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PENGFEI GUAN & XU-JIA WANG 

Abstract 
In this paper we study a Monge-Ampere equation arising in geometric optics. 
We will establish the a priori estimates and derive the existence of solutions 
by the continuity method. We also give a Legendre-type transformation for 
this equation. 

1. Introduction 

We consider here an equation of Monge-Ampere type which arises 
in geometric optics. Suppose a point source of light is located at the 
origin O G IR? and let T be a closed surface which is star-shaped with 
respect to the origin. If we identify each direction of the ray with a 
point on S2, and the ray of the light reflects according to geometric 
optics, then the direction of the reflection defines a point on S2. Hence 
we obtain a map from S2 to S2. In [26], as a part of Problem 21, 
Yau asked: "How much information does this map tell us about the 
surface?" Let V be represented as a graph over the unit sphere S2, 
r = {x • p(x); x G S2}. Let j(x) denote the unit outer normal of T at 
x • p(x), and y = T(x) = Tp(x) the direction of the light reflected by T. 
Here we regard a unit vector as a point on S2. By the reflection law we 
have 

y = x-2{x,j)j. 

Let f(x) denote the intensity of the source O, and g(y) the distribution 
of the directions of the reflected light on S2. Both f and g are non-
negative and measurable. Suppose no energy is lost in reflection, and 
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T is a diffeomorphism from S2 to itself. Then by the energy conserva­
tion, the Jocobian ofT(x) is equal to f(x)/g(T(x)), which leads to the 
equation 

<u, det dete e ' ^ ' g T x -

where u = 1/p, r j j denotes the covarient derivatives on S2, e is the 
metric on S2 and r] = (\ru\2+u2)/2u. For the derivation of the equation 
we refer the reader to [22], and also [13] and [25]. 

The problem is closely related to reflector antenna design in engi­
neering. In applications one is usually required to solve the equation 
(1.1) subject to the second boundary condition: 

(1.2) T(Q.) = D, 

where both Q and D are domains on S2 prescribed in advance. (1.2) 
means that the directions of the reflected light cover the domain D with 
energy distribution g(y). For the background of the problem we refer 
the reader to [25]. 

The problem (1.1), (1.2) has been studied by both engineers and 
mathematicians; see [13] for some historical remarks. In the last two 
decades this problem has been studied by [25], [1], [16], [14], [15], [11], 
and [24] (and the references therein). A partial differential equation was 
derived in [1] by making use of complex analysis, and later rederived 
in [16] by means of geometric analysis. The existence and uniqueness 
of radial solutions to the equation were also obtained in [16], and were 
extended in [14] to non-radial f and g if they are small perturbations 
of radial ones. But compared with (1.1), the equation in [24] and [16] 
is indirect to the reflecting surface T. A transformation was made there 
and the phase function in their equation is actually defined on the do­
main D. The question of reconstructing the reflecting surface Y from 
their phase function is by no means obvious, and it has been discussed 
by Oliker [15] under various assumptions; see also [13]. The uniqueness 
of smooth solutions has been obtained by Marder in [11]. 

The general existence and uniqueness of generalized solutions to 
(1.1) (1.2) were recently obtained by Wang [22]. It is proved in [22] 
that there exists a generalized solution of (1.1), unique up to positive 
constant multiples, so that, 

D C T ( f i ) , \{xeÜ,T(x) <£D}\ = 0 , 
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In [22] by example it is also shown that the solution may fail to be C 1 

smooth even if both Q and D are convex and all known data are C°° 
smooth. But if T{Q) = D, the solution turns out to be smooth. 

We mention that in [3], Caffarelli and Oliker obtained the existence 
of generalized solutions to (1.1) for closed surface. As they noted, the 
problem has a remarkable resemblance with Minkowski problem. The 
approach in [3] is similar to that by Alexandrov and Pogorelov in solving 
the Minkowski problem. Instead of convex polyhedra approximations 
like in classical cases, Caffarelli and Oliker used approximations of co-
focal paraboloids of revolution, which suits perfectly to the problem. 
But, the regularity part for the generalized solutions obtained in [3] was 
left open, since the a priori estimates of second derivatives for solutions 
were missing. 

