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BUSEMANN FUNCTIONS
ON MANIFOLDS WITH LOWER BOUNDS
ON RICCI CURVATURE
AND MINIMAL VOLUME GROWTH

CHRISTINA SORMANI

Complete noncompact Riemannian manifolds with lower bounds on
Ricci curvature have often been studied by means of an analysis of their
Busemann functions. Such manifolds contain rays, and given a ray, ~,
its associated Busemann function is defined

by(w) = lim R —d(e,5(R)).

Cheeger and Gromoll used these functions to prove that a manifold
with nonnegative Ricci curvature that contains a line splits isometrically
[7]. S.T. Yau used them to prove that complete noncompact manifolds
with nonnegative Ricci curvature have at least linear volume growth [14].
Cheeger, Gromov and Taylor proved that manifolds with quadratically
decaying lower bounds on Ricci curvature have a specific lower bound
on volume growth [8] using the Relative Volume Comparison Theorem
2, [11].

The main results in this paper concern manifolds with

(n—1)(1/4 —v?)

q iy >
(0.1) Ric, > V()
outside a compact set, where v € [0,2(7;—"'_11)). This includes manifolds

with nonnegative Ricci curvaure.
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558 CHRISTINA SORMANI

In the first section of this paper, we prove a useful volume compar-
ison theorem for subsets, Q(K), covered by the flows of the gradient
field of a Busemann function. See Definition 3 and Theorem 5. In par-
ticular, we prove that in a manifold with nonnegative Ricci curvature
outside a compact set, the (n-1)-Hausdorff volume of Q(K)Nb~1(r) is
a nondecreasing function of r. We then employ Theorem 5, to obtain
a more precise lower bound for the volume growth theorem of Cheeger-
Gromov-Taylor. That is, we show that if a manifold satisfies (0.1), then

=C>0

o vaB,R)
0-2) B R0 ee

for a precise value of C'. See Theorem 18.
In the second section, we apply Theorem 5 to examine manifolds
with minimal volume growth, manifolds satisfying (0.1) such that

Vol(Bp(R))
R(I/Q—v)(n—l)—l—l

(0.3) lim sup

R—o0

=1y < 0.

In particular, we examine manifolds with nonnegative Ricci curvature
and linear volume growth. We prove that manifolds with globally non-
negative Ricci curvature that satisfy (0.1) for v € (0,1/2] outside a
compact set and have minimal volume growth as defined in (0.3), have
proper Busemann functions. Furthermore, the level sets of any given
Busemann function on these manifolds have at most linear diameter
growth. See Theorem 19.

In [13], we will employ this theorem to prove an almost rigidity the-
orem about such manifolds, namely that these manifolds are asymp-
totically close to certain warped product manifolds in the Gromov-
Hausdorff topology. In that paper we will also improve the statement of
Theorem 19, proving that the diameter of the level sets grows at most
sublinearly.

In the last section of this paper we provide nontrivial examples of
manifolds with nonnegative Ricci curvature and linear volume growth.
Example 26 demonstrates that as r approaches infinity, diam(b='(r))
may approach infinity. Example 27 demonstrates that 5~!(r) need not
approach a unique Gromov-Hausdorff limit as r approaches infinity even
if the diameter is uniformly bounded.

The author would like to express her thanks to Jeff Cheeger for
his advise and the Courant Institute of Mathematical Sciences for its
support during her years as a graduate student. She would also like to
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thank Shing-Tung Yau for suggesting further applications of Theorem 19
and William Minicozzi for his assistance during the revision process.

1. Busemann functions and volume

All manifolds in this section are complete noncompact manifolds,
M"™, with a fixed ray, v, and its associated Busemann function, b = b,.
All geodesics are parametrized by arclength. Note that the Busemann
function is a Lipschitz function and |57 b,| = 1 almost everywhere. For
a thorough description of Busemann functions and rays, see [5]. We
begin with some definitions.

Definition 1. A ray, v,, emanating from z is called a Busemann
ray assoctated with « if it is the limit of a sequence of minimal geodesics,
o;, from z to y(R;) in the following sense,

(0.4) v2(0) = lim }(0).

R;— 0

We parametrize v, by arclength such that ~,(b(z)) = =.

It is easy to verify that at least one Busemann ray exists at each
point. However, a Busemann ray, 7;, is unique if and only if /b exists
at the point, z, in which case 7b = v, at . So the Busemann rays are
the integral curves of s7b. Note that if a point y is on a Busemann ray,
Yz, then the Busemann ray at y, 7, is unique. In fact v, is the segment
of 7, emanating from y, [5].

Lemma 2. Suppose b exists at p; which converge to p. If \7b
exists at p, then

li b, = b,.
ZLHE.IO v Pq v P
Note that this lemma does not hold for arbitrary Lipschitz functions.

Proof. Let p; be any subsequence of p; such that 7b,,, converges.
Then the Busemann rays 7,, converge to a Busemann ray emanating
from p. Now, /b, exists, so there is only one such Busemann ray. Thus,

Vbp, = Vb qeed.
Definition 3. Let K be a compact set contained in M™. Then

(0.5)  QK) = {z: Jz€ K It >b(2) Iy, such that x = ~,(t) }.

Furthermore, let Qr(K) = Q(K)Nb~ (R).
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Lemma 4. The set, Q(K), is closed and Qr(K) is compact.

Proof.  Suppose y; € Q(K) and y; — y. Then there exist y; € K
and Busemann rays from each #; to the y;. By the compactness of K a
subsequence of these rays must converge to a ray also emanating from
K. This limit ray must be a Busemann ray which passes through y.

Thus y € Q(K). q.ed.

Note in particular that Q(K) is a Borel set. Thus it is both Lebesgue
measurable and Hausdorff measurable. Furthermore its n-dimensional
Hausdorff and Lebesgue measures are equal [10, 2.10.35]. We denote the
Lebesgue measure of a set Y by Vol(Y). We can now state our volume
comparison theorem.

Theorem 5. Let M™ be a Riemannian manifold with a given ray «
and its associated Busemann function, b =b.,. Fix

ro < ry <ro <rg<ry.

1
Let Ric, > %Aﬁ Jor x € b=1([rg,00)), where v € (0,2(7;—"'_11)].
Letp= (3 —v)(n—1)+ L
If K C b7Y((—o00,r1]) is a compact set, then

p

(0.6) Vol(QK)Nb~Y([rs, r4])) > %::% Vol(QK) N b~ ([r1, 12])).

If p=0, we replace r? by Ln(r).

Before proving this theorem we will prove a series of lemmas about
a complete noncompact manifold, M"™, with no assumptions on its Ricci
curvature. We begin by relating the Busemann function to a distance
function.

