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1. Introduction 

The purpose of this paper is to prove the following theorem. 

Theorem 1.1 (Main Theorem). Let x : M —> R m be a minimal 
surface immersed in R m. Suppose that its generalized Gauss map g 
omits more than mm—- hyperplanes in P m_ 1(C) ; located in general 
position. Then there exists a constant C, depending on the set of omitted 
hyperplanes, but not the surface, such that 

(1) \K(p)\1/2d(p)<C, 

where K(p) is the Gauss curvature of the surface at p, and d(p) is the 
geodesic distance from p to the boundary of M. 

This theorem provides a considerable sharpening of an earlier result 
of the same type: 

Theorem 1.2 (Osserman [12]). An inequality of the form (1) holds 
for all minimal surfaces in R m whose Gauss map omits a neighborhood 
of some hyperplane in P m_ 1(C). 

Also, Theorem 1.1 implies the earlier result: 
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T h e o r e m 1.3 (Ru [15]). Let x : M —> R m be a complete minimal 
surface immersed in R m. Suppose that its generalized Gauss map g 
omits more than mm—- hyperplanes in P m _ 1 ( C ) ; located in general 
position. Then g is constant and the minimal surface must be a plane. 

In fact, given any point p o n a complete surface satisfying the hy
potheses, inequality (1) must hold with d(p) arbitrarily large, so that 
K(p) = 0. But a minimal surface in R m with K = 0 must lie on a plane 
(see [10]) and hence its Gauss map g is constant. 

Theorem 1.3 had been proved earlier by Fujimoto [5] in the case 
where the Gauss map g was assumed nondegenerate. Fujimoto (see [7]) 
also showed that the number m(m + l ) / 2 was optimal in that for every 
odd dimension m, there exist complete minimal surfaces whose Gauss 
map omits m(m + l ) / 2 hyperplanes in general position. It follows that 
Theorem 1.1 is also an optimal result of its type, since with any smaller 
number of omitted hyperplanes, a universal inequality of the form (1) 
cannot be valid, at least in odd dimensions. 

When m = 3, we may consider the classical Gauss map into the 
unit sphere. Fujimoto [4] showed that an inequality of type (1) holds 
whenever the Gauss map omits 5 given points. Later [6] he obtained an 
expression for C that makes more explicit its dependence on the given 
points. Ros [14] gave a different proof which does not yield an explicit 
value for the constant C, but allows the extension to higher dimension 
that we give here. 

2. S o m e t h e o r e m s and l e m m a s 

In this section, we recall some results which will be used later. 
We first recall the following construction theorem of minimal sur

faces. 

T h e o r e m 2.1 (see [3]). Let M be an open Riemann surface and let 
a)i,a;2) • • • i^ m be holomorphic forms on M having no common zero and 
no real periods, and locally satisfying the identity 

fi2 + ff + --- + f m = o 

for holomorphic functions f i with u>i = f i dz. Set 

z 

x i = 2Re Li, 
z0 
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for an arbitrary fixed point zo of M. Then the surface x = (xi,..., x m) : 
M —> R m is a minimal surface immersed in R m such that the Gauss 
map is the map g = [u>i : • • • : u>m] : M —> Q m-2(C) and the induced 
metric is given by 

ds2 = 2(jwij2 + --- + ju;m j2). 

The following is the general version of Hurwitz's theorem: 

T h e o r e m 2.2 (Hurwitz ' s t h e o r e m ) . Let f j : M —>• N be a se
quence of holomorphic maps between two connected complex manifolds 
converging uniformly on every compact subset of M to a holomorphic 
map f. If the image of each map f j misses a divisor D of N, then either 
the image of f misses D or it lies entirely in D. 

Proof. Assume first that D = {zjg(z) = 0} for some holomorphic 
function g. Then gof j is a sequence of holomorphic functions converging 
to the holomorphic function g o f. Since g o f j is non-vanishing, by the 
classical Hurwitz theorem the limit function is either identically zero or 
non-vanishing. In other words the image of f either lies entirely in D 
or misses D completely. 