In this paper, we establish the existence, uniqueness and regularity of 
the solution to (1.1). Our approach is the continuity mothed, which was 
used by Nirenberg in [12] and Cheng-Yau in [4] for solving Minkowski 
and Weyl problems. The key step here is to establish a priori estimates 
for solutions to (1.1) up to the second order derivatives. In fact, we will 
work on equation (1.1) in any dimenssion great than 1 and will obtain 
LOCAL C2 a priori estimates for general degenerate equations. There 
have been extensive works on degenerate Monge-Ampere equations re­
cently (see [2], [10], [21], [21], [7] and references therein ). In general, 
one cannot expect to obtain local C2 a priori estimates for degenerate 
Monge-Ampere equations. Equation (1.1) is very special in this aspect. 
We note here that equation (1.1) is similar to the equation related to 
Alexandrov problem (see [9]). The main difference is that (1.1) involves 
r] in the entries of the matrix. In order to get C 1 ' 1 estimates for ellip­
tic Monge-Ampere type equations, one has to impose some structure 
restriction, as Lewy-Heinz example indicates that in general it is false 
(see [19]). In [19], various structure conditions were discussed for two 
dimenssion Monge-Ampere type equations. Unfortunately, our equation 
(1.1) does not fall into that category. As for higher dimensions, local 
C2 a priori estimates even fails for standard Monge-Ampere. Here, we 
follow similar ideas in [7] and [9], and use the special structure of the 
equation (1.1) to get the crucial LOCAL C2 a priori estimates. 

To proceed further let us first recall the admissibility of closed sur­
faces with respect to (1.1) introduced in [22] and [3]. We say a closed 
surface T is admissible if for any point p e T , there exists a paraboloid 
F with focus at the origin passing through this point p so that T lies on 
one side of the paraboloid. F will be called the supported paraboloid 
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of r at p. The admissibility introduced above is analogous to that for 
the classical Monge-Ampere equation 

(1.3) detD2u = f(x). 

Actually paraboloids play the same role in equation (1.1) as planes in 
(1.3). In fact, let F = fx • ip(x); x G S2g be a paraboloid with focus at 
the origin. Then ip(x) assumes the form 

C 
(1.4) ip(x) = - i , x£S2,xj£y, 

1 - hx,y 

where y is the axial direction of F. Direct computations show that for 
u = 1/ip, the matrix 

fr ij u + (u-r))e ij g = 0. 

From the above definition it follows that every closed admissible surface 
r is convex, and the matrix f r y u + (u — i])e ij g is non-negative if T is 
C2 smooth. 

We would like to mention that if one considers the boundary problem 
(1.1) and (1.2), then the surface is not closed and in this case there 
are two classes of admissible surfaces, according to which side of the 
paraboloid the surface T lies on. Since both f and g are non-negative, 
equation (1.1) is elliptic when T is admissible. The notion of the support 
paraboloids and admissibility was introduced in [3] and [22]. 

For any admissible surface T, let T(x) = Tp(x) denote the set of 
the axial directions of the support paraboloids of T at x • p(x). For any 
Borel set E C S2, let T(E) = UxeE T(x). It is proved in [22] that if T 
is admissible, the overlapped directions of the rays reflected by T have 
measure zero. Hence 

(1.5) n(E) = Z g(y)dy 
T(E) 

is a completely additive measure on S2. We say T is a generalized 
solution of (1.1) if for every Borel set E C S12, 

(1.6) n(E) = Z f(x)dx. 
E 

(1.6) is nothing but the energy conservation. It is easy to see that if T 
is C2 smooth, then (1.6) is equivalent to (1.1). Taking E = S2 we get 
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the necessary condition for the solvability for equation (1.1): 

(1.7) f(x)dx = g(x)dx. 
S2 S2 

For simplicity in the following we will suppose that 

(1.8) f{x)dx = 1, 
S2 

which means that the energy rediated from the origin is equal to 1. 
We now state the main result of the paper. 

