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1. Introduct ion 

In this paper, we consider a sequence of positive C 2 solutions Ui of 

(1.1) Ani + K i(x)u p = 0 in B2 , 

where K i(x) is a sequence of C 1 positive functions defined in B2, the 

ball with center at 0 and radius 2, A = P j - ^ denotes the Laplacian 
j = 1 Xj 

of R a with n > 3, and 1 < p i t" n^rf- Throughout this paper, we always 
assume that K i is bounded between two fixed positive constants. One 
of the motivations in studying equation (1.1) arises from the problem 
of finding a metric conformal to the standard metric of R n such that 
K(x) is the scalar curvature of the new metric. Recently, there have 
been many works devoted to this problem. For details please see [2], 
[3], [6], [11], [15], [16], [23], • • -, and the references therein. It has been 
shown that for a sequence of solution Ui of (1.1), the blow-up does not 
occur at a noncritical point of {K i \ . We refer [15] and [8] for a proof of 
this statement. Hence in this article, we will assume that 0 is the only 
critical point of {Äi} , that is, K i satisfies the following: 

(1.2) For any e > 0, there exists c(e) > 0 such that 

c(e) < \VK i(x)\ < c i 

for |x | > e, where c\ is a positive constant independent of i and e. 
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Assume that the order of the flatness of K i at 0 is no less than n — 2. 
The authors in [8] have proved that there exists a constant c > 0 such 
that the inequality 

;i.3) u i(x + x i) < c M~i n+2 

holds for < 1, where M m_ax i = u i(x i) —T- oo for some Xi G B\. 

Inequality (1.3) was also derived in [15] and [24] where a global solution 
of (1.1) on S n was considered. In the same paper, we also showed by 
examples that , in order to have (1.3) hold, the assumption on the order 
of flatness of K at its critical points is optimal. In this paper, we want 
to consider the situation when the flatness of K i at its critical points 
is less than or equal to n — 2. To state our result, we assume that 
K i G Cl{B2) and satisfies the following conditions: 

;i.4) 

K i(x) = K i(Q) + Q i(x) + R i{x) in a neighborhood of 

0, where Q i(x) is a C 1 homogeneous function of order 

ai satisfying 

cijxjai~l < jrQ i(x)j < c2j 

for some a; > 1, and RAx) satisfies 

ai-l 

j r si?i ai-\-s o 
s=0 

as jxj —T- 0 uniformly in i. Furthermore, we assume 

that K i(x) converges uniformly to K(x) as i —> +oo, 

lim ai = a > 1 and Q i(x) converges to Q(x) in 
i—> + oo 

C1(S n~1) as i —>• +00, where Q(x) is a C1 homoge

neous function of order a. For simplicity, we assume 

K(0) = n(n — 2) throughout this paper. 

Let UQ be the positive smooth solution of 

;i.5) 
AUo(y) + n(n - 2)U 

U ( 0 ) = max R n Uo(x) 

(n+2)/(n-2) 0 in 

1 . 

By a theorem of Caffarelli-Gidas-Spruck (see Corollary 8.2 and Theorem 
8.1 in [5]), Uo(y) is radially symmetric with respect to 0. Hence, (1.5) 

leads to U0(y) = ( l + jy j 2 )" ( n" 2 ) / 2 . In addition to (1.4) , we also assume 
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tha t Q satisfies 

(1.6) (RVQ(t+y)U n {y)dy A ^0 foralUGR n. 
\R R n Q(t + y)U0n-2(y)dy 

Our first result is 

T h e o r e m 1.1. Suppose Ui is a sequence of positive C2 solution 
of (1.1) with p i < ^ | and lim p i = ^ | . Assume (1.2), (1.4) 

and (1.6) are satisfied with 1 < a < n — 2. If we further assume 

that for any solution £ of R R n VQ{x + £)UQn (y) dy = 0, we have 

Rfin Q(Ç + x)U0n \x) dx > 0. Then Ui is uniformly bounded in B\. 

Throughout this paper, B(x,r) always denotes the open ball with 
center x and radius r. When x = 0, we simply use B r for B(x, r). Sup
pose u i is a sequence of solutions of (1.1) with m_ax i —> +oo as i —> +oo. 

Bi 

Let S = fxj jxj < 1, and there exists Xi —> x such that lim i^.+CX>Ui(Xi) 
= +00} be the blow-up set of fu i \ . Assume (1.2) holds. Then, as men
tioned above, we have S = f0} . The blow-up point 0 is called isolated, 
if there exists a positive constant c such that 

2 

u i(x) < c jx — x i j i - 1 

for j x j < 1, where Ui(Xi) = max«i . The concept of an isolated blow-up 
Bl 

point was first introduced by R. Schoen. 

T h e o r e m 1.2. Assume that (1.2) and (1-4) are satisfied with 1 < 
ai, a < n — 2. Let Ui be a sequence of solutions of (1.1) with p i < ^ | , 

lim p i = n ^ and max« i —> +00. Then 0 is an isolated blow-up 
i-t + oo n l -Bl 

point. 

In fact, we are going to prove 

n — 2 

(1.7) u'(x)jxj 2 < c , 

a stronger result than Theorem 1.2. In particular, we have 

(1.8) j x j <cM 2 , 
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p i-i 

where Ui(Xi) = m_ax i = M i. Let £ = lim M i 2 x- and i = n^f — p i 
B! i->+oo n 

In Section 3, we will prove that £ satisfies 

2 n 
n —2 (1-9) R VQ(C + y)U0n-2(y)dy = 0, 

and Ti satisfies 

(p i-l)ai 

(1.10) i < c M i 2 , 

which, in turns, implies 

(1.11) i lim M i = 1 . 

The inequality (1.8) is important when we come to calculate integrals 

involving the term u n~2. When a > n — 2, we can show that 0 is a 
simple blow-up point. For a proof of this statement, we refer the reader 
to [8], [15] and [24]. 

Rewrite the equation (1.1) into A u + i(x)Ui = 0, where c i(x) = 
K i(x)u i i (x) < c\x\~2 by (1.7). Then, the Harnack inequality can be 
applied to u i, i.e., there exists a constant c > 0 such that 

(1.12) max i < c min u i . 
\x\=r \x\=r 

With the help of the Pohozaev identity, we have 

T h e o r e m 1.3. Suppose that (1.2), (1-4) and (!•(>) are satisfied 
with nY^- < oti < n — 2, and Ui is a sequence of C2 positive solutions of 
(1.1) with p i = n ± | . Suppose M i = max i —> +oo as i —» +oo. Let 

Bi 
m i = min Ui. Then there exists a constant c > 0 such that the followings 

Bi 
hold: 

(1.13) u i(x + x i) < cM~l\x\2-n for \x\ < M~i, 

where u i(x i) = M i and (i = - ^ (l - i j > 0. 

(1.14) c'1 M i ~ i Ku^x) <cM i ~ i for \x\ > - M~i. 
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In particular, 

(1.15) 
lim m i = 0 if a > nV^ 

i-t + oo z 

c _ 1 < m i < c if cti n~2 

n-2 
2 ' 

2~ 

And for the energy, we have 

lim Ro K 

; i . i6) 

x)u 
2n 

n~2 (x) dx 
i—>- + CO 

S n 

n(n-2) 
n-2 ifa> nf-, 

l i m B r K i(x)u i 2 (x) dx = ( S ) 2 (1 + o(l)) 

i f a 

i—> + 00 

n-2 
2 ' 

where S n is the best Sobolev constant and o(l) —> 0 as r —> 0. 

For a < n ^ , wehave 

T h e o r e m 1.4. Suppose the assumption of Theorem 1.3 holds except 
that a satisfies 1 < a < n j ^ . Let Ui be a sequence of solutions of (1.1) 
with p i = ^ | and max« i —> +oo as i —» +oo. Then 

lim u n 2 (x) dx = +oo . 

Furthermore, there exists a subsequence of Ui (still denoted by Ui) such 
that u i converges to a singular solution u of (1.1) with a nonremovable 

4 

singularity at 0. The conformal metric ds2 = u~n^\dx\2 is complete in 
B\ n {0} and has unbounded curvature near 0. If we assume 0 is the 
only zero of 

;i.i7) 
2n 

n — 2 
vQ(ç + y)U n"2(y)dy = o 

Then u(x) = u ( |x | ) ( l + o(l)) as x —> 0, where u(r) denotes the integral 
average of u over the sphere \x\ = r. 

Let u be the singular solution in Theorem 1.4 and 

2 

P(r, u) 

:i.i8) |x|=r 

- 2 . .du 
|Vu2 + 

du 

di 

+ 
n 

2n 
-K( 

2n 

\x\u n-2 da . 
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By the Pohozaev identity, we have for r > s, 

(1.19) P(r;u) - P(s;u) = ( x - V K ( x ) ) u n - ! ( x ) d x 

n —2 
Since u(x) < c\x\ 2 by Theorem 1.2, (x -VK(x)) u n~2 G Ll(B\). 
Thus, lim P(r; u) = D is always well-defined. Since u is a limit of a 

r—»0 
sequence of smooth solutions of (1.1), we can prove 

(1.20) D = 0. 

This is a new phenomenon different from the case with a constant K. 
When K(x) = 1 and u is a singular solution of 

n + 2 
A u + u n-2 = 0 in Bi \ { 0 } , 

the famous theorem of Caffarelli-Gidas-Spruck says that if 0 is a nonre
movable singularity, then there exists an entire singular solution u ( x ) = 
u ( \ x \ ) of 

n + 2 
n — 2 

: i .2D 
A u ( x ) + u n - 2 = 0 in R n \ { 0 } , 

lim u ( x ) = +00 
xl-s-o 

satisfying 

(1.22) u(x) = u0(\x\)(l + o(l)) . 

Since the Pohozaev constant D < 0 for any solution u of (1.21), as a 
consequence of (1.20), there exist no entire solutions of (1.21) satisfying 
(1.22) for this particular u of Theorem 1.4. However, if a > n j ^ , 
then the result of Caffarelli-Gidas-Spruck still holds true. We refer the 
interested readers to [9] for related results. 

The estimates of Theorem 1.3 and Theorem 1.4 are important when 
we want to find an apriori bound for solutions of (1.1) globally defined on 
S n. As an application of Theorem 1.3, we proved the following theorem 
in [10]. 

T h e o r e m A . Let K be a positive Cl function on S n. Suppose 
for each critical point P of K, when using the coordinate in R n of the 
stereographic projection from S n with P as the South pole, K satisfies 
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(1-4) and (1-6) with nY^- < a < n — 2. Then there exists a constant 
c > 0 such that 

u(x) < c 

for all x G S n and for all positive solutions of 

A(n — l ì n i i 
(1.23) — -A0u + n(n - l)u + K(x)u n-* = 0 , 

where Ao is the Beltrami-Laplacian operator of the standard S n. 

A special case of Theorem A is 

Corollary 1.5. Suppose K is a positive Morse function in S n with 
AK(P) / 0 for any critical point P of K. There exists a constant c > 0 
such that for any solution u of (1.23), we have 

[ u(x) < c for n = 5, 
(1 24Ì 

R S n | V u | 2 + S„ u^n < c for n = Q. 

At the first sight, we might apply the degree theory developed by 
Chang-Yang [11] and Li [15] to find a solution of (1.23). However, a 
study of radial solutions suggests that the Leray-Schauder degree might 
be zero in the situation of Theorem A. In a forthcoming paper, we will 
compute the degree for all solutions of equation (1.23). An immediate 
consequence of Theorem 1.4 is 

Corollary 1.6. Suppose K is a Morse function in S n and satisfies 
AK(P) / 0 for any critical point P of K. Let Ui be a sequence of 
solutions of (1.23) with max i —> +oo as i —» +oo. Then 

lim K(x)u n 2 (x) dx = +oo 
i—» + 0O 

if n > 7. 

The possibility of blowing-up with infinite energy was first men
tioned in [21]. It should be an interesting queation whether we can find 
a blowing-up sequence of solutions in the situation of Corollary 1.6. For 
the existence of solutions of (1.23) for n > 7, we refer [11], [1] and [24]. 

As in [8], there are two main ingradients in our approach. One 
is the blowing-up anaysis, introduced first by Schoen. Another one is 
the well-known "method of moving planes", which was first invented 
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by A. D. Alexandrov and has been further developed by Serrin, Gidas-
Ni-Nirenberg and Caffarelli-Gidas-Spruck. In this paper, the method 
of moving planes is used to show that how large of the domain where 
rescaled solutions can be compared to Uo(y) of (1.5). This is the major 
step in our approach. See Lemma 3.1 in Section 3. 

This paper is organized as follows. In Section 2, we will collect some 
preliminary results for later uses. Most of them are well-known. How
ever, we will present their proofs here to make the paper self-contained. 
In Section 3, Theorem 1.1 is proved. Theorem 1.2 will be proved in 
Section 4. In the final section, both Theorem 1.3 and Theorem 1.4 are 
proved. In forthcoming papers, we will present some applications of our 
estimates to equation of (1.1) on S n. 

