_{i}} v_{i}^{\frac{2 n}{n-2}}(y) d y \\
& \leq c_{11} M_{i}^{-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} \int_{R \leq|y| \leq \delta_{2} L_{i}}|y|^{\alpha_{i}-2 n} d y \tag{4.54}\\
& \leq c_{11} M_{i}^{-\frac{\left(p_{i}-1\right) \alpha_{i}}{2}} \\
& =c_{11}\left|x_{i}\right|^{\alpha_{i}}\left(M_{i}^{-\frac{p_{i}-1}{2}}\left|x_{i}\right|\right)^{-\alpha_{i}} \\
& =o(1)\left|x_{i}\right|^{\alpha_{i}}
\end{align*}
$$

Combining (4.48), (4.49) and (4.52)-(4.54) gives

$$
\frac{1}{4} c_{5}\left|x_{i}\right|^{\alpha_{i}} \leq o(1)\left|x_{i}\right|^{\alpha_{i}},
$$

which obviously yields a contradiction. Hence, the proof of Theorem 1.2 is completely finished. q.e.d.

5.

In this section, we are going to prove both Theorem 1.3 and Theorem 1.4. The key step for the proof of both theorems is the following lemma - Lemma 5.1. To state Lemma 5.1, we rewrite equation (1.1) into $\Delta u_{i}+c_{i}(x) u_{i}=0$ with $c_{i}(x)=K_{i}(x) u_{i}^{\frac{4}{n-2}}$. By Theorem 1.2 , we have $c_{i}(x) \leq c|x|^{-2}$ for some constant $c>0$. Applying the Harnack inequality and the gradient estimates of linear elliptic equations, we have

$$
\begin{equation*}
\sup _{|x|=r} u_{i}(x) \leq c_{1} \inf _{|x|=r} u_{i}(x) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\nabla u_{i}(x)\right| \leq c_{1} u_{i}(x)|x|^{-1} \tag{5.2}
\end{equation*}
$$

hold for $|x| \leq 1$.
Let $w_{i}(t)=\bar{u}_{i}(r) r^{\frac{n-2}{2}}$ and $r=e^{t}$, where

$$
\bar{u}_{i}(r)=\frac{1}{\left|\partial B_{r}\right|} \int_{|x|=r} u_{i}\left(x_{i}+x\right) d \sigma
$$

is the integral average of $u_{i}\left(x_{i}+x\right)$ over the sphere $|x|=r$. By (5.1) and (5.2), both $w_{i}(t)$ and $w_{i}^{\prime}(t)$ are uniformly bounded for all $t \leq 0$, where w_{i}^{\prime} denotes the first derivative of w_{i} with respect to t. By elementary calculations, w_{i} satisfies

$$
\begin{equation*}
\left(\frac{n-2}{2}\right)^{2} w_{i}-c_{1} w_{i}^{\frac{n+2}{n-2}} \leq w_{i}^{\prime \prime} \leq\left(\frac{n-2}{2}\right)^{2} w_{i}-c_{2} w_{i}^{\frac{n+2}{n-2}}(t) \tag{5.3}
\end{equation*}
$$

for all $t \leq 0$ and two positive constants c_{1} and c_{2}. From (5.3), there exists a small positive number $\epsilon_{1}>0$ such that $w_{i}^{\prime \prime}(t)>0$ whenever $w_{i}(t) \leq \epsilon_{1}$. For simplicity, we replace w_{i} by $w(t)$ in the following lemma.

Lemma 5.1. There is a small positive number $\epsilon_{0}<\epsilon_{1}$ such that the followings hold:
(i) Suppose that $w(t)$ is nonincreasing in $\left(t_{0}, t_{1}\right)$ with $w\left(t_{0}\right) \leq \epsilon_{0}$. Then the inequality

$$
\begin{equation*}
t_{1}-t_{0} \leq \frac{2}{n-2} \log \frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}+c \tag{5.4}
\end{equation*}
$$

holds, where c is a constant. Futhermore, if t_{1} is a local minimum point of w, then the inequality

$$
\begin{equation*}
t_{1}-t_{0} \geq \frac{2}{n-2} \log \frac{w\left(t_{0}\right)}{w\left(t_{1}\right)} \tag{5.5}
\end{equation*}
$$

holds.
(ii) Suppose that $w(t)$ is nondecreasing in $\left(t_{1}, t_{2}\right)$ with $w\left(t_{2}\right) \leq \epsilon_{0}$. Then

$$
\begin{equation*}
t_{2}-t_{1} \leq \frac{2}{n-2} \log \frac{w\left(t_{2}\right)}{w\left(t_{1}\right)}+c \tag{5.6}
\end{equation*}
$$

for some constant $c>0$. Furthermore if t_{1} is a local minimum point of w, then

$$
\begin{equation*}
t_{2}-t_{1} \geq \frac{2}{n-2} \log \frac{w\left(t_{2}\right)}{w\left(t_{1}\right)} \tag{5.7}
\end{equation*}
$$

holds.
Proof. Suppose w is nonincreasing in $\left(t_{0}, t_{1}\right)$. By the first half of inequality (5.3), $w_{t}^{2}-\left(\frac{n-2}{2}\right)^{2} w^{2}+c w^{\frac{2 n}{n-2}}(t)$ is nonincreasing in $\left(t_{0}, t_{1}\right)$ where $c=\frac{n-2}{n} c_{1}$. Hence

$$
\begin{equation*}
w_{t}^{2}-g(w) \geq-g\left(w\left(t_{1}\right)\right) \tag{5.8}
\end{equation*}
$$

for $t \in\left[t_{0}, t_{1}\right)$ where $g(w)=\left(\frac{n-2}{2}\right)^{2} w^{2}-c w^{\frac{2 n}{n-2}}$. Integrating (5.8) gives

$$
\begin{equation*}
t_{1}-t_{0} \leq \int_{w\left(t_{1}\right)}^{w\left(t_{0}\right)} \frac{d w}{\sqrt{g(w)-g\left(w\left(t_{1}\right)\right)}} . \tag{5.9}
\end{equation*}
$$

By scaling,

$$
\begin{equation*}
\int_{w\left(t_{1}\right)}^{w\left(t_{0}\right)} \frac{d w}{\sqrt{g(w)-g\left(w\left(t_{1}\right)\right)}}=\int_{1}^{\frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}} \frac{d \eta}{\sqrt{\bar{g}(\eta)-\bar{g}(1)}} \tag{5.10}
\end{equation*}
$$

where $\bar{g}(\eta)=\left(\frac{n-2}{2}\right)^{2} \eta^{2}-c w\left(t_{1}\right)^{\frac{4}{n-2}} \eta^{\frac{2 n}{n-2}}$. For $1 \leq \eta \leq \frac{w\left(t_{0}\right)}{w\left(t_{1}\right)} \leq \frac{\epsilon_{0}}{w\left(t_{1}\right)}$, we have

$$
w^{\frac{4}{n-2}}\left(t_{1}\right)\left(\frac{\eta^{\frac{2 n}{n-2}}-1}{\eta^{2}-1}\right) \leq c_{2} w\left(t_{1}\right)^{\frac{4}{n-2}} \eta^{\frac{4}{n-2}} \leq c_{3} \epsilon_{0}^{\frac{4}{n-2}} .
$$

Hence, if ϵ_{0} is sufficiently small, then

$$
\begin{aligned}
& \int_{1}^{\frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}} \frac{d \eta}{\sqrt{\bar{g}(\eta)-\bar{g}(1)}} \\
& \quad \leq \frac{2}{n-2} \int_{1}^{\frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}} \frac{d \eta}{\sqrt{\eta^{2}-1}}+c_{3} w^{\frac{4}{n-2}}\left(t_{1}\right) \int_{1}^{\frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}} \frac{\eta^{\frac{4}{n-2}}}{\sqrt{\eta^{2}-1}} d \eta \\
& \quad \leq \frac{2}{n-2} \log \frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}+c_{4}
\end{aligned}
$$

for some constant c_{4}. Here, we have used

$$
w^{\frac{4}{n-2}}\left(t_{1}\right) \int_{1}^{\frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}} \frac{\eta^{\frac{4}{n-2}}}{\sqrt{\eta^{2}-1}} d \eta \leq c_{5} w^{\frac{4}{n-2}}\left(t_{1}\right)\left(\frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}\right)^{\frac{4}{n-2}} \leq c_{5} \epsilon_{0}
$$

