AN ESTIMATE FOR THE GAUSS CURVATURE OF MINIMAL SURFACES IN R ${ }^{m}$ WHOSE GAUSS MAP OMITS A SET OF HYPERPLANES

ROBERT OSSERMAN \& MIN RU

1. Introduction

The purpose of this paper is to prove the following theorem.
Theorem 1.1 (Main Theorem). Let $x: M \rightarrow \mathbf{R}^{m}$ be a minimal surface immersed in \mathbf{R}^{m}. Suppose that its generalized Gauss map g omits more than $\frac{m(m+1)}{2}$ hyperplanes in $\mathbf{P}^{m-1}(\mathbf{C})$, located in general position. Then there exists a constant C, depending on the set of omitted hyperplanes, but not the surface, such that

$$
\begin{equation*}
|K(p)|^{1 / 2} d(p) \leq C, \tag{1}
\end{equation*}
$$

where $K(p)$ is the Gauss curvature of the surface at p, and $d(p)$ is the geodesic distance from p to the boundary of M.

This theorem provides a considerable sharpening of an earlier result of the same type:

Theorem 1.2 (Osserman [12]). An inequality of the form (1) holds for all minimal surfaces in \mathbf{R}^{m} whose Gauss map omits a neighborhood of some hyperplane in $\mathbf{P}^{m-1}(\mathbf{C})$.

Also, Theorem 1.1 implies the earlier result:

[^0]Theorem $1.3(\mathrm{Ru}[15])$. Let $x: M \rightarrow \mathbf{R}^{m}$ be a complete minimal surface immersed in \mathbf{R}^{m}. Suppose that its generalized Gauss map g omits more than $\frac{m(m+1)}{2}$ hyperplanes in $\mathbf{P}^{m-1}(\mathbf{C})$, located in general position. Then g is constant and the minimal surface must be a plane.

In fact, given any point p on a complete surface satisfying the hypotheses, inequality (1) must hold with $d(p)$ arbitrarily large, so that $K(p)=0$. But a minimal surface in \mathbf{R}^{m} with $K \equiv 0$ must lie on a plane (see $[10]$) and hence its Gauss map g is constant.

Theorem 1.3 had been proved earlier by Fujimoto [5] in the case where the Gauss map g was assumed nondegenerate. Fujimoto (see [7]) also showed that the number $m(m+1) / 2$ was optimal in that for every odd dimension m, there exist complete minimal surfaces whose Gauss map omits $m(m+1) / 2$ hyperplanes in general position. It follows that Theorem 1.1 is also an optimal result of its type, since with any smaller number of omitted hyperplanes, a universal inequality of the form (1) cannot be valid, at least in odd dimensions.

When $m=3$, we may consider the classical Gauss map into the unit sphere. Fujimoto [4] showed that an inequality of type (1) holds whenever the Gauss map omits 5 given points. Later [6] he obtained an expression for C that makes more explicit its dependence on the given points. Ros [14] gave a different proof which does not yield an explicit value for the constant C, but allows the extension to higher dimension that we give here.

2. Some theorems and lemmas

In this section, we recall some results which will be used later.
We first recall the following construction theorem of minimal surfaces.

Theorem 2.1 (see [3]). Let M be an open Riemann surface and let $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$ be holomorphic forms on M having no common zero and no real periods, and locally satisfying the identity

$$
f_{1}^{2}+f_{2}^{2}+\cdots+f_{m}^{2}=0
$$

for holomorphic functions f_{i} with $\omega_{i}=f_{i} d z$. Set

$$
x_{i}=2 \operatorname{Re} \int_{z_{0}}^{z} \omega_{i},
$$

for an arbitrary fixed point z_{0} of M. Then the surface $x=\left(x_{1}, \ldots, x_{m}\right)$: $M \rightarrow \mathbf{R}^{m}$ is a minimal surface immersed in \mathbf{R}^{m} such that the Gauss map is the map $g=\left[\omega_{1}: \cdots: \omega_{m}\right]: M \rightarrow Q_{m-2}(\mathbf{C})$ and the induced metric is given by

$$
d s^{2}=2\left(\left|\omega_{1}\right|^{2}+\cdots+\left|\omega_{m}\right|^{2}\right)
$$

The following is the general version of Hurwitz's theorem:
Theorem 2.2 (Hurwitz's theorem). Let $f_{j}: M \rightarrow N$ be a sequence of holomorphic maps between two connected complex manifolds converging uniformly on every compact subset of M to a holomorphic map f. If the image of each map f_{j} misses a divisor D of N, then either the image of f misses D or it lies entirely in D.

