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Introduct ion 

Two compact Riemannian manifolds are said to be isospectral if 
the associated Laplace-Beltrami operators, acting on smooth functions, 
have the same eigenvalue spectrum. If the manifolds have boundary, we 
specify Dirichlet or Neumann isospectrality depending on the boundary 
conditions imposed on the eigenfunctions. 

Numerous examples of isospectral compact manifolds have been con
structed; see, for example, [4], [5], [7], [12], [13], [14], [15], [16], [17], [19], 
[24] and [26] or the survey articles [1], [2], [6], and [9]. Until recently how
ever, all known examples of isospectral manifolds were locally isomet
ric, though not globally isometric. In particular, the closed isospectral 
manifolds had a common cover. Then Z. Szabó [25] gave a construc
tion of pairs of isospectral compact manifolds with boundary which are 
not locally isometric, and the first author [10], [11] constructed pairs of 
isospectral closed Riemannian manifolds which are not locally isomet
ric. Szabo pointed out that the curvature operators of these isospectral 
manifolds have different eigenvalues, thus identifying a specific local in
variant which is not spectrally determined. 
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The first goal of this paper is to exhibit continuous families of 
isospectral Riemannian manifolds which are not locally isometric, i.e., 
we continuously deform the Riemannian metrics in such a way that the 
local geometry changes but the Laplace spectrum remains invariant. In 
fact we prove: 

T h e o r e m 0 .1 . Let B be a ball in R m, m > 5, and let T r be a torus 
of dimension r > 2. Then there exist continuous d-parameter families 
of Riemannian metrics on the compact manifold B xT r which are both 
Dirichlet and Neumann isospectral but not locally isometric. Here d is 
of order at least O(m2). 

A precise lower bound on d is given in Theorem 2.2. 
We also consider closed manifolds. Here we have not been able 

to construct examples of continuous isospectral deformations in which 
the metrics are not locally isometric. However, we do construct new 
examples of pairs of isospectral closed manifolds which are not locally 
isometric. 

Next we examine the local geometry of the isospectral manifolds. 
Since all the manifolds considered in this paper are locally homogeneous, 
the curvature does not vary from point to point. In particular the 
eigenvalues of the Ricci tensor are constant functions on each manifold. 
We exhibit specific examples of isospectral deformations of manifolds 
with boundary for which the eigenvalues of the Ricci tensor deform 
non-trivially. Similarly, we exhibit pairs of isospectral closed manifolds 
whose Ricci tensors have different eigenvalues. These examples illustrate 
for the first time that the Ricci curvature is not spectrally determined. 

The paper is organized as follows: 
In §1, we give a method for constructing isospectral metrics on BxT r 

which are not locally isometric. The construction reduces to a problem 
in linear algebra: 

( P ) Find pairs of r-dimensional subspaces of so(m) and an isomor
phism between these subspaces such that corresponding elements 
have the same spectrum but the two subspaces are not conjugate 
by any orthogonal transformation. 

As will be explained in §1, each subspace of so(m) gives rise to a two-
step nilpotent Lie algebra with an inner product and thus to a simply-
connected nilpotent Lie group with a left-invariant Riemannian metric. 
The non-conjugacy condition in (P) guarantees that the resulting pair 
of nilpotent Lie groups with metrics are not locally isometric. The 
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manifolds in Theorem 0.1 are domains with boundary in these nilpotent 
Lie groups (more precisely, in nilpotent Lie groups covered by these 
simply-connected ones). We show that the spectral condition in (P) 
guarantees the isospectrality of these compact manifolds with boundary. 
We end §1 with a 7-dimensional example. 

In §2, we give an explicit construction of continuous families of 2-
dimensional subspaces of so(6) satisfying pairwise the condition (P) de
scribed above. Moreover, we show that for m = 5 and for m > 7, generic 
two-dimensional subspaces of so(m) belong to d-parameter families of 
subspaces which satisfy pairwise the condition (P), where d is of order 
O(m2). This completes the proof of Theorem 0.1. 

In §3 we consider nilmanifolds, i.e., closed manifolds arising as quo
tients r \ G of nilpotent Lie groups by discrete subgroups, endowed with 
Riemannian metrics induced from left-invariant metrics on G. We gen
eralize the construction given in [10], [11] of isospectral nilmanifolds. 
We construct seven and eight-dimensional examples of isospectral nil
manifolds by taking quotients of suitable pairs of the simply-connected 
nilpotent Lie groups occurring in the examples in §1 and §2. 

§4 examines the curvature of the various examples, in particular 
showing that many of the isospectral manifolds have different Ricci cur
vature. 

An appendix supplies a proof of a result needed in §3. 
We wish to acknowledge Zoltan Szabó's beautiful work [25] which 

inspired Theorem 0.1. 

1. Lie algebra criteria for local i sometry and isospectral i ty 

A left-invariant Riemannian metric g o n a connected Lie group G 
corresponds to an inner product < •, • > on the Lie algebra g of G. We 
will call the pair (g, < • , • > ) a metric Lie algebra. Recall tha t G is said 
to be two-step nilpotent if [g,g] is a non-zero subspace of the center of 
g. Letting z = [g, g] and v=z-*- relative to < • , • > , we can then define 
an injective linear map j : z —> so(v, < • , • > ) by 

(1.1) (j(z)x, y) = ([x, y], z) for x, y G v, z G z. 

Conversely, given any two finite dimensional real inner product spaces 
v and z along with a linear map j : z —> so(v), we can define a metric Lie 
alegbra g as the orthogonal direct sum of v and z with the alternating 
bilinear bracket map [•, •] : g x g - > z defined by insisting that z be cen
tral in g and using (1.1) to define [x, y] for x, y G v. Then g is two-step 
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nilpotent if j is non-zero, and z = [g,g] if j is injective. We will always 
assume j is injective. 

In the sequel, we will fix finite dimensional inner product spaces v 
and z, use < •, • > as a generic symbol for the fixed inner products on 
v,z and g = v©z, and we will contrast properties of objects arising from 
pairs j , j ' of linear maps from z to so(v). 

N o t a t i o n 1.2. (i) The metric Lie algebra defined as above from 
the data (v ,z , j ) will be denoted g(j) and the corresponding simply-
connected Lie group will be denoted G(j). The Lie group G(j) is en
dowed with the left-invariant Riemannian metric g determined by the 
inner product < •, • > on g(j). 

(ii) Explicitly, G(j) may be identified diffeomorphically (though not 
isometrically) with the Euclidean space v x z consisting of all pairs (x, z) 
with x G v, z G z. The group product on G(j) is given by 

(x, z)(x', z') = (x + x', z + z' -\—[x, x']). 

The Lie algebra element in g(j) determined by x G v , z G z will be 
denoted by x + z with the diffeomorphism exp : g(j) —> G(j) thereby 
expressed by exp (x + z) = (x,z). The exponential map restricts to a 
linear isomorphism between z C g(j) and the derived group [G, G] of G. 

(iii) Suppose L is a lattice of full rank in z, i.e., z = z/'L is a torus. 
Denote by G(j) the quotient of the Lie group G(j) by the discrete central 
subgroup exp(L). Then G(j) is again a connected Lie group with Lie 
algebra g(j). Diffeomorphically, G(j) may be identified with v x z , and 
the exponential map exp : g(j) —> G(j) is expressed by 

exp(x + z) = (x,~z) for x G v, z G z, and ~z = z + L G z. 