Therefore, the first part of (i) is proved.
For the proof of the second part of (i), we use

$$
w_{t t} \leq\left(\frac{n-2}{2}\right)^{2} w
$$

Hence $w_{t}^{2}-\left(\frac{n-2}{2}\right)^{2} w$ is nondecreasing in $\left(t_{0}, t_{1}\right)$. In particular, we have

$$
\begin{equation*}
w_{t}^{2}-\left(\frac{n-2}{2}\right)^{2} w^{2}(t) \leq-\left(\frac{n-2}{2}\right)^{2} w^{2}\left(t_{1}\right) \tag{5.11}
\end{equation*}
$$

because $w^{\prime}\left(t_{1}\right)=0$. Integrating (5.11) gives

$$
t_{1}-t_{0} \geq \frac{2}{n-2} \int_{w\left(t_{1}\right)}^{w\left(t_{0}\right)} \frac{d w}{\sqrt{w^{2}\left(t_{0}\right)-w^{2}\left(t_{1}\right)}} \geq \frac{2}{n-2} \log \frac{w\left(t_{0}\right)}{w\left(t_{1}\right)}
$$

Hence, the second part of (i) is proved.
If we let $\tilde{w}(t)=w\left(2 t_{1}-t\right)$ for $t \in\left(2 t_{1}-t_{2}, t_{1}\right)$, then (ii) immediately follows by similar arguments to (i). q.e.d.

Proof of Theorem 1.3. Obviously, (1.13) is a consequence of Lemma 3.2 and Theorem 1.2. Since $u_{i}(x) \sim M_{i}^{1-\frac{2 \alpha_{i}}{n+2}}$ for $|x|=M_{i}^{-\beta_{i}}$ where $a_{i} \sim b_{i}$ denotes that a_{i} / b_{i} are bounded below and above by two constants independent of i, it suffices to prove the lower bound of (1.14).

Let x_{i} satisfy $u_{i}\left(x_{i}\right)=\max _{\bar{B}_{1}} u_{i}(x)=M_{i}$. By Lemma 3.4, we may assume $\lim _{i \rightarrow+\infty} M_{i}^{\frac{2}{n-2}} x_{i}=\xi$. By Lemma $3.6, \xi$ satisfies

$$
\int_{\mathbb{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y=0
$$

Let $u_{i}^{*}(y)=r_{i}^{\frac{n-2}{2}} u_{i}\left(x_{i}+r_{i} y\right)$ with $r_{i}=M_{i}^{-\beta_{i}}$, where

$$
\beta_{i}=\frac{2}{n-2}\left(1-\frac{\alpha_{i}}{n-2}\right)
$$

In Section 3, we have proved $u_{i}^{*}(0) u_{i}^{*}(y)$ converges to $h(y)=a|y|^{2-n}+b$ in $C_{l o c}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ where $a \geq 0$ and $b \geq 0$. Moreover, from (3.62) and (3.63), we have

$$
\begin{aligned}
& \lim _{i \rightarrow+\infty} u_{i}^{*^{2}}(0) P\left(1 ; u_{i}^{*}\right) \\
& \quad=\lim _{i \rightarrow+\infty} u_{i}^{*^{2}}(0) r_{i} \int_{B_{1}} y \cdot \nabla K_{i}\left(x_{i}+r_{i} y\right) u_{i}^{*}(y)^{\frac{2 n}{n-2}} d y \\
& \quad=\int_{\mathbb{R}^{n}} y \cdot \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y \\
& \quad=\int_{\mathbb{R}^{n}} Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y
\end{aligned}
$$

where

$$
\begin{aligned}
P\left(1 ; u_{i}^{*}\right)= & \int_{\partial B_{1}}\left(\frac{n-2}{2} u_{i}^{*} \frac{\partial u^{*}}{\partial \nu}-\frac{1}{2}\left|\nabla u_{i}^{*}\right|^{2}+\left|\frac{\partial u_{i}^{*}}{\partial \nu}\right|^{2}\right. \\
& \left.+\frac{n-2}{2 n} K_{i}\left(x_{i}+r_{i} y\right) u_{i}^{*} \frac{2 n}{n-2}\right) d \sigma_{y}
\end{aligned}
$$

Since $u_{i}^{*}(0) u_{i}^{*}$ converges to $h(y)$, a simple calculation leads to

$$
\lim _{i \rightarrow+\infty} u_{i}^{*^{2}}(0) P\left(1 ; u_{i}^{*}\right)=-(n-2) \sigma_{n} a b \leq 0
$$

where σ_{n} is the area of unit sphere S^{n-1}. Therefore, by the assumption of Theorem 1.3, we have

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y<0 \tag{5.12}
\end{equation*}
$$

from which both a and $b>0$. Hence it implies $w_{i}(t)$ has its first local minimum at $t_{i}=-\beta_{i} \log M_{i}+c+o(1)$, where c is a constant. We also have $w\left(t_{i}\right)=$ const. $M_{i}^{\frac{-\alpha_{i}}{n-2}}$. We want to prove $w(t) \leq \epsilon_{0}$ for $t \in\left(t_{i}, 0\right)$, where ϵ_{0} is the positive number stated in Lemma 5.1.

Suppose the claim is not true. Let $t_{i}^{*}<t_{i}<\bar{t}_{i}$ satisfy $w_{i}\left(t_{i}^{*}\right)=$ $w_{i}\left(\bar{t}_{i}\right)=\epsilon_{0}$ and $w_{i}(t) \leq \epsilon_{0}$ for $t \in\left(t_{i}^{*}, \bar{t}_{i}\right)$. Since $u_{i}^{*}(0) u_{i}^{*}(y)$ converges to $h(y)=h(|y|)$, we have $u_{i}\left(x_{i}+x\right)=\bar{u}_{i}(|x|)(1+o(1))$ and $\left|\nabla u_{i}\left(x_{i}+x\right)\right|=$ $-\bar{u}_{i}^{\prime}(|x|)(1+o(1))$ at $|x|=e^{t_{i}}$. By a simple computation, we have for
$r_{i}=e^{t_{i}}$,

$$
\begin{align*}
& P\left(r_{i} ; u_{i}\right) \tag{5.13}\\
&= \sigma_{n}\left\{\frac{1}{2} w_{i}^{\prime 2}\left(t_{i}\right)-\frac{1}{2}\left(\frac{n-2}{2}\right)^{2} w_{i}^{2}\left(t_{i}\right)+\frac{n-2}{2 n} \bar{K}_{i}\left(r_{i}\right) w_{i}^{\frac{2 n}{n-2}}\left(t_{i}\right)\right\} \\
&+\left(w_{i}^{\prime 2}\left(t_{i}\right)+w_{i}^{2}\left(t_{i}\right)\right) o(1)
\end{align*}
$$

where $\bar{K}_{i}(r)=\frac{1}{\left|\partial B_{r}\right|} \underset{\left|x-x_{i}\right|=r}{ } K d \sigma$ and

$$
\begin{aligned}
P\left(r_{i} ; u_{i}\right)=\int_{\left|x-x_{i}\right|=r_{i}} & \frac{n-2}{2} u_{i} \frac{\partial u_{i}}{\partial \nu}-\frac{r_{i}}{2}\left|\nabla u_{i}\right|^{2}+\left|\frac{\partial u_{i}}{\partial \nu}\right|^{2} r_{i} \\
& +\frac{n-2}{2 n} K_{i}(y) u_{i}^{\frac{2 n}{n-2}}(y) r_{i} d \sigma_{y}
\end{aligned}
$$