2. Pre l iminary results 

In this section, we will collect several lemmas which are useful later. 
First, we formulate a modified version of the well-known methods of 
moving planes. Let Ci be a smooth open domain in R n such that the 
complement set Qc ofQ is compact. Let u G C2(Q) C\C(Q) be a positive 
solution of 

A u + f(x, u) = 0 in Q , 

where f(x,u) is a nonnegative function, Holder in x, C 1 in u > 0 and 
is defined on Q X [0, oo). For A < 0, we denote T\ = {x G R n\ x\ = Ag, 
EA = {x G IRn| x\ > Ag and xx = (2A — x\, x2, • • • , x n) as the reflection 
point of x with respect to T\. Let 

(2.1Ì 

' A* = sup{A| A < 0 and Qc C SAg , 

'A = SA n n for A < A* , and 

w\(x) = u(x) — u\(x) = u(x) — u(x ) for x G E ' J 

For any continuous function b\(x), we have 

(2.2) Awi (x ) + b\(x)wX(x) = Q{x, b\(x)) in S'A 

where 

(2.3) Q(x, bx(x)) = f(x\ ux(x)) - f(x, u{x)) + bx(x)wx(x) . 

Suppose that h\(x) and b\(x) are two families of continuous nonnegative 
functions defined for x £ Ci and Ai < A < AQ with two constants AQ and 
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Ai < A* such that the following conditions are satisfied. 

(2.4) 0 < bx{x) < C(x)jxj-2 for x G EA , 

where C(x) is independent of A and tends to zero as jxj —> +oo. 

The function hx(x) is C 1 (S A ) and satisfies 

(Ahx(x)>Q(x,bx(x)) in £'A, 

hA(x) > 0 in S'A 

in the distributional sense for A G [Ai, Ao]. 

(2.6) h\(x) = 0 on Tx and hx(x) = O(jxj_ T l) as jxj —> +oo for some 

constant T\ > 0. 

J h\(x) < wA(x) for x G 9S7, Ai < A < Ao and, 

hXl(x) < wXl(x) for x G S'AQ . 

(2.8) Both h\(x) and r x hx(x) are continuous with respect to both 

variables x and A on EA . 

L e m m a 2 .1 . Le tu be a solution of (2.1) satisfying u(x) = O(jxj_T2) 
at co for some Ti > 0. Suppose there are two families of continuous 
nonnegative functions bx(x) and hx(x) satisfying (2.4) ~ (%-&) for ^i ^ 
A < Ao with Ao < A*. Then wx(x) > 0 for x G E ' J and A G [Ao, Ai]. 

Proof. Lemma 2.1 is a special case of Lemma 2.1 in [8]. For the 
reader's convenience, we reproduce the proof here. 

Step 1. There exists R > 0, independent of A, such that if (wx — 
h\)(x) is negative somewhere in S A , and x G SA is a minimum point 
of w\ — h\, then jxoj < R -

By (2.2) and (2.5), we have 

(2.9) A(wx-hx) + bx(wx-hx) < -bxhx <0 

in S A . Let 0 < a < min(r i ,T2,n — 2) and g(x) = jxj_<J. Set <̂ >(x) = 
w\(x) \(x) Then ^ satisfies 

(2.10) A<£ + 2 r g - r < £ + ( b A ( x ) + — )<£< 0 . 

By (2.4), we note that 

bA(x) + - g = (C(x) -a(n-2- a)) jxj~2 < 0 
g(x) 
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for large jxj. Hence, there is a large R with Çlc C B R0 such that 

(2.11) bx(x) + ^ x < 0 
g 

for jxj > R - Now suppose w\ — h\(xo) = inf(w\ — h\) < 0 for some 

x G TI'X. Then we want to show jxoj < R -
Since lim (f>(x) = 0 and (f>(x) > 0 on dT,'x, there exists x such 

\x\—> + oo 

tha t çî) has its minimum at x - By applying the maximum principle at 
x , (2.10) implies 

bx(xo) H — - > 0 . 
g 

By (2.11), we have j x j < R - Since 

w\(x0) - h\(x0) (w\ - h\)(x0) _ 
(— \ — (— \ ~ <P(x) 

g(x0) g{x0) 
w\(x0) - h\(x0) < <l>(xo) 

g(xo) 

we have jxoj < j x j < R - Hence Step 1 is proved. 
From (2.7) and (2.9), it follows that w\1 — h\1 is a nonegative su-

perharmonic function in T,'x and is strictly positive on d£i. Hence, by 
the maximum principle, w\1 — h\1 > 0 in T,'x . Let 

A = sup {A > Xoj(wß — hf1){x) > 0 in Ti for all Ai < fi < A} . 

It suffices to prove 
Step 2. A = Ao-
We prove Step 2 by contradiction. Suppose A < Ao- Then there ex

ists \n l À with \n < A0, and inf (wXn - h\n) = (w\n-h\n)(x n) < 0 for 
^ \ 

some x n G T,'x , because w\n — h\n > 0 on dT,'x and 
lim (w\n — h\n)(x n = 0. By Step 1, we have jx n j < R - Without 

|x|—>oo 

loss of generality, we may assume lim x n = x G S^. Thus, 
n—> + oo 

(2.12) V(wX - hx)(x0) = 0 and (wx - hx)(x0) < 0 . 

Since (wx — hx)(x) > 0 for x £ T,', we have 

A(wx-hx)<-bx(wx-hx)<0 
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in £ ' . From the first part of (2.7) and the maximum principle, it follows 
that 

w\ ~ h\(x) > 0 for x G S'r . 

Therefore, we have x G Ty However, the first part of (2.12) yields a 
contradiction to Hopfs boundary point Lemma. Hence, the proof of 
Lemma 2.1 is finished. q.e.d. 

To apply Lemma 2.1 in the proofs of our theorems, we need the 
following lemma about the Green function Gx(x1i]) of —A on E A with 
the Dirichlet boundary condition. The Green function has the form of 

(2.13) G\x, rj) = c n (- x j ^ - \r^ 
jT] — n z jT] — x Ä j n z 

for x,T] G S A , where c n is a positive constant depending on n only. 

L e m m a 2.2 . There exists positive constants c\ and ci, depending 
on n only, such that the following statements hold: 

i) 
2~n for jxj < ^ 

j j \ 1̂ 1 

for x > V . 
G (x, 0) > c i |A||x l-A| JA] 

2 

(ii) 

G (x, rj) < c2 min jx — rjj2~n, (x\ — \)jx — rjj i_n (xi- \)(m- A ) 

jx — T]j n 

The proof of Lemma 2.2 is elementary. Please see, for example, [8] 
for a proof. 

L e m m a 2 .3 . Suppose that u is a positive smooth solution of 

Au + K(x)u p = 0 in B ro , 

where 0 < a < K(x) < b in B ro and 1 < p < ^ | . Then there exists 
a small positive number eo, depending on a, b and n only such that if 
kuk L p* ^ eo with p* = (p~2 'n, then the Harnack inequality 

u(x) < cu(y) 

holds for jxj, jyj < r , where c is a positive constant depending on a,b 
and n. 
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2 
p - 1 Proof. Let v(y) = r x u(roy) for jyj < 1. Then v satisfies 

Av + K(y)v p = 0 in jyj < 1, 

where K(y) = K(roy). By the assumption, we have 

v p* (y) dy= u p* dy < e0 . 

Then we can apply the standard iteration technique due to Moser, as 
shown in [14] (see Lemma 6 in [14]), to obtain 

p * / n \k Z p * / n \k — l 
jvj p {n-2> dy < c k jvj p {n-2> dy 

\y\<ï+k \y\<h + k=T 

for k = 1, 2, • • •. Hence, after a finite number of iteration steps, we have 
v p G L q{B R ) for some q > ^ and some R > -5- By elliptic L q theory, 
we have maxv < c for some constant. Applying Corollary 8.21 in [13] 

B1 
7 

shows that there exists a constant c\ > 0 such that 

v{y) < c1v(y') 

for jyj, jyj < | . Obviously, Lemma 2.3 follows immediately. q.e.d. 

L e m m a 2.4. Suppose 4>{y) satisfies 

(2.14) A 0 ( y ) + n ( n + 2)C7n^(y)0(y) = O in R n 

with (f>(y) —?• 0 as jyj —> +00, where Uo(y) is the solution of (1.5). Then 
4>{y) can be written as 

n 

4>{y) = co^o(y) + X c jipj(y) 
j = i 

9U for constants c j G R, j = 0 ,1 , • • • , n, where ipj(y) = -gU- for 1 < j < n 

andMy) = nï1U(y) + yVU0(y)-

Proof. Let &k(w) denote a spherical harmonic of degree k on S n - 1 

and (j)k(r) = Riwi-} çHrw )<£>k(w) ds. We want to prove 4>k{r) = 0 for 
k > 2. Then the conclusion of Lemma 2.4 follows immediately. 
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It is obvious to see that (f>k satisfies 

4 

( 2 _ 1 5 ) k + n r k + n(n + 2)Ur2 (r) - k n ± k ^ 4>k = 0 , 

k(0) = 0 and ^ ( 0 ) = 0 . 

Let -i/>(r) = —U'(r). Differentiating (1.5) with respect to r, we have 

| < ( r ) + r V ( r ) + ( n ( n + 2)U^(r) - r ) ^ ( r ) = 0, 

[V'(r) > 0 for r > 0 . 

Since ip(r) > 0 for r > 0, by the Sturm-Liouville comparison Theorem, 
4>k{r) does not change its sign for all r > 0 unless 4>k{r) = 0. We may 
assume 4>k{r) > 0 for all r > 0. For any R > 0, we have 

R " 1 ty(R)<t>k(R) - k \ R ) ) 

{ip{r)^k - ïpk^ir))n-1 dr 
(2-17) 

= [k(n + k _ 2) - (n - 1)] Z R k Ä l r n - i dr > o . 
Jo r 

Since ip'(R) = O(R~n) at oo and çk(oo) = 0, there exists i?i —?- +oo as 
i —T- +00 such that <f)'k(R i) < 0 and 

l i m ^ + o c Ä n " 1 (il>(R i)<f>k(R i) - <t>k{R iW{R i)) < o , 

which yields a contradiction to (2.17). Hence Lemma 2.4 is proved. 
q.e.d. 

3. Appl icat ions of the m e t h o d of moving planes 

In this section, we are mainly concerned with the proof of Theorem 
1.1. The proof will be divided into several lemmas. The first one — 
Lemma 3.1 — is very important in our approach, and will be very useful 
later. To state it, we consider a sequence solution Ui of (1.1) and let 
x i be a local maximum point of Ui in B, with M i = Ui(Xi) —> +oo as 
i —T- +00. We assume K i satisfies (1.2), (1.4) with oii < n — 2. Let 

(3.1) v i(y) = M-Xu i (x i + M'^y 
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p i - i 

Obviously, v i(y) is denned in \y\ < M i 2 . In Lemma 3.1, i is 
always assumed to satisfy 

(3.2) v i{y) is uniformly bounded in any bounded set of R n. 

Suppose v i satisfies (3.2). Without loss of generality, we may assume 
v i(y) uniformly converges to Uo(y) in any compact set of R n. Since i 
satisfies 

(3.3) Av^y) + K iiyv iiy) = 0 in \y\ < M i , 

wh here K i(y) = K i x- + M i 2 y , U must satisfy 

n + 2 

( 3 4 ) AU + n ( n - 2 ) U n-2 = 0 i n i n , 

U ( 0 ) = 1, and 0 is a critical point of UQ. 

By a theorem of Caffarelli-Gidas-Spruck, UQ is radially symmetric with 
respect to 0, and 

n — 2 

(3-5) U ( y ) = ( l + |y|2) 2 . 

In the followings, we let 

p i - i n = 2 ( p - 1 ) " i 
2 1 —C*i 2 ( n - 2 ) (3.6) L i = min M i 2 x f - « i , M i 

Obviously, lim L i = +oo. Since 

i - 1 \ ^ 2 ( i - ! ) i ) / (p i - l ) \ 1 _ Q f i 

M 2 x l 1 - " i = M 2(n"2) M 2 lx 

i 
p i - 1 n - 2 i " 1 

we have L i = M i 2 lx i 1 ai if M i 2 \x i\ > 1. From (3.6) and 

p i - i 

«i < n — 2, we always have M i 2 > L i. Thus, v i(y) is well-defined for 

\y\ < L i. 

L e m m a 3 .1 . Assume v i satisfies (3.2). Then, for any e > 0 there 
exist 8\ = ^i(e) > 0 and a positive integer i = io(e) such that for i > io, 
the inequality 

min v i (y) < (1 + e)r2~n 
\y\<r 
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holds for all 0 < r < Si L i. 

Proof. We will prove the lemma by contradiction. Suppose there 
exists eo > 0 such that min i(y) ^ (1 + 2eo)r i~n for some r i < 8L i, 

jyj<r i 

where 8 is a small positive number which will be chosen later. Since 
v i(y) uniformly converges to Uo(y) in any compact set of R n, we have 
r i —T- +00 as i —> +00. Let 

v i{y) = v i{y + ei) with ei = (1, 0, • • • , 0) . 

Thus, 

(3-7) v , - ( y ) £ ( l + e0)r i - n 

for \y\ < r i. Let v;(y) be the Kelvin transformation of v i, tha t is, 

(3-8) v i(y) = \y\2~n v i (^ 
\y\ 

Then v satisfies 

(3.9) Av i+K i(y)v p =0 for \y\ > M i i2 , 

where 7 i ( y ) = K i(y)\y\-i = K i x + M ' i J y J | y | " i and i = 

(n+2) — (n — 2)p i > 0. Since v i(y) converges to Uo(y-\-e), v i(y) converges 
to Uo(y) in C 2 in any compact set of R a U {cog n {0g, where Uo(y) = 

\y\2~n Uo f -jyj2- + e J. By a straightforward computation, we can prove 

that Uo(y) is radially symmetric with respect to yo = ( — ^ , 0 , ••• ,0) . 
Therefore, v;(y) has a local maximum y i near yo for large i. 