Lemma 6. Fizry < R and K C b™'((—o0,r1)). Then
(0.7) d(z, b7 (R)) = R—b(z)  Va € b '((—o0,R]).

Furthermore, if z € Q(K) N b~Y([r1, R)]), then there is only one point,
y € b=Y(R), such that d(z,y) = d(z,b7Y(R)). Thus y = v,(R) and

(0.8) d(z,Qr(K)) = R —b(z) Yz € QUK)N b ([ry, R]).
Proof. Given a point z € b=!((—o0, R]), we have

d(a, b7 (R)) < d(z,72(R)) < R— b(z).
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On the other hand, the triangle inequality implies that
R—b(z)= ILm R—s+d(z,v(s))

09) = lim d((s), () + d(z,4(5)) > d(,7(R)).

Thus (0.7) holds.

Let z € Q(K)Nb~1([r1,R]) and y € b~1(R) such that d(z,y) =
d(z,b71(R)). Let o be a minimal geodesic from z to y. Note that
f(t) = b(a(t)) is a Lipschitz function of ¢ with Lipschitz constant less
than or equal to 1. So f'(¢) <1 almost everywhere, and since

d(z,y)
d@m:ww—wazl F(t)dt < d(z,y),

we know f’(t) = 1 almost everywhere on [0,d(y, z)]. Thus, integrating
again, we have b(c(t)) = b(z) + ¢.

Since z € Q(K)Nb~L([r, R]) and K C b~1((—o0,r1)), Vb, exists and
the Busemann ray, v,(¢), is unique. By the definition of the gradient,

Ve > 0,36 > 0 such that |b(o(t)) —b(2) —g(57b., 0’ (0))t| < e]t], VE > 4.
Substituting b(o(t)) = b(z) 4+t and dividing by |t|, we get,
Ve >0,  [1-g(vb.,a'(0))] <e.

Thus we see that ¢g(s7b.,0'(0)) = 1. So o(t) = 7.(t — b(2)) and y =
v.(R). q.ed.

In order to prove Theorem 5, we define some star-shaped sets and
finite unions of such sets, which can be studied by means of the Relative
Volume Comparison Theorem [2], [11], as discussed in [6]. Since Q(K)
does not naturally contain any such sets, we define the following sets,
Ss.r1.r,» Which contain star-shaped sets about points in b~ (R) N Q(K).

Definition 7. Given any 6 > 0 and any r; < ry < R, let

5577’177’2 = 5577’177’2 (QR(I())

be the set of points 2 with d(z, Qr(K)) € [R — ro, R — r1] such that
there exists a minimal geodesic ¢ from Qr(K) to 2 with

L(o) = d(z,Qr(K)) and g(c'(0), — 7 b) > 1 — 4.
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It is easy to verify that Ss,, , is a compact set by applying Lemma 4.

Lemma 8. Fiz R > ro > ry, 6 > 0 and K a compact subset of
b=1((—o0,r1)). Then

() S5.01.0 (QR(K)) = Q) 007 [y, 72]).
§>0

Proof. Given any # € Q(K) N b71([r1,r2]), a Busemann ray,
ve([b(z), R]) is a minimal geodesic from z to Qg(K) such that
g(—vL(R),— v b) = 1. By Lemma 6, we have

L(vz([b(x), R])) = B = b(z) = d(z, Qp(K)).

Thus z € S5, r,-
On the other hand, let € Ss,,,, for all § > 0. We know that
V4§ > 0, Jos, a minimal geodesic from o5(0) € Qr(K) to x, such that

L(os) = d(z,Qpr(K)) € [R— 1y, R —ri] and ¢(o5(0),— v b) > 1 — 4.

By the compactness of Qg (K'), as § approaches 0, a subsequence, o5,
must converge to a minimal geodesic, og, from Qg (K) to  where

(0.10) L = L(og) =d(z,Qr(K)) € [R—rs, R—1].
Since 00(0) € Qr(K), b exists there, and by Lemma 2,

(0.11) 9(06(0), = v b) = L.

Now 0¢(0) must be on a Busemann ray, 7., where z € K C b~!((—o0, r{)).

By (0.11), ¢{(0) = —+L(R), and, by (0.10), o(t) = 7.(R —t) for

te0,R—r). Thus 2 =, (R— L) €eC QK)Nb~ [r1,r2]). q.ed.
The following corollary of Lemma 8 is an immediate consequence of

the Monotone Convergence Theorem for § — 0 combined with the facts
that Ss,, ,, is compact and for all § < ¢,

(0.12) S50 (Qr(K)) C S5 1, (Qr(K)).

Corollary 9. Fiz B > ry > ry. If K C b7 ((—o0,r1)) is compact,
then

(lgi_% Vol (S5, (Qr(K))) = Vol (QE) N b ([r1,r9)))-



BUSEMANN FUNCTIONS 563

Recall that in Definition 7, we say that x € Ss,, ,, if there exists
a minimal geodesic o¢, from Qr(K)) to z such that ¢{(0) is close to
— 7 b. However, it is possible that there are other minimal geodesics, o,
of the same length such that o{,(0) is not close to 57b. This would cause
us trouble when we try to approximate Ss,, », by unions of starshaped
sets if not for the following lemma.

Lemma 10. Let K C b=!((—o0,r]) and R > r3 > ry > r1. Given
any & > 0, there exists

hl ((S) = hl ((S7 r1,T2,73, R, I(, Mn) <6

such that for any x € Sy (5),rs,r, (Qr(K)), every minimal geodesic, o,
from c(0) € Qr(K)) to x such that d(z,0(0)) = d(z,Qr(K)), satisfies

g(0'(0), = v b) >1-4.

Proof. Suppose there exists ¢ such that no such hy(d) exists. Thus
there exist §; — 0, ; € S5, rp.rs € Sryrrqs and o; minimal from o;(0) €
Qpr(K) to z; such that

(0.13) L = d(z:,0:(0)) = d(x:, Q(K)).
but
(0.14) g(oi(0),— 7 b) < 1-24.

Since z; € Ss
such that

there exist v; minimal from 7;(0) € Qgr(K) to z;

0372,73 9

d(aci, %’(0)) = d(xi, QR(I()) = Li € [R — T3, R — 7‘2],
and
(0.15) 9(7i(0), = v b) > 1 - 4.

By the compactness of Sy ,, ., there exists a subsequence such that
all the points and geodesics converge, x; = Zoo, Vi 10 Yoo and o; t0 0.
Note that

Li—= L=d(2e,v(0) = d(2e,Qr(K)) € [R— 13, R — 19]

and that 7,,(0) C Qr(K). Thus there exists 2 € K C b~((—o0,11])
such that v, (0) = 7.(R), and 7,(R — ¢) is minimal from ¢t = R to
t=R - r1.
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Furthermore, using the facts that L > 0, 7.,(0) € Qgr(K), and
(0.15), and applying Lemma 2 we have

9(72(0), = v b) = 1.

