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Abstract 
We prove the existence of smooth closed hypersurfaces of prescribed mean 
curvature homeomorphic to S n for small n, n < 6, provided there are bar­
riers. 

0. Introduction 

In a complete (n+l)-dimensional manifold N we want to find closed 
hypersurfaces M of prescribed mean curvature. To be more precise, let 
Q be a connected open subset of N, f G C0,1(Ù). Then we look for a 
closed hypersurface M Ç_£l such that 

(0.1) H j M = f(x) VxeM, 

where H jM is the mean curvature, i.e., the sum of the principal curva­
tures. 

The existence of a generalized solution M = dE, where E is a 
Caccioppoli set minimizing an appropriate functional, is easily demon­
strated if the boundary of Ci is supposed to consist of two components 
acting as barriers. For small n, n < 6, the generalized solution is also 
a classical one, since it is smooth, M G C2'a, and hence a solution of 
(0.1); but nothing is known about its topological type. 
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588 c l a u s g e r h a r d t 

We shall prove that in the case where n < 6 and N is locally confor-
mally flat, or more precisely, when in Ci the metric is conformally flat, 
smooth solutions homeomorphic to S n exist. 

We make the following definition 

Definit ion 0 .1 . Let Mi , Mi be closed hypersurfaces in N home­
omorphic to S n and of class C2'a which bound an open, connected, 
relatively compact subset Ci. Mi , Mi are called barriers for (H,f) if 

(0-2) H j Mi<f 

and 

(0-3) H j M2 > f. 

Here, the mean curvature of Mi is calculated with respect to the normal 
that points outside of Ci while the mean curvature of Mi is calculated 
with respect to the normal that points inside of Ci. 

R e m a r k 0.2. In view of the weak Harnack inequality the barriers 
do no t touch each other, unless both coincide and have prescribed mean 
curvature f. In this case Ci would be empty. 

We shall consider such a region Ci bounded by barriers Mi , Mi for 
(H,f), where f G C0 , 1(Ù) is given, and assume that Q is conformally 
equivalent to an open, bounded set in R n + 1 . Furthermore, if we iden­
tify Q with its image in R n + 1 we suppose, that the barriers Mi , M2 can 
be considered as graphs over S n, i.e., after fixing the origin and hav­
ing introduced Euclidean polar coordinates (xa)o<a<n, where x° = r 
represents the radial distance, each M i can be written as a graph 

(0.4) M i = g raphu n = {(x,x°) : x° = u^x), x G S n}, 

where we use slightly ambiguous notation. 
The polar coordinates can also be considered to be a coordinate 

system in N covering Ci; the metric in N then has the form 

(0.5) ds2N = e2^d R n+i = e ( d r 2 + r2ij dx i dx j), 

where (Cij) is the standard metric on S n. 
Under these assumptions we shall prove 

T h e o r e m 0.3 . Let Ci, M\, Mi, and f satisfy the assumptions stated 
above. Then the problem 

(0.6) H j M = f 



c l o s e d h y p e r s u r f a c e s o f p r e s c r i b e d m e a n c u r v a t u r e 589 

has a solution M <ZÙ of class C2'a homeomorphic to S n, if n < 6. 

R e m a r k 0.4. Neither the function f nor its derivatives are 
supposed to satisfy any sign conditions. Even the assumption on the 
smoothness of f can be relaxed; if f is only bounded, then a solution 
M of class H2'p would exist for any finite p. 

The problem of finding closed hypersurfaces of prescribed mean cur­
vature has been considered by Bakelman and Kantor [1] and Treibergs 
and Wei [17] in the case where N = R n + 1 assuming that f is positive 
and satisfies 

(0-7) §-r(rf) < 0, 

r being the geodesic distance to some fixed origin. In [5] we proved the 
existence of a convex solution in space forms under the assumption 

(0.8) -K N fgaß + faß<0 in Q, 

where in addition f is supposed to be positive if K N > 0. In all cases 
the existence of barriers is required. 

The paper is organized as follows: In Section 1 we derive the basic 
equations for hypersurfaces in conformally flat spaces, in Section 2 we 
solve auxiliary problems, the solutions of which converge to the desired 
solution as is shown in Sections 3 and 4. 

1. N o t a t i o n and prel iminary results 

Let N be a complete (n+l)-dimensional manifold and M a closed hy-
persurface. Geometric quantities in N will be denoted by (gaß), (Raß-ys), 
etc., and those in M by (g ij), (R ijkl), etc. Greek indices range from 0 
to n and Latin from 1 to n; the summation convention is always used. 
Generic coordinate systems in N (resp. M) will be denoted by (xa) 
(resp. (£i)). Covariant differentiation will simply be indicated by in­
dices, only in case of possible ambiguity they will be preceded by a 
semicolon, i.e., for a function u on N, (ua) will be the gradient and 
(uaß) the Hessian, but, e.g. the covariant derivative of the curvature 
tensor will be abbreviated by Raß-yS-,6- We also point out that 

with obvious generalizations to other quantities. 
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In local coordinates xa and Çi the geometric quantities of the hyper-
surface M are connected through the following equations 

(1.2) x ij = -h i jv a 

the so-called Gauß formula. Here, and also in the sequel, a covariant 
derivative is always a full tensor, i,e., 

( l . o j Xij = x ij — 1 ij x k + 1 ß^Xi x j . 

The comma indicates ordinary partial derivatives. 
In this implicit definition (1.2) the second fundamental form (h ij) is 

taken with respect to —v. 
The second equation is the Weingarten equation 

(1.4) i = h k x k. 