We assign to G(j) the unique left-invariant Riemannian metric deter
mined by < •, • > . Thus the canonical projection from G(j) to G(j) 
given by (x,z) —> (x,~z) is a Riemannian covering map as well as a Lie 
group homomorphism. 

(iv) For B = {x G v : ||x|| < 1} the unit ball around 0 in v and for 
L as in (iii), denote by M(j) the subset B X z = exp(B + z) of G(j) 
equipped with the inherited Riemannian structure. M(j) is thus a com
pact Riemannian submanifold of G(j) of full dimension with boundary 
diffeomorphic to S X z for S the unit sphere around 0 in v. (Here we 
are using the identifications described in (iii). M(j) of course depends 
on the choice of L, but we view this choice as fixed.) 
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Definit ion 1.3. Let v and z be as above. 
(i) A pair j,j' of linear maps from z to so(v) will be called equivalent, 

denoted j ~ j ' , if there exist orthogonal linear operators A on v and C 
on z such that 

Aj(z)A-1=j'(C(z)) 

for all z G z. 
(ii) We will say j is isospectral to j ' , denoted j ~ j ' , if for each z G z , 

the eigenvalue spectra (with multiplicities) of j(z) and j'(z) coincide, 
i.e., there exists an orthogonal linear operator A z for which 

A z j(z)A-1=j'(z). 

Propos i t ion 1.4. Let v andz be finite dimensional real inner prod
uct spaces, j and j ' linear injections from z to so(v), and £ a lattice 
of full rank in z. Let g(j), G(j), G(j), and M(j) be the objects defined 
in 1.2 from the data ( v , z , j , £ ) and let g( j ' ) , G(j'), G(j'), and M(j') 
be the corresponding objects defined by the data (v,z, j',C). Then the 
following are equivalent: 

(a) G(j) is locally isometric to G(j'); 

(b) M(j) is locally isometric to M(j'); 

(c) G(j) is isometric to G(j'); 

(d) j ~ j 1 in the sense of Definition 1.3. 

Proof. The local geometries of G(j), G(j), and M(j) are identical. 
Thus each of (a) and (b) is equivalent to saying that G(j) is locally 
isometric to G(j') which, by simple-connectivity, is equivalent to (c). 
The second author showed in [27] that if (G, g) and (G1, g') are two 
simply-connected nilpotent Lie groups with left-invariant metrics g,g' 
and associated metric Lie algebras (g < -, • > ) , (g, < -, • > ' ) , then 
(G,g) is isometric to (G',g'), if and only if there exist a map r : g —> g' 
which is both a Lie algebra isomorphism and an inner product space 
isometry. In our case, equivalence of (c) and (d) follows by routine use 
of (1.1) serving to reduce these conditions on r to j ~ j ' . 

T h e o r e m 1.5. Let v and z be inner product spaces, j,j' : z —> so(v) 
linear injections, £ a lattice of full rank in z, and M(j) and M(j') the 
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manifolds defined in 1.2 from the data ( v , z , j , £) and ( v , z , j ' , £), respec
tively. Suppose j ~ j ' in the sense of Definition 1.3(ii). Then M(j) is 
both Dirichlet and Neumann isospectral to M(j'). 

The proof is similar to the argument given in [11] for the construction 
of isospectral metrics on nilmanifolds (compact quotients of nilpotent 
Lie groups by discrete subgroups). Before giving the proof, we give 
a geometric interpretation of the condition j ~ j ' and establish some 
notation. 

1.6. R e m a r k s and N o t a t i o n . Suppose j ~ j ' . 

(i.) If z is one-dimensional, then j ~ j ' in the notation of Definition 
1.3, with C being the identity operator on z. Thus the isometry con
ditions of Proposition 1.4 hold with the isometry r from G(j) to G(j') 
given by T(x,z) = (A(x),z) with A as in 1.3(i). If £ is any lattice in 
z, the translations of G(j) and G(j') by elements of £ commute with 
r , and thus r induces global isometries between G(j) and G(j') and 
between M(j) and M(j'). 

(ii.) If z is higher-dimensional, then G(j) need not be isometric to 
G(j'), but the two manifolds admit many isometric quotients. More 
precisely, consider any co-dimension-one subgroup W of the derived 
group of G(j). Such a subgroup corresponds under the exponential map 
to a co-dimension-one subspace of z, equivalently to the kernel of a non-
trivial linear functional A on z. Let zA be the orthogonal complement of 
W in z. Then the two-step nilpotent Lie group G\(j) := G(j)/W with 
the induced Riemannian metric is associated as in 1.2 with the data 
(v ,zA, j | 3J . Observe that j \ u ~ j ^ since j ~ j ' . Thus by (i) and the 
fact that zA is one-dimensional, we see that G\(j) is isometric to G\(j'). 

(iii.) If £ is a lattice in z and if A G £*, i.e., A is integer-valued on 
£, then the projection from z to z ̂  maps £ to a lattice £\ in z ̂ . The 
associated quotients G\(j) and G\(j'), defined as in 1.2, are isometric. 
Under the identifications in 1.2, the isometry ty\ is given by ^\(x,z) = 
(A,\(x),z), where A\ G so(v) satisfies j'(z) = A\j(z)A~^ for z G zA- This 
isometry restricts to an isometry between the compact submanifolds 
Mx(j) and Mx(j') of GhJjj and Gx(j') defined as in 1.2(iv). 

(iv.) We will say two vectors A and ß in £* are equivalent, denoted 
A ~ /2, if they have the same kernel. Denote the equivalence class of A 
by [A] and denote the set of equivalence classes by [£*]• Observe that 
G\(j), G\(j) and M\(j) depend only on the equivalence class of A. 

L e m m a 1.7. Let IT\ : G(j) —> G\(j) be the homomorphic projec-
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tion. Then the Laplacians A ofG(j) and A\ ofG\(j) satisfy 

K*XO Ax = AOK*X. 

Proof. It is well-known that the conclusion holds provided that the 
projection is a Riemannian submersion with totally geodesic fibers. The 
elementary proof that these conditions hold in our case is identical to 
the proof of Proposition 1.5 in [11]. 

Note that IT\ gives G(j) the structure of a principal torus bundle. 
Moreover, IT\ restricts to a Riemannian submersion from M(j) to M\(j) 
whose fibers are flat tori. 

1.8 Remark , TÏQ corresponds to the canonical projection 0 X3 —> 0 
in the notation of 1.2. Moreover, Go(j) is a Euclidean space isometric to 
(0, < - , • > ) • The fiber torus is isometric to (3, < • , • > ) . In particular the 
fact that 7To is a Riemannian submersion implies that the Riemannian 
measure on G(j) coincides with the Lebesgue measure on 0 X 3. 

