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T H E T R A C E C L A S S C O N J E C T U R E F O R 
A R I T H M E T I C G R O U P S 

LIZHEN JI 

Abstrac t 
In this paper we show that the counting function of the discrete spectrum 
of an arithmetic subgroup of a semisimple Lie group satisfies a polynomial 
upper bound, and we use it to prove the trace class conjecture in complete 
generality. To get this upper bound on the discrete spectrum, we introduce 
new spaces which are principal bundles over locally symmetric spaces and 
prove that the counting function of the eigenvalues of their pseudo-Laplacian 
satisfies the Weyl law. 

1. Introduct ion 

1.1. 

Let G be a semisimple algebraic group defined over Q, and 
r C G(Q) an arithmetic subgroup. Fix a Haar measure on G = G (R), 
the real locus of G. Then G has a right regular representation in 
L2(T\G), denoted by R: f o r f G L 2 ( r \ G ) a n d g G G,R(g)f(x) = f(xg). 
In the following, we assume that r \ G is noncompact. Then the repre
sentation R has both a discrete spectrum and a continuous spectrum. 
Denote by L2d(T\G) the direct sum of irreducible subrepresentations of 
R and by L2c(T\G) the orthogonal complement of L2(r\G) in L2(T\G). 
The restriction of R to the discrete subspace L ̂ ( r \ G ) is denoted by R d. 

For any a G Ll(G), define an operator R d{oi) on L ̂ ( r \ G ) by 

R d(a) = Z a(g)R d(g)dg. 
G 
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In the theory of the Selberg trace formula and automorphic forms, a 
longstanding important problem is the following trace class conjecture 
[33, Open problem 4] [25, §4] [5, §4.7] [22] [32, §2.3] [13, p.14] [34]. 

Conjecture 1 .1 .1 . For any a G C^°(G), the operator R d{oi) is of 
the trace class. 

Let C1(G) be Harish-Chandra's Schwartz space of integrable rapidly 
decreasing functions on G (see [33, p.34] for definition), which clearly 
contains C£°(G). The main result in this paper is the following. 

T h e o r e m 1.1.2 (§7). For any a G Cl(G), the operator R d(oi) is of 
the trace class; in particular, Conjecture 1.1.1 holds. 

A different proof of this theorem is given by Muller in [23] and 
announced in [24]. 

If the Q-rank of G is equal to one, the trace class conjecture was 
proved by Langlands [18]. If the convolution function a is assumed to be 
K-finite for a maximal compact subgroup K of G, then the trace class 
conjecture was proved by Muller [22]. Earlier in [10], Donnelly proved 
the conjecture for K-finite convolution functions a when the Q-rank of 
G is equal to one. 

One of the motivations for the trace class conjecture is as follows: 
Decompose L ̂ (T\G) into the irreducible subspaces: 

^ ( r \ G ) = J > m ( 7 r ) 7 T , 

TTEG 

where G is the set of unitary irreducible representations of G, and m(ir) 
is the multiplicity of IT. An important problem in automorphic forms 
is to understand the set of IT with nonzero multiplicity m(ir) and the 
values of m(ir). A powerful method for this problem is the Selberg trace 
formula, which is an equality between the spectral expression and the 
geometric expression of tr^R^cn)). The first step in establishing such 
a trace formula is the solution of the above trace class conjecture. Os
borne and Warner have tried to establish such a trace formula under the 
assumption that the trace class conjecture holds in a series of papers (see 
[26] and the references there). On the other hand, by considering the 
restriction of R to the cuspidal subspace L2

CUS(Y\G) and the decompo
sition of L 2 ( r \ G ) according to association classes of cuspidal da ta (see 
§3.4), Arthur [1] has developed a trace formula when T is a congruence 
subgroup, which is very useful for the purpose of comparing spectra of 
different groups, i.e., the functorial transfer in Langlands' program. 



t h e t r a c e c l a s s c o n j e c t u r e 167 

The proof of Theorem 1.1.2 follows easily from a polynomial upper 
bound on the discrete spectrum of the Laplace operator on L 2 ( r \ G ) in 
Theorem 1.1.3 below. 

Fix a maximal compact subgroup K of G. Let g and k be the 
Lie algebras of G and K respectively. Then K induces the Cartan 
decomposition: g = k + p. Define an inner product on g which is equal 
to the Killing form on p and the negative of the Killing form on k. 
Then this inner product on g extends to a left G-invariant Riemannian 
metric on G, which descends to a Riemannian metric on r \ G . Denote 
by A the Beltrami-Laplace operator of this metric on r \ G . Since this 
metric commutes with the right K-action, the Laplace operator A also 
commutes with the right K-action. This K-invariance of A will play an 
important role in this paper. 

The Laplace operator A preserves the decomposition 

L2(r\G) = L d(r \G) + L c (r \G) 1 

and has a discrete spectrum Spec d(A) on L ̂ ( r \ G ) and a continuous 
spectrum Spec c(A) on L ̂ (T\G). Denote the counting function of the 
discrete spectrum by 

N d(A) = j{AiGSpec d(A) j A i < A}j. 

To state the the polynomial upper bound on N ( A ) mentioned ear
lier, we need some notation. For any proper rational parabolic subgroup 
P of G, its real locus P admits the (rational) Langlands decomposi
tion P = N P M P A P. Define rank Q P ) = dim A P, and rank Q G) to 
be the maximum of rank Q(P) for all P C G. The symmetric space 
X P = M P/(M P Pi K) is called the boundary symmetric space associ
ated with P . 

T h e o r e m 1.1.3 (§6). The counting function N ( A ) of the discrete 
spectrum satisfies the following upper bound: 

N d{\) < (l + o(l))(4n)-n v o l G X n + O(l)Xm, 

where n = dim G, m is the maximum of (rank Q(P) + l) (dim X P+dim K) 
for all proper rational parabolic subgroups P of G such that 

rank Q(P) < rank Q(G) - 1, 
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and o(l) is a quantity going to zero as A —> +00 while O(1) is bounded. 
In particular, there exists a positive constant c such that 

N d(X) < c( l + An rank«(G)). 

This improves a result of Borel and Garland [5, Theorem 3] that 
N d(\) < +00 for all A > 0. Theorem 1.1.2 follows from Theorem 1.1.3 
by a standard argument. In fact, any polynomial upper bound on N ( A ) 
implies Theorem 1.1.2 (see §7). 

T h e o r e m 1.1.4 (5.2.3). If the Q-rank of G is equal to 1, then 
the counting function N ( A ) of the discrete spectrum satisfies the Weyl 
upper bound, i.e., 

N d{\) ^ lA . _ n / 2 v o l ( r \ G ) 
lim sup V < (AIT)

 n/z , v , , n = dim G. 
A^+OO An/2 - v ; r ( n + 1 ) ' 

Theorem 1.1.4 is a corollary of Theorem 1.1.3. In fact, it follows 
from the first part of the proof of Theorem 1.1.3 (see §5). 

Besides this application to the solution of the trace class conjecture, 
Theorems 1.1.3 and 1.1.4 are interesting from the point of view of spec
tral geometry. It gives a quantitative description of the distribution of 
the irreducible subrepresentations of L2d(Y\G). 

The upper bound in Theorem 1.1.4 is sharp. In fact, if Y\G is com
pact, then A has only a discrete spectrum on L 2 ( r \ G ) , whose counting 
function N d(\) satisfies the Weyl law, i.e., the equality holds in Theo
rem 1.1.4. A natural question is under what conditions on noncompact 
quotients T\G, the Weyl law holds for the discrete spectrum, i.e., the 
inequality in Theorem 1.1.4 becomes an equality. It is certainly conceiv
able that this is the case whenever T is a congruence subgroup, but it is 
not known even for G = SL(2, R) . More is known about the Weyl law for 
locally symmetric spaces; see [15, §1.2] for discussions on this problem 
for locally symmetric spaces. Since L 2 ( r \ G ) involves all representations 
of K, this problem will be more complicated for L 2 ( r \ G ) . 

1.2. 

In the rest of this introduction, we outline the basic idea of the proof of 
Theorem 1.1.3 and the difficulties involved. 

The upper bound in Theorem 1.1.3 is similar to the bound in [15, 
Theorem 1.1.3] for the Laplace operator on T \ X , where X = G/K 
is the Riemannian symmetric space associated with G. In [15], the 
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pseudo-Laplace operator AT of T\X plays an important role. Inspired 
by this, we introduce the pseudo-Laplace operator AT on T\G whose 
domain consists of those functions with vanishing constant terms above 
the height T along all proper parabolic subgroups of G (see §4 for a 
precise definition). An important property of AT is that it has only a 
discrete spectrum. Denote the counting function of the spectrum of AT 
by AT(A). Using the precise reduction theory in [29], the bounds on the 
heat kernel as in [15] and Arthur 's truncation operator A [2], we prove 
the following result. 

T h e o r e m 1.2.1 (4.2.2). The counting function of the eigenvalues 
of the pseudo-Laplace operator AT ofT\G satisfies the Weyl law, i.e., 

To derive Theorem 1.1.3 from Theorem 1.2.1, the problem is to 
relate the discrete spectrum of A to the eigenvalues of AT- This is the 
same problem that we met in [15]. As in [15], our guiding philosophy 
is that AT is a good approximation to A and the discrete spectrum of 
A can be uniformly approximated by a part of the eigenvalues of AT-
We will show that such a uniform approximation holds for a majority of 
the rank-one residual discrete spectrum of A and then derive Theorem 
1.1.3 from Theorem 1.2.1. Though only the upper bound for N T{\) is 
used in the proofs of Theorems 1.1.3 and 1.1.2, the lower bound is of 
independent interests. As pointed out in [15, §1.2], Theorem 1.2.1 can 
be interpreted as an analogue of the Weyl-Selberg law. 