Since $w^{\prime}\left(t_{i}\right)=0,(5.13)$ implies

$$
\begin{align*}
w_{i}^{2}\left(t_{i}\right) \leq & c_{n}\left|P\left(r_{i}\right)\right| \\
= & c_{n}\left(\int_{B_{r_{i}} \backslash B_{r_{i}^{*}}}\left|x \cdot \nabla K_{i}(x)\right| u_{i}^{\frac{2 n}{n-2}} d x\right. \tag{5.14}\\
& \left.\quad+\int_{B_{r_{i}^{*}}}\left|x \cdot \nabla K_{i}(x)\right| u_{i}^{\frac{2 n}{n-2}}(x) d x\right) \\
& =I_{1}+I_{2}
\end{align*}
$$

where $r_{i}^{*}=e^{t_{i}^{*}}$. Since $\left|x \cdot \nabla K_{i}(x)\right| \leq c|x|^{\alpha_{i}}$,

$$
\begin{equation*}
\left|I_{2}\right| \leq c_{2}\left(r_{i}^{*}\right)^{\alpha_{i}}=c_{2} \exp \left(\alpha_{i} t_{i}^{*}\right) \tag{5.15}
\end{equation*}
$$

To estimate I_{1}, by (5.5), we have for $t_{i}^{*} \leq t \leq t_{i}$,

$$
w(t) \leq c_{3} w\left(t_{i}\right) \exp \left[\frac{n-2}{2}\left(t_{i}-t\right)\right]
$$

Thus,

$$
\begin{aligned}
\left|I_{1}\right| & \leq c_{3} w^{\frac{2 n}{n-2}}\left(t_{i}\right) \exp \left(n t_{i}\right) \int_{t_{i}^{*}}^{t_{i}} \exp -\left(n-\alpha_{i}\right) t d t \\
& \leq c_{4} w^{\frac{2 n}{n-2}}\left(t_{i}\right) \exp \left(n t_{i}\right) \exp \left(\alpha_{i}-n\right) t_{i}^{*}
\end{aligned}
$$

From (5.4) it follows that

$$
w\left(t_{i}\right) \leq c_{5} w_{i}\left(t_{i}^{*}\right) \exp \left[\left(\frac{n-2}{2}\right)\left(t_{i}^{*}-t_{i}\right)\right]
$$

Putting these two estimates together gives

$$
\begin{equation*}
\left|I_{1}\right| \leq c_{6} \epsilon_{0}^{\frac{2 n}{n-2}} \exp \left(\alpha_{i} t_{i}^{*}\right) \tag{5.16}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
w\left(t_{i}\right) \leq c_{7} \exp \left(\frac{\alpha_{i}}{2} t_{i}^{*}\right) \tag{5.17}
\end{equation*}
$$

Applying (5.5) and (5.6), we have

$$
t_{i}-t_{i}^{*} \geq \frac{2}{n-2} \log \frac{w\left(t_{i}^{*}\right)}{w\left(t_{i}\right)}=\frac{2}{n-2} \log \frac{\epsilon_{0}}{w\left(t_{i}\right)}
$$

and

$$
\bar{t}_{i}-t_{i} \geq \frac{2}{n-2} \log \frac{w\left(\bar{t}_{i}\right)}{w\left(t_{i}\right)}=\frac{2}{n-2} \log \frac{\epsilon_{0}}{w\left(t_{i}\right)}
$$

Putting these two inequalities and (5.17) together yields

$$
\bar{t}_{i}-t_{i}^{*} \geq \frac{4}{n-2} \log \frac{\epsilon_{0}}{w\left(t_{i}\right)} \geq-\frac{2 \alpha_{i}}{n-2} t_{i}^{*}-c_{8}
$$

Hence

$$
\bar{t}_{i}+\left(\frac{2 \alpha_{i}}{n-2}-1\right) t_{i}^{*} \geq-c_{8}
$$

Suppose $\alpha=\lim _{i \rightarrow+\infty} \alpha_{i}>\frac{n-2}{2}$. Then

$$
t_{i}^{*} \geq-c_{9}
$$

which yields a contradiction, because $\lim _{i \rightarrow+\infty} t_{i}^{*} \leq \lim _{i \rightarrow+\infty} t_{i}=-\infty$. Hence $w_{i}(t)$ is increasing in $\left(t_{i}, 0\right]$ with $w_{i}(0) \leq \epsilon_{0}$. By (ii) of Lemma 5.1,

$$
\begin{aligned}
\bar{u}_{i}(1)=w_{i}(0) & \geq c_{10} w_{i}\left(t_{i}\right) e^{-\frac{n-2}{2} t_{i}} \\
& \geq c_{11} M_{i}^{1-\frac{2 \alpha_{i}}{n-2}}
\end{aligned}
$$

Applying the Harnack inequality gives the lower bound of (1.14) for $|x| \geq M_{i}^{-\beta_{i}}$.

If $\alpha=\frac{n-2}{2}$, then $\bar{t}_{i} \geq-c_{8}$ and $\left(\frac{2 \alpha_{i}}{n-2}-1\right) t_{i}^{*} \geq-c_{8}$. Since $t_{i}^{*} \leq t_{i}$, we have

$$
M_{i}^{\frac{2 \alpha_{i}}{n-2}-1} \leq c_{12}
$$

for some constant c_{12}, and there exists a t_{0}, which is independent of i, such that w_{i} is increasing in $\left[t_{i}, t_{0}\right]$ with $w_{i}\left(t_{0}\right) \leq \epsilon_{0}$. Let $r_{0}=e^{t_{0}}$. By (ii) of Lemma 5.1,

$$
\begin{aligned}
\bar{u}_{i}\left(r_{0}\right) & =w_{i}\left(r_{0}\right) e^{-\frac{n-2}{2} t_{0}} \geq c_{10} w_{i}\left(t_{i}\right) e^{-\frac{n-2}{2} t_{i}} \\
& =c_{10} \bar{u}_{i}\left(e^{t_{i}}\right) \geq c_{11} M_{i}^{1-\frac{2 \alpha_{i}}{n-2}}
\end{aligned}
$$

Applying the Harnack inequality, we have the lower bound of (1.15) for the case of $\alpha=\frac{n-2}{2}$. Obviously, (1.16) is an immediate consequence of (1.13)-(1.15). Thus, the proof of Theorem 1.3 is considered completely finished. q.e.d.

Proof of Theorem 1.4. By Theorem 1.2, we have

$$
\begin{equation*}
u_{i}(x) \leq c_{1}|x|^{-\frac{n-2}{2}} \quad \text { for } \quad|x| \leq 1 \tag{5.18}
\end{equation*}
$$

Applying estimates of linear elliptic equations, $u_{i}(x)$ is bounded in $C_{\mathrm{loc}}^{2}\left(\bar{B}_{1} \backslash\{0\}\right)$. Without loss of generality, we may assume u_{i} converges to some positive function u in $C_{\text {loc }}^{2}\left(\bar{B}_{1} \backslash\{0\}\right)$, where u is a postive smooth function of

$$
\begin{equation*}
\Delta u+K(x) u^{\frac{n+2}{n-2}}=0 \quad \text { in } \quad B_{1} \backslash\{0\} \tag{5.19}
\end{equation*}
$$

and $K(x)=\lim _{i \rightarrow+\infty} K_{i}(x)$. In the following, we want to prove u has a nonremovable singularity at 0 . In fact, we claim that

For any $u_{0}>0$, there exists a positive $r_{0}>0$ and i_{0} such that $\bar{u}_{i}\left(r_{0}\right) \geq u_{0}$ for $i \geq i_{0}$, where

$$
\begin{equation*}
\bar{u}_{i}(r)=\frac{1}{\left|\partial B_{r}\right|} \int_{|x|=r} u_{i} d \sigma \tag{5.20}
\end{equation*}
$$

Now suppose (5.20) is not true. Then there exists $u_{0}>0$ and $\bar{u}_{i}\left(r_{i}\right)=u_{0}$ for some $r_{i}>0$ such that $\lim _{i \rightarrow+\infty} r_{i}=0$. Let $w_{i}(t)=$ $\bar{u}_{i}(r) r^{\frac{n-2}{2}}$ and $t=\log r$. Denote $t_{i}=\log r_{i}$. Then we have $w_{i}\left(t_{i}\right)=$ $u_{0} e^{\frac{(n-2)}{2} t_{i}} \rightarrow 0$ as $i \rightarrow+\infty$. Hence we may assume $w_{i}\left(t_{i}\right)<\epsilon_{0}$ for all i where ϵ_{0} is the constant in Lemma 5.1.