Proof. Assume first that $D=\{z \mid g(z)=0\}$ for some holomorphic function g. Then $g \circ f_{j}$ is a sequence of holomorphic functions converging to the holomorphic function $g \circ f$. Since $g \circ f_{j}$ is non-vanishing, by the classical Hurwitz theorem the limit function is either identically zero or non-vanishing. In other words the image of f either lies entirely in D or misses D completely.

In the general case, if f does not miss D entirely, then there exist a point q in D and a point p in M such that $f(p)=q$. There exist a neighborhood U of q and a holomorphic function g on U so that $D \cap U=\{z \mid g(z)=0\}$. Applying the previous argument to the restriction of the sequence of maps to the open set $V=f^{-1}(U)$ in U, we conclude that $f(V)$ is contained in $D \cap U$. Since M is connected, the principle of analytic continuation implies that the image $f(M)$ is contained in D.
q.e.d.

Lemma 2.1. Let D_{r} be the disk of radius $r, 0<r<1$, and let R be the hyperbolic radius of D_{r} in the unit disc. Let

$$
d s^{2}=\lambda(z)^{2}|d z|^{2}
$$

be any conformal metric on D_{r} with the property that the geodesic distance from $z=0$ to $|z|=r$ is greater than or equal to R. If the Gauss curvature K of the metric ds ${ }^{2}$ satisfies

$$
-1 \leq K \leq 0
$$

then the distance of any point to the origin in the metric $d s^{2}$ is greater than or equal to the hyperbolic distance.

Remark 2.1. The hyperbolic metric in the unit disk is given by

$$
d \hat{s}^{2}=\hat{\lambda}(z)^{2}|d z|^{2}, \quad \hat{\lambda}(z)=\frac{2}{1-|z|^{2}},
$$

and has curvature $\hat{K} \equiv-1$. The relation between the quantities R and r is therefore given by

$$
R=\int_{0}^{r} \hat{\lambda}(z)|d z|=\int_{0}^{r} \frac{2}{1-t^{2}} d t=\log \frac{1+r}{1-r},
$$

and the conclusion of Lemma 2.1 is that

$$
\rho(z) \geq \hat{\rho}(z)=\log \frac{1+|z|}{1-|z|},
$$

where ρ and $\hat{\rho}$ represent the distances from the point z to the origin in the metric $d s^{2}$ and the hyperbolic metric, respectively.

Remark 2.2. Lemma 2.1 and its proof are basically geometric reformulations of Lemma 6 of Ros[14]. The lemma may be viewed as a kind of dual to the Ahlfors form of the Schwarz-Pick lemma [1].

Proof of Lemma 2.1. Note first that in the relation above between R and r, we have

$$
\frac{d R}{d r}=\frac{2}{1-r^{2}}>0
$$

and we may solve for r in terms of R :

$$
\begin{equation*}
r=\frac{e^{R}-1}{e^{R}+1}, \tag{2}
\end{equation*}
$$

or in general

$$
\begin{equation*}
|z|=\frac{e^{\hat{\rho}(z)}-1}{e^{\hat{\rho}(z)}+1}, \tag{3}
\end{equation*}
$$

where the right-hand side is monotone increasing in $\hat{\rho}(z)$. We may apply a comparison theorem of Greene and Wu ([9, Prop. 2.1, p.26]) to the two metrics, $d s^{2}$ and the hyperbolic metric $d \hat{s}^{2}$, on the disk $|z| \leq r$. The comparison theorem states that for any smooth monotone increasing function f, one has

$$
\triangle(f \circ \rho) \leq \hat{\triangle}(f \circ \hat{\rho}),
$$

where ρ and $\hat{\rho}$ are the distances to the origin in the metrics $d s^{2}$ and $d \hat{s}^{2}$ respectively, \triangle and $\hat{\Delta}$ are the Laplacians with respect to the two metrics, and the two sides are evaluated at points of the same level sets of the two metrics, i.e., $\rho=c$ on the left and $\hat{\rho}=c$ on the right, provided in two dimensions that the Gauss curvatures K and \hat{K} satisfy $0 \geq K \geq \hat{K}$, with a similar condition on Ricci curvature in higher dimension. In our case we have $0 \geq K \geq-1=\hat{K}$, and so we may apply the theorem. We note that the function