Finally, we have the Codazzi equation 

(1.5) h ij;k ~ h ik;j = Raß~i8v Xi x j x k 

and the Gauß equation 

(1.6) R ijkl = h ik h jl - h il h jk + Raß^x i x j x k x l . 

Assume now, that the metric in N is (locally) conformal to the 
metric in R n + 1 , i.e., 

(1.7) ds N = e2^ds2R n+1 , 

or more precisely, assume that (1.7) is valid in the region Ci, where we 
shall consider Q to be a subset of N as well as R n + 1 without changing the 
notation. The same convention applies to hypersurfaces M contained 
in Ci where we distinguish the geometric quantities of M considered as 
a submanifold of R n + 1 by using the notation h ij, g i j , va, etc. The 
connection with the corresponding quantities in N is given by 

(1-8) g ij = e 2 i j , 

(1.9) va = e~i>va, 
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and 

(1.10) h ij e-1' = h ij+il)av
ag ij. 

Thus, the mean curvatures of M in N resp. R n + 1 are related through 

(1.11) He ^ = H + ni)aÛ
a. 

Assume now, that M can be written as a graph over S n, i.e., after 
introducing polar coordinates (xa) in R n + 1 , where x° = r, 

(1.12) M = graph u j S„ = { (r, x) : r = u(x), x e S n } . 

The metric in R n + 1 is then expressed as 

(1.13) ds2R n+1 = dr2 + r2(Jij dx i dx j, 

where (Cij) is the metric of S n; the induced metric of M is 

(1.14) g ij = u i u j + u2ij = u2((pi(fj + i j) , 

where ip = log u, and its inverse is given by 

(1.15) g ij = u-2((Tij ~^-^-
v v 

here v = p l + aijipiipj = p l + |DV|2) <7ij is the inverse of <ij, and 

The product u H can be represented as 

n 
1.16) uH = -D i(a i(Dip)) + - , 

here a i {Dip) = v - 1 ^ i and the divergence is calculated with respect to 

2. Ex i s tence of solut ions to an auxil iary problem 

As in [6, Section 4 ] we first find solutions to an auxiliary problem 
that will converge to the final solution. 

Definit ion 2 .1 . A hypersurface MQ is called a supersolution for 

(H,f) if 

(2-1) H j > f. 
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We, furthermore, recall our assumption that the boundary of fi con­
sists of barriers M i, i = 1,2, for (H,f) tha t can be written as graphs 
over S n, M i = graph u i. 

We can now formulate the auxiliary problem. 

T h e o r e m 2.2 . Let Mo = graph u , where u\ < u < ui, and u is 
a supersolution for (H,f) with f G C 0 , 1 ( f i ) . Then the problem 

( 2 2 ) (H = f-7e-^[u-u0], 
ui < u < u 

has a solution u G C2'a(S n) provided y and fi are sufficiently large, 
fj, = /i(fi, f) and 7 = j(fJ,, fi, f ) . Here, the reference that a term depends 
on fi should also indicate that geometrical quantities of the ambient 
space and the barriers are involved. 

2 .1 . C 1 - e s t imates 

Let u G C3'a(S n) be a solution of (2.2), where we first assume a 
slightly higher degree of smoothness so that the classical maximum 
principle can be applied to estimate Du, or equivalently, the quantity 
v= p l + \Dip\2 in (1.15). 

L e m m a 2 .3 . Let u G C3>a(S n) be a solution of (2.2). Then v = 
p l + lDt^l2 is estimated by 

(2.3) v < c o n s t ( | D u | , | D f | , 7 , M ) , 

provided y and fj, are sufficiently large. 

Proof. We transfer the equation in (2.2) into R n + 1 , i.e., we consider 

(2.4) H = e ̂  H - n/>„z> = ei'{f - ye~ßu[u - u0]} - n^av
a. 

Let x be the embedding vector for the hypersurface. Then we define 

(2.5) x = (x, v)~l = u~l{Dr, v)~l = u~lv, 

and we shall prove a priori estimates for \-

We choose local coordinates and compute the first and the second 
covariant derivatives of \ 

(2.6) Xi = ~(x, v)~2{x, Vi) = -x2hk{x k, x), 

(2.7) Xij = Zx^XiXj - X2h,j(x k, x) + Xh h kj - X
2hr 
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Hence, we conclude in view of the Codazzi equations, 

(2.8) - A X = -g ijXij = - 2 X - 1 | | D X | | 2 - \A\2
X + H X

2 + H k u k uX
2. 

Here, all indices are raised with respect to the induced metric, and we 
used the abbreviations 

(2.9) WDxW^g^XiXj and |A|2 = hkhk. 

The crucial terms are those which are quadratic in Xi they have to 
add up to something negative, if \ is large. 

To compute H k it is convenient to introduce polar coordinates (xa) 
in R n + 1 and to decompose Daf into its radial part and the tangential 
components with respect to S n 

(2-10) f = § f and f,i = | f -
or ox i 

We then obtain from (2.4) 

H k = e ̂ {f- je-ßu[u - uo]}i/)ax k - n^aßv
axßk - n^ahk x i 

+ e ̂ {fu k + fìk + jfie-^u - u0]u k - je'u u k - u0}k]}. 