Proof of Theorem 1.5. In the notation of 1.2, the derived group 
of the Lie group G(j) is identified with the torus 3. This torus acts 
isometrically on G(j) and on the submanifold M(j) by left translations. 
The resulting action of 3 on L2(M(j)), given by 

(1) (p(w)f)(x,z) = f(x,z + w) , 

clearly carries the space of smooth functions with Dirichlet boundary 
conditions to itself. To see that it also leaves invariant the space of 
smooth functions with Neumann boundary conditions, observe that the 
normal derivative of a function f across the boundary of M(j) at the 
point (x, z), where x is a unit vector in 0, is given by xf(x, z) where xf 
denotes the left-invariant vector field x on G(j) applied to f. Indeed 

xf(x, z) = -dt f((x, z)exp(tx)) = -dt f{(xi z){tx, 0)) = dt-f((l + t)x, z) 

by 1.2(ii),(iii). Since the torus 3 lies in the center of G(j), the torus 
action p commutes with all left-invariant vector fields. In view of the 
definition (1) of p, it follows that p leaves invariant the space of smooth 
functions with Neumann boundary conditions. 

By Fourier decomposition on the torus, we can write 

L2(M(j)) = L2(Bxi)= £ H A , 
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where 

Hx = ff G L2(B X 3) : p{z)f = e2mX^ f for all z G 3}. 

By the comments above, the space of smooth functions on M(j) with 
Dirichlet, respectively Neumann, boundary conditions decomposes into 
its intersections with the H\. To avoid cumbersome notation, we will 
refer to spec(AjHA) with Dirichlet (or Neumann) boundary conditions 
to mean the spectrum of the Laplacian of M(j) restricted to the space 
of smooth functions in H\ with the appropriate boundary conditions. 

Set 

H ] = £ H " • 

(See Notation 1.6(iv).) Define H x and H ^ similarly using the data 

By Lemma 1.7 and Remark 1.8, TTQ intertwines the Laplacian A of 
M(j), restricted to HQ, with the Euclidean Laplacian on the ball B and 
similarly for the Laplacian A ' of M(j'), restricted to H . Thus with 
either Dirichlet or Neumann boundary conditions, we have 

(2) spec(AjH) = spec(AjH,). 

Next for 0 / A £ £*, the map K^ is a unitary map from L2(M\(j)) 
to H 0 H[x] (i.e., to f f G L2(B X 3) : p(z)f = f for all z G ker(A)}). 
Thus by 1.6(iii) and Lemma 1.7, we have with either Dirichlet or Neu
mann boundary conditions that spec(AjH0H ) = spec(AjH, H, ). In 

view of equation (2), we thus have with either boundary condition that 
spec(AjH ) = spec(AH, ) for every A G £*. The theorem now follows. 

1.9 R e m a r k s , (i) The intertwining operator T between the Lapla-
cians of M(j) and M(j') can be written explicitly as T = ®\eL*T\ 
where T\ : H \ —> H'x is given by (T\f)(x, z) = f(A~^ (x), z) with A\ as 
in 1.6(iii). 

(ii) By replacing the ball B with the vector space 0 everywhere in 
the argument above, one obtains a unitary isomorphism T : L2(G(j)) —> 
L2(G(j')) satisfying A ' = T o A o T _ 1 , where T is given by the same 
formula as in (i), but with H \ now being a subspace of L2(o X 3). 

(iii) By working with the Fourier transform on L2(o X 3) with re
spect to the second variable, one can similarly obtain a unitary isomor
phism between L2(G(j)) and L2(G(j')) which intertwines the Lapla-
cians. (There are some technical complications in the proof; for exam
ple, to define T, one needs A^ (x) to be measurable as a function of 
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(x,X) G v X z*. Note that the A z7s in Definition 1.3(ii), and thus the 
AA' s in Remark 1.6, are not uniquely determined. We have shown that 
one can choose the A z7s so that the map z —» A z from z to the orthog
onal group O(v) is in fact real analytic on a Zariski open subset of z.) 
Since G(j) is diffeomorphic to R n for some n, we thus obtain metrics 
on R n whose Laplacians are intertwined. We omit the details here as 
we are currently investigating the behavior of the scattering operators 
for these metrics. We expect to address this issue in a later paper. 

E x a m p l e 1.10. In [10], [11], examples were given of pairs of 
isospectral (in the sense of Definition 1.3), inequivalent linear maps 
j j '• z ^ so(v), where z was 3-dimensional and v was 4n-dimensional 
with n > 2. The resulting isospectral manifolds, given by Theorem 1.5, 
thus have minimum dimension eleven. (The fact that j and j ' give rise 
to isospectral compact manifolds with boundary was not observed in 
[10], [11]. Instead j and j ' were used to construct isospectral closed 
manifolds using the method described in §3 below.) We now construct 
7-dimensional examples. As we'll see in §4, these have quite different 
geometric properties from the earlier examples. 

Let H be the quaternions and P the pure quaternions, i.e., P = 
{q G H : q = —q}. For q G H, let L(q) and R(q) denote left and right 
multiplication by q on H. For q,p G P, set J(q,p) = L(q) + R(p). Then 
J(q,p) is skew-symmetric relative to the standard inner product on H. 
Indeed the decomposition so(4) = so(3) + so(3) asserts that all skew-
symmetric operators are of this form. An easy computation shows that 
the eigenvalues of J(q,p) are ± i p | q | 2 + \p\2 and ± i p | ( | q | 2 — |p|2) | ; in 
particular, the spectrum of J(q,p) depends only on the lengths of q and 
p. 

Now let v = H, viewed as R 4 with the standard inner product, and 
let z = P, viewed as R 3 with the standard inner product. Let T and T" 
be fixed invertible linear operators on P such that T" = A o T where A 
is an orthogonal operator of determinant —1. Define j,j' : z —> so(v) by 
j(q) = J(q,Tq) and j'(q) = J(q,T'q) for all q G P. Then j ~ j ' in the 
sense of Definition 1.3. 

We next check whether j is equivalent to j ' . The group SO(v) 
consists of all operators L(a)R(b) where a and b are unit quaternions. 
Conjugation of J(q,p) by L a R b gives J(a~1qa,bpb~1). All orthogonal 
transformations of v are compositions of elements of SO(v) with the 
quaternionic conjugation map B of v. Conjugation of J(q,p) by B 
yields J(—p,—q). Since d e t T ' = — d e t ( T ) , it follows easily that the 
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construction above always yields inequivalent maps j and j ' . 

With any choice of lattice L in z, Theorem 1.5 yields pairs of isospec-
tral 7-dimensional compact manifolds with boundary which are not lo
cally isometric. 

2. E x a m p l e s of i sospectral Lie algebra deformat ions 

Definit ion 2 .1 . Let v and z be finite dimensional inner product 
spaces and jo any linear map from z to so(v). By a d-parameter non-
trivial isospectral deformation of jo we mean a continuous function u 1—> 
j u from a pathwise connected subset D of R having non-empty interior 
into the space of linear maps from z to so(v) such that 

(i) j = j uo for some u0 G D; 

(ii) j u ~ j for all u G D (see Definition 1.3(ii)); 

(iii) j u ^k j ut whenever u and u' are distinct points in D (see Definition 
1.3(i)). 

Equivalently, G = fg(j u) '• u G Dg is a family containing g ( j ) 
of nilpotent metric Lie algebras all having v © z as their underlying 
vector space, and the structure constants of g(j u) relative to any fixed 
bases of v and z depend continuously on the parameter d-tuple u. Any 
choice of lattice L of maximal rank in z gives rise to a d-parameter 
family fM(j u)g ue£> of isospectral compact manifolds with boundary as 
in Theorem 1.5. 