In the general case, if f does not miss D entirely, then there exist 
a point q in D and a point p in M such that f(p) = q. There exist 
a neighborhood U of q and a holomorphic function g on U so that 
DHU = {zjg(z) = 0}. Applying the previous argument to the restriction 
of the sequence of maps to the open set V = f~l(U) in U, we conclude 
that f{V) is contained in D n U. Since M is connected, the principle of 
analytic continuation implies that the image f(M) is contained in D. 

q.e.d. 

L e m m a 2 .1 . Let D r be the disk of radius r, 0 < r < 1, and let R 
be the hyperbolic radius of D r in the unit disc. Let 

ds2 = \{z)2jdzj2 

be any conformal metric on D r with the property that the geodesic dis
tance from z = 0 to jzj = r is greater than or equal to R. If the Gauss 
curvature K of the metric ds2 satisfies 

-1<K<0, 

then the distance of any point to the origin in the metric ds2 is greater 
than or equal to the hyperbolic distance. 
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R e m a r k 2 .1 . The hyperbolic metric in the unit disk is given by 

2 
ds2 = X(z)2\dz\2, X(z) = —-77, 

1 — \z\z 

and has curvature K = — 1. The relation between the quantities R and 
r is therefore given by 

2 1 + r r r 9 
R = X(z)\dz\ = T-dt = log 

o o ! - t 

and the conclusion of Lemma 2.1 is that 

p(z) >p(z) = log- j - r , 
1 — \z\ 

where p and p represent the distances from the point z to the origin in 
the metric ds2 and the hyperbolic metric, respectively. 

R e m a r k 2 .2 . Lemma 2.1 and its proof are basically geometric re
formulations of Lemma 6 of Ros[14]. The lemma may be viewed as a 
kind of dual to the Ahlfors form of the Schwarz-Pick lemma [1]. 

Proof of Lemma 2.1. Note first that in the relation above between 
R and r, we have 

dR 2 
TT = 1 2 > °> 
dr 1 — rz 

and we may solve for r in terms of R: 

e R-l 
(2) 

e R + 1 

or in general 

e'Jz - 1 
(3) ep(z) _|_ I : 

where the right-hand side is monotone increasing in p(z). We may apply 
a comparison theorem of Greene and Wu ([9, Prop. 2.1, p.26]) to the two 
metrics, ds2 and the hyperbolic metric ds2, on the disk \z\ < r. The 
comparison theorem states that for any smooth monotone increasing 
function f, one has 

A ( f o p ) < A ( f o p ) , 
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where p and p are the distances to the origin in the metrics ds2 and 
ds2 respectively, A and A are the Laplacians with respect to the two 
metrics, and the two sides are evaluated at points of the same level 
sets of the two metrics, i.e., p = c on the left and p = c on the right, 
provided in two dimensions that the Gauss curvatures K and K satisfy 
0 > K > K , with a similar condition on Ricci curvature in higher 
dimension. In our case we have 0 > K > —1 = K , and so we may apply 
the theorem. We note that the function 

epz) _ i 
logjzj = log e ) T T 

is harmonic with respect to z and is therefore also harmonic with respect 
to any conformal metric on 0 < jzj < 1. In other words, if we set 

e t - l 

we have 

Â ( f o p ) = 0 

for 0 < jzj < 1. Since f is monotone increasing, we may apply the 
Greene-Wu comparison theorem to conclude that 

A ( f o p ) < 0 

for 0 < jzj < r, i.e., f o p is superharmonic. For z near 0, we have 
p(z) ~ A(0)jzj, and we may apply the minimum principle to the function 

1 ePz - 1 
p — l o g jzj = l o g • 

zj eP(z) + r 

which is superharmonic in 0 < jzj < r and bounded near the origin, to 
conclude that it takes on its minimum on the boundary jzj = r. But 
since p(z) > R on jzj = r, we have for jzj < r that 

by (2). Hence 

1 ePz - 1 1 e R - 1 
log " j j —T~\ > log R = 0, 

z eP(z) + 1 - r e + l 

e(z) _ i ep(z) _ i 
> jzj ep{z) + 1 j ep{z) + l 

by (3), which implies p(z) > p(z), proving the lemma. q.e.d. 