$$
\log |z|=\log \frac{e^{\hat{\rho}(z)}-1}{e^{\hat{\rho}(z)}+1}
$$

is harmonic with respect to z and is therefore also harmonic with respect to any conformal metric on $0<|z|<1$. In other words, if we set

$$
f(t)=\log \frac{e^{t}-1}{e^{t}+1}
$$

we have

$$
\hat{\triangle}(f \circ \hat{\rho}) \equiv 0
$$

for $0<|z|<1$. Since f is monotone increasing, we may apply the Greene-Wu comparison theorem to conclude that

$$
\triangle(f \circ \rho) \leq 0
$$

for $0<|z|<r$, i.e., $f \circ \rho$ is superharmonic. For z near 0 , we have $\rho(z) \sim \lambda(0)|z|$, and we may apply the minimum principle to the function

$$
f \circ \rho-\log |z|=\log \frac{1}{|z|} \frac{e^{\rho(z)}-1}{e^{\rho(z)}+1},
$$

which is superharmonic in $0<|z|<r$ and bounded near the origin, to conclude that it takes on its minimum on the boundary $|z|=r$. But since $\rho(z) \geq R$ on $|z|=r$, we have for $|z|<r$ that

$$
\log \frac{1}{|z|} \frac{e^{\rho(z)}-1}{e^{\rho(z)}+1} \geq \log \frac{1}{r} \frac{e^{R}-1}{e^{R}+1}=0,
$$

by (2). Hence

$$
\frac{e^{\rho(z)}-1}{e^{\rho(z)}+1} \geq|z|=\frac{e^{\hat{\rho}(z)}-1}{e^{\hat{\rho}(z)}+1},
$$

by (3), which implies $\rho(z) \geq \hat{\rho}(z)$, proving the lemma. q.e.d.
As an application of Lemma 2.1, we have the following lemma:

Lemma 2.2. Let $d s_{n}^{2}$ be a sequence of conformal metrics on the unit disk D whose curvatures satisfy $-1 \leq K_{n} \leq 0$. Suppose that D is a geodesic disk of radius R_{n} with respect to the metric ds ${ }_{n}^{2}$, where $R_{n} \rightarrow \infty$, and that the metrics $d s_{n}^{2}$ converge, uniformly on compact sets, to a metric $d s^{2}$. Then all distances to the origin with respect to $d s^{2}$ are greater than or equal to the corresponding hyperbolic distances in D. In particular, $d s^{2}$ is complete.

Proof. For any point z in D, let $\rho_{n}(z)$ be the distance from 0 to z in the metric $d s_{n}^{2}$, and let $\rho(z)$ be the distance in the limit metric $d s^{2}$. Let $|z|=r_{n}$ be the circle in D of hyperbolic radius R_{n}. Explicitly, by Remark 2.1 above,

$$
R_{n}=\log \frac{1+r_{n}}{1-r_{n}}
$$

If we make the change of parameter $w=r_{n} z$, we may apply Lemma 2.1 to the induced metric in $|w|<r_{n}$ and conclude that

$$
\rho_{n}(z) \geq \log \frac{1+|w|}{1-|w|}=\log \frac{1+r_{n}|z|}{1-r_{n}|z|}
$$

As $n \rightarrow \infty$ we have $R_{n} \rightarrow \infty$ and $r_{n} \rightarrow 1$. Hence, by uniform convergence on compact sets, we have

$$
\rho(z)=\lim _{n \rightarrow \infty} \rho_{n}(z) \geq \lim _{r_{n} \rightarrow 1} \log \frac{1+r_{n}|z|}{1-r_{n}|z|}=\log \frac{1+|z|}{1-|z|}
$$

which proves the lemma. q.e.d.
Note. Although we shall not make use of it, we remark that Lemma 2.1 also implies another dual form of the Ahlfors-Schwarz-Pick lemma, closer in form to the original:

Lemma 2.3. Let S be a simply-connected surface with a complete metric ds ${ }^{2}$ whose Gauss curvature satisfies $-1 \leq K \leq 0$. If S is mapped conformally onto the unit disc, then the distance between any two points of S is greater than or equal to the hyperbolic distance between the corresponding points in the disk.