IDuII' = D 

Using the relations 

(2.12) u k 

and 

(2.13) 

= u 2aik u i v 2 

xi = - X2h k u k u 

we conclude 

H k u k u < c\f\ + c\Df\ - cje-^[u - u0] [\\Du\\2 + X " 2 ] 

(2.14) + cX _ 1 + X- 3 | |Dx | | 2 + l»e~ßu[u - u0]\\Du\\2ue ^ 

- -je-^lWDuW2 - u-2v~2aij D i uüD j u^uel), 

where c = c(Q). Therefore, the righthand-side in (2.8) can be estimated 
from above by 

c[|f | + |Df | + l ] x 2 

(2.15) + 0" - c)\\Du\\2
ie-^[u - u0]ue ^X

2 

- -je-^lWDuf - u-2v~2aij D i uoD j u l u e ^x2 

http://IDuII'
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at points where | |Du| |2 > ^. We now choose \± larger than 2c, so that 
the second term in (2.15) is non-positive. Then, we choose y such that 

(2.16) c[|f | + I D f 1 + 1] K^ye-^ ue* 

and from the maximum principle deduce that 

(2.17) v<c(Q,Du0), 

where the constant is determined by the relation 

(2.18) 
1 

\D(p\2 - u 2aij D i u0D j u < -v 

q.e.d. 

2 .2 . Ex i s tence of solut ions 

We are still looking for hypersurfaces in R n + 1 , i.e., we want to solve 
equation (2.4) with the side-conditions 

(2.19) uI < u < u , 

or equivalently, we can solve 

(2.20) -D iia^Dtp)) + - = uH = ue ̂ {f - ye'^u - u0]} - un^av
a, 

where ip = logu; cf. equation (1.16). 
Let us denote the lower order terms in the preceding equation by 

a(x,tp, Dtp), and let <p\ = logui , <ÇQ = l o g u - Then we have to solve 

("2.211 
-D i{a i{Dip)) + a{x,ip,Dip) = {i, 

¥>i < ¥> < Pô-

Here, a i is a strictly monotone vectorfield, the lower order term and its 
derivatives are bounded in <p\ < ip < tpo, i.e., 

(2.22) 

and moreover 

(2.23) 

da 

dx i 
+ 

da 

dip 
+ 

da 

dp i \a\ + 

da 

< const, 

in <fi < <f < <Po, 
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due to our choice of fj, and 7, where we increase fj, and 7 a bit in view 
of the presence of the additional factor e v . 

To solve (2.21) we first assume that f is of class Cl,a and u of class 
C3'a. Extend f = Hi , where Mo = graph uo, to Ù by setting 

(2.24) f0(x,r) = f0(x), xeS n, 

and consider the convex combination 

(2.25) f t = tf + (l-t)f0, 0 < t < 1. 

Then, we look at the problems 

( 2 2 6 ) f - D ( i ( D ) ) + a(x, ¥>t, D¥>t) = 0, 

where f is replaced by f t, and we have a slight ambiguity in the notation 
for t = 1. The lower order term also depends explicitly on t, but since 
the estimates (2.22) and (2.23) are independent of t, if we choose 7 
sufficiently large—at the moment 7 also depends on f—, we do not 
indicate it specifically. 

We shall use the continuity method to prove that (2.26) has a solu­
tion for all 0 < t < 1. Let us treat (2.26) as a variational inequality 

(2 27Ì \(-D i{a i{DVt)) + a{x^ t,DVt),11-Vt)>Q V t ) G K , 

K={rieC°>1(S n) : ¥> i<??<¥>o} . 

It can easily be shown that the obstacles tpi, tpo act as barriers, i.e., 
they are sub- resp. supersolutions for any value of t, 0 < t < 1, so that 
any solution of the variational inequality is actually a solution of the 
corresponding equation. However, our proof of the solvability of (2.27) 
is valid for arbitrary C2'a obstacles. 

Define A through 

(2.28) A = { t e [0,1] : (2.27) has a solution <pt }. 

Then, we conclude: 

(i) A / 0, since 0 G A. 

(ii) A is closed. It is well known that any solution of the variational 
inequality is of class H2,p(S n) for any finite p. Therefore, the 
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solution does not touch the obstacles at points, where the gradient 
is larger than the gradients of the obstacles, and it is a solution of 
the equation there. At those points the solution is also of class C3'a 

because f, f are of class C1'", and Lemma 2.3 is thus applicable. 
We conclude further that uniform H2 'p-estimates are valid and 
hence uniform C1 , Q-estimates, which proves the closedness of A. 

(iii) A is open. To prove the openness we argue as in a former paper 
[8]. Let to G A and let (pto be the corresponding solution of (2.27) 
with 

(2.29) \D<pto\<co. 

Let a i = a{p) be a uniformly monotone vectorfield that coincides 
with a i for \p\ < co + 1. The existence of such a vectorfield has been 
shown in [8, Appendix II]. Then, the corresponding variational 
inequality 

(2 30) ( e D ' ( a i D ) + a x t ^ ) 1 1 - t > 0 V J 7 G K , 

K={rieH1>2(S n) : <px < V < po } 

has a solution (pt G H2'p(S n) for any t, 0 < t < 1, since the differential 
operator is uniformly elliptic in K, and there exists A > 0 such that the 
operator 

(2.31) Aip = -D^a^Dtp)) + a(x, <p, Dtp) + \(p 

is uniformly monotone, i.e., there exists e0 > 0 such that 

(2.32) e0\\ip-i]\\2
h2< (Aip-Ai],ip-i]) \/ip,r/eK, 

where the norm on the left-hand side is the norm in Hl,2(S n). The 
operator 

(2.33) -D i{ii{DLp)) + a{x,Lp,DLp) 

is therefore pseudomonotone and coercive in K, and the existence of 
solutions for the problem (2.30) follows from the general theory for 
solutions of variational inequalities; cf. [2]. 
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As we shall show below, the solutions of (2.30) are unique for each t, 
hence, they depend continuously on t in the C1,Qf-norm, and we conclude 
that for small e > 0 

(2.34) jD£t j < c + ì yteBe(t0), 

since (p>t0 = (ft0, and we deduce further, tha t these (pt are also solutions 
of (2.27), i.e., A is open. 