As an application of Lemma 2.1, we have the following lemma: 
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L e m m a 2.2 . Let ds n be a sequence of conformal metrics on the 
unit disk D whose curvatures satisfy — 1 < K n < 0. Suppose that D 
is a geodesic disk of radius R n with respect to the metric ds n, where 
R n —> oo ; and that the metrics ds2n converge, uniformly on compact 
sets, to a metric ds2. Then all distances to the origin with respect to 
ds2 are greater than or equal to the corresponding hyperbolic distances 
in D. In particular, ds2 is complete. 

Proof. For any point z in D, let pn(z) be the distance from 0 to z 
in the metric ds^ and let p(z) be the distance in the limit metric ds2. 
Let \z\ = r n be the circle in D of hyperbolic radius R n. Explicitly, by 
Remark 2.1 above, 

R n = log:; • 
1 -r n 

If we make the change of parameter w = r n z, we may apply Lemma 2.1 
to the induced metric in \w\ < r n and conclude that 

/ \ ^ 1 + w ! + r n\z\ 
Pn(z) > log — = log J-,. 

As n —> oo we have R n —> oo and r n —> 1. Hence, by uniform conver
gence on compact sets, we have 

p(z) = lim pn(z) > lim log- —r = log- —r, 
n-5-oo r „ - > l 1 — r n\z\ 1 — | z | 

which proves the lemma. q.e.d. 

N o t e . Although we shall not make use of it, we remark that 
Lemma 2.1 also implies another dual form of the Ahlfors-Schwarz-Pick 
lemma, closer in form to the original: 

L e m m a 2 .3 . Let S be a simply-connected surface with a complete 
metric ds2 whose Gauss curvature satisfies — 1 < K < 0. If S is mapped 
conformally onto the unit disc, then the distance between any two points 
of S is greater than or equal to the hyperbolic distance between the cor
responding points in the disk. 

Proof. Given two points p, q of S1, we may map p onto the origin, 
and let z be the image of the point q. Then the distance between p and 
q on S is given by p(z) in terms of the pull-back of the metric on S onto 
the disk. For any r such that \z\ < r < 1, let p(z) be the hyperbolic 
distance from 0 to z, and let pr(w) be the pullback of the metric on S 
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to jwj < r under the map z = w/r. Then, since S is complete, we may 
apply Lemma 2.1 to conclude that 

P{z) < Pr{w) = Pr(rz). 

But a s r - > l,pr(rz) —> p(z), which proves the lemma. q.e.d. 

Note that Lemma 2.3 combined with the standard Ahlfors-Schwarz-
Pick lemma implies a generalization of Ahlfors' lemma due to Yau ([17]; 
see also Troyanov [16]): Let S\ be a simply-connected Riemann surface 
with a complete metric ds2 whose Gauss curvature satisfies —1<K<0, 
and let S2 be a Riemann surface with Gauss curvature bounded above 
by —I. Let f : Si —> S2 be a holomorphic map. Then f is distance 
decreasing. 

We also need the following more precise version of Theorem 1.3; the 
proof follows exactly as in [15]. 

T h e o r e m 2.3 (cf. Ru [15]). Let x : M —> R m be a complete min
imal surface immersed in R m. Suppose that its generalized Gauss map 
g omits the hyperplanes H\,..., H q in P m _ 1 ( C ) and g(M) is contained 
in some P ( V ) , where V is a subspace of C m of dimension k. Assume 
that H\ n P ( V ) , . . . ,H q n P ( V ) are in general position in P ( V ) and 
q > k(k + l ) / 2 . Then g must be constant. 