Let $t_{i}^{*} \equiv \sup \left\{t<t_{i} \mid w_{i}(t)=\epsilon_{0}\right\}$. Without loss of generality, we may assume there are no local minimum of w_{i} in $\left(t_{i}^{*}, t_{i}\right)$. To see this, we assume there is a local minimum $\bar{t}_{i} \in\left(t_{i}^{*}, t_{i}\right)$. Then, by (5.6), we have

$$
u_{0}=\bar{u}_{i}\left(r_{i}\right) \leq \bar{u}\left(e^{\bar{t}_{i}}\right) \leq c \bar{u}_{i}\left(r_{i}\right)=c u_{0},
$$

for some constant $c>0$. Let t_{i} and u_{0} be replaced by \bar{t}_{i} and $c u_{0}$ respectively and then we may assume there are no local minimal points of w_{i} in $\left(t_{i}^{*}, t_{i}\right)$. Thus, we have $w_{i}^{\prime}(t)<0$ for $t \in\left(t_{i}^{*}, t_{i}\right)$.

Let $r_{i}^{*}=e_{i}^{t_{i}^{*}}$ and let

$$
\begin{equation*}
\tilde{u}_{i}(y)=u_{i}\left(r_{i}^{*} y\right)\left(r_{i}^{*}\right)^{\frac{n-2}{2}} . \tag{5.21}
\end{equation*}
$$

Since $\tilde{u}_{i}(y)$ satisfies

$$
\Delta \tilde{u}_{i}+K_{i}\left(r_{i}^{*} y\right) \tilde{u}_{i}^{\frac{n+2}{n-2}}=0,
$$

and is uniformly bounded in any compact set of $\mathbb{R}^{n} \backslash\{0\}, \tilde{u}_{i}(y)$ converges in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ to \tilde{u}_{0}, where \tilde{u}_{0} satisfies

$$
\begin{equation*}
\Delta \tilde{u}_{0}+n(n-2) \tilde{u}_{0}^{\frac{n+2}{n-2}}=0 \quad \text { in } \mathbb{R}^{n} \backslash\{0\} . \tag{5.22}
\end{equation*}
$$

Applying the Pohozaev identity leads to

$$
\begin{equation*}
P\left(1 ; \tilde{u}_{i}\right)=\frac{(n-2) r_{i}^{*}}{2 n} \int_{|y| \leq 1} y \cdot \nabla K_{i}\left(r_{i}^{*} y\right) \tilde{u}_{i}^{\frac{2 n}{n-2}}(y) d y \tag{5.23}
\end{equation*}
$$

where $P\left(r, \tilde{u}_{i}\right)$ is defined in (1.18). Since

$$
\left|y \cdot \nabla K_{i}\left(r_{i}^{*} y\right)\right| \tilde{u}_{i}^{\frac{2 n}{n-2}}(y) \leq c r_{i}^{* \alpha_{i}-1}|y|^{\alpha_{i}-n} \in L^{1}\left(B_{1}\right)
$$

by Theorem 1.2, we have for any $r>0$,

$$
P\left(r, \tilde{u}_{0}\right)=\lim _{i \rightarrow+\infty} P_{i}\left(r ; \tilde{u}_{i}\right)=0
$$

If \tilde{u}_{0} has a singularity at 0 , then $\tilde{u}_{0}(x)=\tilde{u}_{0}(|x|)$ and $P\left(r ; \tilde{u}_{0}\right) \equiv$ constant <0 by an elementary calculation. Hence \tilde{u}_{0} is smooth at 0 . By a theorem of Caffarelli-Gidas-Spruck, \tilde{u}_{0} can be written as

$$
\begin{equation*}
\tilde{u}_{0}(y)=\left(\frac{\lambda}{1+\lambda^{2}\left|y-\eta_{0}\right|^{2}}\right)^{\frac{n-2}{2}} \tag{5.24}
\end{equation*}
$$

for some $\lambda>0$ and $\eta_{0} \in \mathbb{R}^{n}$. We have from (5.18),

$$
\lambda\left|\eta_{0}\right| \leq c_{1}
$$

Step 1. We claim $\eta_{0}=0$.
First, let us assume $\eta_{0} \neq 0$. Hence, \tilde{u}_{i} has a local maximum at η_{i} and, by (5.21), u_{i} has a local maximum at y_{i}, where

$$
\begin{equation*}
y_{i}=r_{i}^{*} \eta_{i}, \quad \text { and }, \lim _{i \rightarrow+\infty} \eta_{i}=\eta_{0} \tag{5.25}
\end{equation*}
$$

Let $\xi_{i}=u_{i}\left(y_{i}\right)^{\frac{2}{n-2}} y_{i}$. Then

$$
\begin{align*}
\lim _{i \rightarrow+\infty} \xi_{i} & =\lim _{i \rightarrow+\infty} \tilde{u}_{i}\left(\eta_{i}\right)^{\frac{2}{n-2}}\left(r_{i}^{*}\right)^{-1} y_{i} \\
& =\lim _{i \rightarrow+\infty} \tilde{u}_{i}\left(\eta_{i}\right)^{\frac{2}{n-2}} \eta_{i} \tag{5.26}\\
& =\lambda \eta_{0} \equiv \xi_{0}
\end{align*}
$$

Thus,

$$
\begin{equation*}
0<c_{2}^{-1} \leq u_{i}\left(y_{i}\right)^{\frac{2}{n-2}}\left|y_{i}\right| \leq c_{2} \tag{5.27}
\end{equation*}
$$

Since (5.18) holds for all $|x| \leq 1$, we have for large $R>0$, by (5.27)

$$
\begin{aligned}
u_{i}(y) & \leq c_{1}|y|^{-\frac{n-2}{2}} \\
& \leq c_{1} R^{-\frac{n-2}{2}}\left|y_{i}\right|^{-\frac{n-2}{2}} \\
& \leq u_{i}\left(y_{i}\right)
\end{aligned}
$$

when $|y| \geq R\left|y_{i}\right|$. From the uniform convergence of \tilde{u}_{i} in any compact set of $\mathbb{R}^{n} \backslash\{0\}$ and $\left|y_{i}\right|=$ const. r_{i}^{*}, it follows that

$$
\begin{equation*}
u_{i}\left(y_{i}\right)=\max _{|x| \geq \delta\left|y_{i}\right|} u_{i}(x) \tag{5.28}
\end{equation*}
$$

for any fixed but small positive δ.
Let

$$
v_{i}(y)=M_{i}^{-1} u_{i}\left(y_{i}+M_{i}^{-\frac{2}{n-2}} y\right)
$$

where $M_{i}=u_{i}\left(y_{i}\right)$. Obviously, $v_{i}(y)$ converges to $U_{0}(y)$ uniformly in any compact set of $\mathbb{R}^{n} \backslash\left\{-\xi_{0}\right\}$, where ξ_{0} is the vector in (5.26). By the same arguments in Lemma 3.1, we can prove Lemma 3.1 still holds for
$v_{i}(y)$ outside of a small neighborhood of $\left\{-\xi_{0}\right\}$, i.e., for any $\epsilon>0$, there exists $\delta_{1}=\delta(\epsilon)$ and $i_{0}=i_{0}(\epsilon)$ such that

$$
\begin{equation*}
\min _{|y|=r} v_{i}(y) \leq(1+\epsilon) U(r) \tag{5.28}
\end{equation*}
$$

for $2\left|\xi_{0}\right| \leq r \leq \delta_{1} L_{i}$ with $L_{i}=M_{i}^{\frac{2 \alpha_{i}}{(n-2)^{2}}}$.
To see this, we suppose (5.28) is not true. Then there exist an ϵ_{0} and a sequence of $r_{i} \rightarrow+\infty$ as $i \rightarrow+\infty$ such that

$$
\min _{|y|=r_{i}} v_{i}(y) \geq\left(1+2 \epsilon_{0}\right) U_{0}\left(r_{i}\right)
$$

where $r_{i} \leq \delta_{1} L_{i}$ for some small $\delta_{1}>0$ to be chosen later. Without loss of generality, we may assume $-\xi_{0}=2 \tau_{0} e_{1}$ for some $\tau_{0}>0$. Let

$$
\left\{\begin{array}{l}
\tilde{v}_{i}(y)=v_{i}\left(y+\tau_{0} e_{1}\right) \\
\bar{v}_{i}(y)=\left(\frac{\tau_{0}}{|y|}\right)^{n-2} \tilde{v}_{i}\left(\frac{\tau_{0}^{2} y}{|y|^{2}}\right) \\
\bar{U}_{0}(y)=\left(\frac{\tau_{0}}{|y|}\right)^{n-2} U_{0}\left(\frac{\tau_{0}^{2} y}{|y|^{2}}+\tau_{0} e_{1}\right)
\end{array}\right.
$$