Thus yeo (t) = 72(R —t) and 2o = Yoo (L) = 7. (R — L). Since v,(R —t)
is minimal from ¢t = 0tot = R—ryand L < R—1ry < R—rq, we
know that z., cannot be a cut point of 7. (0). Thus not only does z,
have a unique closest point in Qgr(K) by Lemma 6 and not only must
that point be 7. (0), there must also be only one geodesic joining
t0 Yoo (0).

On the other hand, by the limit of (0.13),

d(% oo, 050(0)) = d(2 00, Qr(K)),

SO 0o must be v.. However, the limit of (0.14) and Lemma 2 imply
that
9(00,(0), = v b) <1 -4,
which is a contradiction. q.e.d.
We now define some star-shaped sets about points in Qg(K) upon
which we can employ the volume comparison theorem. The following

construction is similar to that contained in [6, Appendix on Volume
Growth]. We begin by employing the fact that Qr(K) is compact.

Definition 11. Given any £ > 0, there exists a set

X. = {ph pNs} C QR(I()
such that the tubular neighborhood, T.(X.), contains Qr(K).

Definition 12. Given X, and p € X.. We define the star-shaped
sel:

Vpe={2: d(z,p) < d(z,q) Vq € X, such that ¢ # p}.
Now we need to focus on points near Q(K).
Definition 13. Given X, and p € X.. We define the star-shaped
wedge set:

U,5 = {x : 3 a min geod, o, from p to x s.t. g(c’'(0),—7 (b)) > 1—4}.

Furthermore, let
Ne

Uss = U(Upm N Vo)

=1
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We will use the following notation for closed tubular neighborhoods
of a set, X:

(0.16) Top(X)={y:a <d(y, X) < b}

In the proof of Theorem 5, we will be able to estimate the following
ratio using the Relative Volume Comparison Theorem and the starlike
qualities of the wedge sets U, 5. That is, for any s; < 55 <s3 <54 <R
we will bound

Vol (TR—SQ,R—sl (XE,) N UE,S)

0.17
( ) Vol (TR—54,R—53 (XE,) N UE,S)

from below. To do so we need to relate the distance of points in U, s
from p to the lower bound on Riceci curvature, which depends on the
Busemann function.

Lemma 14. Fiz ry < R and the compact set, K C b~'((—o0,r1]).
For all ¢ > 0, there exists ha(e,r1, R, K, M) > 0 such that, for all
p € Qr(K) and all § < hy we have

(0.18) d(vs(R),p) <e VeeU,s N By(R—1r1 —¢).
Thus

b(z) € [R—d(x,p), R—d(z,p)+ €]

(0.19)
Ve eU,s N By(R—1r1—¢).

Proof. Given any z,p € M"™, we have
R—d(z,7(R)) 2 R—d(p,v(R)) - d(z,p),
so taking R — oo yields
(0.20) b(x) = b(p) — d(x,p).

Since b(z) = R—d(z,v5(R)), we need only prove (0.18) to obtain (0.19).
Assume that (0.18) is not true. Then there exist £ > 0 and §; — 0,
such that z; € U, 5, N B,(R —r1 —¢), but

(0.21) d(vs,(R),p) > e.

Thus, by the definition of U, s,, there exist o; from p to z;, such that

g(ai(0),—vb)>1-4;and L; = L(0;) < R —ry —&.
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Note that by (0.20),
(0.22) blo;(t)) > R—t>ri+e  Vte|[0,L;].

Since Bp(R —ry — ¢€) is compact, a subsequence z; converge to
and o; to 0o,. If L; — 0, then 2 = p, 7, (R) = @ = p, and we
have contradicted (0.21) for ¢ sufficiently large. Thus L; — L > 0 and
0i(0) = o'(0). Since p € Qr(K), we can apply Lemma 2 to get

9(0(0). ~ 7 b) = lim (o1(0). ~ 7 6) > lim (1 - 6) = 1.
Hence 0/(0) = — v/ b.

Since p € Qp(K) there exists z € K C b™!((—o0,r]) such that
p=",(R). Thus o(t) = v.(R —t) for all t € [0, min{R — r1, L}]. Thus
z =7,(R— L) and, by (0.22), b(z) > ry +¢ while b(z) < ry. Thus v, is
the unique Busemann ray through z; so it agrees with v, and v, (R) = p.
This contradicts (0.21). q.e.d.

In Lemmas 15 and 16 we will relate the starshaped sets to S5, ,,
and Q(K)Nb~'([ry, r2]). To do so, we must deal the fact that the wedge
sets, U. s, do not contain Q(K)Nb~[ry, R] due to the gaps between the
points in X, and the restrictions caused by é. We must choose £ small
relative to ¢ and ry to avoid this problem.

Lemma 15. Fizry < ro < Rand § > 0. Let ¢g > 0. K C
b1 (—o00,r1)). There exists h3(M, 8, ry,r9, R} > 0 sufficiently small that
for all ¢ < min{eg, hs},

Q(I() ol ([7‘1, 7‘2]) C TR—T’2—607R—7’1+60 (XE) NUss.

)

where U is the closure of U.

So Vol (QEK)N b~ ([r1,m2])) < Vol (T, (X)) N Uss).

Proof. First of all it follows from Lemma 6 that for any € < g¢, we
have

Q(I() ol ([7‘1, 7‘2]) C TR—T’2—607R—7’1+60 (XE)

Thus if no such hs > 0 exists, there exist ¢; — 0 and z; in Q(K) N
b=1([r1,72]) but not in U s. Let ¢; be any point in X, such that
d(z;,q;) = d(z;, Xe;). Then 2, € V., s0 2; & Uy, s = Uy, 5. So any
minimal geodesic, o;, from ¢; to z;, satisfies

(0.23) g(— v b,0i(0)) < 1-4.
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Since X., is a subset of the compact set, Qr(K), there exists a
subsequence such that ¢; = ¢ € Qr(K), 0; = 00,

L(o;) =5 L(6s) > R—13>0
and
T; = Too € QUE)YNO™Y([r1, ra]).
Since b is defined at ¢.,, we can take the limit of (0.23) using
Lemma 2, to obtain
(0.24) G= Vb (0) <1-3

Furthermore, d(2o0, ¢oo) = lim;00 d(24, X¢,) = d(200, Qr(K)). By Lem-
ma 6, ¢oo = Yoo (R), and since K C b~ ((—o0,r1)), there exists a unique
minimal geodesic v, from ¢ to .. Thus o4 (t) = v, (R —t) for
t < R — ry, which contradicts (0.24).