The following theorem due to M. Green (see [8]) shows that the 
complement of 2m + 1 hyperplanes in general position in P m(C) is 
complete Kobayashi hyperbolic. 

T h e o r e m 2.4 . Let Hi,... ,H q be hyperplanes in P m(C) ; located in 
general position. If q > 2m + I, then X = P m(C) — \Jq j=1H j is complete 
hyperbolic and hyperbolically imbedded in P m(C) . Hence, if D C C is 
the unit disc, and $ is a subset of Hol(D,X), then $ is relatively locally 
compact in Hol(D, P m(C)) ; i.e., given a sequence ff n g in & there exists 
a subsequence which converges uniformly on every compact subset of D 
to an element of Hol(D, P m(C)) . 

For the notions of "complete Kobayashi hyperbolicity" and "hyper
bolically imbedded in P m(C)" , see Lang [11]. 

Before going to the next section, we recall here a standard definition. 

Defini t ion 2 .1 . Let f : M —> P n(C) be a holomorphic map. Let 
p G M. A local reduced representat ion of f around p is a holo
morphic map f : U — > • C n + 1 — f0g, such that P ( f ) = f, where U is 
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a neighborhood of p, and P is the projection map of C n+ 1 — f0g onto 
P n(C). 

3. Proof of the Main Theorem 

Let x : M —>• R m be a minimal surface, where M is a connected, 
oriented, real-dimension 2 manifold without boundary, and 

x = {xi, . . . , x m) 

is an immersion. Then M is a Riemann surface in the induced structure 
defined by local isothermal coordinates (u,v). The generalized Gauss 
map of the minimal surface, 

g = [ f ^ : • • • : m] : M -> Q m_2(C) C P ^ C ) 

is a holomorphic map, where z = u + iv. The metric ds2 on M, induced 
from the standard metric in R m, is ds2 = P m=i j~x jldzdzJ and the 
Gauss curvature K is given by ([10, p.37]) 

(A\ K = -AjgMj = P < k jg g - g k g j j2 

jgj ^ j = i j j j > 

where g = (g1,.. .,g m),g j = -x•, 1 < j < m. 

We will need the following lemma: 

Lemma 3.1. Let M be a Riemann surface. Let f n : M —>• P m(C) 
be a sequence of holomorphic maps converging uniformly on every com
pact subset of M to a holomorphic map f : M —>• P m(C). Given 
a, b G P m(C*); let f a>b be the meromorphic function (called coordinate 
function) defined by 

f j » ( f ) 

where f is a reduced representation of f on U, and a, ß G C m+1* such 
that a = P(a) ,b = P(/3). Assume that ß(f) ^ 0 on some U fi.e., 
the image of f is not contained in the hyperplane defined by b). Let 
p G M be such that ß{f){p) ^ 0; and U p be a neighborhood of p such 
that ß(f)(z) ^ 0 for z G U p; then ff n ab g converges uniformly on U p to 
the meromorphic function f ab-
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Proof. Since the image of f is not contained in the hyperplane 
defined by b , the image of f n is also not contained in the hyperplane 
defined by b for n large enough. Since ^ ® is a rational function on 
P m(C) and f n converges uniformly on every compact subset of M to f, 
the composition functions also converge compactly. This concludes the 
proof. q.e.d. 

L e m m a 3 .2 . Let x n = (x , . . . , m ) : M —> R m be a sequence 
of minimal immersions, and g(n> : M —> Q m-2(C) C P m _ 1 ( C ) the se
quence of their (generalized) Gauss maps. Suppose that fg ^n'g converges 
uniformly on every compact subset of M to a non-constant holomorphic 
map g : M —>• Q m-2(C) C P m _ 1 ( C ) and that there is some po G M 
such that for each j , 1 < j < m, fx j{po)g converges. Assume also that 
fjK n jg is uniformly bounded, where K n is the Gauss curvature of the 
minimal surface x ^n'. Then 

(i) either a subsequence fK nig of fK n g converges to zero or 
(ii) a subsequence fx ^n 'g of fx ^n>g converges to a minimal immer

sion, x : M —> R m ; whose Gauss map is g. 