Let K be a maximal compact subgroup of G, and X = G/K be the 
associated symmetric space as above. Then r \ G is a principal K-bundle 
over r \ X . The basic idea is that since the Laplace operator A of r \ G 
commutes with the right K-action, A can be decomposed as a sum 
of vector-valued Laplace operators on T\X which are studied in [15]. 
Similarly, the pseudo-Laplacian AT can also be decomposed according 
to the action of K. Then we can use the results for these operators in 
[15] to compare the discrete spectrum of A and the eigenvalues of AT-

To point out new difficulties occurring in this case, we recall the proof 
of the upper bound on the counting function of the discrete spectrum 
in [15]. Since the truncation of the constant terms has no effect on 
cuspidal functions, the cuspidal discrete spectrum is contained in the 
spectrum of the pseudo-Laplace operator. The problem is to bound 
the residual discrete spectrum. The residual eigenfunctions are given 
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by iterated residues of Eisenstein series associated with various rational 
parabolic subgroups of G. Based on the rank of the parabolic subgroups, 
the residual discrete spectrum can be decomposed into two parts: the 
rank-one and higher rank residual discrete spectra. The bound on the 
counting function of the residual discrete spectrum is obtained in two 
steps: (1) The majority of the rank-one residual discrete spectrum can 
be approximated uniformly by a part of the spectrum of the pseudo-
Laplacian. (2) The counting function of the higher rank residual discrete 
spectrum can be bounded in terms of the counting function of the rank-
one residual discrete spectrum and the pseudo-Laplacian of spaces of 
smaller dimension. We will use the same strategy to prove Theorem 
1.1.3, but there is a new problem of bounding the multiplicities which 
occur in the decomposition of A according to the right action of K and 
restrictions of representations of K to its subgroups. 

More precisely, any unitary irreducible representation a of K defines 
a homogeneous bundle Ea over T \ X . Denote the space of L2-sections 
ofEa by L2(T\X,a). Then 

L2{F\G) = J2 ®(dim °)L2(T\X,
 CT)-

The restriction of the Laplace operator A of G to each subspace 
L2(T\X, a) is denoted by A^ and is a shift of the Bochner-Laplace 
operator on L2(T\X,a) defined in [15] by a constant depending on a. 
Similarly, the pseudo-Laplace operator AT admits a decomposition with 
respect to the right K-action, and the restriction of AT to the subspace 
corresponding to L2(T\X,a) is denoted by AT,a- and is a shift of the 
pseudo-Laplace operator defined in [15] by the same constant deter
mined by a as above. 

For every association class C of rational parabolic subgroups of G, 
there is a subspace L2C(T\G) of L2(T\G) (§3.4). The subspace L2C(T\G) 
also admits a decomposition according to the action of K: 

L(r\G) = J]e(dima)L(r\X,a). 
o-eK 

Denote the counting function of the discrete spectrum of A in L ^(T\G) 
by N C(X), and that of Aa in L ̂  C(T\X,a) by Nc,CT(A). Similarly, the 
corresponding counting functions of the pseudo-Laplacians AT and AT,a 
are denoted respectively by N T,C(X) and N T,C,<T(X). 
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Suppose C is of rank-one, i.e., the parabolic subgroups in C are of 
rank-one. Let P i , • • • , P r be a set of representatives of T-conjugacy 
classes in C. Let P i = N P tA P t M Pt be the Langlands decomposition of 
P i. For every a G K and P i, denote the counting function of the cuspidal 
discrete spectrum in L2(rM i nX Pt, (JM P i) by N itcust(T(\), where (JM P i is 
the restriction of a to the maximal compact subgroup K i = K l~l M Pt of 
M P t . Denote by jpj the common norm of the half sum of the roots in 
T<(P i, A Pt) with multiplicity, i = 1, • • • , r. Since ^ and AT,a- are shifts 
of the corresponding Laplace and pseudo-Laplace operators used in [15] 
by the same constant, by [15, Proposition 5.2.8], N Ct(T(\) is bounded 
from above as follows: 

r 

N C,aW < N T,CAX+ jPj2) + X N-icus,CT(A). 
i=l 

Summing over representations a G K , we get the following bound on 
the rank-one residual spectrum: 

N C(X) = X (dim CT)NMA) < N T,C(A + jpj2) 

r 

+ X X (dima)N icus)Cr(X). 

i=1 aeK 

Naturally, one expects to bound the sum P G K ^(dim cr)N itcust(T(\) by the 
counting function N itcus(X) of the cuspidal spectrum of L2 (TM P i nM Pt ) 
since TM P.nM Pt is the natural analogue of TnG associated with P i. But 

N i,cus(\) = X ( d i m 5 ) N i)cus)S{\), 

8 eK i 

where K i = K n M Pt is a maximal compact subgroup of M P t . Since 
K i / K, the restriction (JM P i to K i of an irreducible representation a 
of K is not irreducible in general, i.e., 

°M P i = X m(S)S' 
8 eK i 

where the multiplicity m{8) will be nonzero for more than one 8 in 
general. Then 

L2{TM P i nX Pt,OM P i) = X m{5)L2{YM P i nX P t ,5) , 

8 eK i 
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and hence 

N i)cus)a(X) = X m(5)N i)cus)S{\), 

8 eK i 

X ( d i m a ) N itcust(T(X) = X d i m , T ( X m(S)N icus,8(X))-

Therefore, we can not use the counting function N itcus(X) of the cuspidal 
spectrum of L2(YM P i nM P{) to bound the sum above 
P K(dim <7)7ijcusj(7(A). The basic reason is that TM P i nM P i is a K i-
principal bundle over TM P i nX Pt, while TnG is a K-principal bundle 
over r n X and K is strictly greater than K i. Similar problems occur 
in the second step above in bounding the higher rank residual discrete 
spectrum. To overcome these problems, we need to study certain K-
principal bundles over TM P i nX Pt (x2). 

The study of these K-principal bundles is one of the new features of 
this paper and plays an important role in proving the upper bound on 
the discrete spectrum of L 2 ( rnG) in Theorem 1.1.3. From the discus
sions in x2, these spaces are natural and interesting in themselves. 

1.3. 

The rest of the paper is organized as follows. In x2, we review the 
Langlands decomposition of parabolic subgroups and their boundary 
spaces, and define the K-principal bundles over them which are needed 
to bound the residual discrete spectrum of L 2 ( rnG) as mentioned above. 
In x3, we generalize a few standard concepts in the theory of automor-
phic forms to these bundles and review the spectral decomposition of 
them, in particular TnG, using the spectral decomposition of the lo
cally symmetric spaces associated with them. In x4, we introduce the 
pseudo-Laplace operator on these K-principal bundles and show that 
the counting function of its eigenvalues satisfies the Weyl law. In x5, 
we show that the majority of the rank-one residual discrete spectrum of 
A can be approximated uniformly by the eigenvalues of AT. In x6, we 
bound the counting function of the higher rank residual discrete spec
trum and prove Theorem 1.1.3. In x7, we prove Theorem 1.1.2 by using 
Theorem 1.1.3. 

1.4. 

This paper is a continuation of [15], and several results and their proofs 
from [15] are used here, but we have tried to make this paper as self-
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contained as possible. Both papers are motivated by and depend essen
tially on [22], and the results have been announced in [14]. Because of a 
gap in the last step in [15] bounding the counting function of the higher 
rank residual discrete spectrum (see [15, Remark 7.2.3]), the Weyl upper 
on N d(\) announced in [14, Theorem 1.4.1] has to be replaced by the 
weaker one in Theorem 1.1.3 here. But this does not affect the solution 
of the trace class conjecture announced there ([14, Theorem 1.3.3]). 

I would like to thank the referees for their careful reading and very 
helpful comments. I would also like to thank Professor A. Borel for his 
comments on the neatness assumption on the arithmetic subgroup T to 
avoid V-manifolds. 

2. B o u n d a r y spaces TM P nX P and K-principal 
bundles TM P nB P over t h e m 

2 .1 . 

In this section we define boundary spaces and K-principal bundles over 
them for rational parabolic subgroups of G (x2.2, x2.3). Then we extend 
the reduction theory of arithmetic subgroups to such spaces (x2.4). 

2.2. 

First we recall the construction of the left invariant Riemannian metric 
on G. Fix a maximal compact subgroup K of G as above. Let g = k + p 
be the Cartan decomposition of the Lie algebra g of G. Then the Killing 
form is positive definite on p and negative definite on k. By identifying 
the tangent space of X = G/K at K with p, we define an invariant 
Riemannian metric on X. To get a Riemannian metric on G, we define 
an inner product on g as follows: It is equal to the Killing form on p 
and the negative of the Killing form on k. Under the left translation, 
this inner product defines a left G-invariant Riemannian metric on G. 
Since the adjoint action of K preserves the Killing form and the Cartan 
decomposition, this left invariant metric is also right K-invariant. 

We recall the Langlands decomposition of rational parabolic sub
groups of G. For any proper rational parabolic subgroup P of G, its 
nilpotent radical N P is an algebraic group defined over Q, and the Levi 
quotient L P = N P n P is also an algebraic group defined over Q. De
note by X ( L P)iQ the group of characters of L P defined over Q. Define 
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M P = n x e X(L P)(n)Ker(x2), the anisotropic part of L P. Then M P is an 
algebraic group defined over Q. Let S P denote the maximal Q-split torus 
in the center of L P, and A P = S P(R) 0 , the connected component of the 
real locus. Then L P = M P A P, where L P = L P(R) , M P = M P(R) . 