We have thus proved that A coincides with the whole interval, so we 
have especially proved the existence of a solution for the crucial value 
t = 1. In this case, f t = f and the obstacles are barriers, so that we 
deduce with the help of the weak Harnack inequality, tha t the solution 
of the variational inequality is actually a solution of the equation. For 
details see the uniqueness proof in Lemma 2.4 below. 

Let us point out, tha t at the moment the parameter y also depends 
on f , and hence on the second derivatives of u . However, y should 
only depend on juoj and the other quantities mentioned in Lemma 2.3. 
To achieve this result, we more or less repeat the argument just given 
in the first part of the existence proof. 

Let 7o be a constant such that the gradient estimate in Lemma 2.3 
and the relation (2.23) are valid for y > 70. Let 7 > 70 be arbitrary 
and define A through 

(2.35) A = { 7 > 7 : (2.21)= has a solution }. 

A is not empty as we have just proved. Let 7* = inf 7. By repeating 
the arguments which we used to prove that the variational inequality 
has a solution, we conclude that 7* = 7, i.e., the existence of a solution 
to the auxiliary problem is guaranteed provided 7 > 70-

Before we prove the uniqueness of the solution to the variational in­
equality, let us remove the additional assumptions regarding the smooth­
ness of f and u . We assumed in the proof f G Cl,a(S n) and u G 
C3'a(S n), so that the solutions (pt of (2.27) are of class C3'a at points 
where they do not touch the obstacles in order to apply the classical 
maximum principle to estimate the C1-norm. But the gradient esti­
mate for the final solution, when t = 1, only depends on the C1-norms 
of f and u , hence, we obtain solutions under the weaker assumptions 
by approximation. 

To complete the proof of the theorem, let us now show 
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L e m m a 2.4. Let Lp G K be a solution of the variational inequality 

(2 36Ì ( D a D ) + a ( ^ , D ^ 1 - ^ > 0 VrçeK, 
K = { ^ C ° ' 1 ( S n) : ¥>i<??<¥>o}. 

Then ip is uniquely determined, where we assume that the condition 
(2.23) is valid and a i, a are of class C1 in their arguments. 

Proof. Let (p, (p be two solutions of (2.36). Then we have to show 
ip = <p, or by symmetry, <~p > (p. 

We know that cp, (p are of class H2,p(S n) for any finite p. Suppose 

(2.37) G = {x : ^ < ^ } / 0 -

Then G is open, and in G we have 

(2.38) — D i(a i(D(p)) + a(x, (p, Dip) > 0 because ip < ip>2, 

and 

(2.39) — D i(a i(D(p)) + a(x, (p, Dtp) < 0 because Cp > (p\. 

Hence, we infer 

(2.40) -D i(a i(D<p)) + D i(a i(D<p)) + a(x, <p, Dip) - a(x, (p, DCp) > 0 , 

or, by setting ipt = t<*p-\- (1 — t)<p, 0 < t < 1, and using the main theorem 
of calculus 

(2.41) -D i{àij D j{<p - <p)) + — {ip -<p) + — D ( ¥ > -<p)>0, 
da da 

where 

a = a (D<pt ) , 
o 

da d 
<2-42) dï = J0 ir^D^ 

a 

da d a 
d i J o dp x ' * * D ' 

and we conclude that 

da da 

Wi D ii<p~v)-~dï 
2.43) -D i t i j D jiv - <p)) + — D-(¥> -<P)> -—{f - <P) 
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in G. 
Now, by assumption 

(2.44) m = inf (<j0 - <p) < 0 , 

and the infimum is attained at a point x G G. Define TJ = ip — (p — m -
Then i] > 0, and (2.43) yields 

(2.45) -D i t i j D jrj) + — Dy? > 0 
da 

contradicting the weak Harnack inequality that would demand TJ = 0. 
Thus, we deduce m > 0, and the uniqueness is proved. q.e.d. 

3. A l m o s t minimal solut ions 

We now apply the existence result of Theorem 2.2 successively. Let 
u2 be the upper barrier; if u k_\ is already defined for k > 3, then let 
u k e C2>a(S n) be the solution of 

( 3 1 ) (H = f-1e-u[u k-u k_1], 

ux < u k < u k-\. 

The solutions (u k) form a bounded monotone decreasing sequence, which 
converges pointwise to a function u. The mean curvatures of the graphs 
converge pointwise to f(x,u), since y and fj, are fixed; hence, g raphu 
would be a solution of our problem, if the u k's would satisfy uniform 
C1-estimates. But unfortunately, we cannot prove this, it might even be 
false. Gradient estimates for graphs depend on the Lipschitz constant 
of the mean curvature, i.e., jDu k j depends on jDu k_\j. 

However, the regularity results of De Giorgi, Massari, and Tamanini 
for almost minimal hypersurfaces imply uniform C1 '2-estimates for the 
hypersurfaces provided the hypersurfaces are almost minimal, their mean 
curvatures uniformly bounded, and n < 6; cf. [15], [16]. 