Proof. By assumption, g is not constant and we may assume that 

jK n j < 1 in M , for each n G N . For every point p G M let (U p,z) 

be a complex local coordinate centered at p. Let g ̂ n> = {g n , . . . ,g m) 
(n) dx^ 

where g i = ^z , 1 < i < m, and let g = (gì,...,g m) be a local 
reduced representation of g on U p. Since some g i(z) is non-zero for each 
z, we know that g(M) is not contained in some coordinate hyperplane. 
Without loss of generality, we assume that g(M) is not contained in the 
first coordinate hyperplane Hi = f[yi : ••• : y m] G P m _ 1 (C) jy i = 0g. 
Let 

Mi = fpe Mjg{p) 0 Hi,g(p)Ag'{p) ± 0g. 

Note that M — Mi is a discrete set: namely, it consists of the zeros of 
gi (which are isolated, since g(M) <£ Hi, which is equivalent to gi ^ 0) 
together with the common zeros of the components of g A g', which are 
the holomorphic functions g j g'k — g k g'j. In particular, 

g g k ~g k gi =g\{—) , 
g i 

so that g A g' = 0 implies that g k/gi = cfe, a constant for each k, so 
that g = gi(l, c 2 , . . . , c m) and the map g would be constant, contrary 
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to assumption. Thus, the zeros of g A g' are isolated and the points of 
M — M\ are also isolated. 

Let p G M\. Since g(p) 0 Hi, there is a neighborhood U p of p 
such that g(z) 0 Hi, and g ̂ n'{z) 0 Hi for n large enough and every 
z G U p. Choosing U p sufficiently small, we have that g2/g1, • • • ,g n/gi 
are holomorphic and 

jgAg j/jgrj' P g ' g ' * j<k j gi '-gi ^ gi vgl > 

in U p, where ci is some positive constant. Since g ̂ n> —> g uniformly, by 

Lemma 3.1, f<j /g i g converges uniformly to g j/gi on U p, 1 < j < m . 

So we have 

g(n) (n) (n) g(n) 

P < k j (n) V (n) ) (n) V (n) 
^ j g i g i g i g i v. c 

m 
g i g i g i g i 

i i+Em=2jg n ) g n ) ^ 3 

in U pi and by (4), 

(n) (n) (n) (n) 

c P < k j (n) I (n) I Jn)\(n))j 

< 4 gl gl g l_gi = jKj<1, 
j g ( n ) j 2 j g ( n ) j 2 ( 1 + Em=2|j(n) /g(n)j2)3 n 

in U p. Therefore 

/ (n)j2 
cl < jgl 

in U p, for large n. Then fg^ g is relatively compact in M(U p). Noticing 
that M — Mi is discrete, by taking a subsequence, if necessary, we can 
assume that the globally defined holomorphic 1-forms fg n dzg converge 
on Mi, to a holomorphic 1-form hidz or to infinity, uniformly on every 
compact subset of Mi. We consider each case below: 

Case 1. fgi dzg converges to infinity uniformly on every compact 
subset of Mi. 

For p G Mi, we have, by (4), 

jgin> 

g (n )(p) k(n) 

j g(n)(p)lg(n)HpJ 

(p)j2(i+£m=2jg n ) ( p ) g n ) 

- ) p j 2 

(p)j2)3 
(5) K n(p) = - 4 " * J 1 ^ ->0-
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Let p be a point such that p 0 M\ but also g(p) 0 H\\ then in a 
small disc of U p, D(2e), g(n'(z) 0 H\ for n large enough, z G D(2e). 