Denote the Cartan involution of G associated with K by 9, and the 
real locus P ( R ) by P. Then there exists a unique lift io : L P —> P of 
the Levi quotient L P such that the image i { L P) is invariant under the 
Cartan involution 9. For simplicity, we identify L P with its lift in P. 
Similarly, we also identify M P and A P with their lifts in P. 

Denote the real locus N P(R) by N P. Then we have the following 
(rational) Langlands decomposition of P: 

(1) P = N P M P A P, 

i.e., the map (n, m, a) G N PxM PxA P —> nma G P is a diffeomorphism. 
Since A P commutes with M P, the Langlands decomposition can also be 
written as P = N P A P M P. 

Denote the intersection M P n K by K M P • Then K M P is a maximal 
compact subgroup of M P. Define 

X P = M P/K M P. 

Then X P is a product of a Riemannian symmetric space of noncompact 
type with a possible Euclidean factor. The Langlands decomposition of 
P induces the following horospherical decomposition of X: 

(2) X = N P x X P x A P. 

This horospherical decomposition of X plays an important role in com-
pactifications of X and Y\X (see [12] [16] and the references there), and 
X P and its quotient often appear as a part of the boundary components 
of the compactifications. Inspired by this, we call X P the boundary 
symmetric space associated with P. 

The boundary symmetric space X P can be canonically identified 
with a totally geodesic submanifold of X as follows: mK M P G X P —> 
mK G X. 

The map IT : G —> X = G/K gives the Lie group G a K-principal 
bundle structure over X. Identify X P with the totally geodesic sub-
manifold of X as above, and denote the inverse image 7r_ 1(X P) by B P. 

L e m m a 2 .2 .1 . The space B P is invariant under the left multiplica
tion by M P and the right multiplication by K and hence is a K-principal 
bundle over the boundary symmetric space X P. 
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Proof. By definition B P = fmk G G j m G M P,k G Kg. Then it 
is clear that B P is invariant under the left multiplication by M P and 
the right multiplication by K. Since X P = M P/M P n K , the right 
K-multiplication defines a K-principal structure on B P over X P. 

L e m m a 2 .2 .2 . The left invariant metric on G induces a Rieman-
nian metric on B P which is invariant under the left multiplication by 
M P and the right multiplication by K. 

Proof. This lemma follows from the invariance of B P under the left 
multiplication by M P and the fact that the left invariant metric on G 
commutes with the right K-multiplication. 

R e m a r k 2 .2 .3 . The space B P may seem strange at first. The 
reason is that X P is usually considered as a boundary space of X, but 
we need to embed X P inside X in order to get the space B P. We 
note that when P = G, B P = G, which is the basic space in this paper. 
However, we need other spaces B P when P are proper rational parabolic 
subgroups in order to bound the residual discrete spectrum of L 2 ( rnG) 
as explained in the introduction (see the proofs of Propositions 5.2.1 
and 6.2.1 below). For other interpretations of B P, see Remarks 2.3.3 
and 2.3.4. 

2.3. 

We use the spaces B P above to define K-bundles over the boundary 
spaces of TnX which will play an important role below. 

Let r C G(Q) be an arithmetic subgroup. To avoid finite quotient 
singularities and V-manifolds, from now on, we assume for simplicity 
that r is a neat arithmetic subgroup (see [4, x17] for definition). Since 
every arithmetic subgroup admits a neat subgroup of finite index, this 
restriction is not severe. 

For any rational parabolic subgroup P , define TP = T n P. Then 
TjP = TP (~)N P is a cocompact subgroup in N P. The quotient FN P n rP 
is an arithmetic subgroup in M P which can be identified with the image 
of TP in M P under the projection P = N P A P M P —> M P. Denote the 
image of TP in M P by TM P- Then TM P is an arithmetic subgroup of M P 
and acts on the boundary symmetric space X P. The quotient TM P nX P 
is a locally symmetric space of finite volume and called the boundary 
locally symmetric space of TnX associated with the rational parabolic 
subgroup P . In fact, TM nX P is the boundary component associated 
with P in the reductive Borel-Serre compactification of TnX (see [16]). 
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L e m m a 2 .3 .1 . The group TM P acts isometrically and discretely on 
B P, and the quotient VM P nB P is a K-principal bundle over YM P nX P. 

Proof. By Lemma 2.2.1, B P is a K-principal bundle over X P. Since 
TM P acts discretely over X P from the left, TM P acts discretely on B P. 
Note that since T is neat, TM P is torsion free, and TM P ̂ K contains only 
the identity element. This implies that the quotient TM P nB P inherits 
the K-principal bundle structure from B P, since the K-principal bundle 
structure is given by the right K-multiplication. 

Definit ion 2 .3 .2 . The K-principal bundle TM P nB P over TM P nX P 
is called the boundary bundle associated with P . 

R e m a r k 2 .3 .3 . Using the reductive Borel-Serre compactification 
D D C 

r n X of r n X and the K-principal structure of r n G over TnX, we 
can get a compactification of r n G which is also a K-principal bundle 

over r n X . Then the boundary bundle TM P nB P is the boundary 
component of this compactification of r n G associated with P . From this 
point of view, these boundary bundles are natural objects to consider. 

R e m a r k 2 .3 .4 . After this paper was submitted, we realize that by 
writing B P = N P A P nG, B P is similar to the space N P(A)A P nG(A), 
and rM P nB P is similar to N P(A)M P (Q)A P nG(A), where A is the ring 
of adeles. The latter two spaces occur naturally in the spectral theory 
of L 2 (G(Q)nG(A)) and automorphic forms (see [3] for example). On 
the other hand, our construction of B P here is more geometric and its 
K-principal structure is evident, and the embedding into G naturally 
induces an invariant Riemannian metric on B P. 

R e m a r k 2 .3 .5 . Using the equality B P = N P A P nG, we can give 
another more intrinsic description of the compactification of TnG men
tioned in Remark 2.3.3. Specifically, for every rational parabolic sub
group P of G, define its boundary component e(P) in the partial com
pactification G U U P e(P) of G by e(P) = B P, where B P is glued on 
via the decomposition G = N P X A P X (M P K). Then the quotient 
TnG U ]JP e (P) is the above compactification of TnG. This compacti
fication admits a right K-action. In fact, it admits a natural right G
action. For more details about this compactification and the G-action, 
see [6]. 
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2.4. 

For any rational parabolic subgroup P of G, we generalize the reduction 
theory of arithmetic subgroups to the action of TM P on B P. 

For any rational parabolic subgroup Q of M P, let Q = N Q M Q A Q 
be the Langlands decomposition of Q = Q(K) (see Equation 2.2.1). 
Denote the Lie algebra of A Q and N Q by a Q and n Q respectively. Then 
a Q acts on n by the Lie bracket, and the set of roots is denoted by 
£ ( Q , A Q). 

Let Q i , • • • , Q m be a set of representatives of TM P-conjugacy classes 
of maximal rational parabolic subgroups Q of M P, i.e., those Q with 
rankiQi(Q) = 1. Let a j = a Q , and define 

nr\rm a = @j=1a j. 

Then for any rational parabolic subgroup Q of M P, there is a well-

defined map 

I Q : a -> a Q 

such that if Q = Q j , j = 1, • • • , m, I Q is the projection from a to the 
summand a j [27, p.330] [29]. 

For j = 1, • • • , m, let pj G a* be the half sum of the roots in 
T<(Q j , A Q ) with multiplicity. Then pj defines a vector Hp in a j under 
the duality between a j and a* defined by the Killing form. These vectors 
Hp define a vector Hp in a such that I Q (Hp) = Hp for j = 1, • • • , m. 

Fix a large positive number t and a vector T = tHp G a - For any 
rational parabolic subgroup Q, define subsets of A Q: 

A Q,T = fe H G A Q j a{H) > a{I Q{T)), a G £ ( Q , A Q)}, 

A = fe H G A Q j ( I Q ( T ) - H , V) > 0, for all V G a+}, 

where a Q = fa G a Q j a(H) > 0, a G ^(Q, A Q)} is the positive (or 
dominant) cone. In other words, A Q^ is a shift of the positive cone 
A QA = expa Q) while A Q is a shift of the negative of the obtuse cone 
dual to the positive cone A Q^. 

For any compact subset UJ C N Q M Q, the set UJA Q^T is called a Siegel 
set in M P associated with the rational parabolic subgroup Q. Inspired 
by this, we call the set LOA Q^ K a Siegel set in B P = M P K. 

Denote the projection B P —> TM P nB P by Proj . Then 
Proj^N Q A Q M Q K) is a subset in T~M P nB P which is obtained by remov
ing a neighborhood of the cusp of TM P nB P associated with Q. 
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L e m m a 2 . 4 . 1 . For t >> 0 and T = tHp as above, the intersection 
I~IQ Proj ( N Q A Q M Q K ) over all proper rational parabolic subgroups Q of 
M P is a compact submanifold with corner. This compact submanifold 
is called the compact core ofYM P nB P and denoted by (TM P nB P)T-

Proof. Denote the projection from X P to YM P nX P also by Proj . 
Identify X P with N Q X X Q X A Q using the horospherical coordinates in 
Equation (2.2.2). By [29, §0 and §2.2], the intersection 

nQ Proj(N Q X X Q X A T Q) 

over all proper rational parabolic subgroups Q of M P is a compact 
submanifold with corner in TM P nX P. In fact, it is the image in TM P nX P 
of the central tile in X P. Since 

nQ P ro j (N Q A T M Q K ) c rM P nB P 

is a K-principal bundle over 

nQ Proj(N Q x X Q x A T Q) C TM P nX P, 

the former is also a compact submanifold with corner. 