Let — ì < Ao < — \, where Ao will be chosen to be sufficiently close 
to —i . For A < Ao, as in Section 2, let T\ = {x \ x\ = Ag, S^ = {x \ x\ > 
A, |x| > r~ g and xx = (2A — x i , • • • , x n) denote the reflection point of 
x with respect to T\. We claim for large i, 

(3.10) v^y) <v i(y) 

holds for y £ Ti'x and A < Ao- Obviously, (3.10) yields a contradiction 
to the fact that v;(y) has a local maximum at y i. 

Let w\(y) = v;(y) — v i(y ) . (The index i is omitted for the sake of 
simplicity.) Then w\ satisfies 

(3.11) Awx + bx{y)wx{y)=Qx{y) in S'A, 
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where b\(y) = K i(y) (v i(y)p i - v i(yx)p i) (v i(y) - v i(yx)) , and 

Qx(y) = (K i(yx)-K i(y))(v i(yx))p i 
By (3.7) and (3.8) , for jyj = r i we have 

(3.12) v i(y) >r n~2 min v i > 1 + e0. 

On the other hand, v i ly~2\ uniformly converges to Uo(0~ï) = Uo(0) = 

1 for jyj = r~ , where y~2 and 0~2 are the reflection point of y and 
0 with respect to the hyperplane T_\_ respectively. Hence, there exists 

2 
— \ > Ao > — \ such that 

(3.13) v ( y A ) < i + | 

for jyj = r~ , A < Ao and large i. Together with (3.12), it implies that 
when jyj = r~ , we have 

(3-14) wx(y) > | 

for A < Ao and large i. In the followings, Ao > — \ is chosen so that the 
inequality 

(3.15) w A Ü y ) > f > c o r - ( n - 2 ) G A G y , 0 ) 

holds for jyj = r~ , A < Ao and large i, where c is a constant depending 
on eo and n only. 

Since v i has a harmonic asymptotic expansion at oo, we have 

( 3 1 6 ) v ' y = j y j 2 - n ( c + & 1 c y ) + O ( n 

\ i y = - ( n - 2 ) P O ( n 

where constants c0 i and c i converge to some c0 > 0 and c as i —> +oo. 
By elementary calculations and Lemma 2.2, there are constants c\ and 
c2 > 0 such that 

w\{y) = v i(y) -v i(yx) 

f(yi-A) lA l if jyj < 2jyj 
(3 17) > ci i y n 

" y if j y A j > 2 j y j 

A > c 2 G A ( y , 0 ) 



e s t i m a t e o f t h e c o n f o r m a l s c a l a r c u r v a t u r e e q u a t i o n 131 

for y G S A , A < AI < 0 and jyj > R if both jAij and R are sufficiently 
large, but independent of i. (For a proof, see Lemma 2.3 in [5].) Since 
v i is superharmonic in ^ and v i > 1 on jyj = r~ , for r~ < jyj < R 
and y £ Ti'x we have 

v;(y) > inf v; > c3 > 0 , 
\y\=R 

where c is a constant independent of i. Hence, if jAij is sufficiently 
large, then 

w\(y) > -c 

for r~ < jyj < R and A < Ai < 0. Since w\ is superharmonic in ^ for 
A < Ai, by (3.15), we have for large i 

(3.18) wx(y)>cor-{n-2)Gx(y,0) 

for y G Ti'x and A < Ai. 

Let Qt = max(0,QA), and set 

-2X * (3.19) h y ) = AL i G ( y , 0 ) - / G ( y Q W dV, 

where G (y, 77) is the Green's function in Section 2, and A is a positive 
constant to be chosen later. Obviously, h\ satisfies 

(3.20) Ahx = Q+{y)>Qx{y) in S'A. 

Since j?7Aj > jrjj for 77 G S ^ and A < AQ < — | , we have 

M y ) = K i(-Ow)jriXj-Ti - K A - 2 ) j v i v p(ilX) 
jvj 

< K A2 
K M-Ti p i A v p i(V 

Hence, 

(3.21) 
l(y)<i K M2 K 

< 2 K V 
M2 

K 

v ( v x ) 

i + k 
(n -2 )p i 
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From (1.4) it follows that , for jyj > r i , 

K 

< c i 

i l ) ~K i(x i 

cti-l + M 
( p - i ) ( " i - i ) 

i + jy 
l - a i 

p i - l 

M i + jyj 

< c2 jx i jai~1M i i2 l (1 + jyj~l) + M i < i *)ai (1 + jyj 

If M 2 jxj > 1, then 

M 
(p i - l ) g i 

M 
p i - i 

a i - l M 
p i - i l - a i 

< L: 
( n - 2 ) 

p i - l 

If M i 2 jx-j < 1, then 

p i - i 

a i ( p i - l ) 

L ( n - 2 ) 

e i ( j y j ) - K i x i 
/ - ( n - 2 ) / 1 i 

<c2L iy MI+jyj 

M i 2 j x - j " i - 1 < M i 2 

In any case, 

(3.22) 

Thus, by (3.21) and (3.22), we have 

(3.23) Q+(V) < c3L-{n-2) (l + jvj-ai) (l+jvX 

For 0 < ß < n, we want to estimate 

(n-2)p i 

Sß(y) = / G (y,v)jvj~ß(i + jv j dv. 

Case 1: jyj < ^ . 
By Lemma 2.2, we obtain GA(y, f]) < cjy — rjj2~n. Hence 

Sß(y)< j y - » 7 j 2 - n M - ^ l + j ^ 

S A 

(n-2)p i 
drj . 
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Decompose 

R n ={vjjy - vj < -jyj} U {vjjy-vj> y , M < 2jyj} 

U {??jjy - vj > y , M > 2jyj} = Ai U A2 u A3. 

Elementary calculations give 

jy _ ^j 2-n ^ j " ^ ( l + j»7Aj" (n"2)p i dr, < c l j y j 2 ^ ( l + jAj)-(n-2)p 

k - y j 2 - n M - / î ( l + k A j ) " ( n _ 2 ) p i dy < ci jyj 2 _^( l + jAj)-(n-2)p i . 

For jyj < 1, 

j y - v j 2 n jvj ~ß{l+jvXj)~{n~2)p i dT] < c3 

jy j 2 "^ i f / 3 > 2 

if/3 = 2 

if ß < 2 

log ^ j if/3 = 2 

For jyj > 1, 

2-n -ß \-(n-2)p i 
y - vj jvj~^(l + jv j)~( )p i dv 

< c4 Z M _ 2 n _ / Î + T i dr, < c5jyj-n-ß+i 
A3 

jM We also note that , for 1 < jyj < M 

jy 
2-f3{l + jAj)-(n-2)p = jyj-n jyj n+2-f3{l + jAj)-(n"2)p 

< c4jyj 

In conclusion, we have for jyj < 1, 

-n+ i 

(3.24) 

and for jyj > 1, 

(3.25) 

Sß(y) < c3 

'jyj2-ß i f / 3 > 2 

log ^ j if/3 = 2 

1 if ß < 2 

S>(y) < c4jyj -n-\-i 
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Case 2. jyj > ^ 

As before, let A\ = frjjjy — rjj < -y-g and A2 = frjjjy — rjj > -y-g. 
For 7/ G Ai , by Lemma 2.2, we have 

G ^ G y ^ c O y i - A ) j y - ? ? j 1 - n 

Thus, 

< c(yi-X)(l+jyj)-(n-2p Z j y - ^ d v 
A X 

< c l(y i - X)jyj-n+i . 

For 7] G A2, we apply GA(y, rj) < c (yi — A)(771 — A)jy — ?7j_n. Then, 

G A ( y ^ ) k j ^ ( i + k A j ) - ( n- 2 ) p i 

< c l ( y i - X ) j y j - n Z ji!j-ß{l + W)1-n-2p dr, 

= c2(y1-\)jyj-n . 

Combining these two estimates together yields 

(3.26) Sfj(y)<c2(yi-\)jyj-n+i . 

By (3.23)~(3.26) and Lemma 2.2, we obtain 

(3.27) Z G\y, r,)Q+(r,) dV < c&L~n+2Gx(y, 0) 

for some constant c > 0. Set A = 2 c in (3.19). By (3.27), we have 

(3.28) 0 < c6L
2-n Gx(y,0) < hx(y) < 2c6L

2-n Gx(y,0) . 

Recall r i < SL i. Choose S to be sufficiently small such that 5~^n~2' > 
^ - , where c is the constant in (3.18). Then, when i is large, 

w\(y) > hx(y) 

holds for j y j = r~ and A < Ao, and holds for y G S^ . It is obvious 
that h\(y) satisfies the assumption of Lemma 2.1 for Ai < A < AQ and 
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large i. Applying Lemma 2.1 gives (3.10). Thus, the proof of Lemma 
3.1 is finished. q.e.d. 

L e m m a 3.2. Suppose v i(y) satisfies (3.2) and v i(y) < 2 for jyj < 
c L i. Then there exist positive constants 82 and c such that 

v y ) < cUo(y) 

for jyj < 82 L i, where c is a constant depending on n only. 

Proof. Let G i(y,r]) be the Green's function of the Laplacian oper
ator in the ball B i = fr]j jr]j < L i g with zero boundary value. For any 
e > 0, let $i be the positive number stated in Lemma 3.1. Let S be 
sufficiently small (independent of i) such that 

G^y,v)> )~ejy-vj2-n 
an(n- 2) 

for j y j = 8\L i and jr]j < S L i, where an denotes the area of the unit 
sphere S n - 1 . 

Let jy i j = 8\L i satisfy v i(y i) = min v i(y). Then, by Lemma 3.1, 
\y\<SL i 

we have 

Xn-2Tn-2 >v i(y i) > Z G i(y i,r1)'K i(r])v p i(r])dr] 

n ( n - 2 ) ( l - 2 e ) Z . , , 
> - ^ ö v p i (n)dn. 
- an(n-2)(81 + 8 ^ L i 2 J\v\<5i L i i U' ' 

Let S <^ S\. Then 

(3.29) Z _ v p{r,)dr,< — (l + 4e) . 
\v\<SL i n 

Since v i uniformly converges to Uo(y) in any compact set of R n and 
Uo(y) satisfies 

n±2_ n 
Ur2(y)dy=-, 

n 

there exists a large R such that 

(3.30) Z v p i(v)d7]<n 
R<\ri\<SL i n 
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holds for large i. Since i(y) < 2, we have 

Z *, N , 10<7„e 
(3.31) Vp i (77) drç < n - . 

R<\T]\<8L i n 

Let e be sufficiently small such that — ^ ^ < eo, where eo is the small 
number in Lemma 2.3. An applying of Lemma 2.3 shows that there 
exists a constant c > 0 such that 

(3.32) max i(y) < c min i(y) 

holds for 2R < r < ^L i. By Lemma 3.1, we have 

(3.33) i ( y ) < c U ( y ) 

for 2R < \y\ < \L i. Obviously, (3.33) holds true for \y\ < 2R also. 
Hence we have finished the proof of Lemma 3.2. q.e.d. 

Let l i = S2L i, where 82 is the positive constant stated in Lemma 3.2. 

L e m m a 3 .3 . Suppose i satisfies the assumptions of Lemma 3.2. 
Then there exists a constant c > 0 such that 

max \v i{y) - U i(y)\ < cl~{n~2' , 
\y\<l 

where U i(y) is the C2 positive solution of 

n + 2 

AU i + K^x^U i 2 = 0 inR n , 

Ci(0) = l = maxCi(y) . 

Proof. Rewrite equation (3.3) into 

A i + c i(y)v i(y) = 0 for \y\ < l 

with c i(y) = K i{y)v p i i~l{y) < c (1 + |y|)-(p i-1)(n-2) by Lemma 3.2. Note 
that (p i — l ) ( n — 2) > 2 for large i. Hence, by applying the gradient 
estimates for the linear elliptic equations, we obtain 

(3.34) \Vv i{y)\<c1v i{y){l+\y\)-1 

for \y\ < l . In particular, we have 

(3.35) | V v ( y ) | < c l l - n + 1 
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f o r jyj = l . 

By (3.3) and the Pohozaev identity, from (3.35) we conclude 

n - 2 

p i + 1 
p i+i 

\y\<i 
Kyv (y)dy 

+ p i + 1 \y\<l 
yVK i(y))v p i+1dy 

n — 2 dv i 

\y\=l i 2 dr 

dv 

dr 

<cl 

1 j y j e 
jV7 j2j j , TS ( \ p i + 1 d 

^ p i ~T -I 
-n+2 

Since 

(3.36) 

we have 

y-VK i(y) 

< M 2 C C - 1 + M i 2 ~ ( a i _ 1 ) a : - l 

<cl{n-2)(i + jy i , 

y < i 

p i+l y-VK i(y) v p ^ \ y ) d y 

< cl~ 

< cl 

(n-2) 

(n-2) 

{l+jyjai){l + jyj 
(n-2)(p i + l) dy 

Thus 

(3.37) Ti = (n + 2)-(n-2)p i<cl i{n 2) , 

which implies lim l i = 1. 
i—> + oo 

Let Ai = max jv i - U i j = v i(y i) - U i(y i) for some jy i j < l i Suppose 

the conclusion of Lemma 3.3 does not hold true, i.e., Ai n —> +oo as 
i -> +00. Let w i(y) = A" 1 ( i ( y ) - U i(y)). By (3.3), w i satisfies 

(3.38) Aw i + b i w i = Q i(y), 
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where b i{y) = K{y ) i i_U and 

(3.39) 

i(y) =A~1 K i(x i) - K i(x i + M-i* ' y) U p (y) 

+K i(x i ) U 2 -U 
n + 2 
n - 2 p i 

By Lemma 3.2 and (3.37), we have 

(3.40) b ( y ) < c ( l + j y j ) - 4 for jyj < l- . 