M a i n T h e o r e m . Suppose f, g are C°° positive functions on 
S2 and satisfy (1.7). Then there exists a C°° solution to (1.1), and the 
solution is unique up to multiplication of positive constants. 

The Main Theorem is a particular case of more general results in §3. 
The paper is organized as follows: in §2, we treat a class of general 

degenerate Monge-Ampere equations modelled (1.1) on S n, and derive 
the a priori estimates for the solutions to (1.1). In particular, local C2 

a priori estimates will be obtained for the degenerate Monge-Ampere 
equations. The existence and uniqueness of solutions to (1.1) will be 
proved in §3 by the continuity mothed. Here we employ a very simple 
argument to show that the linearized operator of the equations like 
(1.1) is surjective. In §4 we introduce a transformation for equation 
(1.1), which is the counterpart of the Legendre transformation for the 
classical Monge-Ampere equation (1.3). The transformation is actually 
related to the one in [24] and [16] mentioned above. We will show that 
the inverse of our transformation, which can be explicitly expressed, can 
recover the reflecting surfaces from the solutions obtained in [24] and 
[16]. 

2. A priori e s t i m a t e s 

In this section, we prove a priori estimates for the solutions of equa­
tion (1.1). Here, we will deal with the problem on S n for any n > 2. In 
this case we have the equation, instead of (1.1), 

( 2 1 ) d e t v n - i j ' = f | x ) / g T x ) ) , xeS n, 
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where f and g are as in §1, r\ = ( |Vu|2 + u2)/2u. Equation (2.1) will 
be derived in the appendix. Observe that if u is a solution of (2.1), Cu 
is also a solution of (2.1) for any C > 0. For (2.1) one can introduce 
the support paraboloids and admissibility as in §1. The concept of 
generalized solutions can also be introduced in the same way. 

We establish the a priori estimates in two steps. First is C° bounds 
for the solutions, the proof is similar to the one produced in [3]. Then, 
C 1 bounds follow by the convexity. The second step, which consists of 
the main part of the section, is C2 bounds for the solutions. The a priori 
estimates hold for more general degenerate Monge-Ampere equations. 
We will explore that under great generality. The techniques we employ 
here are similar to that used in [7] and [9]. Our estimates here are purely 
LOCAL, while the estimates in [7] and [9] are global (in fact, local C2 

estimates fail for equations treated in [7] and [9]). Once C2 estimates 
are achieved, (2.1) becomes uniformly elliptic if f and g are strictly 
positive, and the higher order regularity of solutions to (2.1) follows from 
the elliptic regularity theory (see, e.g., [6]). As for higher regularity of 
degenerate Monge-Ampere equations, we refer to the discussion in [8]. 
The existence and uniqueness of solutions will be treated in the next 
section. 

2.1 . C° e s t imate . Let u be a solution of (2.1) and V = {x • p(x)} 
the corresponding reflecting surface. Then p > 0. By multiplying a 
positive constant we may suppose inf S n p(x) = 1. 

For any nonnegative function g(x) defined on S n, since R B , -. g(x)dx 
0 uniformly for y G S n as r —> 0, there exists r > 0 so that for any 

y G S n, 

(2.2) 2 Z g(x)dx < Z g{x)dx < 2 Z g(x)dx, 
B r{y) S n B27r-r(y) 

where B r(y) denotes the ball on S n centered at y with geodesic radius 
r . We also suppose f(x) satisfies (2.2) with the same r. We claim that 
there exists C > 0 depending only on r so that 

(2.3) sup p(x) < C. 
xeS n 

Indeed, suppose inf S n p(x) is attained at x$. Without loss of gen­
erality we may suppose xo is the south pole, i.e., xo = —e n+\. Let 
•00{x) = i_(x—\ be a support paraboloid of r at xQ • p(xo), where yo 
is the axis of the support paraboloid. Since p(x) attains its minimum 
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at xo, we see that — e n+\ is the unit normal of r at xo • p(xo), and 
yo = e n+i. Moreover by inf S n p(x) = 1 we have Co = 2. 