Lemma 2.4.2. Let Qi, • • • , Q p be a set of representatives of TM P-
conjugacy classes of proper rational parabolic subgroups of M P. Then 
for any T G a as above and j = 1, • • • ,p, there exists a compact sub
manifold with corner uj C TQ n N Q M Q such that Ui A Q^T K is a com
pact submanifold with corner in TQ nB P and is mapped homeomorphi-
cally into TM P nB P, and TM P nB P has the following disjoint decomposi
tion: 

p 

TM P nB P = (TM P nB P)T Uaiüj A Q jtT K. 

j = 1 

Proof. Denote by (TM P nX P)T the intersection riQ Proj(N Q X X Q X 
A Q) over all rational parabolic subgroups Q of M P, which is a com
pact submanifold with corner of YM P nX P as mentioned in the proof 
of Lemma 2.4.1. By [29, §2.2], there exist compact submanifolds with 
corner uj C YQ nN Q X X Q such that YM P nX P admits the following 
disjoint decomposition: 

TM P nX P = (TM P nX P)T U a w j X A Q jiT. 

Since TM P nB P is a principal K-bundle over TM P nX P, we get the disjoint 
decomposition of TM P nB P in the lemma by lifting the above disjoint 
decomposition of TM P nX P. 
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3. T h e spectral decompos i t ion of L2(YM P nB P) 

3 . 1 . 

For any rational parabolic subgroup P of G, let YM P nB P be the bound
ary bundle associated with P in Definition 2.3.2. In this section, we 
describe the spectral decomposition of L2(TM P nB P) (§3.4). The idea 
is to reduce the problem to the spectral decomposition of the locally 
symmetric space TM P nX P. 

3.2. 

We first generalize a few concepts of automorphic forms to the boundary 
bundle TM P nB P. Any function on TM P nB P can be identified with a left 
^ M P-invariant function on B P. We recall tha t M P acts on B P from the 
left by multiplication. 

For any function f on TM P nB P and any rational parabolic subgroup 
Q of M P, the constant term f Q of f along Q is defined by 

f Q(x) = Z f(nx)dn, 
rN Q\N Q 

where TN Q = N Q n TM P • 
A function f on TM P nB P is called cuspidal if its constant terms over 

all proper rational parabolic subgroups of M P vanish. The subspace of 
cuspidal functions of L2(TM P nB P) is denoted by L2cus(TM P nB P), called 
the cuspidal subspace. 

3.3. 

The boundary bundle TM P nB P has an induced invariant Riemannian 
metric induced from the left G-invariant metric on G (see Lemma 2.2.2). 
Denote the Beltrami-Laplace operator of TM P nB P by A. Since the 
metric on TM P nB P is invariant under the right K-multiplication, A 
commutes with the right K-multiplication. To get the spectral decom
position of A, we need to decompose L2(YM P nB P) according to the 
right K-ac t ion . 

R e m a r k 3 .3 .1 . Denote the Casimir element of G by QG and the 
Casimir element of K by QK- Then — ÇÎG-\-2ÇÎK defines the same left in
variant differential operator as the Laplace operator A on G (see [5, §3.2] 
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[33, p.39]), and hence the Beltrami-Laplace operator of YnB G = YnG. 
Since — Ç}G-\-2ÇIK commutes with the K action, the differential operator 
is also easily seen to be right K-invariant. The Laplace operator A on 
^ M P nB P is a natural generalization. 

L e m m a 3 .3 .2 . The right regular representation of K on L2{K) can 
be decomposed as follows: 

L2(K) = (BaeK(dima)a. 

Proof. The decomposition of the regular representation into a sum of 
the irreducible ones follows from the famous Peter-Weyl theorem, and 
the formula for the multiplicity follows from the Frobenius reciprocity 
law. See [17, pp. 16-20] for details. q.e.d. 

For any irreducible unitary representation a of K, denote the restric
tion of a to K M P by (JM P , where K M P = K l~l M P is a maximal compact 
subgroup of M P (see §2.2). This representation (JM P of K M P defines a 
homogeneous bundle EaM over X P = M P/K M P- The quotient of Ea 

by TM P is a locally homogeneous bundle EaM over YM P nX P. Denote 
by L2(TM P nX P, (JM P) the space of L2-sections of EaM . 

L e m m a 3 .3 .3 . For any a G K , K acts diagonally on L2 (YM P nB P)® 
a. Denote the subspace of K-invariant vectors in L2(YM P nB P) <S> O by 
(L2(TM P nB P)®cj)K. Then (L2(TM P nB P)®cj)K = L2(rM P nX P,aM P). 

Proof. It follows from the fact that EaM = TM P nB P <S>K °'• 

Propos i t ion 3 .3 .4 . The space L2(YM P nB P) admits the decompo
sition: 

L2(TM P nB P) = ®aeK(dim <j)L2(TM P nX P, aM P). 

The Laplace operator A preserves this decomposition, and the restriction 

of A to the subspace L2(TM P nX P,<JM P) is denoted by Aa. 

Proof. Since (L2(YM P nB P) ® L2(K))K = L2(YM P nB P), the above 
decomposition of L2(YM P nB P) follows from the previous two lemmas. 
Since the Laplace operator A commutes with the right K-multiplication, 
it preserves this decomposition of L2(YM P nB P). 

3.4. 

We get the spectral decomposition of L2{YM P nB P) using the spectral 
decomposition of the subspaces L2(YM P nX P, <JM P)-
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Each space L2(TM P nX P, UM P) can be decomposed according to as
sociation classes of rational parabolic subgroups of M P and the cuspidal 
spectra of the boundary locally symmetric spaces, and these subspaces 
can further be decomposed using discrete spectra and Eisenstein series. 
We recall briefly several concepts which will be used below. For a sum
mary of the spectral decomposition of L2(TM P nX P, <JM P)-, see [15, x2]. 
Besides the original book by Langlands [19], there are two other mono
graphs [28] [21] treating the spectral decomposition of L 2 ( rnG) in great 
details. 

Recall tha t two rational parabolic subgroups Q i , Q2 of M P are de
fined to be associated if their split components A Q1,A Q2 are conjugate 
under some element of M P. For each association class C of rational 
parabolic subgroups of M P, define 

Spec cusj(7 (C) = ÖQeC Spec cus(TM Q nX Q, aM Q), 

where Spec cus(rM Q \ Q , aM Q) is the spectrum of ^ on the cuspidal 

subspace L2cus(YM Q nX Q,OM Q) and 

Spec cus(C) = UCTeK Spec cusiCT(C). 

For any fj, G Spec cusj(7(C), denote by cus(YM Q nX Q, <JM Q,^) the space of 
cuspidal eigenfunctions of eigenvalue fj, in L2(TM Q nX Q, CFM Q)- For every 
$ G E « s ( r M Q n X Q , ^ M Q,i«) and f G Cj°(a Q), the pseudo-Eisenstein 
series E(Q,<&, f) is defined by 

E(Q,$,f)= J2 f(H Q(7x))$(z Q(7x)), 

7erQ\ rM P 

where TQ = Q n TM P, 

lx = (u Q(Ix), z Q(Ix),expH Q(-/x)) e N Q X X Q X A Q = X P, 

the horospherical decomposition of X P with respect to Q (Equation 2 in 
x2.2). Denote by L Cß(TM P nX P, aM P) the subspace of L2(TM P nX P, aM P) 

spanned by the pseudo-Eisenstein series E(Q,<&, f), where Q G C, 

$ G E cus{TM Q nX Q, <JM Q, ft), f e C £ ° ( a Q ) . If we replace f(H) in the 

above equation defining E(Q,Q,f) by exp(pQ + A)(H) , A G a Q <8> C, 
which is clearly not of compact support, we get the Eisenstein series 
E(Q,<&,A) associated with the parabolic subgroup Q and the eigen-
function <£>. Define 

L C{^ M P nX P,(JM P) = 2_^ ®L Ctß(rM P nX P,<JM P)-
/ieSpec cusjCT(C) 
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L e m m a 3.4.1 ([15, Lemma 2.5.3]). With the above notation, 

L {^ M P nX P,<JM P) = / J®L C(FM P nX P, CTM P) 

C 

= /] /] ®L C^(TM P nX P,aM P), 
C /ieSpec c„SjCT(C) 

where C runs over all the association classes of rational parabolic sub
groups in M P. 

Propos i t ion 3 .4 .2 . For every association class C of rational parabolic 
subgroups in M P, define 

L Ci^ M P nB P) = E (dim a)L2C(YM P nX P, aM P)• 

o-eK 

Then 

L2(TM P nB P) =YJL
2C{YM P nB P) 

C 

= EEdimcT E ®L2C^{TM P nX P,aM P), 
C a£K /ieSpec c„SjCT(C) 

where C runs over all the association classes of rational parabolic sub
groups in M P. 

Proof. It follows from Proposition 3.3.4 and the previous lemma. 

Corollary 3 .4 .3 . The space L2(TnG) admits the following orthog
onal decomposition: 

L2 (TnG) = J2L C (AG) = E E dim ° E ®L Ĉ  (rnX' °) ' 
C C a£K /ieSpec c„SjCT(C) 

where C is over all association classes of rational parabolic subgroups in 
G. 