By a straighforward calculation, we have

$$
\bar{U}_{0}(y)=\left(\frac{\lambda}{1+\lambda^{2}\left|y+y_{0}\right|^{2}}\right)^{\frac{n-2}{2}}
$$

and

$$
\bar{U}_{0}(0)=\tau_{0}^{-n+2}
$$

where $\lambda=\frac{1+\tau_{0}^{2}}{\tau_{0}^{2}}$ and $y_{0}=\frac{\tau_{0}^{3}}{1+\tau_{0}^{2}} e_{1}$. It is easy to see that there exists a small $\delta>0$ such that the image of the neighborhood $\overline{B\left(-\xi_{0}, \delta\right)}$ of $-\xi_{0}$ under the map $y \rightarrow \frac{\tau_{0}^{2} y}{|y|^{2}}+\tau_{0} e_{1}$ is contained in the half-plane $\left\{\left(y_{1}, \cdots, y_{n}\right) \mid y_{1}>0\right\}$. In Lemma 3.1, what we have to need about \bar{v}_{i} is the estimates of $\bar{v}_{i}\left(y^{\lambda}\right)$ for $\lambda \leq \lambda_{0}$ and $y_{1} \geq \lambda_{0}$, where $\lambda_{0}=-\frac{1}{2} \frac{\tau_{0}^{3}}{1+\tau_{0}^{2}}$. Since y^{λ} is not contained in the image of $\overline{B\left(-\xi_{0}, \delta\right)}$ under the inversion, $\frac{\tau_{0}^{2} y^{\lambda}}{\left|y^{\lambda}\right|^{2}}+\tau_{0} e_{1} \notin B\left(-\xi_{0}, \delta\right)$ and we have

$$
\bar{v}_{i}\left(y^{\lambda}\right)=\left(\frac{\tau_{0}}{\left|y^{\lambda}\right|}\right)^{n-2} \tilde{v}_{i}\left(\frac{\tau_{0}^{2} y^{\lambda}}{\left|y^{\lambda}\right|^{2}}\right) \leq c\left|y^{\lambda}\right|^{2-n}
$$

for some constant $c>0$ and for $\lambda \leq \lambda_{0}$ and $y_{1} \geq \lambda$. Then we can obtain all the estimates in Lemma 3.1 without any modification, and apply the method of moving planes to obtain a contradition.

Applying Lemma 3.2 , there exists $R=R(\epsilon)>0$ such that

$$
\int_{R(\epsilon) \leq|y| \leq \delta_{2} L_{i}} v_{i}^{\frac{n+2}{n-2}}(y) d y \leq \frac{4 \sigma_{n}}{n} \epsilon .
$$

Choose ϵ so small such that Lemma 2.3 can be applyed. Thus,

$$
\begin{equation*}
v_{i}(y) \leq c_{4} U_{0}(y) \tag{5.29}
\end{equation*}
$$

for $2\left|\xi_{0}\right| \leq y \leq l_{i}=\delta_{2} L_{i}$ where c_{4} and δ_{2} are two constant independent of i. In particular,

$$
\left\{\begin{array}{l}
v_{i}(y) \leq c_{4} l_{i}^{-n+2} \tag{5.30}\\
\left|\nabla v_{i}(y)\right| \leq c_{5} l_{i}^{-n+1}
\end{array}\right.
$$

for $|y|=l_{i}$.
Multiplying $\frac{\partial v_{i}}{\partial y_{i}}$ on the equation for v_{i}, we have

$$
\begin{align*}
\frac{n-2}{2 n} M_{i}^{\frac{-2}{n-2}} \int_{|y| \leq l_{i}} & \frac{\partial K_{i}}{\partial x_{j}}\left(y_{i}+M_{i}^{\frac{-2}{n-2}} y\right) v_{i}^{\frac{2 n}{n-2}}(y) d y \\
= & \int_{|y|=l_{i}}\left[\left(\frac{\partial v_{i}}{\partial y_{j}} \frac{\partial v_{i}}{\partial \nu}\right)-\frac{1}{2}\left|\nabla v_{i}\right|^{2} \nu_{j}\right. \tag{5.31}\\
& \left.\quad+\frac{n-2}{2 n} K_{i}\left(y_{i}+M_{i}^{\frac{-2}{n-2}} y\right) v_{i}^{\frac{2 n}{n-2}}\right] d \sigma
\end{align*}
$$

By (5.30), the absolute value of the boundary term is bounded by $c_{6} l_{i}^{-n+1}$. Hence,

$$
\lim _{i \rightarrow+\infty}\left(L_{i}^{n-2} \mid \text { the boundary term } \mid\right)=0
$$

On the other hand, we have

$$
\begin{aligned}
& \lim _{i \rightarrow+\infty} L_{i}^{n-2} M_{i}^{\frac{-2}{n-2}} \int_{|y| \leq l_{i}} \frac{\partial K_{i}}{\partial x_{j}}\left(y_{i}+M_{i}^{\frac{-2}{n-2}}(y)\right) v_{i}^{\frac{2 n}{n-2}}(y) d y \\
& \quad=\lim _{i \rightarrow+\infty} \int_{|y| \leq l_{i}} \frac{\partial K_{i}}{\partial x_{j}}\left(M_{i}^{\frac{2}{n-2}} y_{i}+y\right) v_{i}^{\frac{2 n}{n-2}}(y) d y \\
& \quad=\int_{\mathbb{R}^{n}} \frac{\partial Q}{\partial x_{j}}\left(\xi_{0}+y\right) U_{0}^{\frac{2 n}{n-2}}(y) d y
\end{aligned}
$$

where we ultilize for any $\delta>0$,

$$
\begin{aligned}
& M_{i}^{-\frac{2}{n-2}} L_{i}^{n-2} \int_{B\left(-\xi_{0}, \delta\right)}\left|\frac{\partial K_{i}}{\partial x_{j}}\right|\left(y_{i}+M_{i}^{-\frac{2}{n-2}} y\right) v_{i}^{\frac{2 n}{n-2}}(y) d y \\
& \quad \leq M_{i}^{-\frac{2}{n-2}} L_{i}^{n-2} \int_{|y| \leq \frac{2 \delta}{\left|\xi_{0}\right|}\left|y_{i}\right|}\left|\frac{\partial K_{i}}{\partial x_{j}}(y)\right| u_{i}^{\frac{2 n}{n-2}}(y) d y \\
& \quad \leq c_{7} M_{i}^{-\frac{2}{n-2}} L_{i}^{n-2} \int_{|y| \leq \frac{2 \delta}{\left|\xi_{0}\right|}\left|y_{i}\right|}|y|^{\alpha_{i}-1-n} d y \\
& \quad \leq c_{8} \delta^{\alpha_{i}-1}\left|y_{i}\right|^{\alpha_{i}-1} L_{i}^{n-2} M_{i}^{-\frac{2}{n-2}} \\
& \quad \leq c_{9} \delta^{\alpha_{i}-1} .
\end{aligned}
$$

Therefore, ξ_{0} satisfies

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \nabla Q\left(\xi_{0}+y\right) U_{0}^{\frac{2 n}{n-2}}(y) d y=0 \tag{5.32}
\end{equation*}
$$

By (5.18), we have

$$
\begin{equation*}
u_{i}\left(y_{i}+y\right)|y|^{\frac{n-2}{2}} \leq c_{1} \quad \text { for } 2\left|y_{i}\right| \leq|y| \leq 1 \tag{5.33}
\end{equation*}
$$