By a straightforward calculations, 

jQ i(y)j < cAi 1 n L (n _ 2 ) ( i+ jy j ) - (n+ 2 - 0 , i 

(3-41) + i ( l + jyj)-(n+2)jlogfi 

<cA-l-n(l + jyj)-\ 

for jyj < l-. 
Applying the Green representation's Theorem leads to 

w i(y) = / G i{y, v) b i{v)w i{v) + Q iiv) ) dv- -rr(y^ v)wv)ds, 
B i dB i a v 

where B i = B(0, l i), and G i is the Green function of A in B i. Thus, by 
(3.40) and (3.41), we obtain 

jw(y) j<ci{ / j y - ^ - n i + M r d + A-1l-n"2) 
(3.42) n B i 

<c2(i+jyjr2 + i 1 l i{n~2) 

where we note that jw?i(?7)j < A~ l i n ' for jr)j = /i by Lemma 3.2. 
Since toi is bounded in C loc, there exists a subsequence of toi (still 

denoted by w i) such that toi converge to w in C loc by elliptic estimates, 
where w satisfies 

ÌAw + n(n + 2)U^(y)w(y) = 0 in R n , 

jw(y)j<c(i + jyj ) -2 . 

By Lemma 2.4, we get w(y) = £ c U + c0 {jyjU'0{jyj) + ^U0(jyj)). 

Since w(0) = w(0) = 0, we must have c j = 0 for 0 < j < n, namely, 

w(y) = 0. Hence lim jÎi j = +oo. 
i—> + oo 
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Applying (3.42) at y = y i gives 

l = jw i{y i)j<n{l + jy i j ) - ' + h - l - ( n - ^ o , 

which obviously yields a contradiction. Thus, Ai l n - must be bounded. 
q.e.d. 

Let x i G B\ satisfy u i{x i) = m_axti(x-) = M i. Suppose M i —> +00. 
B\ 

For this sequence of maximum points Xi of u i, the rescaled function 
v i(y), defined in (3.1), obviously satisfies (3.2) and v i(y) < 1 for jyj < 

M i 2 . Wehave 

L e m m a 3.4 . Let Xi satisfy Ui(Xi) = m_axiii(x) = M i. Then 
Bi 

p i - i 

M i 2 jx i j is bounded. 

Proof. Suppose lim M i 2 jx i j = +00. By (3.6), we have L i = 
i—> + oo 

p i - l 1 
(M i 2 j x j 1 - i ) ^ - By Lemma 3.3, w i(y) = l n~2 (v i(y) - Ci(y) ) is 
uniformly bounded in jyj < l-. Thus, we may assume w i(y) uniformly 
converges to w(y). By (3.35), we have 

(3.43) jVw i(y)j<c1l-
1 

for jyj = \l i. 
Let e i = jVK i ( x ' ) j _ 1 V K i(x ' ) . Without loss of generality, we may 

assume lim e i = (1,0, ••• ,0) . For any R > 0, from (3.39) it follows 

that 

e i—! n + 2 

Q i(y) = l 2 M i ~ j V A i ( x ) j {(e i,y) + o ( l ) }U " 2 (y) 
(3.44) / n±2 

for jyj < R and large i. For jyj > R, by (3.41) we have 

(3-45) j Q ' ( y ) j < c ( l + j y j ) - 4 

for a constant c independent of i. 
Thus, by (3.44) and (3.45) it is easy to see that 

i^+ODjyj<l i 

(3.46) lim Q i(y)My) dy = ci Myyi^-2 (y) dy 
n + 2 
n — 2 



140 c h i u n - c h u a n c h e n & c h a n g - s h o u l i n 

for some constant c\ > 0, where 

ci = lim l i M'i jVKix^j 
i—>- + oo 

and V>i = f f -

= # p 2 l i m jxj-i jVK iix i 
i—ï-\-oo 

On the other hand, multiplying ipi on both sides of (3.38) gives 

l w i(y) ( A ^ i + b i(y)4>i(y)) dy 
\y\< 2 

(3-47) + ^d-w-w i ds 
\y\=i l i. dv d v 

\y\<l i 

i{y)i>i{y)dy. 

By (3.43), the boundary term of the above tends to 0 as i —> +oo. Since 

jw i(y)j < c) we can easily prove 

lim w i(y) (A^i(y) + b i(y)ÌJi(y)) dy 
\y\<l i 

( 3 ' 4 8 ) w(y)Mi + n(n + 2)U n-2^ dy 
4 

n-2 

= o , 

which obviously yields a contradiction to (3.47). Thus, the proof of 
Lemma 3.4 is finished, q.e.d. 

R e m a r k 3.5 . Since M i 2 jxj is bounded, 

for some positive constant c. By (3.37), we have 

(p i-l)ai 

(3.49) Ti = O(1) m a x u 

By Lemma 3.4, without loss of generality, we may assume 

p i - i 

(3.50) f = lim M i 2 x- . 
i—»- + 00 
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L e m m a 3.6. Let Xi satisfy u 

and £ be the vector in R n, given by (3.50). Then £ satisfies 

i i ) = m a x u i(x) —T- +00 as i —» +oo 

(3.51) 
2 n 

n — 2 VQ(y + OU0n-2(y)dy = 0. 

Proof. Following the notation of Lemma 3.3 and Lemma 3.4, let 
w i(y) = l n~ (v i(y) — U i(y) ), where l- = 82 L i. Then toi satisfies 

(3.52) 

where 

/S.w i + b i{y)w i = Q i(y) 

i{y) = l 2 K i{x i) - K i x i + M i 2 y U (y) 

+ K f x ) U n-2 - U 

By (3.49) and (1.4), we have 

p i - i 

K i x i + M i 2 y -K i(0) 

(3.53) + M i p ' y + R Y a j i + M i p ' y 

M i p ^ (Q i f i + y) + o(i)(i + |y i ) 

for I yI < l i with i = M 
p-i 

(p i - l ) a i 

By Lemma 3.3 and Remark 3.5, M i 2 l i n is bounded and w i(y) 
is uniformly bounded in \y\ < ì^ l - Without loss of generality, we may 

(p i - 1 ) a i 

assume c = lim M i 2 l i _ n > 0 and toi converges to w uniformly 
i —> + oo 

9U in any compact set of R n. Let ipj (y) = U for 1 < j < n. Since 

y < i 
^ j ( y ) ( i ( < ) ) - i ( x • ) ) U ( y ) 

+ K i U 2 ( y ) - U ( y ) dy = 0 , 
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by (3.53) we have 

n + 2 
n — 2 Q^ + y)U0n-2(y)ij(y)dy 

n 

i lim M p ^ l - n Z Q^Mydy 

c lim ìlj(Aw i + b i w i)dy 
\y\<l i 

c lim w i(AiJj + b i(y)tjj) dy + boundary term 

n —2 = c w ( A ^ + n(n + 2)U n - 2 ^ ( y ) ) d y = 0 . 
R n 

Applying the integration by part gives 

n — 2 Z (9 -2n Z n±2. 
-z— 7^Q(t + y)Uo-2(y)dy= Q(Ç + y)U0n-2(y)^(y)dy = 0. 

Zn R n Oy j R n 

Hence, Lemma 3.6 is proved. q.e.d. 

L e m m a 3.7. Let Xi satisfy Ui(Xi) = m_ax!ii(x). Suppose a < 
Bl 

n — 2. Then for any R > 0, there exists a constant c > 0 such that 

u-(x• + y)\y\^ < c for \y\ < RM~ßi, where i = pi^±(1 - ^ ) . 

Proof. By Lemma 3.1 and Lemma 3.2, there exist S2 and c\ such 
that 

(3.54) v i(y) < c lU0(y) 

holds for \y\ < h2L i. Since i(y) is superharmonic, it is easy to show 

(3.55) v i(y) > c2U0(y) 

for some constant c2 > 0 and \y\ < h2L i. Therefore 

(p i-l)ai (p i-l)ai 
1 - i : i 1 

(3.56) c2M i 2 < u - ( x - + y ) < c i M i 2 

for I y I = ^ M i and for two constants ci and c2 which is independent 
of i, and also (by 3.54), 

2 

(3.57) u i(x i + y)\y\i = v i (M i ~ y ) ( M i y ' < ^ 
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for \y\ < 52M~i. 
Now suppose the conclusion of Lemma 3.7 does not hold. Then we 

can apply a blow-up argument due to R. Schoen (see [17] or the proof 
of Lemma 4.1 in §4) to show that there exists a sequence y i such that 
the followings hold: 

2 

1. u i(x i + y i)|y i|p i_ 1 -> +00 as i -> +oo , 

2. u i(x i + y) has a local maximum at y i, 

3. The function i{z) = M i~ Mi I Xi + y i + M i 2 z ) uniformly con

verges to UQ(z) in C 2 (R n), where M i f i(Xi + y i), and 

4. 5 0 M " f i < |y i| <2RM~i 

Since i is superharmonic, by the maximum principle, we have 

(3.58) v i(z) > c3\z\2-n 

for some constant c when 1 o \z\ < \M i 2 . 

Let S i = n y| \y\ = ^M~i and y i f i satisfy \y i -y i\ = d(y i, S i). 

Set z i = M i 2 (y i — y i) . By (3.56) and (3.58), we have 

cslz i M < u iix i+y i) < cxM
1i~Jp^~i . 

Then 

(p i - l ) ( n - 2 ) (p i - l ) c i (p i - l ) ( n - 2 ) 

M i 2 < c 4 M i 2 ly i - y i n - ^ c g M i 2 , 

where f y i - y i| < |y i| + \y i\ < (R + 5 0 ) M " f i . Since 1 - ( i " ^ ( n " 2 ) < 0, 
we have 

(3.59) M i < c5M i , 

ev f p i f 

which implies i(z) < c5 for |z| < M i 2 . Following the proof of Lemma 
3.4 with x i replaced by x i + y i, we can show the identity 

n + 2 

^ i (y )y iU n" 2 (y)dy = o 
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holds, where we assume lim VK(x i-\-y i)jVK(x i~\-y i) j 1 = (1, 0, • • • , 0). 
i—> + oo 

Obviously, it yields a contradiction. Hence the proof of Lemma 3.7 is 
finished. q.e.d. 

Now we are in the position to prove Theorem 1.1. 

Proof of Theorem 1.1. Suppose M i = m_ax i = u i{x i) —> +oo 
Bi 

2 

as i —> +00. Let r i = M~ and u*(y) = r p _ 1 u(x i + r i y), where we 

recall i = p ^ i M - i J . Then u*(0) = M i r p ' 1 = M n"2 -> +oo as 

i —T- +00. By Lemma 3.2, we have 

(3.60) u y ^ ( O ) - 1 j y j - ^ 2 

n — 2 

for jyj < So- By Lemma 3.7, u*(y)jyj 2 is uniformly bounded in 
any compact set of R n. Applying the Harnack inequality and (3.60), 
u*(0)u*(y) is uniformly bounded in any compact set of R a n { 0 } . There
fore, there exists a subsequence u*(0)u*(y) (still denoted by u*(0)u*(y) ) 
such that u*(Q)u*(y) converges to h(y) in C 2 topology in any compact 
set of R n n {0}. It is not difficult to see h(y) is harmonic in R n n {0}; 
thus, 

h y ) = | a = ä + b 

with both a and b > 0. 
Applying the Pohozaev identity, we have 

1 
r ( y V i i ( x i + r i y ) ) u ( y ) p + 1 d y 

p i + l Bi 

(3-61) =P( i ;u ) - (p n - ^ ) f K^ + r^u i y p i dy 

< p ( i ; u ) , 

where 

Pf i ;un= — u * $ ^ - - j V u * j 2 

i 2 i 9// 2 

2 
9Bi 

9u* 

+ + K ( x + r i y)u pl + 1 dy 
9 

Since u*(0)u*(y) converges to h(y), a simple calculation leads to 

(3.62) lim u i ( 0 ) P ( 1 ; u ) = -(n-2)an ab< 0 , 
i—>• + CO 
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where an denotes the area of the unit sphere S n 1 . On the other hand, 
the left hand side of (3.61) tends to 

(3.63) 

lim u* (0)r i / (yVK i(x i + r i y))u*(y)p i+1dy 
i ^ + oo JBi 

2 ( a i - i ) ( p i - 1 . . 
l i m M n-2 U 2 p i + ± 

i—> + 0O 
y-VA' i x i + M 2 y v dy 

( y V Q ( Ç + y ) )U p + 1 ( y ) d y , 

where lim M i = 1 is utilized. 
i—> + oo 

Applying Lemma 3.6, (3.62) and (3.63), we have 

p i + l 1 

a 
o< Q(?+y)U p + ( y ) d y = - (y+0-VQ(y+£)U (y)dy< o, p i+i 

which yields a contradiction. Therefore, the proof of Theorem 1.1 is 
completely finished. q.e.d. 

4. Isolated B l o w i n g - U P 

Suppose that Theorem 1.2 does not hold, that is, 

(4.1) 
i—» + 0O "B 

i 

i-1 
lim sup u ( x ) | x | 2 =-)-oo . 