This means that g n is non-vanishing on D(2e) and g} converges to 

infinity on dD(e). From the maximum principle we conclude that fg± g 

converges to infinity on D(e). Therefore we again have K n(p) —> 0 by 

(4). 
Finally suppose that g(p) G H\, i.e., gi(p) = 0. Since g(p) is not 

contained in some coordinate hyperplane, we assume that g(p) 0 H2, 

where H2 is the second coordinate hyperplane, H<2 = f[y\ : • • • : y n] G 
P n- 1 (C) jy 2 = 0g. Therefore, on a small disc, D(2e), g{n\z) <£ H2 for 
n large enough, i.e., g2n (z) ^ 0, for z G D(2e), and g ̂  , gi have no 
zeros on a neighborhood of dD(e) for n large enough. By Lemma 3.1, 

f-7n7g, as a sequence of non-vanishing holomorphic functions, converges 
g i 

uniformly on dD(e). Clearly, f gn-gi g converges uniformly to infinity 
gi 

on ôD(e), and therefore g2 converges uniformly to infinity on dD(e). 
(n) 

Again from the maximum principle, we conclude that g2 converges to 
infinity on D{e). By (4), noticing that 

J n ) (n) (n) (n) 

ô(n) A fl(n)'2/l(n)j - X j g — ( k Y - g ( g — y j 2 

jg A g j / jg2 - (n) v (n) > (n) [ (n) > ' 
j<k g2 g2 g2 g2 

we have 

g n) (n) (n) (n) 

j < k j (n) V ( n ) ; (n) V (n) J j 
i n (p) = -4 g g g_2 g_2 Q 

jg2 j ( P j = i l j 7g2 j ) 

Thus, we have proved that K n(p) —> 0 for all p G M. This corre
sponds to case (i) of the lemma. 

Case 2. fg n dzg converges to a holomorphic 1-form, h\dz, on M\. 

Let p G M — M\. If D(2e) is a small disc contained in U p, as 

fg1 g ~~?" ̂  uniformly on dD(e) and g} are holomorphic, using the 

maximum principle, we see that fg ^ g is relatively compact on D(e). 

Therefore h\dz extends to a holomorphic 1-form on M and the global 

1-forms fgi dzg converge to h\dz on M. 
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We now prove that , for every integer j , 2 < j < m, the global 1-forms 

fg n dzg converge to a holomorphic form h j dz on M. Let p G M such 

that g(p) 0 Hi; then there is a neighborhood U p of p such that gi, g± 

(n) g _ (n) have no zeros for n large enough, z G U p. Since <j ; = -n g] , and by 
J g\ 

Lemma 3.1, f nyg converges uniformly on U p, and g n also converges 
gi 

uniformly on U p, f ( j n g must converge uniformly on U p. For the points 

p such that g(p) G H i , if D(2e) C Jp is small enough so that gi,g n 
have no zeros on a neighborhood of dD(e) for n large enough, then we 

just proved that fg n g is uniformly convergent on dD(e). Since <j are 
(n) 

holomorphic, by the maximum principle, we have that <j converges 
uniformly on D(e). Therefore the globally defined holomorphic 1-forms 

(n) 
g j dz converge to Lj = h j dz, 1 < j < m. 

We now check that the conditions in Theorem 2.1 are satisfied. Ob
viously we only need check that L j , 1 < j < m, have no common zero. 
Take an arbitrary point p G M; since g = (gì,..., g m) is a reduced rep
resentation of g, there is some integer 1 < k < m, such that g k(p) 7̂  0. 
So there is some neighborhood U p, such that g k is non-vanishing on U p, 
i.e., g (U p) omits k-th coordinate hyperplane H k. Since g(n> converges to 

g uniformly on every compact subset of M, for n large enough, g ̂ n'(U p) 
(n) also omits H k. So g k is non-vanishing on U p. By Hurwitz's theorem, 

(n) since g k converges uniformly on U p to h k, either h k is non-vanishing 
on U p or h k = 0 on U p. If h k is non-vanishing on U p, then we are done. 