Proof. Given two points p, q of S, we may map p onto the origin, and let z be the image of the point q. Then the distance between p and q on S is given by $\rho(z)$ in terms of the pull-back of the metric on S onto the disk. For any r such that $|z|<r<1$, let $\hat{\rho}(z)$ be the hyperbolic distance from 0 to z, and let $\rho_{r}(w)$ be the pullback of the metric on S
to $|w|<r$ under the map $z=w / r$. Then, since S is complete, we may apply Lemma 2.1 to conclude that

$$
\hat{\rho}(z) \leq \rho_{r}(w)=\rho_{r}(r z) .
$$

But as $r \rightarrow 1, \rho_{r}(r z) \rightarrow \rho(z)$, which proves the lemma. q.e.d.
Note that Lemma 2.3 combined with the standard Ahlfors-SchwarzPick lemma implies a generalization of Ahlfors' lemma due to Yau ([17]; see also Troyanov [16]): Let S_{1} be a simply-connected Riemann surface with a complete metric $d s^{2}$ whose Gauss curvature satisfies $-1 \leq K \leq 0$, and let S_{2} be a Riemann surface with Gauss curvature bounded above by -1 . Let $f: S_{1} \rightarrow S_{2}$ be a holomorphic map. Then f is distance decreasing.

We also need the following more precise version of Theorem 1.3; the proof follows exactly as in [15].

Theorem 2.3 (cf. Ru [15]). Let $x: M \rightarrow \mathbf{R}^{m}$ be a complete minimal surface immersed in \mathbf{R}^{m}. Suppose that its generalized Gauss map g omits the hyperplanes H_{1}, \ldots, H_{q} in $\mathbf{P}^{m-1}(\mathbf{C})$ and $g(M)$ is contained in some $\mathbf{P}(V)$, where V is a subspace of \mathbf{C}^{m} of dimension k. Assume that $H_{1} \cap \mathbf{P}(V), \ldots, H_{q} \cap \mathbf{P}(V)$ are in general position in $\mathbf{P}(V)$ and $q>k(k+1) / 2$. Then g must be constant.

The following theorem due to M . Green (see [8]) shows that the complement of $2 m+1$ hyperplanes in general position in $\mathbf{P}^{m}(\mathbf{C})$ is complete Kobayashi hyperbolic.

Theorem 2.4. Let H_{1}, \ldots, H_{q} be hyperplanes in $\mathbf{P}^{m}(\mathbf{C})$, located in general position. If $q \geq 2 m+1$, then $X=\mathbf{P}^{m}(\mathbf{C})-\cup_{j=1}^{q} H_{j}$ is complete hyperbolic and hyperbolically imbedded in $\mathbf{P}^{m}(\mathbf{C})$. Hence, if $D \subset \mathbf{C}$ is the unit disc, and Φ is a subset of $\operatorname{Hol}(D, X)$, then Φ is relatively locally compact in $\operatorname{Hol}\left(D, \mathbf{P}^{m}(\mathbf{C})\right)$, i.e., given a sequence $\left\{f_{n}\right\}$ in Φ there exists a subsequence which converges uniformly on every compact subset of D to an element of $\operatorname{Hol}\left(D, \mathbf{P}^{m}(\mathbf{C})\right)$.

For the notions of "complete Kobayashi hyperbolicity" and "hyperbolically imbedded in $\mathbf{P}^{m}(\mathbf{C})$ ", see Lang [11].

Before going to the next section, we recall here a standard definition.
Definition 2.1. Let $f: M \rightarrow \mathbf{P}^{n}(\mathbf{C})$ be a holomorphic map. Let $p \in M$. A local reduced representation of f around p is a holomorphic map $\tilde{f}: U \rightarrow \mathbf{C}^{n+1}-\{\mathbf{0}\}$, such that $\mathbf{P}(\tilde{f})=f$, where U is
a neighborhood of p, and \mathbf{P} is the projection map of $\mathbf{C}^{n+1}-\{0\}$ onto $\mathbf{P}^{n}(\mathbf{C})$.