To prove (2.3) it suffices to show that V C fx G IR n+1; x n+1 < Cg 
for some C > 1 depending only on r. For any point p G Tnfx n+i < Cg, 
let ipi(x) = ,_, } v be a support paraboloid of V at p. If there exists a 

point p G T n fx n+i < Cg such that y\ e B r(e n+ i ) , then Ci is bounded 
by a constant depending only on r and C, and T is bounded by the two 
paraboloids ipo and tpij and so (2-e follows. Hence we may suppose 
that for any point p G T fl fx n_|_i < Cg, yi G B r(e n_|_i). Then for C large 
enough, we have T(x) G B r(e n+i) for any x G S n nB r(e n_|_i). Hence by 
(2.2) we obtain 

- > Z g(x)dx > Z f(x)dx 
2 B r(e n+ i ) S n \B r(e n+i) 

1 1 

a contradiction, from which (2.3) follows. 

2.2. C2 estimate. By (2.3) and the convexity we have jruj < C. 
Next we derive the a priori bound for the second derivatives of solutions 
to (2.1). Let fw ij g = fr ij u + (u — r))e ij g. We consider the equation 

(2.4) det(w ij) = k(x,u, ru)det(e ij) on S n, 

where 
k(x,u,ru) = f(x)g(x,u,Du). 

Defintion 2.1. Let h b e a bounded function defined in a domain 
Q in S n. We say h is Pseudo-subharmonic in O if there is a positive 
constant A > 0 such that 

(2.5) Ah>-A, VxeÜ. 

We remark here that the class of pseudo-harmonic functions is quite 
large. It includes all bounded subharmonic functions and all C1 '1 func­
tions. We refer [7] for some description of the pseudo-subharmonic func­
tions. We now derive the following key local estimate 

Lemma 2.1. Let A > 0, A G C2(S n) be a cut-off function. Let 
Q\ = fx G S n; A > 0g. Suppose g is positive and C1,1 smooth in 
( x , u , r u ) , and f is nonnegative. Suppose u G C4(Q,\) is a positive 
solution of (2.4). If either 
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(i) f1/(n l> is Lipschitz and pseudo-subharmonic in ii\; or 

(ii) fa pseudo-harmonic in Q\, for some 0 < a < l / (n — 1), 

then there is a constant C > 0 such that, 

C 
~\(x 

r2u(x)j < - ^— x É I Ì 
C 

A-

Proof. Let H(x) = tr(u ij). Since (w ij) > 0, we only need to get an 
upper bound for E(x) =: X(x)H(x). Suppose E{xQ) = max xenA E{x). 
We may assume xo G Q\ and H{xQ) > 1 + Csup S n(u — rj). Let us pick 
up an orthonormal coordinate system at xo, and assume {Uij(xO)g is 
diagonal at xo (so is f ij(xO)g). Then at xo, r i E = 0 and fr ij E < 0g. 
That is, 

(2.6) H i = - i H, 

(2.7) XH ij<-(Xij-2ij-)H. 

Let fw ij g = { l i j g - 1 . Then, at xo, 

-w ij(Xij - 2ij)H > Xw ij H ij = Xw ii(Au)ii 
A 

= \w ii fA(u ii) + 2Au - 2nu ii g 

(2.8) = AfwAui i ) + 2H(Zw ii) 

- 2nw ii w ii + 2n(u - ?7)Sw ii g 

= Aw iiA(uii) + AO(l + HSw ii). 

We now compute w iiA(u ii). Applying A to the equation det(w ij)1'^n~1' 
ki/in-i) yields5 at xOi 

w iiA(Uii) = w ijA(u ij) = w ij fA{w ij) - A[(u - r))e ij]g 

(2.9) = w ijA(w ij) + w iiAn + O{Hw ii) 

= n w ik w l(Y,ßr w ij r w kl) 
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w i j w klCSßVßw ijVßw kl) 
n — 1 

n - 2 + k~2kAk - IVk!2 + O(HZw ii) + Ar/S 
n — 1 

-.I + II + O{HEw ii) + Ar/Sw 

w i i 

From (2.8) it follows 

-wHXi - i j ) H >XI + XII + \Ar)Ew 
(2.10) y j \ ' - ' 

2iAj A 

-)H >AI 

CA(1 + HE«ii). 