R e m a r k 3 .4 .4 . For a proper rational parabolic subgroup P , 
dim T]\P nB P < dim TnG, but every representation a of K appears with 
the same multiplicity dim a in the above decompositions of L2(YM P nB P) 

and L 2 ( r n G ) . This is the reason for introducing the auxiliary boundary 
bundles YM P nB P (see the proofs of Propositions 5.2.1 and 6.2.1 below). 

Generalizing the analogous concepts for L2(TM P nX P, CTM P) to 
L2(TM P nB P), we define L2d(YM P nB P) to be the subspace of L2(YM P nB P) 
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spanned by L2-eigenfunctions of A, and L2c(YM P nB P) the orthogonal 
complement of L2d(YM P nB P) in L(TM P nB P). Then 

L cus{vM P nB P) C L d(YM P nB P). 

The orthogonal complement of L2cus(YM P nB P) in L2d(YM P nB P) is de
noted by L2es(TM P nB P) and called the residual discrete subspace, be
cause it is spanned by iterated residues of Eisenstein series. Using the 
decomposition in Proposition 3.4.2 and the spectral decomposition of 
each subspace there, we get the following more refined decompositions. 

L e m m a 3 .4 .5 . Define 

L C,res(^ M P nX P, 0"M P) = L C(YM P nX P, OM P) l~l L res(Y M P nX P, OM P) 

and 

L C,c(^ M P nX P,(TM P) = L C(TM P nX P,(TM P) n L c(TM P nX P,(JM P)-

Define L2Cßres(YM P nB P, aM P) and L Cßc(YM P nB P,aM P) similarly. Then 

L cus{^ M P nB P) = 22 L C ( T M P nB P) 

C = f M P g 

= Y Ydima Y L C,ß(
TM P nX P,aM P), 

C = f M P g ( , g K /ieSpec c„SjCT(C) 

L2res(TM P nB P) = 22 L C,res(TM P nB P) 

^ f M P g 

= Y J ] ® ( d i m f f ) L C,res(rM P\ -P , (7M P) 

= Y Ydim(J Y ®L C,i,,res(TM P nX P,(JM P), 
C^fM P g(,gK /ieSpec c„SjCT(C) 

L c{^ M P nB P) = Y L C,c(TM P nB P) 

^ f M P g 

= Y Y®^dima^L C c T M P nB P ̂ aM P) 
C^fM P gaeK 

= Y Ydima Y ®L C,ß,c(TM P nX P,<JM P)-
C ^ f M P g ( , g K /ieSpec c„SjCT(C) 
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In particular, the cuspidal subspace L2cus(YM P nB P) comes from the as
sociation class C = f M P g, while the residual discrete spectrum comes 
from the association classes of proper rational parabolic subgroups of 
M P. 

These decompositions are preserved by A and hence induce the cor
responding decompositions of A. If the rank of an association class C, 
i.e., the rank of the parabolic subgroups in C, is equal to r, the residual 
discrete spectrum in L ^(YM P nB P) is said of rank r. In particular, the 
total residual discrete spectrum is divided into two parts: the rank-one 
residual discrete spectrum and the higher rank residual discrete spec
t rum. It will be seen below that it is easier to bound the counting 
function of the former. 

R e m a r k 3 .4 .6 . There are finitely many association classes C of 
rational parabolic subgroups of G, and each subspace L C(TnG) is in
variant under the right action of G. Another more important reason 
for grouping the rational parabolic subgroups into association classes 
is that the subspaces for different association classes are orthogonal to 
each other, and finer divisions of the rational parabolic subgroups will 
not, in general, produce orthogonal (or direct sum) decompositions of 
L2(TnG). The further decomposition above according to the cuspidal 
eigenvalues fj, and the representations a G K basically separates out 
different layers of the spectrum and makes it easier to understand the 
structure of the spectrum. 

R e m a r k 3 .4 .7 . For each association class C, L2C res(rnG) is spanned 
by residues of Eisenstein series E(P, <&, A), where P G C and <I> is a cusp
idal eigenfunction of eigenvalue in Spec cus(C); and L2C c(TnG) is spanned 
by superpositions (i.e., wave packets) of the Eisenstein series E(P, <I>, A) 
above when Re (A) = 0. 

4. T h e W e y l law for the Pseudo-Laplac ian AT 

4 . 1 . 

In this section, we introduce the pseudo-Laplacian AT associated with 
the Laplacian A on TM P nB P and show that the counting function of 
its spectrum satisfies the Weyl law (4.2.2). The upper bound for N T(^) 
plays an important role in the upper bound on the discrete spectrum of 
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A in Theorem 1.1.3. As a corollary, we show that the cuspidal discrete 
spectrum of A satisfies the Weyl upper bound (4.2.3). Basically, AT 
is obtained from A by restricting it to the subspace of functions whose 
constant terms along every rational parabolic subgroup of M P vanish 
above the height T. 

4.2. 

Before defining the pseudo-Laplacian AT, we notice that for every ra
tional parabolic subgroup Q of M P, the Langlangs decomposition of Q 
(see Equation 1 in §2.1) induces the following (generalized) horospheri-
cal decomposition of B P: 

B P = N Q A Q M Q K = N QXA QX (M Q K), 

i.e., every element x G B P can be written uniquely in the form 
x = u Q(x)expH Q(x)m Q(x), where u Q(x) G N Q, H Q(x) G a Q, 
m Q(x) G M Q K. 

Denote by H1(TM P nB P) the Sobolev space of functions f on TM P nB P 
satisfying 

Z lf|2 + l v f | 2 < + ° ° -
^ M P nB P 

For a large truncation parameter T G a as in §2.4, define a subspace 

H ^(rM P nB P) o f H ^ T M P nB P) as follows: 

H ̂ (rM P nB P) ={f G H\TM P nB P) | f Q(am) = 0 

for a G A , m e M Q Kg 

for all the proper rational parabolic subgroups Q of M P. In other words, 
the subspace H T(YM P nB P) consists of functions whose constant terms 
vanish outside the compact core {YM P nB P)T-

Since H T(YM P nB P) is a closed subspace of H1 (FM P nB P), the Dirich-
let quadratic form 

D{f)=Z | V f | 2 

^'M P nB P 

restricts to H ^(TM P nB P) and defines a self-adjoint operator AT on the 
closure of H ^(TM P nB P) in L2(TM P nB P). This operator is called the 
pseudo-Laplace operator associated with the Laplace operator A at the 
height T. The various decompositions of L2(YM P nB P) in §3.3 and §3.4 
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also induce the corresponding decompositions of AT- This can be proved 
by similar arguments as in [15, §3.8]. For example, 

AT=J2 ® ( d i m CT)AT,a = J2Y1 ® ( d i m a)AT,C,a, 

where AT,a- is the pseudo-Laplacian for L2(TM P nX P, CTM P) and AT,C,CT 

is the pseudo-Laplacian for L ^(YM P nB P,CTM P)- ( A s mentioned in §1.2, 
AT,a. AT fC, a are shifts of the corresponding operators defined in [15] by 
a constant depending on a.) 

R e m a r k 4 . 2 . 1 . For locally symmetric spaces of G = SL(2, R), the 
notion of the pseudo-Laplacian was first defined by Lax and Phillips [20] 
and used by Colin de Verdiere [8] to study the meromorphic continua
tion of Eisenstein series and the discrete spectrum. For general locally 
symmetric spaces, the pseudo-Laplacian was defined by Muller [22]. Our 
definition of the pseudo-Laplacian here is a direct generalization to the 
boundary bundles. 

The main result of this section is the following. 

T h e o r e m 4 .2 .2 . For any rational parabolic subgroup P of G and 
its associated boundary bundle TM P nB P, the spectrum Spec (AT) of the 
pseudo-Laplacian AT is discrete, and its counting function 

N T,P(\) = j{\i E Spec(AT) j Ai < A}j 

satisfies the Weyl law: 

A ^ mOO Ad/2 v ' r(d + i) 

where d = dim YM P nB P. 

When P = G, Theorem 4.2.2 reduces to Theorem 1.2.1 in the intro
duction. The proof of Theorem 4.2.2 is given in the next two subsections. 

Corollary 4 .2 .3 . Denote the counting function of the cuspidal dis
crete spectrum of A on L2cus(YM P nB P) by N cus,P(X). Then 

A ^ mOO p Ad/2 - y ' r ( d + i) ' 

where d = dim TM P nB P. 
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Proof. Since the truncation of the constant terms above the height 
T does not change the cuspidal functions, every cuspidal eigenfunction 
is also an eigenfunction of AT and hence N custP(X) < N T,P(X). Then 
this corollary follows from Theorem 4.2.2. q.e.d. 

When P = G, this corollary improves the well-known result of 
Gelfand and Piatetski-Shapiro [11] [13, Theorem 3] that the spectrum 
of A on L ̂  cus(TnG) is discrete, i.e., N cus(X) < +oo for every A > 0. 

4 . 3 . 

First we prove the upper bound for N T,P(X) in Theorem 4.2.2. 

Propos i t ion 4 .3 .1 . With the above notation, we have 

A ^ mOO p xdi2 - v ; r ( d + 1 ) 

This upper bound follows from similar arguments as in the proof of 
[9, Theorem 1.1]. We recall the basic steps in the proof of [9, Theorem 
1.1] and indicate necessary modifications. 