Let $\tilde{r}_{i}=M_{i}^{-\frac{2}{n-2}} L_{i}=M_{i}^{-\beta_{i}}$ where $\beta_{i}=\frac{2}{n-2}\left(1-\frac{\alpha_{i}}{n-2}\right)$, and $u_{i}^{*}(y)=$ $\tilde{r}_{i}^{\frac{n-2}{2}} u_{i}\left(y_{i}+\tilde{r}_{i} y\right)$. Then $u_{i}^{*}(0)=\tilde{r}_{i}^{\frac{n-2}{2}} u_{i}\left(y_{i}\right)=M_{i}^{\frac{\alpha_{i}}{n-2}} \rightarrow+\infty$ as $i \rightarrow+\infty$. By (5.33), $u_{i}^{*}(y)$ is uniformly bounded in $\mathbb{R}^{n} \backslash\{0\}$. By (5.29) and the Harnack inequality,

$$
u_{i}^{*}(0) u_{i}^{*}(y)=L_{i}^{-(n-2)} v_{i}\left(L_{i} y\right)
$$

is uniformly bounded in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Without loss of generality, we may assume $u_{i}^{*}(0) u_{i}^{*}(y)$ converges to $h(y)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$, where $h(y)$ is harmonic in $\mathbb{R}^{n} \backslash\{0\}$. Thus, by Liouville's Theorem,

$$
h(y)=a|y|^{2-n}+b
$$

with $a, b \geq 0$. By Pohozaev's identity, we have

$$
\frac{n-2}{2 n} \tilde{r}_{i} \int_{B_{1}} y \cdot \nabla K_{i}\left(y_{i}+\tilde{r}_{i} y\right) u_{i}^{*}(y)^{\frac{2 n}{n-2}} d y=P\left(1 ; u_{i}^{*}\right),
$$

where $P\left(1 ; u_{i}^{*}\right)$ is given in (1.18).

By elementary calculations, we have

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} u_{i}^{*^{2}}(0) P_{i}\left(1 ; u_{i}^{*}\right)=-(n-2) \sigma_{n} a b \tag{5.34}
\end{equation*}
$$

where σ_{n} is the area of S^{n-1}.
On the other hand,

$$
\begin{align*}
& u_{i}^{*^{2}}(0) \tilde{r}_{i} \int_{B_{1}} y \cdot \nabla K_{i}\left(y_{i}+\tilde{r}_{i} y\right) u_{i}^{*}(y)^{\frac{2 n}{n-2}} d y \\
& \quad= \int_{|y| \leq L_{i}} y \cdot \nabla Q_{i}\left(\xi_{i}+y\right) v_{i}^{\frac{2 n}{n-2}}(y) d y \tag{5.35}\\
& \quad+o(1) \int_{|y| \leq L_{i}}|y|\left|\xi_{i}+y\right|^{\alpha_{1}-1} v_{i}^{\frac{2 n}{n-2}} d y .
\end{align*}
$$

For any $\delta>0$, we have the estimate

$$
\begin{align*}
& \left|\int_{B(-\xi ; \delta)} y \cdot \nabla K_{i}\left(\xi_{i}+y\right) v_{i}^{\frac{2 n}{n-2}}(y) d y\right| \\
& \quad=M_{i}^{\frac{2 \alpha_{i}}{n-2}}\left|\int_{B\left(-y_{i}, M_{i}\right.}{ }^{\left.\frac{-2}{n-2} \delta\right)} y \cdot \nabla K_{i}\left(y_{i}+y\right) u_{i}^{\frac{2 n}{n-2}}\left(y_{i}+y\right) d y\right| \\
& \quad \leq M_{i}^{\frac{2 \alpha_{i}}{n-2}}\left|\int_{\left|y+y_{i}\right| \leq c_{2} \delta\left|y_{i}\right|}\left(y \cdot \nabla K_{i}\left(y_{i}+y\right)\right) u_{i}^{\frac{2 n}{n-2}}\left(y_{i}+y\right) d y\right| \tag{5.36}\\
& \quad \leq c_{3} M_{i}^{\frac{2 \alpha_{i}}{n-2}}\left|y_{i}\right| \int_{|y| \leq c_{2} \delta\left|y_{i}\right|}|y|^{\alpha_{i}-1-n} d y \\
& \quad=c_{4} M_{i}^{\frac{2 \alpha_{i}}{n-2}}\left|y_{i}\right|^{\alpha_{i}} \delta^{\alpha_{i}-1} \\
& \quad \leq c_{5} \delta^{\alpha_{i}-1}
\end{align*}
$$

where c_{5} is a constant independent of i. Since v_{i} uniformly converges to $U_{0}(y)$ in $\bar{B}_{R} \backslash B\left(-\xi_{o}, \delta\right)$ for any large $R>0$, we have by (5.29), (5.32) and (5.34)-(5.36),

$$
\begin{aligned}
-(n-2) \sigma_{n} a b & =\left(\frac{n-2}{2 n}\right) \lim _{i \rightarrow+\infty} \int_{|y| \leq L_{i}} y \cdot \nabla Q_{i}\left(\xi_{i}+y\right) v_{i}^{\frac{2 n}{n-2}} d y \\
& =\frac{n-2}{2 n} \int_{\mathbb{R}^{n}} y \cdot \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) \\
& =\frac{\alpha(n-2)}{2 n} \int_{\mathbb{R}^{n}} Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y \leq 0 .
\end{aligned}
$$

From the assumption, it follows that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} Q\left(\xi_{0}+y\right) U_{0}^{\frac{2 n}{n-2}}(y) d y<0 \tag{5.37}
\end{equation*}
$$

so that both a and $b>0$.
Let $\hat{w}_{i}(t)=\hat{u}_{i}(r) r^{\frac{n-2}{2}}$ and $r=e^{t}$ where $\hat{u}_{i}(r)$ is the integral average of $u_{i}\left(y_{i}+y\right)$ over the sphere $|y|=r$. Since $u_{i}^{*}(0) u_{i}^{*}(y) \rightarrow a|y|^{2-n}+b$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$ with both $a, b>0, \hat{w}_{i}$ has a first local minimum at $T_{i}=-\beta_{i} \log M_{i}+c+o(1)$. Recall $w\left(t_{i}^{*}\right)=\epsilon_{0}$ and $\lim _{i \rightarrow+\infty} w_{i}\left(t_{i}\right)=0$. Thus, we have $r_{i}^{*}=o(1) \min \left(e^{\frac{n-2}{2} T_{i}}, r_{i}\right)$ as $i \rightarrow+\infty$. Meanwhile, by the Harnack inequality, we have

$$
c_{6}^{-1} \bar{u}_{i}(r) \leq \hat{u}_{i}(r) \leq c_{6} \bar{u}_{i}(r)
$$

for $r \geq 2\left|y_{i}\right|$, where c_{6} is a constant independent of u_{0} and i.
If $t_{i} \geq T_{i}$, then, $\hat{w}_{i}(t)$ uniformly tends to 0 for $T_{i} \leq t \leq t_{i}$ as $i \rightarrow+\infty$. Therefore, \hat{w}_{i} has no local minimum point in (T_{i}, t_{i}] for large i. By (ii) of Lemma 5.1, we have

$$
c_{7} M_{i}^{1-\frac{2 \alpha_{i}}{n-2}} \leq \hat{u}_{i}\left(e^{T_{i}}\right) \leq c u_{i}\left(e^{t_{i}}\right) \leq c_{8} u_{0}
$$

Since $\lim _{i \rightarrow+\infty} 1-\frac{2 \alpha_{i}}{n-2}=1-\frac{2 \alpha}{n-2}>0, M_{i}$ is bounded, which yields a contradition.

If $t_{i} \leq T_{i}$, Then

$$
c_{9} M_{i}^{1-\frac{\alpha_{i}}{n-2}} \leq \hat{u}_{i}\left(T_{i}\right) \leq \hat{u}_{i}\left(t_{i}\right)=u_{0}
$$

which again leads to a contradiction. Therefore, we have proved $\eta_{0}=0$.

Step 2.

Applying a variant of the Pohozaev identity (see (5.31)), we have

$$
\begin{align*}
& \left(\frac{n-2}{2 n}\right) r_{i}^{*} \int_{|y| \leq \lambda_{i}} \frac{\partial K_{i}}{\partial x_{j}}\left(r_{i}^{*} y\right) \tilde{u}_{i}^{\frac{2 n}{n-2}}(y) d y \tag{5.38}\\
& =\int_{|y|=\lambda_{i}}\left[\frac{\partial \tilde{u}_{i}}{\partial y_{j}} \frac{\partial \tilde{u}_{i}}{\partial \nu}-\frac{1}{2}\left|\nabla \tilde{u}_{i}\right|^{2} \nu_{j}+\frac{n-2}{2 n} K_{i}\left(r_{i}^{*} y\right) \tilde{u}_{i}^{\frac{2 n}{n-2}}(y)\right] d y
\end{align*}
$$

where $\lambda_{i}=\left(r_{i}^{*}\right)^{\frac{-\alpha_{i}}{n-2}}$. In the followings, we discuss two cases seperately.