Throughout this section, we will consider the special case where 
dim z = 2 with m = dim v variable. Our goal is to show that when 
either m = 5 or m > 7, every "generic" jo admits a d-parameter non-
trivial isospectral deformation with d > 1. For m = 6, we will exhibit 
explicitly one-parameter deformations for certain jo of a restrictive type. 
For m < 4, straightforward calculations show that any two isospectral 
j ' s are in fact equivalent, so non-trivial isospectral deformations of this 
type are impossible. 

T h e o r e m 2.2 . Let dim z = 2, let m = dim v be any positive integer 
other than 1,2,3,4, or 6, and let L be the real vector space consisting 
of all linear maps from z to so(v). Then there is a Zariski open subset 
O of L (i.e., O is the complement of the set of roots of some non-zero 
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polynomial function on L) such that each jo G O admits a d-parameter 
non-trivial isospectral deformation where 

d > m(m - l ) / 2 - [ m / 2 ] ( [ m / 2 ] + 2) > 1. 

Proof. For j G L, let 

(1) I j = f j £ L : j ~ jg, E j = f j G I j : j ~ jg. 

The idea of the proof is to define O in such a way that for jo G O, 
P jo := I jo n O is an embedded submanifold of L, which can be foliated 
by its intersection with the sets E j,j G P j 0 , and for which there is a 
submanifold N j0 of P j0 transverse to the foliation. Any parametrization 
of N j0 then defines a non-trivial isospectral deformation of jo. 

Let l = [ m / 2 ] and, for 1 < k < l, define T k : so(v) -> R by T k(C) = 
trace(C2k). If C and C" are similar, i.e., have the same eigenvalues, then 
trivially T k(C) = T k(C) for all k. But the converse is also true as can be 
seen by a standard combinatoric argument showing that the coefficients 
of powers of A in the characteristic polynomial X(\, C) = det(AId— C) 
are polynomials in f T i ( C ) , . . . ,T l(C)g. If we define T k : z X L —> R 
by T k(z,j) = T k(j(z)), this means that j ~ j ' O T k(z,j) = T k(z,j') 
for all z G z and all k, 1 < k < l. Moreover, each of the functions T k 
is a polynomial on z X L, which is separately homogeneous of degree 
2k in each variable. If we fix any orthornormal basis f£1,62g of z and 
denote a typical element z G z by z = sei + t^2, then expansion of 
T k(z,j) = trace(sj(ei) +t j (e2)) 2 k into (s, t) monomials gives us 2k + 1 
coefficient functions which are polynomials in j{c\) and j(62) and thus 
polynomials on L. Since P k= 1 (2k +1 ) = l(l + 2), we conclude that there 
is a map F : L —> RHl+2) each of whose entries is a polynomial on L and 
for which j ~ j ' O FXj) = F{jr). Let R be the maximum rank of F. 
Then R is the largest integer for which there is some j G L such that the 
tangent map F* : L —> R l(l+2) has rank R. Since each of the entries in 
any matrix representation of F* is a polynomial in j and since a matrix 
has rank > R precisely when the sum of the squares of the determinants 
of its R X R minors is non-zero, it follows that the subset O \ of L on 
which F has rank R is a Zariski open set. Moreover, for jo G O \ , the 
Implicit Function Theorem implies that there is a neighborhood U of jo 
in L for which I j0 (~)U = F~1(F(jo)) n U is an embedded submanifold 
of co-dimension R. 
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We now turn toward examination of the sets E j in (1). The group 
G = O(v) X O(z) acts on L by 

(2) ((A,C)-j)(z) = Aj(C-1z)A-\ 

and, by Definition 1.3, j ' ~ j O j ' = (A, C) • j for some (A, C) G G. Let 
1v and 1z denote the identity operators on v and z. We now claim that 
there is a Zariski open subset O2 of L such that for each j G O25 E j is 
the orbit of j under the subgroup K := O(v) X {±1z g and such that the 
stability subgroup of K at j is {(±1v, lz)g- To see this, first consider 
any j £ L and (A, C) G G such that (A, C) • j G E?. Since E j C I j 
and since j o C~l = ( A - 1 , 1 ) • (A,C) • j , we see that j o C - 1 G I j . 
Thus T k(z,j o C _ 1 ) = T k(z,j) for all z and k. In particular, C is 
orthogonal both with respect to the given inner product on z and the 
quadratic form z 1—> T\(z,j) = trace(j(z))2 = — < j(z),j(z) > , where 
< c,d > = t race(c( t ) = —trace(cd) is the standard inner product on 
so(v). Relative to any orthonormal basis {ei, €2g of z, Ti(-,j) has matrix 

_ \ | j (^ l ) | 2 < j ( 6 l ) , j ( 6 2 ) > l 
< j ( 6 l ) , j ( 6 2 ) > | j ( e 2 ) | 2 • 

Unless this matrix is a scalar multiple of the 2 x 2 identity matrix, i.e., 
unless 

M j ) ••= (\j(^)\2 - \j(^2)\2)2+ < j ( ^ ) , j ( ^ >2 

vanishes, there are precisely four transformations orthogonal with re
spect to both forms, namely ±1z and ±Co where Co is the reflection 
leaving one eigenvector of the above matrix fixed while changing the 
sign of the other. For j not a root of the polynomial (f>i, we con
clude that C is one of these four transformations. But m > 5 means 
l = [ m / 2 ] > 2 so C must also satisfy T2(z,j o C~l) = T2(z,j), i.e., 
t race( j (z)) 4 = t r a c e ( j ( C _ 1 z ) ) 4 for all z G z. By straightforward but 
tedious calculations, one can check that there is a fourth order poly
nomial <f>2 on L for which T ^ - j j o CQ ) / T ^ - j j ) when 4>2{j) / 0. 
Thus when both <j)\{j) and 4*2(j) are non-zero, (A,C) • j G E? O 
(A, C) = (A, ±1z) G K. In this case, (A, C) • j = j if and only if either 
C = Iz and A G O(v) commutes with j(z) for all z, or else C = —1z 
and A anti-commutes with j ( z ) for all z. With {£1,62g as above and 
j i = j ( e i ) , j 2 = j(e2)> it 's easy to select choices of j and j2 for which 
no non-zero linear operator A on v anti-commutes with both j and j2, 
while ±1v are the only orthogonal operators commuting with both j 
and j2. Moreover, these properties are equivalent to saying that the 
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linear map 4>j(B) := (j\B — Bjilj e B - Bj2) from gl(v) to gl(v) X gl(v) 
has one-dimensional kernel while (f>j(B) := ( j iB + Bji,j2B + Bj2) is 
injective, conditions which can be expressed by the statement that cer
tain non-vanishing polynomials (f> and e on L do not have j as a root. 
Combining all of these arguments, when j belongs to the complement 
O 2 of the set of roots of (\>\ + (\>\ + (f>2 + e , the properties announced 
above in our claim are satisfied. 