Note that the volume inequality follows because

Vol(T,p(X)NUs5) = Vol(T, ,(X.) N Us5).

q.e.d.
Recall Definition 7 and Lemma 10 regarding Ss,, ., (Qr(K)).

Lemma 16. Fizr; < ry < r3 < R and K C b™1((—o0,r]). Given
any & > 0, let hi(8) < & be the real number defined in Lemma 10.

Then there exists hy = ha(M"™, hi(8), R,r1,r9,73) > 0 such that
given any €9 > 0, for all ¢ < min{hy, o}, we have

TR—T’3+607R—7’2—60 (XE) n Us,hl(é) C 525,7’2,7’3 (QR(I())'

Proof. First of all it follows from Definition 11, that for any € < &g,
we have

TR—T’3+607R—7’2—60 (XE) C TR—T’37R—7’2 (QR(I())'

Thus if no such hy > 0 exists, then there is a sequence g; approach-
ing 0 and ; in Th_yyteq,Rory—eo (Xe;) such that there exist minimal
geodesics, v;, from X., to z; satisfying

(0.25) L(yi) = d(xi, Xe;) and g(= 77 b,%(0)) > 1 = h(6).

However, there also exist minimal geodesics, o;, from Qr(K) to ; sat-
isfying

(0.26) L(o;) = d(z;, Qr(K)) and g(— 7 b,0.(0)) < 1 — 24.

567
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Since Qr(K) and Tr_r,11 R—r,—1(Q2r(K)) are compact we can take
a subsequence of the i such that, e; = 0, 2; = 2 € Thr_r, R—r, (QR(K)),
and the geodesics o; and ~; converge to minimal geodesics ¢ and =~
respectively. Note that 0(0) € Qr(K) with d(z,0(0)) = d(z, Qr(K)),
and the same is true for v(0). Thus both geodesics have positive length
and, applying Lemma 2 to (0.25) and (0.26), we have

NN

(0.27) 9= b,7(0)) = 1= by (6)
and
(0.28) g(— v b,0'(0)) <1-— 26

Note that (0.27) implies that @ € Sy, () ,rs,R, K-
Applying Lemma 10, this implies that for any minimal geodesic &
from Qr(K) to z such that d(z,a(0)) = d(z, Qr(K)), we have

(0.29) G- b,0) > 15
which contradicts (0.28). q.e.d.

We now prove Theorem 5 using the Relative Volume Comparison
Theorem [3], [11], with comparison manifolds from [8], on the star
shaped sets U, s by employing Lemma 14 for arbitrary, ¢ > 0 and
R > 0. Imitating [6], we thus obtain a lower bound on the ratio, (0.17).
To apply Lemmas 15 and 16 we need to take £ of X. small relative
to 4, and 4 small relative to R and £9. Once the dependence on ¢ is
eliminated, we can take § — 0 and apply Corollary 9. In the last step
we take R — oo, and finally £g — 0 to obtain the theorem.

Proof of Theorem 5. Asin the hypothesis, fix ro <ri <ry <rsz<ry
and K C b= ((—oc, r1]). Recall that, for all y € b7!([ro, o0)) we have

(n =D& = o)
IR

Fix R > rq and gg < 11—0 min{ry —ry,ry —rs, R—r4}. By Lemma 14,
there exists

(0.30) Ric(y) >

(031) h2 = h2(€07r17R7[(7 M)7
such that if p € Qr(K) and § < hy then, for all A < 4,

b(y) €[R — d(y,p), R — d(y, p) + o],

(0.32)
Vy EUpJL N Bp(R -7 — 80).
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Recall the definition in Lemma 10 of
(033) hlIhl((S,rl,Tg—8077‘4—|—€07R,I(7Mn) < 6.

Since hy < 6, (0.32) holds for all y € U, ,, N By(R — 11 — g).
Let e, =0if v > 1/2, and let £, = g¢ if v > 1/2. Then,

(n—1)(3 - v%)
(R—d(y,v(R))+¢c,)?

(0.34) Ric(z) >

forall @ € Uy, N Bp(R — r1 — o).

This is the curvature bound used in [8], so we can apply the volume
comparison theorem on any starlike set, Vj, C U, 5, NB,(R—1r1—¢p). We
compare V), to the corresponding region about the origin in the warped
product manifold of [8] with the metric dt* + Jp.(t)?w where w is the

_ R+e, R—t+ eu)

standard metric on S™ ! and
+v 1y
R—t+¢e,\?
: () = Y (] LT ,
(035) Jreld) = =5 ( ( R+e, +( R+e, ) )

Thus, imitating [6] to apply the volume coparison theorem to a starlike
set rather than a ball, we obtain

N

Vol(Anny,(R — 14, R —13) N'V,) > Vi(rs,rq, R, g,)

0.36
( ) Vol(Anny,(R —ro, R— 11 — o) N'V,) = V(r1 420,72, Ry2,)’
where
V(817 52, R7 51})
R—Sl
(037) = / JR,Ey (t)n_l dt
R—52
B n—1 n—lcj (_1)] S9 + £, p+2vj - 51+ 2, p+2vj
_],:0 p‘|‘2U] R+¢, R+¢e, ’

and p=(1/2-v)(n—1) 4 1.

Set the constants hg and hy equal to hs(M, hy,r1 429,72 — €0, R) of
Lemma 15 and hy(M, b1, R, 71, r3—20, ra+€0) of Lemma 16 respectively.
Let

(038) e < min{hg, h47€0}.
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Recall X, of Definition 11. Given p € X, let
Vo=V,.NUpp, NBy(R—1r1 —eg).
Then, by the definition of U, s, we have the following disjoint union,
U Vo =Tror o (X) N Uz,
pEX.
Thus, imitating [6], we obtain

VOZ(TR_,,47R_,,3 (XE) M U57h1)
VOZ(TR_,,27R_T1_EO (XE) M U57h1)
ZpeXa Vol(Anny,(R — 14, R —13) N'V,)
— ZpGXE Vol(Ann,(R — 13, R — 11 —g0) N'V})
(0.39)

ZPEXE (Vol(Annp(R —rg, R—r1—g0) N Vp)—v(‘iffégf;iggv))
> pex, Vol(Anny(R —rey R— 11 —£0) N V)

V(T‘g, T4, R7 51})
V(f‘l + £0,T2, R, 51/) '

>

We can now apply Lemmas 15 and 16 and our choice of the constants
hq in (0.33) and ¢ in (0.38) to obtain

V01(5257T3—6077’4+60 (QR(I())) > VOZ(TR—T’47R—T’3 (XE) N UE,hl)
VOZ(QR(I() N b_l([f‘l + 2807 g — 80])) - VOZ(TR_T27R_T1_50 (XE) N U57h1) '