Let x i be a local maximum point of Ui. Following the notation in pre
vious sections, we set 

(4.2 

p i - i 

v i{y) = M-lu i x i+M i 2 y 

v i{y) = v i(y + ei) , and , 

v y ) = \y\2~n ^ ( y ) , 

where M i = u i{x i) and e\ = (1, 0, 0, • • •). Similarly, we define 

(4.3) Uo(y) = \yrn U0 + ei 

It is easy to see that U0(y) = 1+4jy_yoj and Uo(0) = U0(-ei) 

where y0 = ( - ± 0 , ••• ,0) . 

n — 2 
2 
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Given eo > 0 with eo <C 1, there exists Ao = Ao(eo) < 0 and c n > 0 
such that 

f 4 4 ) M < AoM < -\ , and 
Uo(yx)<i + f 

for jyj < c n€Q and A < Ao(eo), where c n depends on n only. 
In the followings, So < ^ is a fixed positive number, but small enough 

such that (4.13), (4.15) and (4.16) below are satisfied. 

L e m m a 4 .1 . Given eo, Ro where eo <C 1 <C R and R ~ — c n60; 
there exists a positive constant Co > 0 such that the following statements 
hold true. 

2 

(i) If u (x)jxj p i-1 > Co, then there exists a local maximum point 
x i G B(x, Sojxj) of u i with Ui(Xi) > u i(x) such that the rescaled function 
v i of (4.2) satisfies (4.5)—(4.7). 

(4.5) The origin 0 is the only local maximum of v i in B(0,4Ro). 

(4.6) j v ( y ) - U0(y)j C2(B(0,4Ro)) < ^R0)
2~n , 

(4.7) v i(y) has a local maximum point y i near y0 such that 
y i i < \ (^o ~ \) < ^o for all i where 'y i 1 denotes the x\-coordinate 
of y i and Ao is the constant in (4.4). 

n o m i 

(ii) Let x i denote all local maximum points of u i with 

u i x jx j p ̂  > Co such that (4.5), (4.6) and (4.7) hold. Then 

2 

(4.8) u i(x) < 2C0jxj i-1 for all x £ Qil 

where Qi = Uj B ( x j , 25Q . Furthermore, 

(4.9) 1x -x1 >4Ru x 2 

f o r j / k. 

Proof of part(i). We will prove (i) by a blow-up argument, which 
was originally due to R. Schoen. Suppose the conclusion of (i) of Lemma 
4.1 does not hold true. Then there exists a subsequence of u i (still 

n — 2 

denoted by u i) and x i with Ui(Xi)jXi j~Ì~ —> +oo such that u i has no 
local maximum which is no less than Ui(Xi) in B(x i, jx i jSo) and satisfies 
(4.5), (4.6) and (4.7). 
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Let l i = 5ojx-j, and 

(4.10) S i(x) = u i(x)(l i - jx - x i j)i . 

Let x~i satisfy 
S i{x i) = sup S i 

\x — x i | < l 

Set 

(4.11) 

p i - i 

v i{y) = M i u i{x i+M i 2 y) 
2 _ 

S i\x i) l jx x 

p i-l 

where M i = u i(x i) and x =x i-\- M i 2 y. For 

yj<\M i 2 (l i-jx i - x i j), 

i— 77 v ' i jx i x i j) • 

jy 
(4.12) 

p i ~ ^ p i ~ ^ 

Since M i 2 (l- — jai — x i j) > u- 2 (x-)l- —> +oo as i —> +oo, i(y) is 
uniformly bounded in any compact set of R n. Therefore, there exists 
a subsequence of v i (still denoted by v i) which converges to Vo(y) in 
C lo ÇR n), where Vo(y) is a positive entire smooth solution of 

n + 2 

AV0(y) + n(n- 2)V0n~2 = 0 in I n . 

Applying a theorem of Caffarelli-Gidas-Spruck, Vo(y) is radially sym
metric about some point yo m IKn, and Vo(y) has a nondegenerate max
imum at y - Thus, for large i, i(y) has a local maximum at y i near yo-
Going back to u i, we have found a local maximum point x* of Mi with 

p i - i 

jx i — x i j < c M ' 2 for some constant c > 0, and 

u i(x*) > u i(x i) > u i(x i). 

p i-l 

Obviously, jx* — x i j < cM i 2 = o(l)( / i — jx i — x i j). It is easy to see 
that x* satisfies all conditions in (i) when i is large. Hence we have a 
contradiction, and (i) is proved. 
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Proof of part (ii). Recall Qi = Uj B x i,25o Xi where x i 

is the set of local maximum points of Ui which satisfy the conditions 
2 

in part (i). Suppose that x satisfies u i{x)jxj p'-~1 > 2CQ. By (i), there 
exists a local maximum point Xi G B(x, Sojxj) with Ui(Xi) > u i(x) such 
that (4.5)—(4.7) are satisfied. Since jx i j > (1 — $o)jxj, we have 

2 2 2 

u ifx^x i j p - 1 > (l-S0)i-
1u i(x)jxj i-1 

>2{1-50)i C0>C0, 

if So is small such that 

(4.13) 2(1-S0)i>1. 

Hence Xi = x i for some j . Since jx i > (1 — $o)jxj and SQ < ^, we have 

< S0jxj < -—^-jx i j < 250 
3o 1 - & j U j 

Thus x G fii, and (4.8) is proved. The inequality (4.9) is an immediate 
consequence of (4.5). q.e.d. 

Let fx j g j=i be the set of local maximum points of Ui in Lemma 4.1. 

Points x i can be ordered by u i(x i) > u i(x i2) > • • • > u i(x i m). Assume 

(4.1). Then there is a subsequence of Ui (still denoted by u i) and x i 
2 i 2 

such that u i{x i ) jx i j p'-~1 > i and u i{x i jx j p'-~1 < i for 1 < j < j i. It is 

obvious that u i(x j —> +oo as i —> +oo for j < j i. Hence jx j —> 0 for 

j < j i-
L e m m a 4 .2 . There exists a positive integer i such that, for i > io, 

u i(x) < 2u i(x i j) for x G B(x i , 2Sojx j ) with j < j i and for i > io-

Proof. Suppose the conclusion of Lemma 4.2 does not hold true. 
Then we claim that there is a subsequence of Ui (still denoted by u i) 
and k i < /i < j i such that (i) jx l i j < 2jx k.j, and (ii) u i(x) < 2u i(x k.) for 

all x G B(x i k i,250jx i k i j). 

To see this, suppose u i(x) = max i > 2u(x i) for some i and j < j i 
B i 

and for some x G B i where B i = B(x i , 2Sojx j ) . Then, by Lemma 4.1, 

there exists x i k G B(x,Sojxj) such that u(x i k) > u i(x) > 2u(x i . By the 

ordering on fx i g, we have k < j < j i. Since 

j x j > (l-S0)jxj> (l-S0)(l-2S0)jx j j, 
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we have 

u•(x j x j - 1 > 2 ((1 - <*o)(l - ^o))p-1 u{Xii i - I 
2_ 

p 
j j 

(4-14) / o \ 2 

> [^ u(x j)jx i j — , 

if 8Q satisfies 

(4.15) [{1-&0){1-2&0)i*>\-

If u i(x) < 2u i(x i k) for all x G B(x k, 2Sojx k j), then we let k i = k and 
l- = j . Thus, the claim is proved. If there exists x G B(x k, 2Sojx k j) such 
that u i(x) > 2u i(x i k), then we can repeat the argument above to have 
k m < k m-\ < • • • < k\ < j such that 

j m > (1 - W - 2^o)jx m_ j > [(1 - W - 2^o)]m j x j , 

and by (4.14), 

i _ 2 _ / 3 \ m i i _ 2 _ 
i > u iix m jx m p i-1 > ^-J u(x j)jx j j p i-1 

* ( § ) m C • 

Thus, after finite steps, we can find k i G N, such that 

jx j > ( l - * o ) ( l - 2 5 o ) j x i _ 1 j , 

and, 
u i(x) < 2u i(x k i) 

for x G B(x k i,2Sojx k i j). Let $o satisfy 

(4.16) (l-S0)(l-2S0)>^. 

Then our claim is proved. 
However, by Lemma 4.4 below, we have jx k i j = o(l)ja;l i j , which 

yields a contradiction to the claim above. Hence the proof of Lemma 
4.2 is finished. q.e.d. 

To complete the proof of Lemma 4.2, we need the following two 
lemmas. 
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L e m m a 4 .3 . Let k i < j i be a sequence of positive integers, and 
suppose that u i(x) < 2u i(x i k i) for x G B(x i k i, 28ojx i k i j ) . Then 

lim L i(M~i ^ jx k j)-1 = +oo, 
i—>- + oo 

p izl i ,_ i 
where L i = (M i 2 jx k j ai)n-2 and M i = u i{x k ) . 

( i j i j " 1 

Proof. Suppose lim i_^_|_ĉ L i ( M i 2 a;k. I < +oo. Without loss 

of generality, we may assume 

(4.17) L i<cxM i 2 
i - I 

T * j i i j 

for all i and some constant c\ independent of i. Since 

u(x k i) > u(x i i) ~^ + ° ° 

as i —> +00, we have lim x k = 0 and 
i—> + oo i 

p i - l i 

lim M i 2 j x j > c^1 lim L i = +oo . 
i—> + oo i i—> + oo 

Hence, the scaled function i(y) = M~ u i I a:k- + M i 2 y ) uniformly 

converges to Uo(y) in any compact set of R n as i —> +oo. Therefore, by 
Lemma 3.1 we have for any e > 0, there exists S\ = 8i(e) > 0 such that 

min v i(y) < (1 + e)U0(r) 
\y\=r 

holds for all 0 < r < 8\L i. As in the proof of Lemma 3.2 (See (3.30)), 
there exists a 82 > 0 such that 

(4.18) Z v p ( y ) d y < n e 

R<\y\<S2L i 

for some R = R(e) > 0, which is independent of i. By (4.17) 82 may 

be choosen small such that 8^ L i < 28QM i 2 jx i k j . Hence v i(y) < 2 for 
jyj < S2L i. Recall p* = n { i - 1) > p i and p* - i < 1. By (4.18), 

(4.19) Z v p ( y ) d y < n e . 

R<\y\<S2L i 
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If e is choosen small, then, by Lemma 2.3 and the Harnack inequality, 
we have 

(4.20) v i(y)<c2U0(y) 

for all jyj < S2L i and for some constant c2 independent of i. By (4.20), 
Lemma 3.3 holds for i also. Repeating the proofs of (3.44), (3.46) and 
(3.47) in Lemma 3.4, we can obtain 

n — 2 
My)yiU0n-2 (y) dy = o , 

which yields a contradiction. Hence Lemma 4.3 is proved, q.e.d. 

L e m m a 4.4 . Let k i < l i < m be two sequences of positive integers. 
Suppose u i(x) < 2u i(x i k i) for x G B(x i k, 2^oja;k.j). Then, for any e > 0, 
there exists a positive integer i = io(ei such that 

< e 

for i > i0. 

Proof. Suppose the claim of Lemma 4.4 does not hold. Without 
loss of generality, we may assume 

(4.21) j x j < c i j x j 

for all i and some c\ > 0 independent of i. 
Let eo and R be the constants in Lemma 4.1. Let v i(y) = M~ u i(x i k i-\-

M i 2 y) with M i = u i{x k . ) . First, we note that , by (4.5)—(4.7), 
Lemma 3.1 holds for v i(y) also, tha t is, there exist S\ = #i(eo) and 
i = i0(e0) such that 

(4.22) m inv i y) < (l + 2e0)U0(r) 
\y\=r 

M i 2 ja;k.j1_Qfi ) 

Since L i is not tending to +oo in general as i —> +oo, the claim of 
(4.22) is viewed as a "finite" version of Lemma 3.1. Under conditions of 
(4.5)—(4.7), however, the proof of (4.22) can go through as in Lemma 
3.1 without too much modification. In the followings, we would like to 
sketch its proof briefly. 



152 c h i u n - c h u a n c h e n & c h a n g - s h o u l i n 

Suppose (4.22) does not hold true for a subsequence of i (still de
noted by v i), i.e., there exists a sequence of r i such that 

min v i(y) > (1 + 2e0)U0(r i) 
\y\=rt 

for some r i < 8\L i, where 8\ will be chosen later. By Lemma 4.1, we 
have r i > 4 R - Let v; and v i be defined as in (4.1). Thus, we have 

min v i(y) > (l + 2e0)U0(r i) > (l + e0)U0(r i-l), if R^1 < c ne0 where 
\y\=rt-i 
c n is independent of i. For simplicity of notation, we replace r i — 1 by 
r i, i.e., we have 

(4.23) min v i{y) > (1 + e 0 ) U ( r i) , 

and r i satisfies 

(4.24) 2R < r < SiL i . 

By (4.23), we have 

(4.25) v i(y) > r n - 2 min vt- > (1 + e0) for |y| = r i 1 . 

Let Ao = Ao(eo) be the number defined in (4.4). For \y\ > | , by (4.6) 
we have 

\vy) -Uo(y)\ < to\y\2-n(4Ro)2-n 

which implies 

v i(y)<U0(y) + e0Rl-n . 