Let O = Oi n O2, jo G O, and P j o = I j A O. From above, P j 
is a smooth manifold whose dimension is dim L — R > m ( m — 1) — 
[ m / 2 ] ( [ m / 2 ] + 2). For K = O ( m ) X { ± l z , it 's trivial to check that 
when any one of the polynomials defining O does not vanish at j , the 
same is true for each member of the m(m— l)/2-dimensional orbit K -j; 
i.e., O is closed under the action of K. Moreover, for j G O, we have 
shown that the orbit K • j coincides with E j and the stability subgroup 
at j is Z := {(±1v, lz)}- This means that the compact group K/Z 
acts freely on the manifold P j0 with orbits expressing equivalence of 
elements. By the properties of compact transformation groups (e.g. [3, 
p. 82-86]), there is a submanifold N j0 of P j0 such that (j,K) 1—> K(j) 
is a homeomorphism from N j0 X (K/Z) onto an open neighborhood of 
jo in P j 0 . The dimension of N j0 is then 

d = d i m I j0 -m(m- l ) / 2 > —^ - [ m / 2 ] ( [ m / 2 ] + 2). 

For m = 5 or m > 7, clearly d > 1 and any local parameterization of 
N j0 defines a d-parameter non-trivial isospectral deformation of jo. 

2.3 Eight d imens ional e x a m p l e s . For m = 6, the argument in 
the proof of Theorem 2.2 breaks down since m(m— l ) / 2 — [ m / 2 ] ( [ m / 2 ] + 
2) = 15 — 15 = 0. In the language of the proof of Theorem 2.2, the 
examples below correspond to choosing certain jo's where the rank of 
the polynomial map F is less than R with the result being that the 
isospectral family I j0 in equation (1) is four-dimensional, while the sets 
E j contained in I j0 are three-dimensional and admit a one-parameter 
transversal. Lengthy and non-illuminating calculations are avoided by 
fixing orthonormal bases for v and z and simply defining in concrete 
matrix terms the members of the transversal. 

Thus, take z = R 2 and v = R 6 with their standard ordered bases 
and standard inner product. For a,b G so(6) and s,t G R, define 
j a,b(s,t) = sa + tb. Each linear map j : R 2 —> so(6) is of the form 
j = j ab for some a, b G so(6). Fix for the remainder of the discussion an 
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element a G so(6) which is in block diagonal form with 2 x 2 diagonal 

blocks (ii , 1 < i < 3, where 0 < a\ < a2 < a3. Consider all 

matrices b G so(6) of the form 

0 
0 
bi2 
0 
bl3 
0 

0 
0 
0 
0 
0 
0 

bu 
0 
0 
0 

- b 2 3 
0 

0 
0 
0 
0 
0 
0 

bi3 
0 

b23 
0 
0 
0 

0 
0 
0 
0 
0 
0 

with (b12,b13, b G R 3 - { 0 } . 
We first note that if b and b' are of this form, then j a^ ~ j a^ O 

b' = ±b. Indeed, in the notation of equation (2), if j a,b' = (A,C) • j a,b 
for some A G O(6), C G O(2), then for e2 = (0, l ) , j a,b'(e2) = b' is a 
rank-2 matrix similar to j a,b{C~l£2)- But a simple calculation shows 
that j a,b(s, t) has rank 2 only when s = 0. It follows that Ce2 = ±e 2 , so 

C is one of ± 
Ì 0 
0 1 ,± 

1 
0 

0 
-1_ 

and then AaA ±a, AbA"1 = ±b. 

Since a\,a2,a3 are distinct, this forces A to be in block diagonal form 
with 2 x 2 diagonal blocks which either all commute or all anticommute 

with . Using the specific form of b and b', it follows in either 

case that AbA-1 = b so b' = ±b. 
Next an easy direct calculation yields 

i j 
1 

det{AId - j atb(s, t)} = H(X2 + s2a2) + \ t 2 J ] b i 

+ X2s2t2(a2b2
23 + a2b2

3 + a2b2
2) 

Comparing coefficients, it follows that j a^ ~ j a^ O (b12,b13,b23) and 
(b'12, b'13, b23) satisfy the equations 

(i E b - b ) 2 = ° 
i<j 

and 

i i a\{b 23 (b2 3)2) + a2(b2
13 (b'13)

2) + a2(b2
12 (b'u 0. 
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In view of equation (i), equation (ii) can be rewritten as 

( i i ) ^ ( a i + a j ) ( b - ( b ) 2 ) = 0 . 

The general solution of equations (i) and (ii') is 

{b'12)
2 = b2

2 + u{a2-a2), 

(*) (b'13)
2 = b2

13 + u(a2-a2), 

(b'23)
2 = b\3 + u(a2

3 - a2
2), 

where u is any real number in the closed interval 

I - \ ( ~b12 ~b23 A b13 " 
— max o 2 ' 2 2 ' 2 2 • 

If we take any b for which I has non-empty interior and, for each u £ I, 
define b(u) as the unique solution of the above equations for which b ij(u) 
has the same sign as b ij for all i,j, it follows that u —> j abu) is a l -

parameter non-trivial isospectral deformation of j a^. 

3. Compact nilmanifolds 

A compact Riemannian nilmanifold is a quotient N = YnG of a 
simply-connected nilpotent Lie group G by a (possibly trivial) discrete 
subgroup r , together with a Riemannian metric g whose lift to G is 
left-invariant. 

We now recall a method, developed in [11], for constructing isospec-
tral compact Riemannian nilmanifolds. For convenience, we'll restrict 
our attention to two-step nilmanifolds, although Theorem 3.2 below can 
be formulated in the context of nilmanifolds of arbitrary step. Even in 
the two-step case, the formulation of Theorem 3.2 in [11, Theorem 1.8] 
is slightly more general than that given here. 

N o t a t i o n and R e m a r k s 3 .1 . (i) A nilpotent Lie group G admits 
a co-compact discrete subgroup Y if and only if the Lie algebra g of G 
has a basis B relative to which the constants of structure are integers 
(see [22]). If B is such a basis and A is the integer span of B, then 
exp(A) generates a co-compact discrete subgroup of G. Conversely, if 
r is a co-compact discrete subgroup of G, then log(r) spans a lattice 
of full rank in g, where log : G —> g is the inverse of the Lie group 
exponential map. 
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(ii) We use the notation of 1.1 and 1.2. Thus a simply-connected 
nilpotent Lie group G = G(j) with a left-invariant metric is defined 
by data (v , z , j ) . If T is a co-compact discrete subgroup of G, then T 
intersects [G, G] in a lattice of full rank C, which we may also view as 
a lattice in z under the identification in 1.2. In summary, a compact 
nilmanifold N = r \ G is defined by the data (v,z, j , T) and T determines 
a lattice £ in z. In the sequel, we will consider fixed (v ,z ,£) but vary 
the choice of j with the requirement that the resulting simply-connected 
nilpotent Lie group G(j) admit a co-compact discrete subgroup T whose 
intersection with the derived group of G(j) is given by C We will denote 
the nilmanifold T\G(j) by N(j,T). 