While by (2.6) we have 

1 n 1 
A77 = - X u2j + - Vu • V(Au) + O(H) 

j = l 

1 X 2 HVA Vu O,H,. 

> c H 2 - C ( l + ^ ) H 

for some c > 0 depending only on inf u. Hence (2.10) becomes 

ZAA 
(2.11) - w ii(Aij - ^i-j)H >XI + XII + +c\H2Zw ii - CHVw i 

By definition, 

n - 2 2 
I = f 2 f A f - ^ i v f i 2 o -J-f g - ^ f • vg 

n — 1 n — 1 

n — 1 

If f satisfies assumption (i) in the lemma, by (2.6) we have 

(2.12) II > -Af-1'n-^ - CHf-Wn-1) - CH2 - C^p-H. 
A 

On the other hand, Ve > 0, 

I > f " ' { f A f - n ^ 1 Vfl2} + g-2{gAg - n ± Ì | V g \ 2 } . 
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If f satisfies assumption (ii) in the lemma, set e = 1 — (n — l)<x Again 
using of (2.6) gives 

II > -Af~a - CH2 - C j—j H 
( 2-1 3 ) jrAj 

f A 

As for I , for each fixed ß, we have either (i): there exist J\ ^ 0 and 
J<2 7̂  0 so that rßw jj > 0 for j G J\ and r w jj < 0 for j G J% or (ii): 
r w , i = 1, 2, • • • , n, has the same sign. If (i) is the case, we have at 
x0, 

n 
2 

ßw ii)2] 

I =:^(w)2(rw)2 - - L - f ^ w r ̂  
i= i i= i 

(2.14) > [ £ w * ) 2 ( r w ) 2 - ^ - ( E w ii rÉ 
ieJ i jeJi 

+ [ £ w ) 2 ( r w ) 2 - ^ - ( E w r ^ i ) 2 ] > o 

In case(ii), we may suppose at xo, un < • • • < u nn (and so 0 < wn < 
• • • < w nn)' Thus at xo, 

1 1 1 2n 
nn u nn + (u - Tj) H/n + (u - Tj) H 

H^—j^. Therefore 

where by assumption, H > 2n(u — r]). By (2.6) and (ii), j r ^ w j < 

efore, 

n—1 1 n—l 

I > E(wrw)2 - — (^wr; 
n—1 . n—1 r, 

i=l i=l 

+ n L
T w n r / 3 w nn)2 

n — l 
n—l 

i i \ nn 
ßw nn 

(2.15) . - — ^ w r w w nn r ^ 
i=l 

> — 2 — ( y w w nn r H2 

- n - \ ^ j A j 
i = i 

n - 1 ^ A j 
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Combining (2.14) and (2.15) we obtain 

(2.16) I > - n ( X w ) l x | 2 H 

By (2.12), (2.13) and (2.16), we deduce from (2.11) that 

-w^Xij - —ij-)H > cXH2(Zw ii) - A\f-ll{n-l\l + CH) 
A 

IVAI2 

- CXH2 - CA(1 + ]-^)HT1w ii). 
Xz 

Since A G C2(S n), we have |VA|2 < CA. It follows that 

(2.17) cXH2Zw ii < AXf-1^n-^ (1 + CH) + CXH2 + CHT, w ii. 

Since Ew ii > C H 1 / n - 1 ) f - 1 ^ n - 1 ) , we conclude from (2.17) that at xQ, 
XH < C. This completes the proof. q.e.d. 

Remark. In n = 2, 3 cases, every C°° nonnegative function sat­
isfies condition (i) in Lemma 2.1. For n = 2, f G C1 '1 is suffice; as for 
n = 3, f G C3 '1 is suffice by a result of C. Fefferman (see [7]). 