By (4.4), for \y\ = r~ and A < Ao we have 

v i(y) < Uo(yx) + c0Rtn 

Let w\(y) = i(y) — i(yA) . Applying (4.25) and (4.26) together gives 

(4.27) 4 
= c 0 5 2 -n L 2 -n GA(y,0) 

for |y| = r~ and A < AQ, where c depends on n and eo only. 
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As in the proof of Lemma 3.1, v i has a harmonic asymptotic expan
sion (3.16) at oo, 

v 
c y1 

y i - V *> jyj n ^ i jyj + O i n ) 

where c0 i -^-~c0,~c i are uniformly bounded as i —> +oo, and O i(jyj~n) < 
cjyj~n for some constant c > 0 independent of i, by (4.6). Therefore, 
as in (3.17), there exists Ai < 0, independent of i, such that 

(4.28) wx(y)>c1G
x(y,0) 

for all A < Ai and y G S^ = {yj y\ > A and jyj > r~ }. 
As in Lemma 3.1, we let 

(4.29) hx(y) = AL i - n G\y, 0) - Z Gx(y, r,)Q+(y) dV . 

By the same estimates in Lemma 3.1, we can find a constant A, inde
pendent of i, such that h\(y) > 0 in T,'x. Furthermore, we have 

c 2 L i -n GA(y,0) < hx(y) < c3 L ̂ n Gx(y,0) , 

for y G Ti'x, A < Ao and two constants c2 and c , independent of i. 

Hence, if Sx satisfies 8\~n > c , then, by (4.27), (4.28) and Lemma 2.1, 

we have 
w\(y) > 0 

for y G Ti'x and A < Ao(eo)- However, it yields a contradiction to the 
fact that v i has a local maximum point 'y i with 'y i t < ^(Ao — \) < Ao-
Hence, (4.22) is proved. 

As in (3.29), (4.22) implies that there exists 82 = #2(^0) < $1 such 
that 

(4.30) Z v ( y ) d y < — ( l + 4e0) . 
jyj<S2L i n 

Let 
i = n x I j x - a;l i j < 2R0u(x l i) 2 o 

and 
p i - i 

B i=yj x = x i k i+M i 2 y e B | 
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For y G B i, by (4.21) we have 

M i 2 jyj < |x - x l \ + |a;l - x k | 

< 2R0u(x l t)~p2~ + 2c1 jx i k i j 

= 2R (u (x rp^H jx j - 1 ) jx j+2c! 

where c4 = 2(1 + RQC0
 2 ) cj . Thus, by Lemma 4.3, 

2 

for large i. On the other hand, we have 

(4.31) jyj < c 4 M i 2 j x j < - T L i 

-i 2 jyj > 1x, - x 1 - \x l i - x\ 

> 1x - x l\~ ^RQu(Xl i 

Moreover, by Lemma 4.1 and M i > u i(x l ) , 

p i - i 

(4.32) j y j ^ u i 2 ( x ) |x i - x 1 - 2 R 
> 2R , 

which combined together with (4.31) gives B i C y j 2R < jy 

From (4.5) and (4.6) it follows that u i e x) < u i(x l i for x G 

u i{x l ) < u i{x k)i we have i(y) < 1 on B i, and therefore 

B i B i 
(4.33) 

< v p dy . 

2R0<\y\<S2L i 

Let RQ be sufficiently large such that 

U p0i(y)dy>^(l-e0). 
\y\<2Ro n 

Then, by (4.6) and (4.30), we obtain 

v p dy < c n e0 

2Ro<\y\<S2L i 
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for some constant c n depending on n only. Together with (4.33), the 
inequality above implies 

ïï / U0n-2(y)dy< / u p i i(y)dy<c ne0, 
z R n B i 

which obviously yields a contradiction if eo is sufficiently small. Hence, 
Lemma 4.4 is proved, q.e.d. 

Proof of Theorem 1.2. Suppose the conclusion of Theorem 1.2 does 
not hold true. Let to C 1 < R be true positive constants satisfying 
RQ < c n eo for some small constant c n. By Lemma 4.1 and Lemma 4.2, 
there exists a constant Co and the set of local maximum points fx j g ! 1 

2 

of u i satisfying u i(x i j)jx i j j p - 1 > C 0 , (4.5), (4.6) and (4.7). The set 
fx i g = i can be ordered by u i(x i) > u i(x i2) > ••• > u i(x i m i). Without 
loss of generality, we may assume that , for each i, there exists a positive 

2 2 

integer j i such that u i{x i.)jx li p'-~1 > i and u i{x i)jx i p'-~1 < i. Let 
Sli = Um i1B(x i j,280jx i j j) 

(4.34) 

for x £ Qi, and 

(4.35) 

. Then 

u i(x) < 2Co x 

u i(x) < 2u i(x 

for x G B(x i , 2So j x i j) where 1 < j < j i. 
By Lemma 4.3, we have 

(4.36) lim inf L itj [M i ̂  jx i j) = + o o , 

1 
i I n -̂  

where M i j = u i(x i and L - j = u-(x j) 2 jx i j ai . Moreover, by 

Lemma 4.4, we can show that for any 8 with 0 < 5 <C 1, there exists 
i0 = i0(S) such that for i > io> 

(4.37) j x . i j < 

holds for 2 < j < j i -\- 1, and 

(4.38) jx i j i j < - j x j j 
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for j i + 1 < j < m i- From (4.37), (4.38) and Lemma 4.1 it follows that 

(4.39) u i{x) < u i(x i j i) fo r jxj > Sjx i j i j . 

for i > ii = ii(S) > io- Obviously, (4.37) implies 

s , k 

(4.40) jx i j < 2 

for j < j i and k = j i -j. By (4.22), (4.30) and (4.36), we obtain 

(4.41) Z u p ( y )dy<2 Z v p(y) dy < 2 ( ^ ( 1 + 3e0)) , 
n 

B ( j , 2 5 0 | x | ) \y\<S2L i,j 

for large i where i j (y) = M~j u i f a;i + M ij 2 y 

In the followings, both eo and RQ will be fixed. For the simplicity 
2 

of notation, we let Xi = x i i. Note that lim Ui(Xi)jXi j i~1 = +oo. As 

in (4.2), we let i(y) = M i u^x i + M i 2 y) with M i = u i(x i). By 
Lemma 3.1 and Lemma 3.2, for any e > 0 there exist 82 = 82(e) > 0 
and a positive integer i = i ( e ) such that for i > i , 

min v i(y) < (1 + e ) U ( r ) 

holds for 0 < r < ^ L i and, by (3.29) we obtain 

(4.42) Z v ( y ) d y < ^ ( l + 4 e ) , 
|y|<*2L i n 

M i 2 ja;i j1_Qfi ) . In particular, there exists R = 

R(e) > 0 such that for i > i , 

(4.43) Z v p i{y)dy<n. 
R<\y\<82L i n 

Therefore, by Lemma 2.3 and (4.39), there exists a constant ci > 0 such 
that 

(4.44) v i(y) < ciU0(y) 
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p i - i 

for jyj > 2M i 2 jx i j and large i. 
Let e i = jVK i(x i)j~lVK i(x i) and let y satisfy Xi — y = jx i je i. 

Applying the Pohozaev identity, we obtain 

n - 2 

2n 

+ 
(4.45) 

\x\<l i 

n n — 2 

p i + 1 

y i) • V Ä ' i ( x ) u + (x) dx 

K • u p i dx 
\x\<l i 

\x\ = l i 

, _ , du i V u 2 n - 2 <9u 
(x — y i, vu i)— (x — y i, v) ili—— 

( x - y , v) p i+1 

+ — n - K i(x)u i da 

p i - i 

where l- = -^-L i M i 2 . By (4.44) and the gradient estimates, we have 

for jyj 22. L 
2 ii 

jVv i(y)j < cxv i(y)jyj 1 , 

which implies for jxj = l-, 

(4.46) 
u i{x) < c2M i L n+2 

jVu i(x)j < c2M i 

By (3.49), we have 

(4.47) 

which and (4.46) lead to 

i + p i - i 

L -n+1 

lim M i = 1 
i—>- + oo 

the right-hand side of (4.45) < c L 

(4-48) = c M i 

= oflijx 

n+2 

p i - l 
2 a i - l 

To estimate the left-hand side of (4.41), we decompose 

B(0,l i) = B(0,5jx i j)U AtU A2U A3, 

where 

Ai = { < M i p R}, A2 = { > M 2 R 
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and 
Sjx i j < jxj < 3jx i jg, A3 = fxj 3jx i j < jxj < l i g, 

and R = R(e) in (4.43). It is easy to calculate 

Z (x - y ) •rK i(x i)u p i i+1(x)dx> c4jx i jai v p i dy 
(4.49) Ax yI<I 

:_ c5 j x i j , 

where c5 depends on n and the lower bound of j r K i(x)j jxj~ai+l. 
jj~lB(x i,2S0jx i 

e i c B(0, 6jx i j) 

Let e i = \j^B(x i,2Sojx i j). Then from (4.37) it follows that 

for i > i0(S). Since u i(x) < 2C0jxj p - 1 for x G B(0,Sjx i j) n e i, by 
(4.47) we obtain 

Z jx - y i jjrK i{x)ju p i+1{x)dx 

B(0,8\x i\)\Qi 

( 4 . 5 0 ) . j j Z a i - i - 2 - i l 
v ' <c x - jxj i~l dx 

B{0,B\x i\) 

for i > i0- Let B j = B(x i j l 2£0jzj j) and k = j i - j . Then by (4.40) and 
(4.41) we have 

jx ~ y i jjrK i(x)ju p (x) dx 

<c 8 jxjjx j " i - 1 Z u- dx 

^c ^ x i j j x j j - 1 <c9jxjai5k , 

Therefore, 

p + i (4.51) e jx-y j jjrK i(x)ju p i+l(x)dx < 2c9jx i jaiS . 

Let S be sufficiently small such that 

c5 (4.52) jx-y i jjrK i(x)ju p i+1 dx < 
B ( 0 , 5 | x i|) 2 
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holds for i > i . For the rest of the proof, 8 will be fixed. 
By (4.39), (4.43) and (4.47), for i > max(i2(<%(e) ) we have 

(4.53) 

y i j 

< 

-c 

< 

jVK i(x)j 

ciojx i jai 

j j (y i 
c w x i 

—-c5 jXi j 

p i+l 
u 

Z 
R<\ 

R<\y\ 

• 

dx 

y\<S2L 

<S2L i 

v p i dy 
i 

p i 

v i dy 

if e is sufficiently small. 

For x G A3, let x = Xi + M i 2 y. Then 

jyj > M i 2 j x - xj > -M 2 jxj , 
— i — rt i * 

i - 1 

which implies jxj < 2 M i 2 jyj. Together with (4.44) and (4.47), we 
have 

x — yjjVK{x)ju p i i dx 
A3 

(p i-l)ai 2n 

yjai v i 2 ( y ) d y 

(4.54) 

Combining (4. 48), 

< cio M i 

< c n M ~ 

< c n M ~ 

= c u jx i j 

= o(l) jx i 

2 

(p i - l ) a i 
2 

(p i - l ) a i 
2 

i ( M i 

jai 

(4.49) and (4.52)— 

f 
—-c5 jx i j

a i < o 

R<\y\<S2L i 

Z 
R<\y\<S2L i 

p i - i \ - c 
9 \ 

jx ' j 

-(4.54) gives 

< i ) j x - j , 

y j a i - n dy 

which obviously yields a contradiction. Hence, the proof of Theorem 
1.2 is completely finished. q.e.d. 
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In this section, we are going to prove both Theorem 1.3 and Theorem 
1.4. The key step for the proof of both theorems is the following lemma 
— Lemma 5.1. To state Lemma 5.1, we rewrite equation (1.1) into 

4 

Au i + c i(x)u i = 0 with c i(x) = K i(x)u"~2. By Theorem 1.2, we have 
c i(x) < cjxj~2 for some constant c > 0. Applying the Harnack inequality 
and the gradient estimates of linear elliptic equations, we have 

(5.1) sup u i(x) < c\ inf u i(x) 
\x\=r x = r 

and 

(5.2) jru i(x)j < c i u ^ x ) j x j " 1 

hold for j x j < 1. 

Let w i(t) = i ( r ) r - 2 — and r Z e t, where 

u i(x i + x) da 
jdB r j \x\=r 

is the integral average of Ui{Xi + x) over the sphere jxj = r. By (5.1) and 
(5.2), both w i(t) and w'^t) are uniformly bounded for all t < 0, where 
w' denotes the first derivative of toi with respect to t. By elementary 
calculations, toi satisfies 

(5.3) [-2-) w i - ciw < w < {—r w ~c2w i {t) 

for all t < 0 and two positive constants c\ and ci- From (5.3), there 
exists a small positive number ei > 0 such that w"(t) > 0 whenever 
w i(t) ^ e i - For simplicity, we replace toi by w(t) in the following lemma. 

L e m m a 5 .1 . There is a small positive number eo < ei such that 
the followings hold: 

(i) Suppose that w(t) is nonincreasing in (to,ti) with w(to) < eo-
Then the inequality 

(5-4) t l _ t 0 < 2 w £ t K c 
n — 2 w{ti) 

holds, where c is a constant. Futhermore, if t\ is a local minimum point 
of w, then the inequality 

, x 2 w(t0) 
(5.5) t - t 0 > - l o g . y°> w(t 
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holds. 

(ii) Suppose that w(t) is nondecreasing in (t i , t2) with wit?) < eo-
Then 

, x 2 w(t2) 
5.6 t 2 - t < -log-^l + c 

n — 2 w{ti) 

for some constant c > 0. Furthermore if t\ is a local minimum point of 
w, then 

(5.7) t _ t , > 2 wtt) 

n — 2 w{ti) 

holds. 