Thus combining this inequality with (0.39) yields the following state-
ment:

Given any R > rq, any g9 < 11—0 min{ro—ry,ry—rs, R—ry}, and any
d < haleg,r1, Ry K, M) and setting £, < ¢ as above (0.34), we have

VOZ( 52577’3—6077’4+60 (QR(I()) ) > V(r?n ry, I, 5U)
VOZ( Q(I() N b_l([f‘l + 29,79 — 80]) ) - V(f‘l + &g, 12, R, 51/) '

(0.40)

Note that (0.40) does not depend on h; or e.
Taking the limit as § approaches 0 and applying Corollary 9, we
obtain

VOZ( Q(I() N b_l([f‘g —£0,T4 + 80]) ) S ‘/(7‘37 r4, R, 51/)
VOZ( Q(I() N b_l([f‘l + 29,19 — 80]) ) - V(T‘l + €9, r2, R, 85) '

(0.41)
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Since this holds for all R > ry, taking R — oo in (0.41) and (0.37) leads
to

Vol(QEK)N b~ ([rs — o, 74+ 20]))

Vol(Q(K) b= ([ry + 220,72 — €0]) )
27‘1_1 n—1C; (=1)7 ((7’4+6v)p+2vj _ (M)H?w‘)

1 7=0 p+2'Uj R+ey R+e,
= 1m
1 ne O v . v .
o S S (e - (g )
— m (BE)P — (B (rate))P — (ra+2)?
Roo (BEEu)p — (Lfzaten)p (ry 4 2)P — (1 +2,)F

We can now take g9 to 0 and bring ¢, to 0 with it to complete the proof.
q.e.d.

The following corollary of Theorem 5 is proven using the Coarea For-
mula [10, 3.2.11], which states that if a set A is Lebesgue measureable,
and a real valued function f is Lipschitz, then the (n — 1)-Hausdorff
volume, Vol,_1 (AN f~!(s)), is integrable and

(0.42) /A| v fldL"x = /00 Vol,_1 (AN f(s)) ds,

— 00

where | 7 f| is defined almost everywhere because f is Lipschitz. Re-
call that the Busemann function is also Lipschitz [5] and that Q(K) is
measurable [Lemma 4]. See [12] for details.

—1) iy
Corollary 17. Let Ric > % for & € b= ([ro,00)) where

v € (072(7;—"'_11)). Let r1 > rg and K € b=((—o0,r1]) be a compact set.

Then there exists a nondecreasing function V (r) defined on r € [ry,00)
such that

(0.43) V(r) = Vol 1(9(;)01; (1)

(3=v)(n—1)
almost everywhere. In particular, for almost every so > s1 > r1 we have
Vol,—1(9, (K) < Vol (QK) N b1 ([s1,52])) < Vol,—1(92s,(K))

S(lé—u)(n—l) - sh— s - 8(2%—0)(”—1)

where p=(1/2 —v)(n—1) + 1.

Theorem 5 and Corollary 17 are essential ingredients to the proof of
the properness of the Busemann function in the next section. We now
apply them to prove the following refinement of the Volume Growth
Theorem of [8].
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Theorem 18. Fiz zq in M™ and r > ry > rqg > 0. Lelt v be a
n— l—'U2 .
ray from xq. Let Ric > % at all points x such that b(z) > ro

where v € [0,2(7;—"'_11)]. Letp= (3 —v)(n—1)+ 1. Then,

VOZ(BQUO (R +ry — 7‘0))
(0.44) Voly_1(By, (r1) N 57" (ro)) (Rp p)_

—r
1 0
Pro

When p = 0, replace r? by In(r).

Proof of Theorem 18. Let K be B,,(zo). If y € Q(K)Nb~1([ry,7]),
there exists y € K such that y is on a geodesic ray emanating from
y. So d(y,y) = b(y) — b(y) < r — ro, while d(y,20) < ry. Thus y €
BT’+7’2—7’1 ($0) Hence,

Vol(Q(B,, (x0)) N b~ ([r1,7])) < Vol (Brtr,—r, (20)),

and the lemma follows from Theorem 5. q.e.d.

The power, p, is the same as in the Volume Growth Theorem of [8],
but the constant is now the maximal possible constant and is achieved
by warped product manifolds with a metric of the form dr24r2(1/2=%)g,.

2. Compactness of level sets

In this section we prove the following theorem.

Theorem 19. Let M" have nonnegative Ricci curvature everywhere
_ 22
and satisfy Ric, > % on b= (rg,00), where v € (0,1/2]. Sup-
pose that M™ also has minimal volume growth, so that

. Vol(B,(R))
(0.45) h]r%n—iip =) (D = Vo < oc.
Then the Busemann function’s level sets, b='(r), are compact. Fur-
thermore, the diameter of these levels grows at most linearly, i.e.,

(0.46) lim sup diam(b"1(F))

< 00
R—oo R 7

where the diameter is measured in the ambient manifold, M™.
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In particular, we prove that on a manifold with nonnegative Ricci
curvature and linear volume growth all Busemann functions have com-
pact level sets.

The key ingredient to the proof of this theorem is the volume growth
of Q(K) [Theorem 5 and Corollary 17]. We show that given mini-
mal volume growth, any Busemann function has level sets with finite
(n — 1)-volume and the ratio, Vol,_;(r)/(r'/>="), is nondecreasing and
bounded above. Thus we can take a compact set, K, and a Busemann
level whose intersection with K has a sufficiently large (n — 1)-volume.
This insures that “most” of the volume of the manifold is contained in
Q(K). We then show that balls of large diameter cannot fit outside of
Q(K) using the Relative Volume Comparison Theorem and the globally
nonnegative Ricci curvature.

Lemma 20. Let M"™ have Ric, > (71;12(41(9/;)1—%2) on b~ (rg, 00),
where v € (0, 2(7;—"'_11)), and let M"™ have minimal volume growth, (0.45).

Then the level sets of any Busemann function, b, have finite (n—1)-
volume. Furthermore, if ro > rqy > ro, then

(0.47)
Vol,_1(b=(ry)) < pVol(b=(ry,r32)) < Vol,_1(b7(r2)) <V
p—1 7P — P p—1 )
r 2 1 ry

where p= (n — 1)(1/2—wv) 4+ 1 and Vy is defined in (0.45).

Note that this lemma, unlike Theorem 19, includes manifolds with
quadratically decaying negative Ricci curvature (v > 1/2) outside a
compact set.