By the elliptic regularity we therefore obtain 

Theorem 2.1. Let u G C4(S n) be a solution of (2.1). Suppose 
f,g G C2{S n) and f,g > Co > 0. Then ||u||C3,a(S n) < C, where a G 
(0,1). 

3. Existence and uniqueness 

Lemma 3.1. Suppose f,g G C2,a(S n) are positive and satisfy the 
energy conservation (1.7). Then (1.1) has a solution u G C4,a(S n). 

Proof. We use the continuity method to prove the existence. To do 
so let fo(x) = g(-x). For any t G [0,1] let f t(x) = tf(x) + (1 - t)f0(x). 
Then f t satisfies (1.7). We consider the equation 

(8.1) M u - g T x ^ u - i j ^ x « S n. 
rn det(e ij) 

When t = 0, (3.1) has a solution u = 1. Let S denote the set of t G [0,1] 
in which (3.1) has a solution. By the a priori estimates in Section 2, we 
see that S is closed. We need only to show that S is also open. 
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For any given to £ S, let u b e a solution to (3.1). Without loss of 
generality we suppose to = 1. Let L be the linearized operator of M at 
u. By the a priori estimates in Section 2, L is uniformly elliptic. For 
any v(x) G C2(S n), let h t = M(u + tv). For t small enough we see that 
u + tv is admissible. By (1.7) and (1.8) we obtain 

(3.2) Z h t(x)dx = Z g(x)dx = 1. 
S n S n 

Hence for any v G C2(S n), 

(3.3) Z Lvdx = lim - Z (h t(x) — ho(x))dx = 0. 
S n t-i-0 t S n 

Let E denote the set of all C Ra-functions on S n, and F the set of all 
C2'a-functions on S n such that S n f(x)dx = 0, where a G (0,1). Then 
L is a mapping from E to F. To prove the openness of S it suffices 
to show L is surjective, or equivalently to show the kernel of L*, the 
adjoint of L, is the null set {0}. 

Suppose L*w = a ij(x)w ij + b i(x)w i(x)+c(x)w. To show the kernel of 
L* is the null set, it suffices to show c(x) = 0 by the maximum principle. 
Notice that by (3.3), 

Z v(x)c(x)dx = Z vL*(l)dx = Z Lvdx = 0 V v G E. 
S n S n S n 

Hence c(x) = 0. q.e.d. 

By the a priori estimates in §2 and using approximation we thus 
obtain 

Theorem 3.1. 

(i) Suppose f,g are nonnegative functions on S n and satisfy (1.7). 
Then there exists a generalized solution to (2.1). 

(ii) If in addition g G C1,l(S n), g > 0, and f satisfies one of the 
conditions in Lemma 2.1, then (2.1) has a solution u G Cl,1(S n). 
In particular, if n = 2, f is nonegative and C1,1 smooth, then 
equation (2.1) has a solution u G Cl,1(S2). 

(iii) If furthermore f > 0, and f G C1,l(S n), then (2.1) has a solution 
u G C3>a{S n) for any a G (0,1). 



r e g u l a r i t y f o r m o n g e - a m p e r e e q u a t i o n 217 

Next we prove the uniqueness of solutions to (2.1). 

T h e o r e m 3.2. Let f(x) and g(x) satisfy (1.7). Suppose 

(3.4) g(x)dx > 0 
O 

for any open O C S n. Then the generalized solutions of (2.1) is unique 
up to a positive constant multiple. 

Proof. We follow the idea in [17] (see x7.2 in [17]). Suppose p\ 
and p2 are two solutions to (2.1), and p\j pi ^ const. We may suppose 
Pi = p2 at some point xo G Q, and both sets Q\ = fpi(x)/p2(x) > 1g 
and O2 = fpi(x)/p2(x) < 1g are nonempty. We claim that 

(3.5) T p ^ D T ^ f i i ) . 