To apply these results, we shall prove that the hypersurfaces M k = 
graph log u k are almost minimal in the metric product S n X R. 

We adopt the view point and the notation from Section 2, i.e., we 
consider the hypersurfaces as submanifolds of R n + 1 and look at their 
diffeomorphic images in S n X R under the diffeomorphism &(x,r) = 
(x,logr). Then, each ipk = logu k satisfies the equation in (2.21) on 
S n. For notational reasons we drop the index k, having in mind that it 
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is fixed. Furthermore, we consider the lower order term a(x,tp, Dtp) to 
depend only on x without changing the symbol, i.e., ip is a solution of 

(3.2) -D i(a i(D^)) + a(x) = 0 in S n 

where a(x) is uniformly bounded. 

Instead of a(x) let us consider the modified lower order term 

(3.3) aeo(x,t) = a(x) + e0(t - Lp(x)) 

with e0 > 0. Then, at0(x,(p) = a(x) and therefore, we have 

(3.4) -D i(a i(D<p)) + aeo(x,<p) = 0 

with 

(3.5) * a = ( 0 > ». 

We shall prove that the boundary of the subgraph 

(3.6) E = sub Lp = {(x,t) : t < (p(x), x e S n } 

is almost minimal in the metric product S n X R, or more precisely, tha t 
it solves the variational problem of minimizing the so-called perimeter 
plus an additional prescribed mean curvature term in S n X R. 

We first show that E is minimal compared with other subgraphs. 

L e m m a 3 .1 . The solution ip of (3.4) is also a solution of the vari­
ational problem 

J ( V ) = Z p~L + jDvj2+ Z Z a£0(x,t) ^ m i n 
(3.7) S n S n o 

yve BV(S n). 

BV(S n) is the space of functions of bounded variation, i.e., functions 
whose derivatives are bounded measures. For r] G BV(S n) the area term 
in (3.7) is defined by 

p i + j ^ j 2 

S" 
(3.8) 

n n + nD i i) •• f e C S , j T j + i j T i j < io-sup 
S 
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It coincides with the usual definition if r] is Lipschitz continuous 

Proof of Lemma 3.1 The functional in (3.7) consists of the standard 
area for graphs plus a mean curvature term; the corresponding Euler-
Lagrange equation is exactly the equation in (3.4). Thus, it is not 
surprising that ip should also solve (3.7), since from Lemma 2.4 we 
know that the solutions of (3.4) are uniquely determined. 

Let c be an arbitrary constant such that 

(3.9) jD<pj < c 0 . 

Then, solve the variational problem 

{J{i]) - • min Vr]eK, 
[ ' j K={r,eC0'1(S n) : jDVj<co}. 

Let Cp be a solution of (3.10), the existence of which can easily be proved 
in view of (3.5). Then Cp solves the variational inequality 

(3.11) {-D i(a i(DCp)) + a(x,Cp),ri-Cp)>0 V i ) G K 

On the other hand, since ip is a solution of the equation and belongs to 
K, from the strict monotonicity of the operator we deduce that ip = Cp. 

Thus, ip is a solution of the unconstrained variational problem 

(3.12) J(j7)->-min V f / e C 0 ' 1 S n). 

Since c is arbitrary, and by approximation we conclude, that ip also 
minimizes the functional in BV(S n). q.e.d. 

Let N = S n X R be the metric product of S n and R, so that the 
metric in N is given by 

(3.13) ds N = dt + (Jij dx i dx j . 

We also use x° instead of t when appropriate e 
The perimeter of a measurable set E C N with respect to an open 

set e C N is defined by 

jDXE j 

= sup n Z ^xE Dal
a : f e C f e ) , j T j + i j 7 i j < I o , 

(3.14) çi 
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i.e., E has finite perimeter in e iff \E belongs to BV(e). Sets of finite 
perimeter are also called Caccioppoli sets. It is well known that the 
perimeter of subgraphs is equal to the area of the boundary. 

L e m m a 3.2 . Let Çl C S n be open, r] G BV(Çi) and E = s u b ? j . 
Then 

(3.15) / p l + j ^ j 2 = / jDXE j 

The proof is the same as in the case where E is a subgraph in R n + 1 ; 
cf. [9, Theorem 14.6]. Moreover, we only need the relation when TJ is 
of class C 1 and then (3.15) follows immediately from the divergence 
theorem. 

The demonstration of the next lemma is also identical to the proof 
of its Euclidean counterpart which is due to Miranda, cf. [14], but for 
the convenience of the reader we shall repeat a version of the proof that 
can be found in [9, Lemma 14.7]. 

L e m m a 3 .3 . Let Ci C S n be open, and F C ^ X R be measurable 
such that 

(3.16) fix(-oo,-T)cFcfix(-oo,T). 

For x £ Ci define 

(3.17) 1>(x)= lim n Z X F O x t ) " o -

Then, there holds 

(3.18) Z p ^ + j D W < Z jDxF j-
ü üxR 

Proof. We note that F n l ì x R c O x ( - T , T). Let 

Z k 
XF(x,t)-k. 

-k 

Then tpk is stationary for k > T, for 

Z k T ~T T 

X F O x t ) = Z XF{x,t)+ Z 1 = Z xF{x,t)-T + k, 
-k -T -k -T 
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i .e . 