(iii) We continue to use the notation of 1.6 as well. For A G C*, the 
projection G(j) —> G\(j) = G(j)/ker(A) sends T to a co-compact dis
crete subgroup TA- We denote by N\(j,T) the quotient T\\G\(j) with 
the Riemannian metric induced by that of G\(j). Note that No(j, T) is 
a flat torus. Letting A0 be the image of log(T) under the orthogonal 
projection from g(j) to v, then No(j,T) is isometric to the torus v / A 0 

with the flat metric defined by the inner product on v. 

T h e o r e m 3.2 . [11] Let N(j,T) and N(j',T') be compact Rieman
nian nilmanifolds associated with the data (v ,z ,£) as in 3.1. Sup
pose that spec(N\(j,T)) = spec(N\(j', T')) for every A G C*. Then 
spec(N(j,T)) = spec(N(j',T')). 

We wish to correct an error in the version of this theorem given in 
[11], Theorem 1.8: One must assume that the correspondence A —> A' 
given there is norm-preserving if dim (z) — 1. This assumption is actually 
satisfied in all the applications of Theorem 1.8 given in [11]. 

Definit ion 3 .3 . We will say a two-step nilpotent Lie group G = 
G(j) is non-singular if j(z) is non-singular for all z G z. We will also 
say any associated compact nilmanifold N(j, T) is non-singular in this 
case. 

In [11], we studied non-singular nilmanifolds and proved the follow
ing as a consequence of Theorem 3.2: 

T h e o r e m 3.4 . In the notation of 3.1, let N(j,T) and N(j',V) be 
compact non-singular two-step Riemannian nilmanifolds associated with 
the same data ( v , z , £ ) . Assume the following: 

(i) spec(N0(j,T)) = spec(N0(j',T')) and 

(ii) j ~ j ' . (See Definition 1.3(ii).) 
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Then spec(N(j, T)) = spec(N(j', T')). 

E x a m p l e 3 .5 . Examples of minimum dimension 11 were given 
in [10], [11]. We now construct compact quotients of the pairs of 7-
dimensional isospectral simply-connected manifolds G(j) and G(j') con
structed in Example 1.10. 

In the notation of Example 1.10, observe that the constants of struc
ture of g(j) relative to the "standard" basis are integers provided that 
the matrix entries of T relative to the standard basis of z are integers. 
Thus we assume that the matrix entries of both T and T" are inte
gers. We can then, for example, let A and A1 be the integer span of 
the standard basis elements of v and z, and let T and V be the dis
crete subgroups of G(j) and G(j') generated by exp(A) and exp'(A'), 
respectively. (See 3.1 (i).) The nilmanifolds N(j, T) and N(j',V) triv
ially satisfy condition (i) of Theorem 3.4; in fact, the tori No(j,T) and 
No(j',V) are isometric. Moreover, condition (ii) of Theorem 3.4 is au
tomatic from the construction in 1.10. Thus the nilmanifolds N(j, T) 
and N(j',V) are isospectral. 

The non-singular compact nilmanifolds N are particularly easy to 
work with as the quotient manifolds N\(j,T) defined in 3.1(iii) are 
Heisenberg manifolds when A / 0; tha t is, the center of G\ is one-
dimensional. In [14], the authors gave sufficient conditions for two 
Heisenberg manifolds to be isospectral. (Pesce [21] later proved these 
conditions are also necessary.) These conditions are used in [11] to prove 
Theorem 3.4. 

We want to find isospectral compact quotients of some pairs of 
simply-connected nilpotent Lie groups associated with the Lie algebras 
constructed in §2. Thus we need to generalize Theorem 3.4 to the pos
sibly singular case. As always, we will assume that j(z) is non-zero for 
all z G z (i.e., tha t z = [g(j), g(j)])- When A / 0, the quotient g\(j) 
has one-dimensional derived algebra but may have a higher-dimensional 
center. The corresponding Lie group is of the form G\(j) = H X A, 
where H is a Heisenberg group and A an abelian group. Thus in view 
of Theorem 3.2, we first need to examine isospectrality conditions for 
compact quotients of groups of this form. 

N o t a t i o n 3.6. In the notation of 3.1, consider a nilmanifold 
N(j, r ) with z one-dimensional. We can write v as an orthogonal direct 
sum v = u © a where a = ker(j(z)) for 0 / z G z. (Note that a is 
independent of the choice of z since z is one-dimensional.) The Lie 
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algebra g(j) then splits into an orthogonal sum of ideals h © a, where 
h = u + z is a Heisenberg algebra. 

Since a + z is the center of g(j), log(r) intersects a + z in a lattice K 
of maximal rank. (See [22].) Let K* denote the dual lattice in ( a + z)*. 
The inner product < , > on a + z defines a dual inner product on (a + z)* 
and thus defines a norm k k on K*. 

Propos i t ion 3.7. Using the notation of 3.1 and 3.6, let N(j,T) 
be a compact nilmanifold and assume z is one-dimensional. Then 
spec(N(j,T)) is completely determined by the following data: 

(i) spec{NQ{j,T)). 

(ii) The eigenvalues of the linear operator j(z), where z is a unit vector 
inz. (Since z is one-dimensional and j(z) is skew, the eigenvalues 
of j(z) are independent of the choice of unit vector z.) 

(iii) f(a(z), kcrk) G R 2 : o G K*g where z is given as in (ii). 

The case in which M is a Heisenberg manifold is proven in [14] and 
is the key lemma used in Theorem 3.4 above. Proposition 3.7 will be 
proved in the Appendix. 

3.8 Remark . In the special case that K = (K fl z) © (K fl a) , 
the data (iii) can be expressed more simply. The inner product < , > 
defines flat Riemannian metrics on the circle z/{K fl z) and the torus 
a / ( a n K ) . Specifying the data (iii) is equivalent to specifying the length 
of this circle and the spectrum of this torus. 

N o t a t i o n and R e m a r k s 3 .9 . In 2.3, we considered a class of 
eight-dimensional metric Lie algebras g(j a,b)- We now show that for 
certain choices of pairs j = j a^ and j 1 = j a b/, the associated nilpo-
tent Lie groups G(j) and G(j') admit isospectral compact quotients. 
First observe that if the matrix entries a1 ,a2 ,a of a and b12,b13,b23 
of b are integers, then the constants of structure of g(j a,b) with respect 
to the standard bases f e i , . . . , egg of v = R 6 and fei, €2g of z = R 2 

are integers. Thus, if we let A be the lattice in v + z spanned by 
f e i , . . . , e ,61 ,62g, then exp(A) generates a co-compact discrete sub
group rajb ofG(j atb). (See 3.1.) 

T h e o r e m 3.10. In the notation of 2.3 and 3.9, assume that the 
matrix entries of a,b, and b' are integers, that g.c.d.(bi2, b13, b23) = 
g.c.d.(b'12,b'13,b'23), and that the condition (*) of 2.3 is satisfied. Then 
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the compact Riemannian nilmanifolds N(j a,b, ^ a,b) and N(j a^, Ta^) are 
isospectral. 

Proof. Write N = N(j aib,Taib) and N> = N(j atb,,Tatb,). We apply 
Theorem 3.2. In the notation of 3.1 (ii), the lattice in z = R 2 associated 
with both Fafb and Tabi is given by C = spanzje i , e2g = Z 2 . 