Proof. By Theorem 17, we know that for any compact set K C
b=1((—o0,r1]), we have

Vol,_1(b71(r1) N Q(K)) < Vol(Q, ,, (K)) < Vol(By(diam(K) + r3))

p—1 = P D > P D .
r o =1 o =1

Taking the limsup as r, approaches infinity and using the minimal vol-
ume growth, (0.45), we get

Vol,_1(b71(r) NQ(K))

p—1
™

(0.48) < V.

Taking a sequence of compact sets K; C K;41 such that
UK; = b7 ((—o00,7]), we get

(049) VOln_l(b_l(T‘l)) S VO T‘f_l Vm Z To.
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In particular, the volume of any level set is finite. Similarly, we can
substitute this sequence K; into the following equation

Vol,_1 (b~ (r) NQ(K)) < Vol,_1 (b= (ry) N Q(K)) < Vol,_1 (b7 (ra))

p—1 p—1 p—1 )
] Ty Ty

which holds for all ro > r; by Theorem 17. Thus Vol,_1(b7(r)) is
nondecreasing for r > r;. We can then apply the coarea formula to
complete the proof. q.e.d.

Definition 21. Given a Busemann function, b, let

Loy (b
(0.50) Vi = lim Lot (0)

r—>00 rp—l

Proof of Theorem 19. Fix any Busemann function, b. We wish to
show that all the level sets of b are compact.

Note that once a given level set 5~1(r) is shown to be compact then,
for all @ < r, b='(a) is compact as well. This is true because given
any pair of points =,y € b~'(a) the Busemann rays 7., 7, intersect with
b~ (r) at the points v, (r), v,(r). Thus,

d(z,y) < d(y2(r),7y(r)) + 2(r — @) < diam(b™(r)) + 2(r — a).

This arguement only works for ¢ < r. So we must show that there exist
a sequence of compact levels sets, b=1(r;), where r; — oo.

By Lemma 20 and the definition of V; .., we know we can find r;
such that Vol(b=1(r1))/(r1)P~! is as close to V; o, as we wish. Further-
more, we can find a compact set K C b™!((—o0,r4]) large enough that
Vol(b~1(r1) N K) is almost the entire volume of the level b=!(ry). So we
can chose ry such that

‘/b,oo - ‘/7’1 1

0.51
( ) ‘/rl —_ 5n+1 1
where
VOln_l (b_l (7‘1) N I()
(0.52) Vi, = .

(r)e~t

Assume there exists an increasing sequence of real numbers h; ap-
proaching infinity and a sequence of points p; € b= (r; + h;) such that
d(p;, QK)) = h;. Recall Definition 3 of Q(K). We now proceed to

prove that such a sequence cannot exist.
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Fix p = p; and h = h; temporarily and consult Figure 1. Since
d(p, QK)) = h, we know that B,(h) N Q(K) = (. On the other hand
B,(h) C b~ (ry,r1 + 2h). Therefore,

(0.53)  Vol(By(h)) < Vol(b™ (r1, 71 + 28)) — Vol (Qvyris2n (K)),

where Q. 425 (K) = b7 (ry,r1 + 2h) N Q(K). By Corollary 17 and
Lemma 20, this implies that

(0.54)
Vol(By(h)) < Vooo((r1 +2h)7 = (r1)?) = Vi ((r1 4 2R)P — (r1)").

On the other hand, the globally nonnegative Ricci curvature com-
bined with the Relative Volume Comparison Theorem [2], [11] gives a
lower bound on this volume,

(0.55) Vol(B,(h)) > (%) Vol(B,(R)).

blr+h)

\-“__
FIGURE 1. By(h)NK) =0

We now choose R large enough so that B,(R) D Q,  +21(K). To
get from p to any point in Q, ., 4o, (K) we travel first a distance h to
reach €, 421 (K), and then at most a distance 2h along a Busemann
ray to reach K. Traveling at most diam(K) we reach any point in K
and then we can travel back up a Busemann ray a distance at most 24 to
get to any point in €, ., 195 (/). Thus we can take R = 5h + diam(K)
and we have

(0.56)  Vol(B,(h) > ( : h

5h + diam

) Vel )
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Finally we employ Theorem 17 again to bound the volume on the right
from below:

h
5h + diam

037) VB (h) > (; o) Vel 2 = ()

Combining our upper and lower bounds (Eqn 0.54 and 0.57), we get the
following inequality

WV (14 20)7 — (1))

(0:58) (Vhoo = Vo) (1 20)" = (m)?) > ——pm

Cancelling ((r; 4+ 2h)P — (r1)?), rearranging and substituting (0.51) we
get,

(0.59) L Ghe Z V) hi n
' sl — Vi ~ \ (Bl + diam(K))

for all h; defined above. Note that the dependence on p; has vanished.
Taking ¢ to infinity, h; goes to infinity and we get the contradiction of
the existence of the sequence p;.

Thus there exists H > 0 such that for all p € b1 ((H + r1,00))

(0.60) d(p, QAK)) # b(p) — 1

We claim that

(0.61) b (r 4+ 1) C Th(Qy pyaar (K))  Wr > H.

If not. there exists r > H and p € b~ (ry+r) such that d(p, Q(K)) > r.
By the definition of the Busemann function, 6=!([ry + r,00)) is con-
nected, so there exists a curve C' : [0, L] — b~ ([ry + r,00)) such that
C(0)=pand C(L) € QK)Nb~ (ry +r). Then

d(C(0),Q(K))—=b(C(0))+7r1 >0
while
d(C(L),QK))=b(C(L)+ri <—H <0.

By the Intermediate Value Theorem, there exists t € (0, L) such that
d(C(t),Q(K)) — b(C(t)) + 11 = 0, contradicting (0.60). Thus (0.61)
holds.

Fixing € K, we have

(0.62) b~ (ry +7) C B.(3r + diam(K)) Vr > H.
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This implies that 6= (r 4 r1) is compact for r > H and, consequently,
b is a proper function. Furthermore, the diameter of b~ (r) grows at
most linearly.  q.e.d.

Remark 22. Note that we cannot prove a similar theorem for man-
ifolds with a negative quadratically decaying lower bound on Ricci cur-
vature. That is, if v > 1/2 and we assume that Ric(z) > (71—1)(;#
for € b7 (rg,00) and Ric(z) > —A for all z € M", the above proof
does not follow. In particular, the Relative Volume Comparison Theo-
rem in (0.55) would involve sinh and thus (0.59) would not produce a
contradiction when taking h; to infinity.

Recall the definition of Vj in (0.45) and of V} o in Definition 21.

-

Corollary 23. Let M"™ have Ricct > %Ai > 0 for z €
b1 (rg, 00) and globally nonnegative Ricci curvature. If M™ has minimal
volume growth then either

i) M"™ splits, in which case Vi, o = Vio/2 for all Busemann functions,
b}
or

i) biin = infoepm b(z) > —oo exists, in which case Vy o, = Vo for
all Busemann functions, b.