Indeed, for any y G Tp2 (fîi), let f i C = 1_C x y\ g be a family of paraboloids 
with focus at the origin and axes equal to y. One decreases the value of 
C and finds that the graph of iC will touch the graph of pi before that 
of p2) which implies (3.5). Similarly we have Tpi(Çt,2) C TP2{Q.2). 

Let G denote the set of the points at which both p\ and pi are 
differentiable. We claim that TPl(x) = TP2(x) V x G G, from which 
it follows pi = P2- If it is not true, there exists xo G G such that 
TPl (xo) ^ TP2 (xo). Multiplying p% by a positive constant (which doesn't 
change TP2(xo)) we may suppose pi(xo) = p2(xo) and fîi = fx G 
Q, p1(x)/p2{x) > 1g is nonempty. Let y0 = T ( x o ) and Vyo = i-C x,y0) 
be the support paraboloid of p<2 at xo. Since Tpi(xo) ^ Tp2(xo), there 
exists a paraboloid ^ = 1_fx > which is a small perturbation of ipyo, 
such that ipye is a support paraboloid of p<2 at some point x£ 0 fîi, 
and ^ ye cuts off a cap from the graph of p\. This means that y£ 

is an interior point of Tpi(Qi) and y£ 0 Tp 2(Qi) . Therefore by (3.5) 
Tpi(Qi) D TP2(Çt,2). From (3.4) we therefore reach a contradiction since 

g(x)dx = f(x)dx = g(x)dx. 
TP1(Qi) ul TP2(ni) 

This completes the proof. q.e.d. 

Now, our Main Theorem follows directly from Theorems 3.1 and 3.2. 

Remark . In [3], it is proved that there is a weak solution to the 
global reflection problem (1.1) when f,g G Ll(S n) and satisfy (1.7). 
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Here, our existence results can produce an unique weak solution (in the 
sense of [3]) for local reflection problem (1.1) with boundary condition 
(1.2) for f and g satisfy the similar compatibility condition. To see 
this, we may extend f and g to be defined in whole S n (vanishing out 
side O and D respectively). Then by smoothing f and g, we obtain 
approximate solutions. Our C° estimates give that a subsequence con­
verges to a weak solution. The uniqueness follows the same line of the 
proof to Theorem 3.2. In addition, if f and g are smooth and positive 
respectively in D and O, and T(Q) = D, then the solution is smooth by 
elliptic theory and our local C2 estimates. These results were proved 
by different motheds in [22] in n = 2 case. 

4. Legendre t y p e transformat ion 

Let Q and D be two domains on S n. Suppose T = fx-p(x),x G 0g be 
an admissible C 3 surface so that f r y u + (u — r?)eyg is strictly positive, 
where u and rj are as in (1.1). Then Tp is a diffeomorphism from Q to 
D = Tp(ü). For any y G D, let 

(41) "•<y» = inff x ) T ^ i - x€üg-

Obviously p*(y) is a positive function. By the admissibility it is easy 
to see that the infimum is attained at the point x É ! Ì with Tp(x) = y. 
Hence 

(4.2) p*(Tp(x)) l l 

p(x)l-hx,Tp(x)i 

Since Tp is a diffeomorphism we see that p* is C2 smooth. 

L e m m a 4 .1 . p*(y) is admissible. 

Proof. For any yo £ D, let xo G 0 so that Tp(xo) = yo- Let 
V'(y) = i-Fx \ be a paraboloid with axis xQ so that ip(yo) = P*{yo), 
namely 

C 1 1 

l - h y o , x o i P(xQ)1- hxQ,TP(xO)i 

we have C = x ^. Hence 

(4.3) v(y) l l 

p{x0) 1 - hx0,yi 
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For any y G D, by definition we see that 

P*(y) < 4>(y)-

Namely, ^ is a support paraboloid of T* at yo • tpiyo)- q.e.d. 

From the proof above we see that (xo + yo)/jxo + yoj is the normal 
of r at xo • p(xo) and the normal of T* at yo ' P*(yo)? where yo = Tp(xo). 
In particular we have 

Corollary 4.2. The inverse ofTp is Tp*. 