Let A £ £*. In case A = 0, both No and NQ are isometric to the 
6-dimensional cubical torus, so s p e c ( N ) = s p e c ( N ) holds trivially. 
Next, observe that j(sei + te2) = sa + tb is non-singular except when 
s = 0. Thus, if A(ei) / 0, then j a,b(z) and j a,b'(z) are non-singular 
similar operators for all z £ z\, and therefore N\ and N'x are Heisenberg 
manifolds. Proposition 3.7 (see the simplified version 3.8 with a = 0) 
implies spec (N\) = spec (N'x). 

It remains to consider the case ker(A) = R e i . In this case, G\{j afb) 
and G\(j abi) are isomorphic as Lie groups to H X A, where H is the 
3-dimensional Heisenberg group and A = R 4 . Letting TTA : G{j a,b) -> 
G\(j a,b) be the projection and writing X = IT\*(X) for X in the Lie 
algebra g(j a,b), we have in the notation of 1.6, 3.6, and 3.9 that 

a = 7TAs,(ker(b)) = s p a n { e 2 , e , e , b23ei - b13e + b12e5g, 

u = 7r A t (veker(b) ) , 

and zA = Rë2- Moreover, letting K = K\if(A) fi (a + zA), we have 

K = (K n zA) ® (K n a) 

with K fi zA = Z?2 and K fl a = s p a n z { e 2 , e , e , w g where 

w = g.c.d.(bi2,b13,b23)(b23el - b l 3 e + b12e5) • 

Thus K is an orthogonal lattice isomorphic to Z 4 X \w\Z. 
The analogous statements hold of course when b is replaced by b'. 

The data (ii) in Proposition 3.7 agree for N\ and N'x; both are given by 
the eigenvalues of b. (Recall tha t b and b' are similar.) To see that the 
data (iii), as simplified in Remark 3.8, agree for N\ and N'x, we need 
only show that \w\ = \w'\. This equality follows from the hypothesis of 
the theorem and the fact that b\2 + b2

13 + b^3 = (b12)2 + (b13)2 + (b'23)
2, 

as can be seen from the isospectrality condition (*) of 2.3. 

E x a m p l e 3 .11 . Fix a choice of a with integer entries a i , a 2 , a . 
It is easy to find pairs b and b' with integer entries b ij and b i j , 1 < 
i < j < 3, so that the isospectrality condition (*) in 2.3 holds, i.e., so 
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tha t j afb ~ j a,b'- We need only choose the parameter u in (*) so that 
each of u(a2 — a2) is a difference of two squares; i.e, each u(a2 — a2j) is 
an integer congruent to 0 , 1 , or 3 mod 4. For a specific example, take 
ai = l , a 2 = 2 , a = 3 and u = 3. We can then take b\2 = 4, b13 = 
7, b23 = 7, b1 2 = 5, b'13 = 5, b'23 = 8. In this example, the hypothesis 
of Theorem 3.10 concerning the g.c.d. of the 6ij 's is also satisfied, so 
Theorem 3.10 gives us a pair of isospectral Riemannian nilmanifolds. 

4. Curvature of the e x a m p l e s 

We compare the curvature of the various examples of isospectral 
manifolds constructed in Sections 1-3. We continue to use the notation 
established in 1.2 and 3.1. Since the manifolds G(j) are homogeneous, 
the curvature does not vary from point to point and thus can be viewed 
as a tensor on the vector space v + z (i.e., on the Lie algebra g(j), iden
tified with the tangent space to G(j) at the identity). The curvatures 
of the manifolds M(j) in 1.2 and of the closed nilmanifolds N(j, T) in 
3.1 are the same as that of G(j). 

The curvature of G(j) is easily computed. See [8] for details. 

Propos i t ion 4 .1 . Given inner product spaces v and z and a linear 
map j : z —T- so(v), let G(j) be the associated Riemannian manifold 
constructed as in 1.2. Let fZ\,... , Z r g be an orthonormal basis of z 
and let S = ^ P k=i j2(Z k)- For X, Y G v and Z,W in z orthogonal 
unit vectors, the sectional curvature K and Ricci curvature are given as 
follows: 

K{X,Z) = \\\j{Z)Xf, 

K(Z,W) = 0. 

(ii) 
Ric(X,Y) = (S(X),Y), 

Ric(X, Z) = 0, 

Ric(Z1W) = --Atrace(j(Z)j(W)). 

In particular, if j is injective, then the Ricci tensor is positive-
definite on z and negative semi-definite on v. 
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Corollary 4 .2 . Fix inner product spaces v and z, and let j,j' : 
z —T- so(v) be injective linear maps. Let Ric and Ric denote the Ricci 
tensors of the associated manifolds G(j) and G(j'). If j ~ j ' , then 

Ric\ÌXÌ = R i c | 3 x r 

Thus to compare the Ricci curvatures of the examples we need only 
look at Ric|Bxt ) . The eigenvalues of Ric|Bxt) are the eigenvalues of the 
operator S in Propositon 4.1. 

E x a m p l e 4 .3 . We first consider the 7-dimensional manifolds con
structed in Example 1.10 (see also Example 3.5). We assume that T and 
T" are diagonal with respect to the standard basis of z with diagonal en
tries (a,b,c) and ( — a,b,c), respectively. Then both Ric | o x o and Ricf 
are diagonalized by the standard basis of v. The four eigenvalues of 
Ric | o x o are all the expressions of the form —^{( l±a ) 2 + ( l ± b ) 2 + ( l±c ) 2 g 
with an even number of choices of minus signs in the terms in paren
theses. The eigenvalues of Ric' are obtained by changing the sign of a; 
equivalently, they are all the expressions of the form above having an 
odd number of choices of minus signs. 

Thus Examples 1.10 and 3.5 yield isospectral manifolds with differ
ent Ricci curvatures. We note, however, tha t the Ricci tensors have the 
same norm. 

E x a m p l e 4 .4 . We consider the continuous families of isospectral 
manifolds G(j u) constructed in Example 2.3, with j u = j a^(u)-

Let 
S u be the operator associated with j u as in Proposition 4.1. We have 
S u = -j(a2 + b(u)2). As noted above, the manifolds G(j u), u G I , have 
the same Ricci curvature if and only if the linear operators S u,u G I , 
are isospectral. An explicit computation shows that , for example, when 
a and b are chosen as in Example 3.11, then de t (S u) depends non-
trivially on u. Thus the eigenvalues of the Ricci tensor of G(j u) (and of 
M(j u)) depend non-trivially on u. In particular, the closed nilmanifolds 
in Example 3.11 have different Ricci curvature. 

However, for all choices of a and b, trace(t S u S u) is independent of 
u. Consequently, the norm of the Ricci tensor does not change during 
any of the deformations. 

A p p e n d i x 

The proof of Proposition 3.7 is by an explicit calculation of the 
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spectra. Using the Kirillov theory of representations of a nilpotent Lie 
group, Pesce [20] computed the eigenvalues of an arbitrary compact 
two-step nilmanifold. We first summarize his results. 