Case 1. Suppose w_{i} has no local minimum after t_{i}. Then (5.4) and the Harnack inequality give

$$
\begin{align*}
\tilde{u}_{i}(y)|y|^{n-2} & =u_{i}\left(r_{i}^{*} y\right)\left(r_{i}^{*}|y|\right)^{n-2}\left(r_{i}^{*}\right)^{-\frac{n-2}{2}} \\
& \leq c u_{i}\left(r_{i}^{*}\right)\left(r_{i}^{*}\right)^{\frac{n-2}{2}} \tag{5.39}\\
& =c \epsilon_{0}
\end{align*}
$$

for $1 \leq|y| \leq\left(r_{i}^{*}\right)^{-1}$. By gradient estimates, we have

$$
\left|\nabla \tilde{u}_{i}(y)\right| \leq c_{1} \tilde{u}_{i}(y)|y|^{-1} \leq c_{1}|y|^{-n+1}
$$

for $|y| \geq 2$. Hence, the absolute value of the right-hand side of (5.38) $\leq c_{3} \lambda_{i}^{-n+1}$. Multiplying $\lambda_{i}^{n-2}=\left(r_{i}^{*}\right)^{-\alpha_{i}}$ on both sides of (5.38) leads to

$$
\begin{align*}
0 & =\left(\frac{n-2}{2 n}\right)_{i \rightarrow+\infty}\left(r_{i}^{*}\right)^{-\alpha_{i}+1} \int_{|y| \leq \lambda_{j}} \frac{\partial K_{i}}{\partial x_{j}}\left(r_{i}^{*} y\right) \tilde{u}_{i}^{\frac{2 n}{n-2}}(y) d y \\
& =\frac{n-2}{2 n} \int_{\mathbb{R}^{n}} \frac{\partial Q}{\partial x_{j}}(y) \tilde{u}_{0}^{\frac{2 n}{n-2}}(y) d y \tag{5.40}\\
& =\frac{n-2}{2 n \lambda^{\alpha-1}} \int_{\mathbb{R}^{n}} \frac{\partial Q}{\partial x_{j}}(y) U_{0}^{\frac{2 n}{n-2}}(y) d y
\end{align*}
$$

where we have untilized (5.39) and the following estimate: For any $\delta>0$, by Theorem 1.2,

$$
\begin{aligned}
\int_{|y| \leq \delta}\left|\frac{\partial K_{i}}{\partial x_{j}}\right|\left(r_{i}^{*} y\right) \tilde{u}_{i}^{\frac{2 n}{n-2}}(y) d y & \leq c_{4}\left(r_{i}^{*}\right)^{\alpha_{i}-1} \int_{|y| \leq \delta}|y|^{\alpha_{i}-1-n} d y \\
& =c_{5}\left(r_{i}^{*}\right)^{\alpha_{i}-1} \delta^{\alpha_{i}-1} .
\end{aligned}
$$

Case 2. Suppose w_{i} has a local minimum after t_{i}, then, by (5.4) and (5.5), we have

$$
c_{1} u_{i}\left(r_{i}^{*}\right)\left(r_{i}^{*}\right)^{n-2} \leq u_{i}\left(r_{i}\right) r_{i}^{n-2}=u_{0} r_{i}^{n-2} \leq c_{2} u_{i}\left(r_{i}^{*}\right)\left(r_{i}^{*}\right)^{n-2} .
$$

Recall $u_{i}\left(r_{i}^{*}\right)\left(r_{i}^{*}\right)^{\frac{n-2}{2}}=\epsilon_{0}$. Hence,

$$
\begin{equation*}
c_{3}\left(r_{i}^{*}\right)^{\frac{1}{2}} \leq r_{i} \leq c_{4}\left(r_{i}^{*}\right)^{\frac{1}{2}} \tag{5.41}
\end{equation*}
$$

where both c_{3} and c_{4} are independent of i. Thus, as $i \rightarrow+\infty$,

$$
\begin{equation*}
\left(r_{i}^{*}\right)^{1-\frac{\alpha_{i}}{n-2}}=o(1) r_{i} \tag{5.42}
\end{equation*}
$$

which and (5.4) give (5.39) again, that is,

$$
\tilde{u}_{i}(y) \leq \epsilon_{0}|y|^{2-n}
$$

for $1 \leq|y| \leq\left(r_{i}^{*}\right)^{\frac{-\alpha_{i}}{n-2}}=\lambda_{i}$. Hence, by (5.38), we have the same conclusion as (5.40).

Let $u_{i}^{*}(y)=\tilde{u}_{i}\left(\lambda_{i} y\right) \lambda_{i}^{\frac{n-2}{2}}$. By Theorem 1.2, $u_{i}^{*}(y) \leq c|y|^{-\frac{n-2}{2}}$. Therefore $u_{i}^{*}(y)$ is uniformly bounded in $C^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Since $\lambda_{i}^{\frac{n-2}{2}} u_{i}^{*}(y)$ satisfies

$$
\Delta\left(\lambda_{i}^{\frac{n-2}{2}} u_{i}^{*}(y)\right)+K_{i}\left(\lambda_{i} r_{i}^{*} y\right)\left(u_{i}^{*}\right)^{\frac{4}{n-2}}\left(\lambda_{i}^{\frac{n-2}{2}} u_{i}^{*}(y)\right)=0,
$$

and, by (5.39) and (5.39'), $\lambda_{i}^{\frac{n-2}{2}} u_{i}^{*}(y)=\lambda_{i}^{n-2} \tilde{u}_{i}\left(\lambda_{i} y\right)$ is uniformly bounded in any compact of $\mathbb{R}^{n} \backslash\{0\}, \lambda_{i}^{\frac{n-2}{2}} u_{i}^{*}(y)$ converges to a harmonic function $h(y)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. Using Liouville's Theorem, we have $h(y)=$ $a|y|^{2-n}+b$ for $a, b \geq 0$. By a similar argument as in Step 1, we have

$$
\begin{aligned}
0 & \geq-(n-2) \sigma_{n} a b \\
& =\frac{n-2}{2 n} \lim _{i \rightarrow+\infty} \lambda_{i}^{n-2}\left(\lambda_{i} r_{i}^{*}\right) \int_{B_{1}} y \cdot \nabla K_{i}\left(\lambda_{i} r_{i}^{*} y\right)\left(u_{i}^{*}\right)^{\frac{2 n}{n-2}}(y) d y \\
& =\frac{n-2}{2 n} \lim _{i \rightarrow+\infty} \lambda_{i}^{n-2} r_{i}^{*} \int_{|y| \leq \lambda_{i}} y \cdot \nabla K_{i}\left(r_{i}^{*} y\right) \tilde{u}_{i}^{\frac{2 n}{n-2}}(y) d y \\
& =\frac{(n-2) \alpha}{2 n \lambda} \int_{\mathbb{R}^{n}} Q(y) U_{0}^{\frac{2 n}{n-2}}(y) d y .
\end{aligned}
$$

Thus, by (5.40) the assumption (1.6),

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} Q(y) U_{0}^{\frac{2 n}{n-2}}(y) d y<0 \tag{5.43}
\end{equation*}
$$

which implies that both a and $b>0$. Therefore, we conclude that w_{i} has at least one local minimum at $T_{i}=\left(1-\frac{\alpha_{i}}{n-2}\right) t_{i}^{*}+c+o(1)$ after t_{i}^{*}. Since $1-\frac{\alpha_{i}}{n-2}>\frac{1}{2}$, we have by (5.41),

$$
t_{i}^{*}<T_{i}=\left(1-\frac{\alpha_{i}}{n-2}\right) t_{i}^{*}+c<\frac{1}{2} t_{i}^{*} \leq t_{i}
$$

for large i, which yields a contradiction to the assumption that there exists no local minimum point of w_{i} between t_{i}^{*} and t_{i}. Thus, (5.20) is
proved. Since u has a nonremovable singularity at 0 , we have $\int_{B_{1}} u^{\frac{2 n}{n-2}}=$ $+\infty$, and therefore $\lim _{i \rightarrow+\infty} \int_{B_{1}} u_{i}^{\frac{2 n}{n-2}}(x) d x=+\infty$.