3. Proof of the Main Theorem

Let $x: M \rightarrow \mathbf{R}^{m}$ be a minimal surface, where M is a connected, oriented, real-dimension 2 manifold without boundary, and

$$
x=\left(x_{1}, \ldots, x_{m}\right)
$$

is an immersion. Then M is a Riemann surface in the induced structure defined by local isothermal coordinates (u, v). The generalized Gauss map of the minimal surface,

$$
g=\left[\frac{\partial x_{1}}{\partial z}: \cdots: \frac{\partial x_{m}}{\partial z}\right]: M \rightarrow Q_{m-2}(\mathbf{C}) \subset \mathbf{P}^{m-1}(\mathbf{C})
$$

is a holomorphic map, where $z=u+i v$. The metric $d s^{2}$ on M, induced from the standard metric in \mathbf{R}^{m}, is $d s^{2}=\sum_{j=1}^{m}\left|\frac{\partial x_{j}}{\partial z}\right|^{2} d z d \bar{z}$, and the Gauss curvature K is given by ([10, p.37])

$$
\begin{equation*}
K=-4 \frac{\left|\tilde{g} \wedge \tilde{g}^{\prime}\right|^{2}}{|\tilde{g}|^{6}}=-4 \frac{\sum_{j<k}\left|g_{j} g_{k}^{\prime}-g_{k} g_{j}^{\prime}\right|^{2}}{\left(\sum_{j=1}^{m}\left|g_{j}\right|^{2}\right)^{3}} \tag{4}
\end{equation*}
$$

where $\tilde{g}=\left(g_{1}, \ldots, g_{m}\right), g_{j}=\frac{\partial x_{j}}{\partial z}, 1 \leq j \leq m$.
We will need the following lemma:
Lemma 3.1. Let M be a Riemann surface. Let $f_{n}: M \rightarrow \mathbf{P}^{m}(\mathbf{C})$ be a sequence of holomorphic maps converging uniformly on every compact subset of M to a holomorphic map $f: M \rightarrow \mathbf{P}^{m}(\mathbf{C})$. Given $\mathbf{a}, \mathbf{b} \in \mathbf{P}^{m}\left(\mathbf{C}^{*}\right)$, let $f_{\mathbf{a}, \mathbf{b}}$ be the meromorphic function (called coordinate function) defined by

$$
\left.f_{\mathrm{a}, \mathbf{b}}\right|_{U}=\frac{\alpha(\tilde{f})}{\beta(\tilde{f})}
$$

where \tilde{f} is a reduced representation of f on U, and $\alpha, \beta \in \mathbf{C}^{m+1^{*}}$ such that $\mathbf{a}=\mathbf{P}(\alpha), \mathbf{b}=\mathbf{P}(\beta)$. Assume that $\beta(\tilde{f}) \not \equiv 0$ on some U (i.e., the image of f is not contained in the hyperplane defined by \mathbf{b}). Let $p \in M$ be such that $\beta(\tilde{f})(p) \neq 0$, and U_{p} be a neighborhood of p such that $\beta(\tilde{f})(z) \neq 0$ for $z \in U_{p}$; then $\left\{f_{n_{\mathbf{a}, \mathbf{b}}}\right\}$ converges uniformly on U_{p} to the meromorphic function $f_{\mathbf{a}, \mathbf{b}}$.

Proof. Since the image of f is not contained in the hyperplane defined by \mathbf{b}, the image of f_{n} is also not contained in the hyperplane defined by b for n large enough. Since $\frac{\mathbf{a}(\mathrm{x})}{\mathbf{b (x)}}$ is a rational function on $\mathbf{P}^{m}(\mathbf{C})$ and f_{n} converges uniformly on every compact subset of M to f, the composition functions also converge compactly. This concludes the proof. q.e.d.

Lemma 3.2. Let $x^{(n)}=\left(x_{1}^{(n)}, \ldots, x_{m}^{(n)}\right): M \rightarrow \mathbf{R}^{m}$ be a sequence of minimal immersions, and $g^{(n)}: M \rightarrow Q_{m-2}(\mathbf{C}) \subset \mathbf{P}^{m-1}(\mathbf{C})$ the sequence of their (generalized) Gauss maps. Suppose that $\left\{g^{(n)}\right\}$ converges uniformly on every compact subset of M to a non-constant holomorphic map $g: M \rightarrow Q_{m-2}(\mathbf{C}) \subset \mathbf{P}^{m-1}(\mathbf{C})$ and that there is some $p_{0} \in M$ such that for each $j, 1 \leq j \leq m,\left\{x_{j}^{(n)}\left(p_{0}\right)\right\}$ converges. Assume also that $\left\{\left|K_{n}\right|\right\}$ is uniformly bounded, where K_{n} is the Gauss curvalure of the minimal surface $x^{(n)}$. Then
(i) either a subsequence $\left\{K_{n^{\prime}}\right\}$ of $\left\{K_{n}\right\}$ converges to zero or
(ii) a subsequence $\left\{x^{\left(n^{\prime}\right)}\right\}$ of $\left\{x^{(n)}\right\}$ converges to a minimal immersion, $x: M \rightarrow \mathbf{R}^{m}$, whose Gauss map is g.