Proof. Suppose w is nonincreasing in (to,ti). By the first half of 

inequality (5.3), w2 — (n j^) w2 + cw n^ '(t) is nonincreasing in ( t j t i ) 
where c = — - c i . Hence 

n 1 

(5.8) w2-g(w)>-g(w(t1)) 

for t G [ t j t i ) where g{w) = (n^—) w — cw n~2. Integrating (5.8) gives 

, , w{to) dw 
(5.9) ti - t < (t) p g{w) - g{w{ti)) 

By scaling, 

w(t) dw fwt) dr, 

(ti) p gJwh^giwit)) i giv) -g(1) 

where g(77) = ( ^ ) T?2 - c w t ) - ) , - . For 1 < p < w g j < w t , we 

have 
2n 

4 fin —2 — \ 4 4 -Jl— 

w n-2{t) 2 _ < c2w(ti)n-2j7n-2 < c3e0n-2 
77 

Hence, if eo is sufficiently small, then 

Wî) dì] 

Vg(v) -g(1) 
w(to) w(to) _ J _ 

n — 2 w(ti) 
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for some constant c . Here, we have used 

w(to) 4 4 

- ä - / x Z"wFtT p ? n - 2 , _J_, , (w(t0)\ n~2 

w n-2(ti) / d??< c5w n-2(ti) —^--i < c5e0 . 

Therefore, the first part of (i) is proved. 
For the proof of the second part of (i), we use 

n — 2 
w tt < ~ 2 ~ ~ w • 

Hence w t — (n j^) w is nondecreasing in ( t> t i ) - In particular, we have 

(5.11) w t - ( ^ ) w ( t ) < - (^-)2w2(t) , 

because w'(ti) = 0. Integrating (5.11) gives 

2 Z ^ dw 2 w(t0) 
t - t 0 > — - = > — - log • l o ; 

n - 2 w t l ) p w 2 ( t ) - w 2 ( t l ) n - 2 w f t ) 

Hence, the second part of (i) is proved. 
If we let w(t) = w{2t\—t) for t G (2t\ — ti, t\ ), then (ii) immediately 

follows by similar arguments to (i). q.e.d. 

Proof of Theorem 1.3. Obviously, (1.13) is a consequence of Lemma 
1 2 a i 

n+2 -ßi 3.2 and Theorem 1.2. Since u i(x) ~ M i n+2 for Ixl = M i where 
(ii ~ b- denotes that a i/b i are bounded below and above by two con
stants independent of i, it suffices to prove the lower bound of (1.14). 

Let x i satisfy u i{x i) = m_axu i(x) = M i. By Lemma 3.4, we may 
Bi 

2 
n — 2 assume lim M n Xi = £. By Lemma 3.6, £ satisfies 

i—> + 0O 

2 n 
n —2 VQ(Ç + y)U0n-2(y)dy = 0. 

Let u*(y) = r i 2 u ( x - + r i y) with r i = M i , where 

' n - 2 n - 2 
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In Section 3, we have proved u*(Q)u*(y) converges to h(y) = a\y\2 n-\-b 
in Cf0C(R n n {0}) where a > 0 and b > 0. Moreover, from (3.62) and 
(3.63), we have 

lim u* ( 0 ) P ( 1 ; u ) 
i—> + oo 

2n 
lim u* (0)r i y • VK i(x i + r i y)u*{y)n-2 dy 

i ^ + O O Bi 

2n 
n — 2 yVQ(Ç + y)U n-2(y)dy 

where 

n - 2 J u * 1 9u* 
P(i; u) = — ^ u ^ T - - dVuM + 

* 2 u " • i 2 

i / 9 B l 2 i 9// 2 i 9// 

n - 2 „n 
H—7^—K i(x i + r i y)u* day . 

Since u*(0)u* converges to h(y), a simple calculation leads to 

lim u* (0)P(1; u = -{n - 2)an ab < 0 , 
i—> + oo 

where <n is the area of unit sphere S n - 1 . Therefore, by the assumption 
of Theorem 1.3, we have 

(5.12) Q(Ç + y)U0n-2(y)dy<0, 

from which both a and b > 0. Hence it implies w i(t) has its first local 
minimum at t i = — ßi log M i + c + o( l ) , where c is a constant. We also 

have w(£i) = const. M n~2. We want to prove w(t) < eo for t G (£i,0), 
where eo is the positive number stated in Lemma 5.1. 

Suppose the claim is not true. Let t* < t i < t i satisfy w i(t*) = 
w i(t i) = eo and w i(t) < eo for t G (t*,t i). Since u*(0)u*(y) converges to 
h(y) = h(\y\), we have Ui{Xi + x) = i ( | x | ) ( l + o(l)) and \VUi(Xi + x)\ = 
—u'i(|x|)(l + o(1)) at \x\ = efî- By a simple computation, we have for 
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r = e 

(5.13) 

P(r i , u i 

°n \w i { t ) - \ n ^ w i(t) + n K r w n2 (t) 

+ (w i ( t i)+w2i(t i))o(l) , 

where K i(r) — j B j R Kda and 
jx — x i j=r 

P(r i , u i) 
n-2 du i r i 2 <9u 2 

—^ u T V i + -r— r 
j x — x i j=r i dv 2 9z/ 

n — 2 
+ -n-K i{y)u i 2 { y ) r i day . 

2n 
n — 2 

Since w1 (t i) = 0, (5.13) implies 

w i(t i) <c n jP(r)j 

2n 
n — 2 

B r i nB r 

VK i(x)ju n-2 dx 

+ jx •VK i(x)ju n~2(x)dx 

(5.14) 

= I + I , 
where r* = e t i . Since jx • VK i(x)j < cjxjai, 

(5.15) jI2j<c2(r*)ai=c2exp(ai t*) . 

To estimate I i , by (5.5), we have for t* < t < t i 

~n-2 
w(t) < csw(t i) exp - ( t • - t ) 

Thus, 

jIj <csw n-2 (t i) exp(nt i) exp — (n — oti)tdt 
t 

<c ̂  w n-2 (t i) exp(nt i) exp(ai — n)t* . 
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n - 2 

From (5.4) it follows that 

w(t i) < c5w i(t*)exp 

Putt ing these two estimates together gives 

2n 

(5.16) \I\ < c 6 e 0 - 2 exp (a t* ) . 

(t* - t ) 

w(t i) < c 7 e x p ( y t * ) . 

Therefore, 

(5.17) 

Applying (5.5) and (5.6), we have 

Ot; 

t - t > log' 
2 e0 

• l o g -

and 

n — 2 w(t i) n — 2 w{t i) 

2 2 wft 
t - t > log • l o g - eo 

n — 2 w(t-) n — 2 w(t-) 

Put t ing these two inequalities and (5.17) together yields 

T * ^ 4 eo . 2o;i 
t - t > log —y-Y > - - -t i - c8 

Hence 

n — 2 w(t i) n — 2 

2 a, 
t- + n - 2 

1 t* > - c 8 . 

Suppose a — lim oi > ^ p . Then 
i—T- + 0O 

which yields a contradiction, because lim t* < lim t i = —co. Hence 

w i(t) is increasing in (£i,0] with w i(0) < eo- By (ii) of Lemma 5.1, 

u i ( l ) = w i(0) > ci0w i ( t ) e _ n V f 8 

> c n M i n-2 . 

Applying the Harnack inequality gives the lower bound of (1.14) for 

\x\ > M~ßt. 
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If a = n= 1 , then t > - c 8 and % j - l t* > - c 8 . Since t* < t , 

we have 

M~2~ < c 1 2 

for some constant c\2, and there exists a to, which is independent of i, 
such that toi is increasing in [£i , t ] with w i(to) < eo- Let r® = e t . By 
(ii) of Lemma 5.1, 

u . . n — 2 n — 2 t, 

i(r0) =w i(r0)e 2 t >cww i(t)e 2 < 
2at 

= c i o u ( e t0 >cnM i ~ ~ . 

Applying the Harnack inequality, we have the lower bound of (1-15) for 
the case of a = n=1. Obviously, (1-16) is an immediate consequence of 
(1.13)—(1.15). Thus, the proof of Theorem 1.3 is considered completely 
finished. q.e.d. 

Proof of Theorem l.Jh By Theorem 1.2, we have 

n — 2 

(5.18) u i(x) < c\ jxj 2 for jxj < 1 . 

Applying estimates of linear elliptic equations, u i(x) is bounded in 
Clc(Bi n {0}). Without loss of generality, we may assume Ui converges 
to some positive function u in Cf (Bin{0}), where u is a postive smooth 
function of 

n + 2 

(5.19) Au + K(x) u n-2 = 0 in Bt n {0} , 

and K(x) = lim K i(x). In the following, we want to prove u has a 
i—> + oo 

nonremovable singularity at 0. In fact, we claim that 

For any u > 0 , there exists a positive r$ > 0 

and io such that u i(ro) > Z for i > io, where 
(5-20) 

u i(r) = ——— u i da . 
joB r j \x\=r 

Now suppose (5.20) is not true. Then there exists u > 0 and 
u i(r i) = u for some r i > 0 such that lim r i = 0. Let w i(t) = 

n — 2 

u ( r ) r ^ — and t = logr . Denote t i = logr i. Then we have w i(t i) = 
uç>e 2 t• -> 0 as i -> +00. Hence we may assume w i(t i) < eo for all i 
where eo is the constant in Lemma 5.1. 
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Let t* = sup{t < t i j w i(t) = eo}. Without loss of generality, we 
may assume there are no local minimum of toi in (t*, t i). To see this, we 
assume there is a local minimum t i G (t*,t i). Then, by (5.6), we have 

u = u i{r i) < u{e t ) < cu i{r i) = cu0 , 

for some constant c > 0. Let t i and u be replaced by t i and cu 
respectively and then we may assume there are no local minimal points 
of w i in (t*,t i). Thus, we have w i(t) < 0 for t G (t*,t i). 

Let r* = e t i and let 

(5.21) u{y) = u r * y ) { r * ) ^ . 

Since u i(y) satisfies 

n + 2 

Au + K i (r*y) ^ " 2 = 0 , 

and is uniformly bounded in any compact set of R a n { 0 } , wi(y) converges 

in C loc (R a n {0}) to u , where u satisfies 

n + 2 
(5.22) A u + n ( n - 2 ) u 0 n - 2 = 0 in R n n {0} 

Applying the Pohozaev identity leads to 

(5.23) P(l;u i) = {n 2)r* yVK i(r*y)u i 2 ( y ) d y 
2n 

* n — 2 

2n \y\<l 

where P(r,u i) is defined in (1.18). Since 

2n 

jyVK i(r*y)ju i 2 ( y ) < cr i i " j y j G Ll{Bx) 

by Theorem 1.2, we have for any r > 0, 

P(r, u ) = lim P i(r; u ) = 0 . 
i—> + oo 

If u has a singularity at 0, then u { x ) = u ( j x j ) and P ( r ! u ) = 
constant < 0 by an elementary calculation. Hence u is smooth at 

0. By a theorem of Caffarelli-Gidas-Spruck, u can be written as 

( n-2 

i + A j y - % j 
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for some A > 0 and 770 £ R n- We have from (5.18), 

Aj??oj < ci . 

Step 1. We claim r]o = 0. 

First, let us assume 770 / 0. Hence, u has a local maximum at rji 
and, by (5.21), Ui has a local maximum at y i, where 

(5.25) y i = r*T]i, and, lim rji = TJ0 . 
i—> + oo 

2 

Let i = u i(y i)n-^y i. Then 

2 _ . 

lim i = lim u ( r i ) n - 2 ( r * ) y i 

(5.2b) = lim u i{r}i) n~2rfi 
i—>-+00 

= Ar/o = 6 • 

Thus, 

(5.27) 0 < c2
_1 < u i{y i)£zjy i j < c2 . 

Since (5.18) holds for all jxj < 1, we have for large R > 0, by (5.27) 

u yJ < ci jyj 2 

n —2 n —2 

< c i R 2 jyj 2 

when j y j > Rjy i j. From the uniform convergence of u in any compact 
set of R 1 n {0} and jy i j = const, r*, it follows that 

(5.28) u i(y i) = max u i(x) 
j x j > S j y i j 

for any fixed but small positive 8. 
Let 

v i(y) = M-1u i(y i + M~^y\ , 

where M i = wi(y i). Obviously, i(y) converges to Uo(y) uniformly in 
any compact set of Mn n {—Co}, where Ço is the vector in (5.26). By the 
same arguments in Lemma 3.1, we can prove Lemma 3.1 still holds for 
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v i(y) outside of a small neighborhood of {—Co}, i-e., for any e > 0, there 
exists Si = S(e) and io = i ( e ) such that 

(5.28) min v i{y) < (1 + e)U(r) 
jyj=r 

for 2jf0j < r < SXL i with L i = M i n -2 '2 . 
To see this, we suppose (5.28) is not true. Then there exist an eo 

and a sequence of r i —> +oo as i —> +oo such that 

min v i(y) > (1 + 2 e 0 ) U ( r ) , 
jyj=r, 

where r i < SiL i for some small Si > 0 to be chosen later. Without loss 
of generality, we may assume —Co = 2roei for some To > 0. Let 

v i{y) = v i{y+T 0ei) , 

' o y 

By a straighforward calculation, we have 

n — 2 

U°(y}= ( 1 i \ 2 j — ; — j ) 

and 
Uo(0) = r 0 - + 2 , 

l + T 2 T 3 

where A = —^- and yo = 1 ,° 2ei- It is easy to see that there ex-
To 1 + T o 

ists a small S > 0 such that the image of the neighborhood B(—^Q,S) 

of —Co under the map y —> Äy + TQeI is contained in the half-plane 

{(yi, • • • , y n)j yi > 0}. In Lemma 3.1, what we have to need about v i 
3 

is the estimates of v i(yx) for A < Ao and yi > Ao, where Ao = — h °̂ 2 • 

Since y is not contained in the image of B(—^o, S) under the inversion, 

jy j + T0ei £ B(-^0, 5) and we have 

j y A j j y j 

for some constant c > 0 and for A < Ao and yi > A. Then we can obtain 
all the estimates in Lemma 3.1 without any modification, and apply the 
method of moving planes to obtain a contradition. 
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Applying Lemma 3.2, there exists R = R(e) > 0 such that 

n + 2 
n — 2 

v i 2 (y) dy < n 

R(e)<jyj<S2L i 

Choose e so small such that Lemma 2.3 can be applyed. Thus, 

(5.29) v i(y) < c4U0(y) 

for 2j£oj < y < l = ^L i where c and 82 are two constant independent 
of i. In particular, 

(5.30) 

for jyj = l i. 

v i(y)<c4l-n
+2, 

jVv i(y)j<c5l-n
+1 

Multiplying -v on the equation for i, we have 

n - 2 -^2. 