Proof. By Lemma 20, we know that for all rq,

~1
(0.63) Vioo > lim M‘

r—>00 rP

We first suppose there is a Busemann function, b, defined on the
manifold which does not have a minimum value, b,,;,. Then there ex-
ist a sequence of points p; € M™ such that b(p;) = —i. From each
point p;, there is a Busemann ray 7; parametrized so that b(v;(t)) = t.
Then (7;(0),7/(0)) is a sequence of unit vectors in the tangent space re-
stricted to b1(0). Since b7(0) is compact, a subsequence (7;(0),7%(0))
converges to (p, v) where p € b=1(0). Note that exp,(tv) is a line because
it is a limit of rays in the positive direction and the limit of increasingly
long minimal geodesics in the negative direction.

By the Splitting Theorem [7], we know that a manifold with globally
nonnegative Ricci curvature which contains a line is isometric to a metric
product N*~1 x R where N*~1 is the level set of a Busemann function.
Since N"~! must therefore be compact, it is not hard to see that it must
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be a level set of any Busemann function, b, as well. Thus

Vol(h~!((~s,5))) _ 2Vol(b~((0,5))

(0-64) GrDP . (st Dy

On the other hand, for py € b71(0) and D = diam(N"71),

Vol(By(s+ D)) _ Vol(b™((=5,5))) _ Vol(By,(s))
(s+Dy = (s+Dp = (s+Dp -

(0.65)

Combining (0.64) with (0.65) and taking s to infinity, we get
Vo > 2V; o, > Vo

We have proven case (i).
We now consider the alternate case, where every Busemann function,
b, has a minimum value, b,,;,. Then for p € b=1(b,,;,), we have

B,(R) C b (bmin, bnin + R).

So

b_l bmin7 bmzn B
(0.66)  Vieo > lim ( =) S i sup # ~ V5.

00 Rp R— oo

However, by Lemma 20, Vj, o, < Vp, implying case (ii). q.e.d.

3. Examples

In this section, we construct some examples of noncompact mani-
folds with nonnegative Ricci curvature and linear volume growth. Ex-
ample 26 demonstrates that the diameters of the Busemann level sets
can grow logarithmically. Example 27 demonstrates that the sequences
of subsets of the form b=!(r;, r; + [) can have more than one limit as
r; approaches infinity. This is similar in concept to examples of the
nonuniqueness of tangent cones at infinity [9].

Both examples are doubly warped products of the Hopf bundle, S3,
crossed with the real line. S is a compact Lie group; so it has three
left invariant vector fields, X, Y and Z, which are orthonormal in the
standard metric on S®. We construct metrics on R x S° of the form,

(0.67) g=dr?+ u2(7‘)0'% + wz(r)(ag( + 052/),
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where ox, oy and oz are the covectors of X, Y and Z respectively.
We require that the Ricci curvature be nonnegative. If welet T’ = %,
then the following formula for the Ricci curvature’s eigenvalues holds [1].

" "

(0.68) Ric(T,T) = —— + 2=

U w
0.69 Ric(7,2) = —% _pww o u
(0.69) ZC(’)_U_ZE—I_ T

Ric(X, X) =Ric(Y,Y)
(0.70) —w" Ww\2 W w? — Ly?
()

w

The main part of our constructions will consist of designing the ends
of the manifold by choosing functions u(r) and w(r) where r > rq for
some rg. Since we need to construct complete manifolds of nonnegative
Ricci curvature, we must close up the manifolds smoothly at some ry <
ro. In fact we will close up the ends, which have boundary diffeomorphic
to S, with simply connected balls by extending u and w so that they
are 0 at r; and the metric near rq is a metric of constant curvature. The
following lemma justifies this extension of u(r) and w(r), given certain
assumptions about their values and derivatives at rq.

Lemma 24. Given any wo > 0 there exists § > 0 and there exists
to > 0 such that if
(0.71) wy €[0,8), wup € (wo — &, wg], uy € (—96,0],
then there exist functions w,w : [0,tg] — R such that
(0.72) u(to) = ug, u'(to) = uy, w(te) =wo, w'(ty) = wr,
and such that the metric, (0.67), is complete and has positive Ricci

curvature on the ball of radius ty in R*.

Proof. Let w(r) = u(r) = Asin(r/A) for r € [0,t;], where
A = wo/(1 — w})'/? and t; = A Arcsin(up/A). This metric has con-
stant sectional curvature and is complete at » = 0. Note that v/(¢;) =

VI = (uo/A)Z.
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Let to = A Arcsin(wo/A) < A(x/2). For r € [ty,to], let w(r) =
Asin(r/A) and let

al(r—t1)3 ag(f‘—tl)Q
(0.73)  wu(r) o =112 r—
where ay = u/(t1) + uy and ag = —2u/(t1) — uy. Thus u(r) and u/(r) are
continuous at ¢; and satisfy (0.72).

For ¢ sufficiently small, we can take u(r) uniformly close on [t1, o]
to ug which is close to wg, and we can take w'(r) and «”(r) uniformly
close to 0 on [t1,tg]. Thus, for r € (t1,%0), by (0.68), (0.69) and (0.70),
we have Ric(T,T) arbitrarily close to 1/wg > 0, Ric(Z,7) arbitrarily
close to 1/wo+ 2/wi > 0, and Ric(X, X) = Ric(Y,Y) arbitrarily close
to 2/w? > 0. We may have to take § quite small to insure that these
Ricci curvatures are positive.

Since the Ricci curvature is positive on both sides of ¢; and since
u and w are C'! on [0,%0], u and w can be smoothed on an arbitrarily
small neighborhood of r~!(¢1) to C™ functions preserving the positive
Ricci curvature. See, for example, [1].  q.e.d.

+ /(1) (r —t) + u(t),

We are constructing manifolds with linear volume growth. Thus
Vols(r=1(t)), which is proportional to A(t) = u(t)w(t)?, must approach
a constant at infinity. However, it cannot approach its asymptote too
quickly if w, satisfying (0.68) with v = A/w?, is to approach infinity.
See [12]. So we set

€
(0.74) A(r) =k - o
where k£ > 1 and € > 0 are constants.

The proof of the following lemma is just calculus combined with
(0.69), (0.70), (0.68) and (0.74). Condition (i) alone implies Ric(T,T) >
0.