(3.21) V = xF{x,t)-T, 

and — T < tp < T. 
a co 0 2 

' i j 
Consider now 7 ° G C c°(Q), 0 < a < n, satisfying jJ° j 2 + <ij iJj < 1, 

and a smooth real function rj such that 0 < rj < 1 and 

(322) lv(t) = o, j t j > T + i , 

v(t) = l , jtj<T. 

Then, we derive 

Z o o ~T 

VXF = V = V(-T) = 1, 
-00 -co 

and 

Z o o ~T T ~T 

VXF = V+ XF = ^ + T+ T] = i, + c 
-00 -T-l -T -T-l 

with c = const, from which we infer 

jDXF j > / XF Da(via) 

CO CO 

(3-25) = Z Z XFV1°+ Z Z XFVD i i 
£1-co £1-co 

7°+ Z {^ + c)D i i 
Q Ü 

and hence 

(3.26) / jDXF j > / p l + j ^ j 2 -

q.e.d. 

Let us return to the solution ip of (3.4) that also solves the variational 
problem (3.7). We are going to prove that E = subt/j locally minimizes 
the functional 

(3-27) T(F e ) = Z jDXF j + Z xF a£oi 

a a 
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which is defined for any e <s N and any Caccioppoli set F C N. 

Definit ion 3 .4 . A Caccioppoli set E C N is said to be a local min-
imizer for the functional F if for any open e <s N and any Caccioppoli 
set F with F A E <g e we have 

(3.28) F{E,e)<F{F,e). 

We are now ready to prove 

T h e o r e m 3.5. Let ip be the solution of the variational problem (3.7) 
and E = sub (p. Then E is a local minimizer for the functional F . 

Proof. Let e <s N and let F be a Caccioppoli set with F A E <g e . 
Then F satisfies the conditions of Lemma 3.3 since ip is bounded— 
actually any BV(S n) solution of (3.7) is bounded as it is well known—, 
and where we choose Q = S n. 

Define tp as in Lemma 3.3 and set F* = subt/>; then from (3.7), 
(3.15), and (3.18) we deduce 

(3-29) Z \ D X E \ < Z\DXF\+ Z Z at0{x,t). 
a a S n v 

We now observe that for arbitrary but fixed x £ S n 

"ijj k 

(3.30) Z aeo(x,t)= aeo(x,t)\xF*-XE]i 
cp —k 

where k > \ip\ + |^ | , and we claim furthermore, that 

k 

(3-31) Z aeo(x,t)[xF* -XFi < °> 

is monotone increasing. 

To verify (3.31), we first notice that 

k k 

(3-32) Z xF,=i, + k= XF, 
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and hence 

k k 

aeo{x,t)[xF* -XFÌ = Z iae0{x,t) - aeo(x,tp)][xF* - XFÌ 
Z-k 

[aeo(x,t) -at0(x,ip)][l-xF] 
-k 

k 

+ Z a o { x , t ) -aeo(x,ip)][0-xF]-

But both integrals are non-positive due to the monotonicity of afQ (x, •), 
and Theorem 3.5 is proved. q.e.d. 

The function afQ is locally bounded in N—in fact we could modify 
it so that it would be globally bounded—, from which we immediately 
infer that the boundary of any local minimizer E of F is almost minimal, 
i.e., for any e <s N there exists R > 0 and a constant c, such that 

(3-34) Z \DxE\< Z \DXF\ + cpn 

for any x £ e , any 0 < p < R, and any F with F A E <s Bp(x). 
This definition is a special case of a more general one, where the 

second term on the right-hand side of (3.34) is supposed to grow with 
exponent (n + 2a) , 0 < a < 1; cf. [15]. 

We note, tha t almost minimal boundaries in N—or any other (n+1)-
dimensional Riemannian space—are also almost minimal in R n + 1 , hence 
the regularity results proved in Euclidean space apply, i,e., the reduced 
boundary of an almost minimal hypersurface is of class Cl,a, thus, in 
our case of class C1'?, and the singular set is empty if n < 6. 

4. P r o o f of the main t h e o r e m 

The C ̂ ' " - e s t ima te s for almost minimal boundaries yield uniform a 
priori estimates in the case of a sequence of almost minimal boundaries 
satisfying the condition (3.34) or its more general variant uniformly. 
Moreover, assuming that (3.34) holds uniformly for a sequence of Cac-
cioppoli sets E k C N which converge locally to some limit set E, then, 
for any convergent sequence x k G dE k with x = lim x k we have x G dE; 
if in addition x G d*E (the reduced boundary), then there exists ko, such 
that x k G d*E k for any k > ko and the unit normals at x k converge to 
the unit normal at x, cf. [15, Theorem 1]. 
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In view of our assumption n < 6, there are no singular points, i.e., 
d*E = dE, and we conclude that the subgraphs E k = subtpk, where 
tpk = logu k, converge to E = subcp, <~p = logu; dE is almost minimal 
and of class C 1 ' ^ , and the mean curvature of M = g raphu in N is equal 
to f; cf. Theorem 4.2 below. Hence, M and dE are of class C2'a for 
any 0 < a < 1. We emphasize that only M and not necessarily u is 
smooth. 

To complete the proof of Theorem 0.3, we have to show that M 
is homeomorphic to S n and that the mean curvature of M is equal to 
f. or the verification of the spherical type of M we observe that each 
M k = graph u k is homeomorphic to S n and that we have 

Propos i t ion 4 .1 . For large k the hypersurfaces dE k are graphs 
over dE. 