By (1.7) and the Harnack inequalty,

$$
\begin{aligned}
+\infty & =\int_{B_{1}} u^{\frac{2 n}{n-2}}(x) d x \leq c_{1} \int_{B_{1}} u^{\frac{2}{n-2}}(x)|x|^{-n+1} d x \\
& \leq c_{2} \int_{0}^{1}\left(\inf _{|x|=r} u^{\frac{2}{n-2}}(x)\right) d r
\end{aligned}
$$

from which the completeness of $u^{\frac{4}{n-2}}|d x|^{2}$ follows immediately.
Suppose $Q(x)$ satisfies that 0 is the unique zero of

$$
\int_{\mathbb{R}^{n}} \nabla Q(\xi+y) U_{0}^{\frac{2 n}{n-2}}(y) d y=0
$$

We want to prove $u(x)$ is asymptotically symmetric. Suppose the contrary. Then there exists a sequence of $x_{i} \rightarrow 0$ as $i \rightarrow+\infty$ such that

$$
\begin{equation*}
u\left(x_{i}\right) \geq\left(1+\epsilon_{0}\right) \bar{u}\left(\left|x_{i}\right|\right) \tag{5.39}
\end{equation*}
$$

for some positive ϵ_{0}, where $\bar{u}(r)$ denotes the integral average of u over $|x|=r$. Let $v_{i}(y)=u\left(\left|x_{i}\right| y\right)\left|x_{i}\right|^{\frac{n-2}{2}}$. By Theorem $1.2, v_{i}(y)$ is uniformly bounded in any compact set of $\mathbb{R}^{n} \backslash\{0\}$. If $\bar{u}\left(\left|x_{i}\right|\right)\left|x_{i}\right|^{\frac{n-2}{2}} \rightarrow 0$ as $i \rightarrow$ $+\infty$, then there is a subsequence of v_{i} (still denoted by v_{i}) such that $\frac{v_{i}(y)}{v_{i}\left(e_{1}\right)}$ converges to a positive harmonic function $h(y)$ in $C_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. By Liouville's Theorem, $h(y)=a|y|^{2-n}+b$ with $a, b \geq 0$ and $a+b>0$. Obviously, it is a contradiction to (5.39). Suppose $\bar{u}\left(\left|x_{i}\right|\right)\left|x_{i}\right|^{\frac{n-2}{2}} \geq c>0$ for some constant c. Then $v_{i}(y)$ converges to $\tilde{U}_{0}(y)$ in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n} \backslash\{0\}\right)$. As the argument in Step 1, we see that $\tilde{U}_{0}(y)$ is smooth at 0 . Hence

$$
\widetilde{U}_{0}(y)=\left(\frac{\lambda}{1+\lambda^{2}\left|y-\eta_{0}\right|^{2}}\right)^{\frac{n-2}{2}}
$$

Suppose $\eta_{0} \neq 0$. Then u has a local maximum at x_{i} where x_{i} satisfies

$$
\lim _{i \rightarrow+\infty}\left(u\left(x_{i}\right)^{\frac{2}{n-2}} x_{i}\right)=\lambda \eta_{0} \equiv \xi_{0}
$$

Since u_{i} converges to u in $C_{\mathrm{loc}}^{2}\left(\bar{B}_{1} \backslash\{0\}\right)$, there is a subsequence of u_{i} (still denoted by u_{i}) and a sequence of local maximum points y_{i} of u_{i} such that

$$
\lim _{i \rightarrow+\infty} u_{i}^{\frac{2}{n-2}}\left(y_{i}\right)\left|y_{i}\right|=\xi_{0}
$$

Thus, we can repeat the same argument as in Step 1 to prove that ξ_{0} satisfies

$$
\int_{\mathbb{R}^{n}} \nabla Q\left(\xi_{0}+y\right) U_{0}^{\frac{2 n}{n-2}}(y) d y=0
$$

By the assumption, we have $\xi_{0}=0$, which obviously yields a contradiction. Hence we have proved $\eta_{0}=0$. However, it also yields a contradiction to (5.39). The completeness of the comformal metric $g=u^{\frac{4}{n-2}}|d x|^{2}$ is the consequence of the fact that u has a nonremovable singularity at 0 and the Harnack inequality (1.12) holds. The unboundedness of curvatures of g is an immediate consequence of Proposition 2.6 in [22]. Therefore, the proof of Theorem 1.4 is completely finished. q.e.d.

References

[1] A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 81 (1996) 323-466.
[2] A. Bahri \& J. M. Coron, The scalar-curvature problem on standard three-dimensional sphere, J. Funct. Anal. 95 (1991) 106-172.
[3] G. Bianchi \& H. Engnell, An ODE approach to the equation $\Delta u+K u^{\frac{n+2}{n-2}}=0$ in \mathbb{R}^{n}, Math. Z. 21 (1992) 137-166.
[4] C. S. Cheng \& J. L. Chern, Conformal Metrics with Prescribed Curvature on S^{n}, J. Differential Equations 106 (1) (1993) 155-185.
[5] L. Caffarelli, B. Gidas \& J. Spruck, Asymptotic Symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989) 271-297.
[6] S. Y. Chang, M. J. Gursky \& P. Yang, The scalar curvature equation on 2 and 3-sphere, Calculus of Variations and PDE 1 (1993) 205-229.
[7] C. C. Chen \& C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J. 78 (1995) 315-334.
[8] _ Estimates of the conformal scalar curvature equation via the method of moving planes, to appear in Comm. Pure Appl. Math.
[9] , On the asymptotic symmetry of singular solutions of the conformal scalar curvature equation, Preprint, 1995.
[10] , On axisymmetric solutions of the conformal scalar curvature equation on S^{n}, Preprint, 1996.
[11] S-Y. A. Chang \& P. Yang, A perturbation result in prescribing scalar curvature on S^{n}, Duke Math. J. 64 (1991) 27-69; Addendum 71 (1993) 333-335.
[12] B. Gidas, W. M. Ni \& L. Nirenberg, Symmetry of positive solutions of nonlinear equations in \mathbb{R}^{n}. Analysis and Applications, part A, Adv. Math. Supp. Stud. 79, Academic Press, New York, 1981, 369-402.
[13] D. Gilbarg \& N. S. Trudinger, Elliptic partial differential equations of second order, (2nd edition), Springer, Berlin, 1983.
[14] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 159-174.
[15] Y. Y. Li, Prescribing scalar curvature on S^{n} and related problems, part I, J. Differential Equations 120 (1995) 319-410.
[16] Y. T. Li, Prescribing scalar curvature on S^{n} and related problems, part II, Comm. Pure Appl. Math. 49 (1996) 541-597.
[17] D. Pollack, Compactness results for complete metrics of constant positive scalar curvature on subdomains of S^{n}, Indiana Univ. Math. J. 42 (1993) 1441-145.
[18] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984) 479-495.
[19] , Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Topics in Calculus of Variations; Lecture Notes in Math. Vol. 1365 (M. Giaquinta, eds.), Springer, New York, 1987, 120-154.
[20] \qquad , On the number of constant scalar curvature metrics in a conformal class, Differential Geometry: A sympos. in honor of Manfredo Do Carmo (H.B. Lawson and K. Tenenblat, eds.),l Wiley, 1991, 311-320.
[21] , A report on some recent progress on nonlinear problems in geometry, Surverys Differential Geom. 1 (1991) 201-241.
[22] R. Schoen \& S. T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988) 47-71.
[23] R. Schoen \& D. Zhang, Prescribing scalar curvature on S^{n}, Calculus of Variations \& PDE 4 (1996) 1-25.
[24] D. Zhang, New results on geometric variational problems, Stanford Dissertation, 1990.

National Taiwan University, Taipei, Taiwan
National Chung Cheng University, Taiwan

[^0]: Received July 10, 1997.