Lemma 25. If the doubly warped product manifold Rt x S with
the metric, (0.67), has uw(r)w(r)® = A(r) = k — = where k > 1 and
e > 0 are constants, and has w(r) > 0 satisfying the four conditions:

< \/% ! (i) dw(r) — 262(r) > w?(r),

3rinr’

(i1¢)  limsup(w’/w)'rinr < ke, (iv)  w*(r) < ks(In r)Q\/E/(i%\/E)

r—00
Jor some constants ko, ks > 0, then there exists ro > 0 depending on k,
€, kg, and ks, such that g has nonnegative Ricci curvature for r > rg.
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The first example is constructed by solving the ordinary differential
equation,
w'(r) e 1

(075) w(r) “VE 3rns

Example 26. Given any k£ > 1 and € > 0, then there exists a
complete manifold, M™, with nonnegative Ricci curvature, linear volume
growth and diam(b~(r)) = w(r) approaching infinity. In particular, the
end is isomorphic to the doubly warped product, [rg, c0) x S® with the
metric, (0.67), where

£

Inr B k— =
(0.76) w(r) = k3 (—) and u(r) = nr

In rg w(r)?

It is easy to verify that this w obeys all four conditions of Lemma 25.
It is also easy to see that w and u = A/w satisfy the conditions at
ro required by Lemma 24, thus demonstrating that M™ is complete.
Note that while the diameter growth of such a manifold is unbounded
it is still sublinear. In fact, in [13], we prove that all manifolds with
nonnegative Ricci curvature and linear volume growth have sublinear
diameter growth.

We will now construct another metric on RT x S with nonnegative
Ricci curvature, linear volume growth and a bound on the diameter of
the level sets but without a unique limit of the level sets. We want to
find a function w(r) which alternates between two values as r approaches
infinity. Once again w’/w must not be integrable from 0 to infinity and
is bounded as in (0.68) and A(r) is defined as in (0.74). We now define w
as a solution of an iteratively defined but integrable ordinary differential
equation.

First note that any function, f(r), which satisfies,

frim) _ je 1
(077) firy \/;37‘1117‘

will increase to any value in a finite amount of time. That is, there exists
a function L, (r, f1, f2) defined for all positive r and positive fo > fi
such that if f(r) is a solution of the above equation and f(r) = fi, then
fr+ Ly) = fo. In fact,

(078) L_|_(T‘7 f17 f2) = r(f2/f1)3\/m —-Tr.
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Note how large L, is relative to r for a fixed ratio f3/f;.
On the other hand, if we have a function, g(r), satisfying,

gy _ e 1
(0.79) ) = _\/;W’

then it will decrease to any positive value in a finite amount of time.
There exists a function L_(r, g1, g2) defined for all positive r and positive
g2 < g1 such that if g(r) is a solution of the above equation and g¢(r) =
g1, then g(r + L_) = g¢3. Note that L_ also grows dramatically as a
function of r.

We must design our function w(r) following the specification of con-
dition (i) of Lemma 25; so it can only grow as fast as f(r) and decrease
as fast as ¢(r). We will require w to solve (0.77) long enough to reach an
upper value, k, and then require it to solve (0.79) long enough to return
to a lower value, k%/%, and then return to (0.77) and so on. To smooth
out the differential equation, we define h(r) to be a C'* function such
that h=1forr <0and h = —1forr > 7 and —1 < h < 1 everywhere.
Note that the solution of a C*° integrable ordinary differential equation
is C'°.

Let rg be some positive number large enough to insure that Ly (r, k, 2k),
Ly(r k23 k), L_(r,k*/3,k"/3) and L_(r,k, k*/3) are all larger than 27
for all » > rp. This insures that nothing much can happen in the
smoothing interval. We may take rg even larger later in order to satisfy

the other Ricci curvature conditions in Lemma 25.

Let w(rg) = kY. Let w(r) increase to k by satisfying (0.77) for
r € (ro,r1) where ry = ro 4+ L4 (ro, w(ro), k).

On the interval between ry and ry = ry 4+ 7, we require that,
w'(r) e 1

=hr=m) k 3rinr

(0.80)

Thus w(r) continues to be smooth and to obey condition (i). Note that
our restrictions on rg combined with the fact that | h(r) |< 1 tells us
that k2/3 < w(ry) < 2k.
Let w(r) decrease to k*/? by satisfying (0.79) for r € (ry,r3) where
rs =rgo+ L_(ro,w(ro), k).
On the interval between r3 and r4 = r3 4+ 7, we require that,
w'(r) e 1

.81 = —h(r - — .
(0.81) (r=ra) k 3rinr
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Thus w(r) continues to be smooth, and to obey condition (i), and k'/ <
w(ry) < k.

At this point we continue the process by requiring that w(r) in-
crease to k by satisfying (0.77) once again, then satisfying (0.80) to
turn around, satisfying (0.79) to decrease back to k%/% and so on. In
this way we guarantee that,

w(rgiy1) =k, w(raigs) = k23

0.82
(0.82) and kP < w(r) <2k Yr > r.

It is not hard to verify that conditions (i)-(iv) of Lemma 25 are also
satisfied for rg chosen sufficiently large. See [12].

Finally we close up the manifold with a four-dimensional disk, by
smoothly extending w(r) and v(r) down to 0 at some point r; < r.
We are able to do this because w and u have values and derivatives at
ro which satisfy the hypothesis of Lemma 24 for rg chosen sufficiently
large.

Example 27. Given any k£ > 1 and £ > 0, we can find an ro > 0
and we can construct a manifold M™ with an end which is isometric to
the doubly warped product, [rg, 00) X S with the metric, (0.67), where
w is a smooth function defined as above and u(r) = A(r)/w(r)% This
manifold has nonnegative Ricci curvature and linear volume growth.
The diameters of the level sets of the Busemann function are uniformly
bounded.

The level sets alternate between two different Riemannian manifolds:
r~Y(rgi11), a Hopf sphere with the metric,

(k- 5r)”

1
0 TR0k +ov) & ozt k(% +ov),

(0.83) =

and r71(ry;3), a Hopf sphere with the metric,

(k — 5r)”

(081) —=p

1
AR 4 0d) & ol K o)
where the sequence r; is defined above. Here b=!(r,r + L) does not
approximate a unique metric in the Gromov-Hausdorff sense as r ap-
proaches infinity.

Notice that the length of the intervals between the level sets of maxi-
mum diameter and those of minimum diameter is increasing to infinity;
see (0.78). So given any L we can go far enough out that a region
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b~'(r,r + L) is close to the isometric product, b='(r) x (r,r 4+ L), in
the Gromov-Hausdorff sense. This behavior will be proven necessary in
[13].

We believe that similar examples can be constructed for manifolds
with quadratically decaying Ricci curvature bounds and minimal volume
growth. Such examples might be constructed using the same doubly
warped product of the Hopf Sphere with the positive real axis but a
slightly different differential equation.
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