Let Q i , • • • , Q p be a set of representatives of TM P-conjugacy classes 
of proper rational parabolic subgroups of M P as in §2.4. For k > 1, 
define T k = kHp G a , where Hp is defined in §2.4. By Lemma 2.4.2, for 
any j = 1, • • • ,p and k > 1, there exists a compact submanifold with 
corner Ujtk C TQ nN Q M Q such that TM P nP>P admits the following 
disjoint decomposition: 

p 

rM P nB P = PM nB PT uaujik A Q jiT k K. 

By slightly enlarging the submanifolds Ujk A Q tT k K and smoothing out 
their corners, we get submanifolds Y j,k in TQ nB P satisfying the follow
ing conditions: 

1. The inverse image of Y j,k in B P is left N Q -invariant. 

2. Every Y jtk is mapped homeomorphically into TM P nB P. 

3. Y1)k, • • • ,Y p)k and {TM P nB P)T k cover FM P nB P. 

4- u j=iY j,k C TM P nB P - {TM P nB P)T k_1 and hence 
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y vol(Y jtk) —> 0, ask-> +00. 
j=1 

Since the inverse image of Y jtk in B P is invariant under N Q , the 
cuspidal subspace L2cus(Y j^) can be defined by 

L cusiY jk) = {fe L2(Y jtk) j f Q = 0 for all Q D Q j } . 

Denote the Laplace operator acting on L2cus(Y j^) and satisfying the 
Neumann boundary condition by Ajtk,N- Let N jtk,N(ty be the counting 
function of the eigenvalues of Ajtk,N on L2us(Y j)k), j = 1, • • • ,p, k > 1. 

Propos i t ion 4 .3 .2 . For j = 1, • • • ,p and k > 1, the spectrum of 
Aj,k,N on L2us(Y j)k) is discrete, and there exist a sequence of constants 
C j,k —> 0 as k —» +00 such that 

where d = dim YM P nB P. 

The proof of this proposition will be sketched below. Assume this 
proposition first. Denote by N k,N{}^) the counting function of the Neu
mann eigenvalues of the compact submanifold {^M P nB P)T k-

Propos i t ion 4 .3 .3 . For any truncation parameter T = tHp G a 
as above, when k > t-\-l, (TM P nB P)T is contained in (TM P nB P)T k, and 
for j = 1, • • • ,p, the submanifolds Y jtk are contained in the compelment 
of (^ M P nB P)T in TM P nB P, and the counting function N T,P(X) of the 
pseudo-Laplacian AT ofYM P nB P is bounded as follows: 

N T)P{\) < N k)N{\) + J2N jkN{\). 
j=1 

Proof. Since Y jtk is contained in the complement of (TM P nB P)T, for 
every f G H ^(TM P nB P ) , f Q = 0 on Y j)k for every Q 3 Q j This implies 
that the closure of {fj k j f G H ^(TM P nB P)} in L2(Y jtk) belongs to 
L2us(Y jtk)- Then the proposition follows from the principle of Neumann 
bracketing. q.e.d. 
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P r o o f of Propos i t ion 4.3.1 

Since (TM P nB P)T k is a compact manifold with corners, N ktN(\) sat
isfies the Weyl law (see [31, Corollary 2.5]): 

lim N kN(X) _ f l r d / 2 v o l ( ( r M P nB P ) T J 
A^+OO Ad/2 [ ' r ( d + i) 

By Propositions 4.3.2 and 4.3.3, for any e > 0, when k >> 1, 

lim sup N # < ( 4 7 r ) - ^ v o l ( M nB k ) + g 

A^+oo \d/l -{ ' r ( d + l) 

' r(d + i) 

Since e is arbitrary, we get 

A ^ mOO p Ad/2 - v ; r ( d + 1 ) 

q.e.d. 

P r o o f of Propos i t ion 4.3.2 

Proposition 4.3.2 is the analogue of [9, Corollary 7.6], and the same 
arguments as in the proof of [9, Theorem 7.2, Corollary 7.6] will prove 
Proposition 4.3.2. 

In [9], Corollary 7.6 follows from Theorem 6.2. Two key estimates 
in the proof of Theorem 6.2 there are Lemma 3.3 and the upper bounds 
on the heat kernel and its derivatives in Inequality (5.2). 

Since B P is a K-principal bundle over X P, in particular admits a 
cocompact quotient, the heat kernel of B P satisfies the analogous upper 
bounds to those in [9, Inequality (5.2)]. 

Lemma 3.3 in [9] follows from [9, Lemma 3.1]. The analogue of 
[9, Lemma 3.1] is as follows: Let n be the Lie algebra of N Q . Then the 
Langlands decomposition shows that B P is diffeomorphic to 
n Q j X (A Q j M Q j K). Identify n Q j X (A Q j M Q j K) with B P. For any 
a G A Q j M Q j K, denote by g a the Riemannian metric on n Q X fag in
duced from B P. The Lie algebra n Q can be identified with a subspace 
of the tangent space of n Q j X (A Q M Q K) at (0, a), and hence the metric 
g a defines an inner product on n Q which depends on a. This inner prod
uct defines a flat metric on n Q , denoted by h a. Identifying n Q X fag 
with n Q , we get two metrics g a and h a on n Q . 
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Since K is compact, the same proof of [9, Lemma 3.1] gives the 
following result. 

L e m m a 4 .3 .4 . For a sufficiently small e > 0, there exists a positive 
constant C\ such that for any a G A Q j M Q j K, g a > C\h a in a ball of 
radius e about the origin in n Q with respect to the metric g a. 

Using the above lemma and the same argument as in [9], we can 
prove the analogue of [9, Lemma 3.3]. Once we have the analogue of 
[9, Lemma 3.3], the same arguments in [9] prove Proposition 4.3.2 as 
mentioned above. 

4.4. 

We now prove the lower bound for N T,P(^) in Theorem 4.2.2. 

Propos i t ion 4 . 4 . 1 . With the above notation, 

lim inf N # > ( 4 , ) - ^ v o l % n B l . 
A^+oo \d/l - { ' r ( d + 1) 

The proof is similar to the proof of the lower bound in [15, §3.5]. 
We outline the main steps involved. 

First we need to generalize Arthur 's truncation operator AT [2] to 
^ M P nB P. Recall from §2.4 that Q i , • • • , Q p are a set of representatives 
of TM P-conjugacy classes of proper rational parabolic subgroups of M P. 
If f belongs to L2(YM P nB P) and is continuous, for a sufficiently large 
truncation parameter T, define 

AT f(x) = f ( x ) + p ( - l ) d i m A E Xj(H Q j(7x) 
j = i -y€TQ j nrM P 

where Xj is the characteristic function of the closed obtuse cone + a Q 
dual to the positive cone aX = {H G a j a(H) > 0, a G S (Q j , A Q )} , 

and H Q {x) is the a Q component of x in the horospherical decomposi
tion (§4.2), and I Q (T) is the image of T in a Q . A basic property of 
AT is that for every Q C M P, x G N Q M Q A Q^ K, (AT f)Q(x) = 0, 
i.e., A satisfies precisely the vanishing conditions in the definition 
of H T(TM P nB P), and AT f belongs to the closure of H T(rM P nB P) 
in L2{YM P nB P). In fact, AT extends to an orthogonal projection on 
L2(TM P nB P) (see [2, p. 92]) and its image is equal to the closure of 



t h e t r a c e c l a s s c o n j e c t u r e 191 

H ^(TM P nB P) in L2(YM P nB P). A s pointed out in [15, Remark 3.5.2], 
it might be better to define 

HlT{YM P nB P) = AT L2{YM P nB P) n H^TM n B P) 

and hence AT by using AT. Then the relation between the pseudo-
Laplace operator AT and Arthur 's truncation operator A becomes 
more direct. 

On the other hand, if f is smooth, A f is not smooth in general. The 
discontinuities of AT f come from the discontinuities of the characteristic 
function Xi in the formula for A f. As pointed out in [15, §3.5] (see 
[1, p. 19]), since there are only finitely many non-zero terms in AT f for 
x in every compact subset in B P, these discontinuities of A f lie along 
a family of locally finite hypersurfaces in YM P nB P. 

We are now ready to use the precise reduction theory to prove the 
lower bound for N T(X). In the notation of Lemma 2.4.2, YM P nB P ad
mits the following disjoint decomposition: 

p 

TM P nB P = (TM P nB P)T Uaiüj A Q jtT K. 

j = 1 

By taking an exhausting family of compact submanifolds with bound
aries of the complement of the discontinuity hyperplanes in every 
^ i A Q^T K, we can show that for any e > 0, there exist disjoint com
pact submanifolds with boundaries W j C TQ nB P, j = 1, • • • ,p, and 
Wo C TM P nB P satisfying the following conditions: 

1. W\, • • • , W p are mapped homeomorphically into 

uiA QuT K, • • • ,up A Q piT K 

respectively and are disjoint from the discontinuity hypersurfaces. 

2. |vol(rM P n B ) - vol(Wy - P j=i v o l ( W ) | < e. 

In particular, if f G C°°{YM P nB P), A f restricts to a smooth function 
on W j for j = 1, • • • , p. 

For j = 1, • • • ,p, define the cuspidal subspace H ̂  us D(W j) with the 
Dirichlet boundary condition by 

H cus,D(W j) = {f W I f G H ̂ (TM P nB P),f\dW j = 0}. 