2n jyj<l ax j 

- 2 2 n 
n —2 n — 2 y I M i n"2y v fyjdy 

(5.31) 
jyj=l i 

oi 9i 1 
9 Î j du 

jVvj2v i j j 

n - 2 ^2_ _2n 
d<7 . 

By (5.30), the absolute value of the boundary term is bounded by 
c6l~n+1. Hence, 

lim L n j the boundary term j = 0 . 
i—> + oo 

On the other hand, we have 

dK ^2. 
n — 2 y i + M i 2 (y) v i 2 (y) dy 

2n 
n — 2 lim L - 2 M n-2 

i-S- + 00 jyj<l ÖXj 

lim K ( M i 2 y i + y v i 2 ( y ) d y 
i^ + °°jyj<l i 9x j 

dQ 

2n 
n — 2 

2n 
n — 2 

n dx 
?o + y) U-2 (y) dy , 
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where we ultilize for any S > 0, 

M n~2L 2 n — 2 

< M n~2 L n 

B(-io,S) 

2 n — 2 

dK 
dx 

2 2n 
n — 2 n — 2 

y < y l 9x 
L(y) 

2n 
n — 2 u - 2 (y) dy 

< c7 M n~2 L 2 n — 2 at — 1— n 

\y\<fj y 
dy 

2 
n — 2 

Therefore, Ço satisfies 

2n 

(5.32) Z VQ(Co + y)U0n-2(y)dy = 0. 

By (5.18), we have 

n — 2 

(5.33) u y i + y)\y\ 2 < ci for 2 y ' l < y < ! • 

Let rt- = M~^L = M~ß' where i = ^ f1 " ^ ) > and u ( y ) 

^ 2 u i(y i + r i y). Then u * ( 0 ) = i 2 «i(?i) = M n - 2 -> +00 as i -> +00. 
By (5.33), u*(y) is uniformly bounded in R n n {0}. By (5.29) and the 
Harnack inequality, 

is uniformly bounded in C ̂  (R n n {0}). Without loss of generality, we 
may assume u*(Q)u*(y) converges to h(y) in C ̂  oc(R n n {0}), where h(y) 
is harmonic in R n n {0}. Thus, by Liouville's Theorem, 

h(y) = a\y\2-n + b 

with a, b > 0. By Pohozaev's identity, we have 

n - 2 
r i y • VK i{y i + i y)u*(y) n-2 dy = P ( l ; u*) 

Zn B, 

where P(l;u*) is given in (1.18). 
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By elementary calculations, we have 

(5.34) lim u* (0) f i ( l ; u*) = -(n- 2)an ab , 
i—> + oo 

where an is the area of S n 1 . 
On the other hand, 

u i ( ° ) ^ i y • ^K i{y i + r i y)u*(y)n-2 dy 
B1 

(5.35) 
2n 

n —2 

jyj<L i 

+ o(l) Z \y\\$i + y\ai-v n - 2 d y . 
jyj<L i 

For any 8 > 0, we have the estimate 

yVK i{i + y)v n-2{y)dy 

2ai 
n — 2 

2n 
n — 2 ^2 y-VK i(y i + y)u n 2 (y i + y) dy 

(5.36) < M i 
2ai 
n — 2 

2n 
n — 2 

jy + y i j<c2 < i j 
( y V K y i + y ) ) u 2 ( y i + y)dy 

2ai 
n — 2 a — l — n dy <c3M n-A\y i\ \y 

jyj<cSjy i j 

= c4M i \ y i\aisai-1 

<cz8ai-1 , 

where c5 is a constant independent of i. Since i uniformly converges to 
U0(y) in B ß n B(-o, 5) for any large R > 0, we have by (5.29), (5.32) 
and (5.34)—(5.36), 

2n 
n —2 (n-2)CTn a b = n — ^ lim j y-VQ^ + y)v n~2 dy 

In ^+ooyj<L i 

n-ï 
ïn 

a(n-2) 
2n 

2n 
n - 2 

y v Q ( ç + y)U n-2(y) 

2n 

Q(ç + y ) ^ U n " 2 ( y ) d y < o . 
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From the assumption, it follows that 

2n 

(5-37) Q(Co + y)U0n-2(y)dy<0, 
n 

so that both a and b > 0. 
— 2 

Let w i(t) = u i(r)r nï~ and r = e t where u i(r) is the integral average 
of u i{y i + y) over the sphere \y\ = r. Since u*(0)u*(y) —> a\y\2~n + b 
in C ̂  (R n n {0}) with both a,b > 0, tci has a first local minimum at 
T i = -ßi logM i + c+ o(l). Recall w(t*) = e0 and lim w i(t) = 0. 

i—> + oo 

Thus, we have r* = o(l) min (e^ — ' , r i) as i —> +00. Meanwhile, by the 
Harnack inequality, we have 

c6 u i(r) < u i(r) < c6u i(r) 

for r > 2 | Î i | , where c is a constant independent of u and i. 

If t- > T, then, w i(t) uniformly tends to 0 for T < t < t i as i —> +00. 
Therefore, tci has no local minimum point in (T i, t i] for large i. By (ii) 
of Lemma 5.1, we have 

c 7 M i n-2 < u(e T') < cu i(e t ) < c8u0 . 

Since lim 1 ^ = 1 — - ^ > 0, M i is bounded, which yields a 

contradition. 

If t i < T i, Then 

c 9 M ̂ " ^ < u i(T i) < u i(t i) = u0 , 

which again leads to a contradiction. Therefore, we have proved 770 = 0. 

Step 2. 
Applying a variant of the Pohozaev identity (see (5.31)), we have 

r Z ^K (r i y) ̂ " 2 (y) dy 
(5.38) Z n r i y u < x 

T du du 1 n - 2 2n 

y = A , 
Vu-|2i/j + - ^ - i ( r i y)u i-2(y) y <9z/ 2 j 2n 

dy 

where Ai = (r*) n-2 . In the followings, we discuss two cases seperately. 
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Case 1. Suppose toi has no local minimum after t-. Then (5.4) and 
the Harnack inequality give 

u (y ) \y \n- 2 = u r * y ) ( r * \ y \ ) n - 2 ( r * ) - ^ 

(5-39) < c u ( r * ) ( r * ) ^ 

= c o 

for 1 < \y\ < ( r * ) _ 1 . By gradient estimates, we have 

| V u - ( y ) | < c 1 u - ( y ) | y | - 1 < c 1 | y | - n + 1 

for \y\ > 2. Hence, the absolute value of the right-hand side of (5.38) 

< c3 \~n+1. Multiplying An"2 = (r*)" a i on both sides of (5.38) leads to 

0 = (n-Z\ lim ( r * ) - i + 1 Z d-K(r*y)u n(y) dy 
In i ^ + O O jyj<\j öx j 

(5.40) =n-^lR Q(y)u n(y)dy 
in Z n ox j 
n - ï ÖQ , n 

where we have untilized (5.39) and the following estimate: For any 
8 > 0, by Theorem 1.2, 

(r*y)u i 2 (y) dy < c4 (r*)«i"1 Z \y i~ l~n dy 

Case 2. Suppose toi has a local minimum after t i, then, by (5.4) and 
(5.5), we have 

c l u r ) ( r * ) n - 2 < u i r ^ r 2 = u 0 r 2 < c2 u ( r * ) r ) n " 2 • 

n — 2 

Recall u i(r*) {r*)~T~ = eo- Hence, 

(5.41) c3(r*)ï <r i<c4(r*)ï 

where both c and c are independent of i. Thus, as i —> +00, 

(5.42) (r*)1-i = o(l)r , 

dK 
jyj<8 
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which and (5.4) give (5.39) again, tha t is, 

(5-39') u i(y) < e0\y\2~n 

for 1 < \y\ < (r*)n-2 = Ai. Hence, by (5.38), we have the same conclu
sion as (5.40). 

Let u*(y) = u ( \ i y)\i2 . By Theorem 1.2, u*(y) < c\y\ ~ . 
n — 2 

Therefore u*(y) is uniformly bounded in C 2 ( R a n { 0 } ) . Since Xi 2 u*(y) 
satisfies 

/ n-2 \ 4 / n-2 \ 
A Ai 2 u*(y) + K i(Xi r*y)(u*)— Ai 2 u ( y ) = 0 , 

and, by (5.39) and (5.39'), Xi 2 u*(y) = An u i{i y) is uniformly bounded 
n — 2 

in any compact of R 1 n {0}, Ai 2 u*(y) converges to a harmonic func
tion h(y) in C ̂  (R n n {0}). Using Liouville's Theorem, we have h(y) = 
a\y\2~n + b for a, b > 0. By a similar argument as in Step 1, we have 

0 > — (n — 2)an ab 

= ^ l i m A i 2 ( A , r * ) Z yVK i(\i r*y)(u*i)n(y)dy 
In i->+OO Bi 

n — 2 2n 
= lim A i 2 r * Z y • VK i(r*y)u i 2 (y) dy 

In i ^ + O O jyj<\ t 

{n 2)a Q(y)Ur2(y)dy 
2n 

n - 2 

2nA 

Thus, by (5.40) the assumption (1.6), 

2n 
n - 2 (5.43) Q(y)U0n-2(y)dy<0, 

which implies that both a and b > 0. Therefore, we conclude that toi 

has at least one local minimum at T i 

Since 1 — ^ 2 > | , we have by (5.41) 

has at least one local minimum at T i = 1 — n ^ t* + c + o(l) after t*. 

t* < T i = i - i t + c < \t i < t 

for large i, which yields a contradiction to the assumption that there 
exists no local minimum point of toi between t* and t i. Thus, (5.20) is 
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proved. Since u has a nonremovable singularity at 0, we have R B 

+00, and therefore lim R B u n~2 (x) dx = +00. 

By (1.7) and the Harnack inequalty, 

u n-2 

2 

+ 0 0 = u n~2 (x) dx < c\ u n~2 (x)jxj n+ dx 
Bi JBI 

< c2 Z I inf u'^2(x) ) dr , 
O \x\=r ) 

4 „ 

from which the completeness of u n~2 jdxj follows immediately. 
Suppose Q(x) satisfies that 0 is the unique zero of 

2n 

VQ(Ç + y)U0n-2(y)dy = 0. 

We want to prove u(x) is asymptotically symmetric. Suppose the con
trary. Then there exists a sequence of Xi —> 0 as i —> +00 such that 

(5.39) u(x i)>(l + €0)u(jx i j) 

for some positive eo, where u(r) denotes the integral average of u over 
n — 2 

jxj = r. Let v i(y) = u d x j y ) j x j ^ - . By Theorem 1.2, i(y) is uniformly 
n — 2 

bounded in any compact set of R n n {0}. If u ( j x D j x ' j ^ - —> 0 as i —> 

+00, then there is a subsequence of i (still denoted by v i) such that 

v%i yK converges to a positive harmonic function h(y) in C ̂  oc{R n n {0}). 

By Liouville's Theorem, h(y) = ajyj2~n + b with a, b > 0 and a + b > 0. 
n — 2 

Obviously, it is a contradiction to (5.39). Suppose u(ja;i j ) j x j ^ - > c > 0 
for some constant c. Then v i(y) converges to Uo(y) in C ̂  (R n n {0}). 
As the argument in Step 1, we see that Uo(y) is smooth at 0. Hence 

( n-2 

TTT^jy j2) 2 • 
1 + A % - i]0

2 

Suppose T]Q / 0. Then u has a local maximum at Xi where Xi satisfies 

lim [u{x i)n=2x i) = Xr]o = Ço • 

Since u i converges to u in C lo (Bi n {0}), there is a subsequence of Ui 
(still denoted by u i) and a sequence of local maximum points y i of Mi 
such that 

2 

lim Mn-2 (y i) jy i j = Ç0 • 
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Thus, we can repeat the same argument as in Step 1 to prove that Ço 
satisfies 

2n 
n — 2 VQ(Ço + y)U0n-2(y)dy = 0. 

By the assumption, we have Ç0 = 0, which obviously yields a contradic
tion. Hence we have proved 770 = 0. However, it also yields a contradic-

4 
tion to (5.39). The completeness of the comformal metric g = u n~2 \dx\ 
is the consequence of the fact that u has a nonremovable singularity at 
0 and the Harnack inequality (1.12) holds. The unboundedness of cur
vatures of g is an immediate consequence of Proposition 2.6 in [22]. 
Therefore, the proof of Theorem 1.4 is completely finished. q.e.d. 
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