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NODES ON SEXTIC HYPERSURFACES IN P?
JONATHAN WAHL

In this note we present a coding theory result which, together with
Theorem 3.6.1 of [3], gives a short proof of a theorem of D. Jaffe and
D. Ruberman:

Theorem [5]. A sextic hypersurface in P° has at most 65 nodes.

W. Barth [1] has constructed an example with 65 nodes. Following
V. Nikulin [7] and A. Beauville [2], one must limit the size of an even
set of nodes, and then prove a result about binary linear codes (i.e.,
linear subspaces of F*, where F is the field of two elements). The first
step is the aforementioned result of Casnati—Catanese:

Theorem [3]. On a sextic hypersurface, an even set of nodes has
cardinality 24, 32 or 40.

The desired theorem will follow from:

Theorem A. Let V C F be a code, with weights from among 24,
32 and 40. Then dim(V) < 12.

1. Codes from nodal hypersurfaces

(1.1) Let ¥ C P2 be a hypersurface of degree d having only p or-
dinary double points as singularities. Let 7 : S — X be the minimal
resolution of the singularities, with exceptional (—2)-curves F;. Thus

(1.1.1) E; - E; = —25,;.

S is diffeomorphic to a smooth hypersurface of degree d.
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(1.2) The classes [F;] in H?(S;Z) span a not necessarily primitive
sublattice of rank p. A subset I C {1,2,...,u} for which X[F;] (i € I)
is divisible by 2 in H?(S;Z) (and therefore in Pic(S)) is called even
(or strictly even in [4]). More generally, consider for any subset [ the
homomorphism

o :F - H*(S,F),

associating to each standard basis vector e; the mod 2 class of [F;]. We
define the code
Code(]) = Ker(¢p).

A non-0 element corresponds exactly to an even subset J of [I; the
weight of such a “word” is its number of non-zero entries, i.e., |J].
Im(¢p) is totally isotropic by (1.1.1); thus, dim(Im(¢)) < 1b5(S), whence

(1.4.1) dim Code(I) > Card(I) — %bQ(S).

In particular, when g > $b2(S) one has a non-trivial code.

(1.5) It is an interesting question to determine for each d the possible
cardinality ¢ of an even set of nodes. By studying the corresponding
double cover, one finds: For d = 4, one has ¢t = 8 or 16 [7]; for d =
5, t = 16 or 20 [2]. The recent Theorem 3.6.1 of [3] proves that for
d = 6, one has t = 24,32 or 40. Since by of a smooth sextic is 106, the
result of [3] becomes

Theorem 1.6. Let ¥ C P be a nodal sextic hypersurface with at
least u nodes. Then there is a code V C F* of dimension > 1 — 53, all
of whose weights are among {24,32,40}.

Let I be any set of p nodes. This result plus our Theorem A will
imply the 65-node bound for sextics.

2. Proof of Theorem A

(2.1) The F-inner product on F* (counting mod 2 the number of
overlaps of two words) makes V* C F*. V is called even if all words
have even weight, double even if the weights are divisible by 4. Every
doubly even code is automatically isotropic, i.e., V. C V* (use (2.8.1)
below). Since dim (V') = dim(F"/V*), a doubly even code satisfies 2d <
n with equality iff the code is self-dual (V = V*). The element 1 € F"
has a 1 in every position.
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(2.2) Let V. C F* be a d-dimensional code with a; = a;(V') words of
weight ¢. We have the simple equations

(2.2.1) Ya; =2¢ -1,

(2.2.2) Sia; =n' - 2471,

where n’ < n is the number of entries containing 1’s from words of V.
(2.2.1) is just an enumeration of V —{0}. For (2.2.2) list all 2¢ elements
of V as rows of a 2¢ x n matrix of 0’s and 1’s. n’ columns contains at
least one 1; since V' is a subspace, exactly half the entries are 1’s. Now

count the total number of 1’s via rows or columns. If n’ = n, we say
V C F" is a spanning code.

(2.3) For a striking generalization of (2.2.1) and (2.2.2), define the
weight enumerator of the code V as

Wy (2,y) = Sa;a" "y’

with ag = 1. W is homogeneous of degree d. The MacWilliams
identity (e.g., [6]) states that the enumerator of the dual code V* is

(2.3.1) Wi (2,y) = (2—15[) Wle + 9,2 — ).

Writing the coefficents of Wy« as a = af(V), (2.3.1) takes the form

(2.32)  Safa"Ty = (%) A+ )+ ez +y)" (2 - y)' )

Equations (2.2.1) and (2.2.2) are respectively the statements aj; = 1 and

ai (=number of entries not appearing in V)= n — n’. More generally,
we deduce the

Lemma 2.4. Let V C F”* be a d-dimensional code. Then
(2.4.1) Ya; =27 — 1,
(2.4.2) Sia; =247 (n — a}).
(2.4.3) If a5 = 0, then
Sita; =297 Hal + n(n+1)/2}.
(2.4.4) If at =0, then

Sida; = 2972 3(ajn — a3) + n?(n + 3)/2}).
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Proof. Expand the right-hand side of (2.3.2), carefully.