The Dirichlet quadratic form D(f) induces a self-adjoint operator, de
noted by AjtD, on the closure of H ̂  us D(W j) in L2(W j). 
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L e m m a 4 .4 .2 . For j = 1, • • • ,p, the spectrum of AjtD is discrete 
and its counting function N jtD(X) satisfies the Weyl law: 

lim 
A-»+oo \d/2 ^ ) r ( d + l) 

Proof. By the same proof of Proposition 4.3.2, we can show that the 
spectrum of AjtD is discrete and N jtD(\) is bounded by O{l)\d'2. We 
need to determine the precise behavior of N jtD(X). For this purpose, let 
h(x, x, t) be the heat kernel of AjtD. The point is to show that h(x, x, t) 
satisfies the following small time asymptotics: for x G Int (W j ) , as t —> 0, 

h(x, x, t) ~ (Airt)~d. 
Let E(x, y, t) be the heat kernel of B P. Since W j does not meet the 

discontinuity hypersurfaces of the truncation operator A above, the 
heat kernel h(x,y,t) of W j can be constructed from E(x,y,t) in three 
steps: 

1. Average over TM P to get the heat kernel of 

VM P nB P : F{x,y,t)= ^ E(x,jy,t). 
7erM P 

2. Apply the truncation operator AT to get AT F(x1y1t). 

3. Restrict A F(x,y,t) to W j and modify it to satisfy the Dirichlet 
boundary condition on dW j . 

Clearly, E(x,x,t) satisfies the small time asymptotics: E(x,x,t) ~ 
(4irt)~di2

1 and we need to show that the three steps above do not change 
the small time asymptotics. Because of the Gauss factor exp — ( 4 x y t in 
the upper bound for E(x, y, t), Step 1 does not change the asymptotics. 
For x,y £ W j , there are only finitely many nonzero terms appearing in 
the infinite sum for A F(x, y, t). By the proof of [15, Proposition 3.5.5], 
the constant term of the heat kernel along a proper parabolic subgroup 
and hence every such nonzero term Xj(H Q (jx) — I Q (T))F Q (x,jx,t) 

is of smaller order than t~d'21 and hence Step 2 does not change the 
asymptotics either. Step 3 is achieved by the method of double layer 
potential (see [7, pp. 161-164]) and does not change the small time 
asymptotics either. Therefore, the heat kernel h(x,x,t) of AjtD has the 
desired small time asymptotics. (See [15, §3.5] for similar discussions.) 
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Then the Weyl law for AjtD follows from this small time asymptotics 
of the heat kernel via the standard argument using the Karamata ' s ver
sion of the Tauberian theorem (see [15, Proposition 3.5.4] for example). 

q.e.d. 

P r o o f of Propos i t ion 4.4.1 

Let N , D ( A ) be the counting function of the Dirichlet eigenvalues of 
Wo. The principle of Neumann bracketing shows that 

p 

N T,PW > N0,DW + Y,N jiD(\). 
j = 1 

Since N , D ( A ) satisfies the Weyl law, Lemma 4.4.2 and the choice of the 
submanifolds W j imply that 

lim inf N # > ( 4 , ) - ^ v o l % B ^ £ . 
A^+oo \d/l - { ' r ( d + 1) 

Since e is arbitrary, we get the lower bound for ./T,P(A) in Proposition 
4.4.1. 

5. B o u n d on the rank 1 residual discrete s p e c t r u m 

5 .1 . 

In this section, we show that up to a negligible term, the counting func
tion of the rank-one residual discrete spectrum is bounded by the corre
sponding counting function of the pseudo-Laplacian. This follows from 
the fact that up to a negligible subset, the rank-one residual discrete 
spectrum of A can be approximated uniformly by the corresponding 
part of the pseudo-Laplacian AT. The reason why such an approxi
mation exists is that we can construct eigenfunctions of the pseudo-
Laplacian by truncating off the constant terms of certain Eisenstein 
series of rank-one parabolic subgroups. This bound on the rank-one 
residual discrete spectrum proves Theorem 1.1.4 and is the first half of 
the proof of Theorem 1.1.3. In the next section, we will show that the 
counting function of the higher rank residual discrete spectrum can be 
bounded in terms of rank 1-data and finish the proof of Theorem 1.1.3. 
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5.2. 

Let C be an association class of rational parabolic subgroups of G of 
rank-one. Let N C(X) be the counting function of the discrete spectrum 
in L C(TnG), and N T,C(^) be the counting function of AT restricted to 
the closure of H T {TnG) CiL C (TnG) in IC (rnG) as in the introduction (see 
also x4.2). Let P i , • • • , P m be a set of representatives of T-conjugacy 
classes in C. For every j = 1, • • • , m, let N cus,P (X) be the counting 
function of the cuspidal discrete spectrum in L2cus(TP nB P j). Denote 
by jpC j the common norm of the half sum of roots in T,(P j , A P) with 
multiplicity, j = 1, • • • , m. Then we have the following. 

Propos i t ion 5 .2 .1 . For an association class C of rank 1, 

m 

N C{\) < N,C(A+ j C') + I ] N J ( A ) • 
j=1 

Proof. By Proposition 3.3.4, for any j = 1, • • • , m, 

L2 (rM P. nB P j ) = ^2 (dim aM P j )L2{TM P j nX P j ,a). 

Similarly, by Lemma 3.4.5 and Corollary 3.4.3, we get that 

L cus ( r M P j nB P j ) = Y^ (dim a) L cus ( r M P j nX P j, aM P j ), 
o-eK 

L2C(rnG) = YJ(dim^)L2C(rnX,a). 
o-eK 

For every a G K , denote the counting function of the discrete spec
trum of ^ in L C(TnX, a) by N Ct(T(\), the corresponding counting func
tion of AT,a- by N T,C,O(^)Ì and the counting function of the cuspidal 
discrete spectrum of ^ in L2(TP j nX P j , aM P ) by N custP jt(T(X). Then 

N CW= J ] (dim a)N^A), 
o-eK 

N T,C(X) = J2(dima)N T,CAX)i 
o-eK 

N cus,P j(X)= J2(d 
im er)N cus,P^a(X). 

o-eK 
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For every representation a of K and the space L ̂ (T\X, a), the op
erators ^ and AT,a- differ from the corresponding operators in [15] by 
the same constant, and hence by [15, Proposition 5.2.8], we get that 

m 

j = 1 

The reason is that except for at most P j=i N cus,P ,<r(A) of them, ev
ery rank-one residual eigenvalue in L ̂ (T\X,a) below A lies in a jpC j2-
neighborhood of an eigenvalue of the pseudo-Laplacian. This is achieved 
as follows: for suitable cuspidal eigenfunctions <£>, between every pair 
of poles of the Eisenstein series E(P j,<&,A) (note dim P = 1), there 
exists a point Ao such that A E(P j,<&, Ao) is an eigenfunction of the 
pseudo-Laplacian AT (see [15, §3.2] for details). Summing over all rep
resentations a of K, we get the bound for Nc(A) in the proposition. 

q.e.d. 

Let C\, • • • ,C q be all the association classes of rational parabolic 
subgroups of rank 1, and P i , • • • ,P be a set of representatives of T-
conjugacy classes in Uq j=1C j . Denote the counting function of the dis
crete spectrum in @q j=1L ^ (T\G) by N res(X), which is the counting func
tion of the total rank-one residual discrete spectrum (see Lemma 3.4.5). 
Denote the corresponding counting function of AT by N ^(X). Denote 
the maximum of the norms of half sums jpC j, • • • , jpC q j by jp1j. Re
call tha t N cus(X) denotes the counting function of the cuspidal discrete 
spectrum of L 2 ( r \ G ) . 

Then we have the following. 

Propos i t ion 5 .2 .2 . With the above notation, 

p 

N r e s W < N ( A + j/o1j2) + X N cus,P j(\), 

N cus(\) + N ̂  esX) < N T(\ + j/o1j2) + X N cus,P j(A), 
j = 1 

and hence 

lim s N s(Al + i r ^ I A ) / 2vol(r \G) 
A^+OO p An/2 - v ; r(n +1) ' 

where n = dim Y\G. 
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Proof. The first inequality follows from Proposition 5.2.1. The sec
ond inequality follows from the first inequality and the fact that ev
ery cuspidal cuspidal eigenfunction of A is also an eigenfunction of AT 
which is orthogonal to eigenfunctions of AT belonging to Uq j=1C j . Since 
dim B P < dim G, the third inequality follows from Theorem 4.2.2 and 
Corollary 4.2.3. q.e.d. 

As a corollary, we get the following result. 

Corollary 5 .2 .3 . Theorem 1.1.4 holds, i.e., if the Q-rank of G is 
equal to one, the counting function N ( A ) of the discrete spectrum of A 
in L2(TnG) satisfies the Weyl upper bound: 

lim sup N /2vol(rnG) 
A^+OO An/2 - v ; r ( n + 1 ) ' 

where n = dim TnG. 

Proof. If the Q-rank of G is equal to 1, N d(\) = N cus(\) + N ̂  es(\), 
and the corollary follows from the previous proposition. 

R e m a r k 5 .2 .4 . The above arguments show that except for at most 
P i = i N cus)P (A) of them, every rank-one residual eigenvalue in L 2 ( rnG) 
below A lies in a j/>1j2-neighborhood of an eigenvalue of the pseudo-
Laplacian. It is conceivable that such a uniform approximation should 
hold for every residual eigenvalue. If so, the Weyl upper bound on N ( A ) 
would follow immediately from the Weyl law of the pseudo-Laplacian, 
i.e., Theorem 1.2.1. 

6. B o u n d on the higher rank residual discrete s p e c t r u m 

6 .1 . 