Proof. Each point x G dE is the limit of a sequence of points x k G 
dE k, and the corresponding unit normals Vk converge uniformly to v. 
dE is therefore oriented and, by construction, all dE k lie on one side of 
dE. Let d be the signed distance function of dE; it is of class C2'a in a 
small tubular neighbourhood U of dE. Then, only finitely many dE^s 
are not completely contained in U. Fix k such that dE k C U. Then for 
any y G dE k there is exactly one x G dE such that 

(4.1) dist(y, x) = d y ) . 

We claim furthermore, that , if U is chosen small enough, any normal 
geodesic starting at an arbitrary point x G dE—and pointing in the 
right direction—, intersects dE k at exactly one point, which together 
with (4.1) yields that dE k is a graph over dE. 

To verify that claim, let us consider normal Gaussian coordinates 
(xa) relative to dE, where x° represents the coordinate axis normal to 
dE. We also suppose that the unit normal v of dE has coordinates 
v = (1, 0 , . . . , 0). Since the unit normals vk of dE k converge uniformly 
to v we conclude, that zk° is as close to 1 as we wish for large k, but 
then dE k is at least locally a graph over {x = 0}, e.g., dE k = graph?] 
(locally), cf. [9, Proposition 4.9]. But then 

(4.2) r,{x) = d{y). 

q.e.d. 

Finally, let us verify that the mean curvature in N of the corre­
sponding limiting hypersurface M is equal to f which is not so obvious. 
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T h e o r e m 4 .2 . The mean curvature of M is equal to f. 

To prove the theorem we need the following lemmata. 
L e m m a 4 .3 . Let K C S n be compact with H n~l(K) < oo. Then 

(4.3) H n(dEn(K xR)) = 0. 

Proof. We consider dE and dE k as submanifolds of N. For a subset 
U C S n we define U = U X R, where we use polar coordinates. We also 
denote by fj, (resp. ßk) the measures jDXE j (resp. jD\E j)> where E 
(resp. E k) are the subgraphs defined above. 

Now, let Ci = S n r K; then Î7 is a Caccioppoli set, since H n~l(dÇÏ) 
is finite. For e > 0, let £ = (£a) G H^p{N) be a vectorfield such that 

(4.4) jej < 1 and jÇ - vj6E < e = 2E 

Here, we use the fact that we already know dE and dE k to be 
uniformly of class H2'p for any finite p, since their mean curvatures 
are uniformly bounded, and we have established a prioiri estimates in 
Cl, l /2_ 

Let Q = S n X [t\, t2] such that dE k C Q for all k. Then we deduce 

0 = Q Da[C(XE k-XE)xü] 

= Z D a f ( X E k ~XE)XÜ + Z CDaXE kXü 
Q Q 

- Z CDaXEXü + Z C(XE k - XE)D 
Q Q 

(4.5) 

*n 

= Il+I2 + I + I . 
I1 tends to zero if k goes to infinity, since \E converges pointwise to 
XE- The same argument applies to I4, while I3 is estimated by 

(4.6) j I j < / J ( b ) . 

Thus, we conclude 

limfik(b) = l i m Z XAjDXE j 
(4.7) Q k 

< fi(b) + c j£ - z/j M < / i(b) + ce, 
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because of the uniform convergence of Vk to v. 
On the other hand, we have 

(4.8) n(b) < l imuk(b ) , 

and hence 

(4.9) p(b) = l impk(b ) . 

Finally, we observe that pk{K) = 0 and 

(4.10) p(N)=limpk(N), 

yielding the desired result. q.e.d. 

In the next lemma we consider a Caccioppoli set E C N which is 
the subgraph of a function ip G BV(S n). 

L e m m a 4.4 . Let ip G BV(S n), E = subcp, and (x,t) be an interior 
point of E. Then, the line {(x, r ) : — oo < r < tg does not intersect the 
measure-theoretical boundary of E, i.e., the set of all points z such that 

(4.11) 0<jEnBp(z)j<jBp(z)j V0<p<p(z). 

Here, Bp(z) is the geodesic ball of radius p and center z, and jB e (z ) j 

its volume. We note that due to the metric product structure of N 

(4.12) jB„0x t)j = j B ( x ) j and xBp(x,t) (; • + r) = XBp(x,t.T) (; •) 

for arbitrary t and r . 

Proof of the Lemma. We denote the measure-theoretical boundary 
of E by dE, since in the case we have in mind, the measure-theoretical 
and the topological boundary coincide. 

First, let us observe that the partial derivative of xE with respect 

to ~ ä x ̂ ' -DOXEI or mor e precisely, -(Jx,DxE), is a non-negative 

measure. For let r] G C ̂ (N), we have 

(4.13) Z ri(x,<p(x))= Z Z DQrì{x,t) = - ZTÌDQXE-
S n S n -oo N 

Secondly, let (x, r ) G dE with r < t. Then, we claim 

(4.14) jEnBp(x,r)j-jEnBp(x,t)j = - Z ds Z DOXE. 
O Bp(x,t-s) 
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The proof of this relation is exactly the same as that of its Euclidean 
counterpart; cf. [9, Lemma 4.5]. 

Now, the right-hand side of (4.14) is non-negative, while the left-
hand side is strictly negative for small p, a contradiction. q.e.d. 

We return to our original meaning of ip and define 

Definit ion 4 .5 . Let [<^](x) be the jump of ip at x, i.e., 

(4.15) Vp\{x) = lim y^x(p(y) - lim y^x(p(y) = p+{x) - ^>~{x). 