Lemma 2.5. If V C F” is a d-dimensional spanning code with only
one weight w, then there is an integer s > 0, so that w = s - 29~ and
n=s(2¢-1).

Proof.  Use (2.2.1) and (2.2.2) and fact that 247! and 2¢ — 1 are
relatively prime.

Lemma 2.6. IfV C F" is a spanning code with weights 24 and 32,
then n < 63 and d < 9.

Proof. Solving (2.2.1) and (2.2.2), one finds
agy =2974(64 — n) — 4,
azg =274 (n — 48) + 3.
Since agq > 0, one has n < 63. Next, by (2.4.3), 247! divides
242 a9 + 32%asy = 28{2976. 9. (26 —n) + 2972 . (n — 48) 4+ 3}.
So, if d > 8, then d < 9. (Of course, there are many more restrictions.)

(2.7) Suppose V' C F" is a d-dimensional spanning code with weights
among {24, 32,40}. We solve equations (2.4.1)—(2.4.3) for the a;’s; writ-
ing z=n(n+1)/2+ a3, we find

agy =282 = 9.2%n 4527} — 10,
asy =2 {—2 4+ 2% —15-27} + 15,
ago =282 -7-2°n4+3.2°} —6.

One can thus compute that
Sida; = 294432 - 2.4Tn4+3.5.27} — 211 . 3.5,
By (2.4.4), this expression is divisible by 29=2. we conclude that
(2.7.1) d <13
Equating with (2.4.4) and simplifying yield

3{a3(2° — n) + a5} =n>/2 — (189/2)n> + 2° - 185n

2.7.2
( ) _ 3 . 5(213 _ 213—d)‘
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We record this equation for special pairs (n, d):

(2.7.3) (n,d) =(66,13)  a} — 2a3 = —13,
(n,d) =(65,13) a; —a; = —b.

Proposition 2.8. Let V. C F* be a code with weights among
{wy,...,we}. Let v € V have weight w. Consider the projection
7 " — F*™" onto the places off the support of v. Then

(a) 7(V) = V' is a code of dimension = d —dim(V NFY); in partic-
ular, if v is not a sum of two disjoint words in'V', then dim(V') = d—1.

(b) The weights of V' are all of the form (3)(w; +w; — w).

Proof.  For (a), the kernel of w|V consists of words of V in the
support of v. If it contained another word v’, one could write a disjoint
sum v = v’ 4 (v — v’). For (b), the weight of #(v") € V' is the number
of positions of v’ not in the support of v; this equals w’ — r, where r is
the number of overlaps between v and v’. If v+ v’ = v”, then on the
weight level

(2.8.1) w+w —2r=w".

Therefore, w' — r = (v’ + w"” — w) /2, as claimed.

Proof of Theorem A. We may assume V' C F” is spanning code,
where n < 66. By (2.7.1) it suffices to rule out the case of d = 13. By
Lemma 2.6, V' contains a word of length 40; we project off it, and apply
Proposition 2.8. Since 40 is not the sum of two weights, the projected
V! C F*=9 has dimension 12; the weights are among {4,8,12,16,20}.
So, V' is a doubly even code, hence V' C V'*; as

n—40=dim V' +dim V"™ > 2.dim V' = 24,

one has n > 64. But V' could not be self-dual, as 1 € V™ — V' has
weight n — 40 > 20. This leaves the cases n = 65 and 66.

Return to the projected 12-dimensional doubly even code V' in F2°
or F?. We claim a3(V’) = 0. Otherwise, there is a weight 2 word
f orthogonal to V’; the span V" of f and V' is even (by definition),
dimension 13, and orthogonal to itself. In F? this is impossible for
dimension reasons. In F?% the span could not contain 1 (which is clearly
in V), as its weight of 26 is not 2 plus a weight of V'. This proves the
claim.
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On the other hand, (2.7.3) implies that V satisfies a(V') > 0; thus,
there exists a word of the form e, 4 eg in the dual of V. A word in
V' thus contains either both e, and eg or neither. On the other hand,
projecting off a word of weight 40 gives a V' with no such word of length
2; thus, every word in V' of weight 40 must contain both e, and eg.

Intersecting V with the codimension-2 subspace F"~% C F” of words
containing neither e, nor eg gives 12-dimensional space V, but now the
only weights can be 24 and 32. By Lemma 2.6, this is a contradiction.

Remark 2.9. Note that the inequality g > %b2(5)7 needed to
assure a non-trivial code, cannot be true for d = degree(X) > 18. For,
Miyaoka’s inequality implies p < (%)d(d — 1)2, while

by(S) = d° — 4d* 4 6d — 2.
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