Otherwise, h k = 0 on U p, 
that q e Mi, then, by (4), 

P j i (q)rg j - y q - g j q ( g L y ( q \ j 2 

Otherwise, h k = 0 on U p, so g k —> 0 on U p. Pick a point q G U p such 

K n(q) 
jg k(q)j2 i<jtn\q){g n ) { q ) g n W k n 

n ) 2 2 m „ ( n ) ( n ) 2 3 ik(q) j2 i ik(q) j2( i+Em=i^k jg ; (q) / ik (q) j s 

But 

i<j j n q (n))Vq) n q l (n) ) \q))j j g A g / j 2 

6 (q) 7̂  0, 

ik(q)j2(i+Em=2^k j g ( q ) g j ( q ) j 2 ) 3 jgj 

assumption that fjK n jg is uniformly bounded. Therefore, the conditions 
and g k(q) 7̂  0, g k(q) —> 0. So jK n(q)j —> oo, which contradicts the 
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in Theorem 2.1 are satisfied. So they define a minimal surface x : M —> 
R m whose Gauss map is g. q.e.d. 

We now prove the main theorem. 

Proof of the Main Theorem. 
Suppose the theorem is not true. We will construct a nonflat com

plete minimal surface whose Gauss map omits a set of hyperplanes in 
general position, thus getting a contradiction with Theorem 2.3. So 
suppose the conclusion of the theorem is not true; then there is a se
quence of (non complete) minimal surfaces x ^n' : M n —> R m and points 
p n G M n such that \K n(p n)\d2n(p n) —> oo, and such that the Gauss map 
g(n) of x(n) omits a fixed set of q hyperplanes in general position, with 
q > m(m + l ) / 2 . 

We claim that the surfaces M n can be chosen so that 

(6) K n(p n) = - 1 , - 4 < K n < 0 on M n for all n. 

We now prove the claim. Without loss of generality, we can assume that 
M n is a geodesic disk centered at p n. Let 

M'n = {p£M n: d n(p,p n) < d n(p n)/2}. 

Then K n is uniformly bounded on M'n and d'n (p) = distance of p to the 
boundary of M'n tends to zero as p —> dM'n. Hence \K n(p)\(d'n(p))2 has 
a maximum at a point p'n interior to M'n. Therefore 

\K n(p n)d(p'n)2 > \K n(p n) \d'n{p nf = - \K n(p n) \d2n{p n) -> OO. 

So we can replace the M n by the M'n, with \K n(p'n)\d'n(p'n)2 —> oo. We 
rescale M'n to make K n(p'n) = —1. By the invariance under scaling 
of the quantity K(p)d(p)2, we will have d'n(p'n) —> oo; here, without 
causing confusion, we use the same notation d'n to denote the geodesic 
distance with respect to the rescaled metric. Again we can assume that 
M'n is a geodesic disc centered at p'n, and let 

M = { p 6 M | d ( p , p n ) < d p } . 

Then p G M n implies that d'n(p) > d p ^ and 

ÌK n{p)ìd p l < \K n(p)\d'n(p)2 < \K n(p'n)\d'n(p'n)2 = d'n(p'n)2. 
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Therefore |K n(p)| < 4 on M " . Furthermore, 

d n p n) = d(p'n,dM n) = d'n(p'n)/2 -+ oc. 

This proves the claim. 

By translations of R m we can assume thatx n (p n) = 0. We can also 
assume that M n is simply connected, by taking its universal covering, if 
necessary. By the uniformization theorem, M n is conformally equivalent 
to either the unit disc D or the complex plane C, and we can suppose 
that p n maps onto 0 for each n. But the case that M n is conformally 
equivalent to C is impossible because the condition that g ̂ n> misses more 
than m(m + l ) / 2 hyperplanes in general position in P m _ 1 ( C ) , implies, 
by Picard's theorem, that g ̂ n> is constant, so K n = 0, which contradicts 
the condition that |K n(0)| = 1. So we have constructed a sequence of 
minimal surfaces, x ^n> : D —> R m, satisfying (6). Since, by Theorem 2.4, 
P m _ 1 ( C ) minus 2m — 1 hyperplanes is complete Kobayashi hyperbolic, 
and m(m + l ) / 2 > 2m — 1, a subsequence of generalized Gauss maps 
g(n> of x ^n> exists—without loss of generality we assume g(n> itself—such 
that g(n> : D —> P m _ 1 ( C ) converges uniformly on every compact subset 
of D to a map g : D ->• P m~ 1 (C) . 