We have of course <~p+{x) = <~p{x) since ip is u.s.c. 
An immediate corollary of Lemma 4.4 is 

L e m m a 4.6. Let [(f](x) > 0. Then the whole line segment 
x X [tp~ (x), tp+(x)] belongs to dE. 

The proof is straightforward since (x, <p~{x)) G dE. 

L e m m a 4.7. Let r > 0 and 

(4.16) AT = {x e S n : [<p](x) > r } . 

Then, AT is compact and H n~l(hT) < cT~1. 

Proof. We use a Besicovitch type covering argument. Let 0 < 8 < r . 
Then there exists a sequence of pairwise disjoint balls BPi(x i) in R n + 1 , 
with centers Xi G AT and radii pi < 6/3, such that the balls B ̂ Pi{x i) 
cover AT; see e.g. [9, Lemma 2.2]. We also choose 8 small enough, such 
that the volume of a geodesic ball in N of radius p < 8 and center in a 
compact set is uniformly bounded from below and above by a multiple 
of pn+1. Consider the pairwise disjoint cylinders 

(4.17) QPi{x i) = {BPi{x i)nS n)xR. 

Then, QPi [x i) l~l dE contains the line segment Xi X [tp~(x i), tp+(x i)], and 
we can find N i disjoint geodesic balls Bpi2(y itm), 1 < m < N i, with 
centers 

(4.18) y i m G x i X [(p~(x i),(p+(x i)], 

where N i can be estimated by 

(4.19) N i >_ i M x > i . 
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Hence, we deduce 

N i N i 

(4.20) fi(QPi(x i)) > X »(BPi/2(y i,m)) > c X n > c r p n - \ 
m = l m = l 

where we use the well-known estimate for almost minimal boundaries 

(4.21) fi(Bpi/2(y itm)) > cpn, 

if y i,m G 9E, with a uniform positive constant c. 
We infer further 

oo oo 

(4.22) X i * < c r - ^ M Q i x ) < c r - V ( e ) , 
i=l i X 

and conclude that the spherical (n — l)-dimensional measure of AT is 
bounded by a multiple of rV(e) , but this is equivalent to 

(4.23) H n-l{KT) < cT-lß{N) 

with a different constant. 
AT is also closed, for let x m £ AT be a sequence converging to x G 

S n, then the line segments x m X [Lp~(x m), Lp+(x m)] in dE converge to a 
line segment over x of length at least r . q.e.d. 

Combining Lemma 4.3 and Lemma 4.7 we deduce 

L e m m a 4.8 . For each r > 0, H n~1{KT) = 0 and <p is H n~1-a.e. 
continuous. 

Proof. We observe that for any Borel set U C S n 

(4.24) p(U) = Z p l + IDl2-
U 

Hence, we have 

(4.25) Z p l + l D l 2 = 0, 

and for any e > 0 there is an open set Ci, AT C ^ C S n, such that 

(4.26) fi(b) = Z p l + I D l 2 < e-
O. 
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In the proof of Lemma 4.7 we can now choose the covering B ̂ Pi (x i) 
such that 

(4.27) B3pi{x) n S n C tt, 

and instead of the estimate (4.23) we obtain 

(4.28) H n-l{AT) < cr"V(^) < cT'h, 

i.e., H n"1(AT) = 0. 
The set where ip is discontinuous is given by 

oo 

(4.29) (J A1/k, 
k=i 

which is an H n~l null set. q.e.d. 

We are now able to prove Theorem 4.2. The proof will be achieved, 
if we can show 

(4.30) lim / (e*k-1 - eVk) = 0. 
JdE k 

For large k we can write dE k as a graph over dE 

(4.31) dE k = {(^k): ÇedE}, 

where the rk ^s are uniformly of class C 1 and converge to rj = 0, which 
corresponds to dE in this setting. An integral of the form 

(4.32) f , 
dE k 

f, defined in N, can then be expressed as 

(4.33) f(^Vk)p ^ + jDvk j2b(^Vk), 
dE 

where the continuous volume forms p l + jDrik j2 b(£, rjk) converge to 
b(£, 0), the volume form for dE. This can be readily seen by introducing 
normal Gaussian coordinates in a tubular neighbourhood of dE. 

We extend <~pk-i to N by the definition <~pk-i o x, x being the pro­
jection on S n, and observe that ipk is equal to x?gE , where we still use 

polar coordinates (x i,x°) in N. 
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Thus, we have 

(4.34) dE k 

= Z [e*k-i°x(^k) _ e x ( k ) p 1 + \Dr]k\2 b^ k ) . 

dE 

Let l > k be large, so that dE l is a graph over 9 E , and have in mind 
that the sequence ipk is monotone falling. Then, we have for k > l — 1 

[e k_ l 0 x , k ) _ e x°tt'k]pï+\DÏkfb(Ç,rik) 

(4.35) 9E 

dE 

and hence 

(4.36) lim" Z (e k - ' - e k ) < Z [e l ° x ' 0 ) - e K ' 0 ) ] b ( Ç , 0 ) , 
sEi sE 

or, if we let l tend to infinity, 

(4.37) lim"Z (e k-i _ e k) < Z [ e ^ « . ° ) _ e x« . ° ) ] b ( ^0 ) . 
dE k dE 

But 

(4.38) y> o x& 0) - x ( £ , 0) < [<p](x^ 0)), 

and in view of the preceding lemmata we know that /i-a.e. the jump of 
ip is zero, i.e., 

(4.39) lim 
fJE k 
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