Let N = (T\G,g) be a compact two-step nilmanifold. Thus G is a 
simply-connected two-step nilpotent Lie group, and g is a left-invariant 
metric on G. (We are temporarily dispensing with the notation estab
lished in the earlier sections.) Recall tha t the Laplacian of N is given 
by A = — P i X i , where {X\,X2, • • • , X n g is an orthonormal basis of 
the Lie algebra g relative to the inner product < , > defined by g. Let 
p = pr denote the right action of G on L2(N); then the Laplacian acts 
on L2{N) asA = -PP*X i . 

Given any unitary representation (V, IT) of G (here V is a Hilbert 
space and IT is a representation of G on V) , we may define a Laplace 
operator Agj7r on V by Agj7r = — P * X 2 . The eigenvalues of this 
operator depend only on g and the equivalence class of the representa
tion IT. The space (L2(N),p) is the countable direct sum of irreducible 
representations (Va,Tra), each occurring with finite multiplicity. The 
spectrum of N is the union, with multiplicities, of the spectra of the 
operators Ag j7ra. 

Kirillov [18] showed that the equivalence classes of irreducible uni
tary representations of the simply-connected nilpotent Lie group G are 
in one to one correspondence with the orbits of the co-adjoint action of 
G on the dual space g* of the Lie algebra g of G. We will denote the 
representation corresponding to the co-adjoint orbit of a G g* by ita. 

Richardson [23] computed the decomposition of L 2 ( r \ G ) into irre
ducible representations ita for an arbitrary compact nilmanifold. In case 
G is two-step nilpotent, this decomposition can be given very explicitly. 

N o t a t i o n A . l . Given a G g*, define Ba : g X g —> R by 

Ba(X,Y) = a([X,Y]). 

Let ga = ker(B7) and let Ba be the non-degenerate skew-symmetric 
bilinear form induced by Ba on g/ga. The image of log(r) in g/ga is a 
lattice, which we denote by Aa. 

We will write Agj(7 for Agj7r<T. 

Propos i t ion A . 2 . (See [20].) Let N = (T\G,g) be a compact two-
step nilmanifold, let g be the Lie algebra of G, and let a £ g*. Then 
TT a- appears in the quasi-regular representation pr of G on L2 (N) if and 
only if a(log(T) r\ga) C Z. In this case the multiplicity of ira is ma = 1 
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if a{z) = f0g, and ma = (detB ^)1'2 otherwise, where the determinant 
is computed with respect to a lattice basis of Aa. 

Let < , > be the inner product on g* denned by the Riemannian 
inner product on g. 

Propos i t ion A . 3 . [20] Let z = [g,g]. 

(a) If cf{z) = 0, then ira is a character of G and 

spec(Agta) = f4TT2kHk2g. 

(b) If °{z) / f0g; let ±(-l)1/2dll... ,±{-l)l/2d r be the eigenvalues 
of Ba. Then 

spec(Ag:(J) = ffi(a,p,g) : p G N r g, 

where 

l2(a,p,g) = 47T2 X <?{Z i)2 + 2K X (2p k + l)d k 

with fZ\,... , Zg a g-orthonormal basis of ga. The multiplicity of 
an eigenvalue ß is the number of p G N r such that ß = /2(a,p,g). 

Proof of Proposition 3.7. We use the notation of 3.1, 3.6 and A. l , 
and let G = G(j) and N = N(j, T). By an elementary and standard 
argument, the part of spec(N) corresponding to all the characters ira 

in part (a) of Proposition A.3 coincides with spec(No(j, T)). Thus we 
need only consider those representations ita with 17(z) / 0. 

For z as in Proposition 3.7 and x, y G g = g( j ) , observe that 

(1) Ba{x,y) = < [x,y],z> a(z) = < j(z)x,y > a(z) 

by 1.1. Thus ga, as defined in A. l , coincides with a + z. Hence the 
occurrence condition for ita in Proposition A.2 just says that <J\a+z G K*. 
Observe that f iGg* lies in the same co-adjoint orbit as a if and only if 
/iia+z = <7|a+z) therefore we may identify co-adjoint orbits with elements 

CTofK*. 
By equation (1), the eigenvalues of Ba, and thus of Ba, are deter

mined by the eigenvalues of j(z) and by cr(z P Moreover, for fZ\ .. .Zg 
an orthonormal basis of ga = a + z, we have i=i a{Z i)2 = kMk2- Hence 
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by Proposition A.3(b), the eigenvalues of A3j(7 are completely deter
mined by the data in (ii) and (iii) of Proposition 3.7. 

It remains to show that the data (i)-(iii) determine the multiplicity 
ma of Ka in the representation pr of G on L2(N). First observe that 
the center z(G) has Lie algebra g'7 = a + z. Let IT : G —> G/z(G) be the 
projection. The group TT(G) with the Riemannian structure induced by 
that of G is Euclidean and T := 7r(G)/7r(r) is a flat torus. Let ~g = g/g'7 

and letting Aa be as in A. l ; then the Lie group exponential map from 
~g to TT(G) carries Aa to 7r(T) and induces an isometry from the torus 
~gjAa to T, where ~g is given the inner product induced by that on g. 
(Note that ~g may be identified with the subspace u of g defined in 3.6.) 
N fibers over T as a Riemannian submersion with fiber z(G)/(z(G)nT). 
The fiber is isometric to the torus (a + z)//C. 

Now consider the multiplicity ma of ira, given in Proposition A.2. 
By equation (1), the determinant of Ba with respect to an orthonor
mal basis of g/ga (relative to the induced inner product defined above) 
is determined by the eigenvalues of j(z) and by cr(z). To find the de
terminant with respect to a lattice basis of Aa, the only additional 
information needed is the volume of T (i.e., the "volume" of the lat
tice). Thus it remains to show that the volume of T is determined by 
the data (i)-(iii). 

We have two ways of viewing N a s a principal torus bundle over a 
torus; both are Riemannian submersions. First we have the submersion 
discussed alone: 

z{G)/{z{G)r\Y) — • N 

T 

Secondly we have a submersion with circle fiber: 

S :=[G,G]/([G,G]nT) -+ N 

N0 

The fiber circle is isometric to z//C Pi z) with the inner product < , > . 
The second fibration and the data (i)-(iii) enable us to determine 

vol (N) . Indeed (i) gives us vol(N ^ ) , and from (iii) we can determine the 
length of the circle S as follows: From (iii) we can find min{||<7|| : a G IC* 
and \\a\\ = jCT(z)j} = min{||<7|| : a G 1C* and <ja = 0}; call this c. But 
c is precisely the length of a basis element of the lattice in z* dual to 
tC Pi z = log(r) n z. Hence c determines the length of the circle S. We 
conclude that the data (i)-(iii) determine vol (N) . 
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[9: 

Next the second half of the data in (iii), i.e., {||r|| : r G IC*g de
termines the spectrum of the fiber torus in the first submersion and 
thus the volume of the fiber. This together with vol (N) determines 
vol(T). Thus the multiplicity ma is determined by the data (i)-(iii). 
This completes the proof. 

Note added in proof: R.Gornet, D. Schueth, D. Webb and the 
authors recently showed that the boundaries of the manifolds in The
orem 0.1 are isospectral. This construction yields continuous families 
of isospectral closed manifolds which have no common covering and 
which are not locally homogeneous. Z. Szabó independently and simul
taneously constructed pairs of isospectral closed manifolds with these 
properties; these are described in a revised version of his article [25]. 
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