We now claim that g is non-constant. Suppose not, i.e., g is a con
stant map, and g maps the disk D onto a single point P. Let H be any 
hyperplane not containing the point P , and let U, V be disjoint neigh
borhoods of H and P respectively. Let C be the constant in Theorem 
1.2 such that 

\K(p)\1/2d(p) <C 

for any minimal surface in R m whose Gauss map omits the neighbor
hood U of H, where p is a point of S and d(p) is the geodesic distance of 
p to the boundary of S. Choose r < 1 such that the hyperbolic distance 
R o f z = 0 t o \z\ = r satisfies R > C. Since g ̂ n> converges uniformly to 
g on \z\ < r, the image of \z\ = r lies in the neighborhood V of P for 
sufficiently large n, say n > no- It follows that for n > no, the image of 
the disk \z\ < r under g ̂ n> omits the neighborhood U of H and we may 
therefore apply the above inequality to conclude 

\K n(0)\^2d n(r)<C, 

where d n(r) is the geodesic distance from the origin to the boundary of 
the surface x ^n> : D(r) —> R m. But |K n(0)| = 1 for all n, and hence 
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d n{r) < C for n > no- On the other hand, we get a lower bound 
for d n(r) from Lemma 2.1. The surface x ^n' : fjzj < 1g —> R m is a 
geodesic disk of radius R n. If we reparametrize by w = r n z where the 
subset fw j jwj < r n g has hyperbolic radius R n, then the circle jzj = r 
corresponds to jwj = r n r, and by Lemma 2.1, the distance in the surface 
metric from the origin to any point on the circle jzj = r, or equivalently, 
jwj = r n r, is greater than or equal to the hyperbolic distance from 0 to 
jwj = r n r. But as n —> oo, R n —> oo and r n —> 1, so that the hyperbolic 
radius of j wj — r n r tends to the hyperbolic radius of jwj — r, which is 
R. Since by assumption R > C we have for n sufficiently large that the 
surface distance from z = 0 to jzj = r is greater than C, contradicting 
the earlier bound d n(r) < C. Thus we conclude that the limit function 
g can not be constant. 

Therefore the hypotheses of Lemma 3.2 are satisfied. Since jK n(0)j = 
1, the possibility (i) of Lemma 3.2 cannot happen. Thus, a subsequence 

converges to a minimal immersion x : D —> R m, whose 
Gauss map is g. By (6) and Lemma 2.2, x is complete. By assump
tion, g(n> omits hyperplanes H\,..., H q in P m _ 1 ( C ) , located in general 
position, q > m{m + l ) / 2 . By Hurwitz's theorem(Theorem 2.2), ei
ther g omits these hyperplanes, or the image of g lies in some of these 
hyperplanes. Say g(M) C Pk=1H j = P ( V ) , where V is a subspace of 
C m of dimension m — k, and g : M —> P ( V ) omits the hyperplanes 
H k+1 n (nk=1H j), ...,H qn {r\k j=1H j) in P(V). Since the hyperplanes 
H k+ir\(r\k=1H j),... ,H qr\(r\k=1H j) i n P ( V ) are still in general position 
in P ( V ) because H\,..., H q are in general position in P m _ 1 ( C ) , and 
q — k> m(m + l)/2 — k > (m — k)(m — k + l)/2, it follows from Theorem 
2.3 that g is constant. But we have just proved that g is not constant. 
This leads to a contradiction. Therefore the main theorem is proved. 

q.e.d. 
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