Hence Tp* is also a diffeomorphism from D to Q. Now we suppose p 
is a solution of (1.1) and (1.2). Suppose f, g are positive and C2 smooth. 
By the a priori estimates in §2 we see that Tp is a diffeomorphism from 
0 t o D . We can now consider the problem conversely. Let us take the 
graph r* as the reflecting surface, and suppose the intensity of the light 
rediated from the origin is g(y),y G D. Then the directions of the light 
reflected by T* cover Q with intensity f(x). Hence similar to (1.1) we 
have 

Lemma 4.3. Let u*(y) = l/p*(y). Then u* satisfies the equation 

det(Vij u* + (u* - r)*)e ij) g{y) 
(4.4) 

•n^detie ij) f(T(Ay)Y 

where if = 2u(jVu*j2 + u*2). 

We can define similarly to (4.1) that 

(4.5) p**(x)=inf{ * ) yeD}, x G ÎÎ. 
p*{y) 1 - {x,y) 

For any xo G Q, the infimum is attained at the point yo so that Tp* (yo) = 
xo. By (4.2) we have 

(4-6) P**(xo) = w ,-, ; r = p(x0). 
p*(y0) l-{xo,yo) 

Hence we may regard T* as the dual of I\ 

Remark. Finally we point out that the phase function p(y) in 
the equations in [16] and [14] is actually l/p*(y). Indeed, we have 
l/p*(y) = p(x)(l — (x,y)), where Tp(x) = y. By the definition in [16] 
(see Remark 1.3.1 in [16]), p(y) = 2p(x)(x,^}2, where 7 is the unit 
normal of T. It is easy to see 2(x,^)2 = 1 — {x,y). Hence l/p*(y) = p(y). 
This answers the question of reconstructing the reflecting surfaces from 
the solutions obtained in [16] and [14]. 
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Appendix 

In this appendix we derive equation (2.1). Let Q and D be two 
domains on S n, and f and g be two nonnegative function defined on 
O and D respectively. Suppose the rays are originated from the origin 
with intensity f(x). Let T = {x • p(x), and x G Q} be a C2 reflecting 
surface so that the directions of the reflected rays cover the domain D 
and the distribution is equal to g. Here we identify a direction x with a 
point x on S2. 

Let x G Q be a ray from the origin which goes to y = T(x) G D 
after reflection. Let (ei,--- ,e n) be an orthonormal basis of S n near 
x. Let 7 denote the unit normal of T and let u = 1/p. Then 7 = 
— (ru + ux)lp u2 + | ru | 2 . We have 

T(x) = x — 2(x, 7)7 = — [ r u + (u — rj)x\. 
V 

where 77 = ( | ru | 2 + u2)/2u. Direct computation shows that (see [16] 
and [22]) 

— 1 
di T(x) = —q ij(dj x-u-ß), 

7] u 
where ß = (ru + ux)/r], i x = e i, and q ij = r ij u + (u — r/)e ij. 

For admissible surface T, it is known (see [22]) that the overlaped 
directions of the reflected light has measure zero. Namely, the measure 
of the set of axes of the support paraboloids of T whose intresection 
with r has more than one point is zero. Suppose there is no loss of 
energy in reflection. Then we have the energy conservation: 

/ f(x)dx = / g(x)dx, V Borel set E C Q. E T(E) 
Let E = BT(x) be the ball on S n certered at x with geodesic radius r, 
and let r goes to zero. Then we get the equation 

\dTx\=f(x)/g(T(x)). 

The left-hand side equals the determinent of the matrix 

[diTix),--- ,dn T(x),T(x)], 
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i.e., 

\dTf^\ = \det[qij{e j - u-ß); • • • ;q nj(e j -uß);ß-x] 1 dx ' rn u u 

= n d e t q e j - u ) ; • • • ! q nj{e j - -u x);ß x 

— d e t ( q ) . 

Hence we obtain (2.1). 
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