In this section, we bound the counting function of the higher rank resid
ual discrete spectrum and hence complete the proof of Theorem 1.1.3. 
The basic idea is as follows. The residual eigenfunctions are given as 
iterated residues of Eisenstein series. Since the singularities of the Eisen
stein series are contained in the singularities of the scattering matrices, 
which appear in their constant terms, the number of residual eigen
values can bounded in terms of the number of singular hyperplanes of 
the scattering matrices. For scattering matrices of rank-one parabolic 
subgroups, the number of the singular hyperplanes can be bounded in 
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terms of the counting function of the pseudo-Laplacian, while for higher 
rank parabolic subgroups, their scattering matrices can be written as 
products of rank-one scattering matrices (see [15, §5-7]). Therefore, the 
counting function of the higher rank residual discrete spectrum can be 
bounded. 

6.2. 

Let C be an association class of rational parabolic subgroups of G of 
rank r > 2. Let P i , • • • , P l be a set of representatives of T-conjugacy 
classes in C. Denote the counting function of the discrete spectrum in 
L2C(T\G) by N C(\) as above. 

Propos i t ion 6 .2 .1 . For an association C of rank r > 2, the count
ing function N C(X) is bounded by 

V Q Q P' / 

where (1) Q runs over a set of representatives of Y -equivalence classes 
of all the rational parabolic subgroups containing a group P in C such 
that rank Q Q) = rank Q P ) — 1, and (2) for every Q in the first sum, P ' 
runs over the set of rational parabolic subgroups of G contained in Q 
that correspond to a set of representatives ' P of TM Q -conjugacy classes 
of rank-1 rational parabolic subgroups o f M Q in the sense M P* = M*P, 
N Pt = N Q N'P, (3) and c is a constant depending only on G and T. In 
particular, N C(X) satisfies the following bound: 

N C(\) = O(l)\f, as A ^ + o o , 

where m is the maximum of 

(rank Q(Q) + 1) dim B Q = (rank Q(Q) + 1) (dim X Q + dim K) 

for all rational parabolic Q of G with rank Q Q) < rank Q G) — 1 as 
defined in Theorem 1.1.3. 

Proof. Consider the set C+ of rational parabolic subgroups of G 
which contain a conjugate of some P i , • • • , P l and whose rank is equal 
to r — 1. Let Q i , • • • , Q s be a set of representatives of T-conjugacy 
classes in the set C+. 

For every Q i, i = 1, • • • , s, consider the set C~ of maximal (i.e., 
rank-one) rational parabolic subgroups of M Q. . Let ' P Ü , • • • , ' P it, be 
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a set of representatives of r M Q i-conjugacy classes in C~. Any rational 
parabolic subgroup ' P of M Q. uniquely determines a rational parabolic 
subgroup P ' of G contained in Q i such that M Pi = M*P, A Pt = A Q A*P, 
N Pi = N Q NiP. Denote the rational subgroups of G corresponding to 

As in x5.2, let Nc(X) be the counting function of the discrete spec
trum of A i n Lç(TnG), and Nct(T(\) the counting function of the discrete 
spectrum of ^ in L ̂ (TnX,a). For any i = 1, • • • ,s, j = 1, • • • ,t-, let 
N cus Pi (A) be the counting function of the cuspidal discrete spectrum 

of A in L2cus(YM , nB Pi ), and for a G K , N cus Pi a(X) be the counting 

function of the cuspidal discrete spectrum of ^ in L2cus(YM , nX Pij, a). 

Denote the counting function of the spectrum of the pseudo-Laplacian 

AT on YM Q i nB Q i by N T,Q i(X), and its ex-component AT,a- by N T,Q i,a(X). 

Then by the decompositions in x3.3 and x3.4, we get that 

NcW= ^ ( d i m c ^ N ^ A ) , 

o-eK 

N cus,PrW = ^2(dima)N cusjP i j j ( J(\) , 

o-eK 

o-eK 

Since the operators ^ and AT,a- are shifts of the corresponding 
operators in [15] by the same constant, by [15, Proposition 7.2.2], there 
exists a positive constant c depending only on G and the truncation 
parameter T such that 

s t i 

Nc,aW < c ( E (N T,Q iA* + jPP j2 + 1) + E N cus,PrAX)) + !)r-
i = 1 j = l 

As mentioned earlier, this bound on Nc,a(X) is obtained as follows. 
Since the residual discrete spectrum is generated by iterated residues 
of Eisenstein series and the singularities of the Eisenstein series are 
contained in the singularities of the scattering matrices, the number 
of residual discrete eigenvalues is bounded by the number of complete 
flags of singular hyperplanes of the scattering matrices. For the rank-
one scattering matrices, there is a close connection between their poles 
and eigenfunctions of the pseudo-Laplacian (see [15, x6]), and hence the 
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number of the poles of the rank-one scattering matrices can be bounded 
by the counting functions of the pseudo-Laplacian and of the cuspidal 
discrete spectrum of lower dimensional spaces. Using the fact that the 
higher rank scattering matrices can be written as products of rank-one 
scattering matrices [15, §2.7], we get a bound on the number of singular 
hyperplanes of the higher rank scattering matrices, and hence a bound 
on the number of complete flags of such singular hyperplanes by raising 
the former bound to the power of the rank. 

Combining the above equalities and the inequality, we get 

s t i 

Nc(\) < c(J2 ( N ( A + jPP j2 + 1) + J2N custP i. (A)) + ir. 
i = l j = l 

This proves the first upper bound on Nc(X) in the proposition. 
By Theorem 4.2.2, as A —> +oo, 

N T,Q i(X + jpP j2 + 1) = O(l)A^dimB«i, 

and by Corollary 4.2.3, 

. , . , TT dimB P/ 

N custP,3(X) = O(l)\2 

Since dim B Pi < dim B Q i and rank<Q)(Q i) = r — 1 < rankiQ(G) — 1, the 

above bound on Nc(X) implies that as A —> +00, 

Nc(\) = O(l)\f. 

This completes the proof of Proposition 6.2.1. q.e.d. 

P r o o f of T h e o r e m 1.1.3 

We combine the above results to prove Theorem 1.1.3. When C = 
{ G } , Nc(\) = N cus(X) (see Lemma 3.4.5). Denote by N res(\) the 
counting function of the rank-one residual discrete spectrum of L 2 ( r \ G ) 
as in Proposition 5.2.2, and by N ̂  es(X) the counting function of the 
higher rank residual discrete spectrum of L 2 ( r \ G ) . Then Lemma 3.4.5 
shows that 

N d(X) = N cus(X) + AresA) + 7r2es(A). 

Since there are only finitely many association classes C of rank greater 
than or equal to 2, Proposition 6.2.1 implies that 

N r e sX)=O( l )X f . 
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Combined with the bound on N cus(X) + N ̂  es(X) in Proposition 5.2.2, 
this gives the upper bound for N d(\) in Theorem 1.1.3. 

7. P r o o f of the trace class conjecture 

7 .1 . 

In this section we use the polynomial upper bound on the discrete spec
trum in Theorem 1.1.3 to prove the trace class conjecture, i.e., Theorem 
1.1.2. 

First we prove the following. 

Propos i t ion 7 .1 .1 . If a G CQ (G) with k > ^rank Q(G)n, k being 
an integer, or a Ci C1(G), then the operator R d{oi) on L2d(YnG) is a 
Hilbert-Schmidt operator. 

Proof. By Lemma 3.4.5, 

L2d(TnG) = X®(dim<r)L2d(TnX,<7). 

o-eK 

For each subspace L ̂ (FnX, a), choose a basis eai of L2d(YnX, a) consist
ing of orthonormal eigenfunctions of the Laplacian A, where i belongs to 
an index set I(o). Denote the eigenvalue of eai by \ai. Then \ a i > 0, 
and Theorem 1.1.3 implies that 

X X (dim(7)(ACTii + l)-k < + œ . 
cr£K ieI(cr) 

Since eCTii, where a G K and i G I(cr), forms an orthonormal basis of 
L2d(TnG), the Hilbert-Schmidt norm j R d(a)j of R d(oi) is given as follows: 

j R d(a)j2 = X X (dim a)(R(a)e(Tti,R(a)e(Tti) 

= X X (dimcr)(\a,i + l)-k(R(a)(A+l)k ea,i,R(a)ea,i) 

= X X (dim(i ) (A^ + l ) - k Z (A + l)ka(g)(R(g)ea:i, R(a)ea:i)dg 
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< j(A+l) feaj Li(G)Hj Li(G) Y, Y, (dim^)(A^ + l ) - f c < + œ , 

where we have used the fact that A + 1 is self-adjoint to do integration 
by part in the third equality. Therefore, R d{oi) is a Hilbert-Schmidt 
operator. q.e.d. 

P r o o f of T h e o r e m 1.1.2 

By [33, Lemma 4.5], for any a G C1(G), there exist ß G C1(G), 

fi,peC2
0rank{G)n(G)suchthat 

a = ß*fj,-\-a*v. 

Then we have 

R d(a) = R d(ß)R d(fi) + R d{a)R d{v). 

By Proposition 7.1.1, R d(ß), R d{pi), R d(a), and R d{v) are all Hilbert-
Schmidt operators. Therefore, R d(a) is of the trace class. 

R e m a r k 7 .1 .2 . The arguments in this section are the same as in 
[22, pp. 525-526] and [33, pp. 39-40]. The above proof shows that 
the trace class conjecture also holds for more general functions a on 
G whose derivatives up to ranki(j(G)n + 2 are all integrable. From the 
above proof, it is also clear that any polynomial upper bound on N d(X) 
implies Theorem 1.1.2. 

R e m a r k 7 .1 .3 . By the same argument as in [33, pp. 39-40], we 
can show that the linear map Cl(G) —> C : a —> tr(R d(a)) is continuous. 
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