Proof. By assumption, g is not constant and we may assume that $\left|K_{n}\right| \leq 1$ in M, for each $n \in \mathbf{N}$. For every point $p \in M$ let $\left(U_{p}, z\right)$ be a complex local coordinate centered at p. Let $\tilde{g}^{(n)}=\left(g_{1}^{(n)}, \ldots, g_{m}^{(n)}\right)$ where $g_{i}^{(n)}=\frac{\partial x_{i}^{(n)}}{\partial z}, 1 \leq i \leq m$, and let $\tilde{g}=\left(g_{1}, \ldots, g_{m}\right)$ be a local reduced representation of g on U_{p}. Since some $g_{i}(z)$ is non-zero for each z, we know that $g(M)$ is not contained in some coordinate hyperplane. Without loss of generality, we assume that $g(M)$ is not contained in the first coordinate hyperplane $H_{1}=\left\{\left[y_{1}: \cdots: y_{m}\right] \in \mathbf{P}^{m-1}(\mathbf{C}) \mid y_{1}=0\right\}$. Let

$$
M_{1}=\left\{p \in M \mid g(p) \notin H_{1}, \tilde{g}(p) \wedge \tilde{g}^{\prime}(p) \neq 0\right\} .
$$

Note that $M-M_{1}$ is a discrete set: namely, it consists of the zeros of g_{1} (which are isolated, since $g(M) \not \subset H_{1}$, which is equivalent to $g_{1} \not \equiv 0$) together with the common zeros of the components of $\tilde{g} \wedge \tilde{g}^{\prime}$, which are the holomorphic functions $g_{j} g_{k}^{\prime}-g_{k} g_{j}^{\prime}$. In particular,

$$
g_{1} g_{k}^{\prime}-g_{k} g_{1}^{\prime}=g_{1}^{2}\left(\frac{g_{k}}{g_{1}}\right)^{\prime}
$$

so that $\tilde{g} \wedge \tilde{g}^{\prime} \equiv 0$ implies that $g_{k} / g_{1}=c_{k}$, a constant for each k, so that $\tilde{g}=g_{1}\left(1, c_{2}, \ldots, c_{m}\right)$ and the map g would be constant, contrary
to assumption. Thus, the zeros of $\tilde{g} \wedge \tilde{g}^{\prime}$ are isolated and the points of $M-M_{1}$ are also isolated.

Let $p \in M_{1}$. Since $g(p) \notin H_{1}$, there is a neighborhood U_{p} of p such that $g(z) \notin H_{1}$, and $g^{(n)}(z) \notin H_{1}$ for n large enough and every $z \in U_{p}$. Choosing U_{p} sufficiently small, we have that $g_{2} / g_{1}, \ldots, g_{n} / g_{1}$ are holomorphic and

$$
4 \frac{\left|\tilde{g} \wedge \tilde{g}^{\prime}\right|^{2} /\left|g_{1}\right|^{4}}{\left(1+\sum_{j=2}^{m}\left|g_{j} / g_{1}\right|^{2}\right)^{3}}=4 \frac{\sum_{j<k}\left|\frac{g_{j}}{g_{1}}\left(\frac{g_{k}}{g_{1}}\right)^{\prime}-\frac{g_{k}}{g_{1}}\left(\frac{g_{j}}{g_{1}}\right)^{\prime}\right|^{2}}{\left(1+\sum_{j=2}^{m}\left|g_{j} / g_{1}\right|^{2}\right)^{3}} \geq 2 c_{1},
$$

in U_{p}, where c_{1} is some positive constant. Since $g^{(n)} \rightarrow g$ uniformly, by Lemma 3.1, $\left\{g_{j}^{(n)} / g_{1}^{(n)}\right\}$ converges uniformly to g_{j} / g_{1} on $U_{p}, 1 \leq j \leq m$. So we have
in U_{p}, and by (4),

$$
\frac{c_{1}}{\left|g_{1}^{(n)}\right|^{2}} \leq 4 \frac{\sum_{l<k}\left|\frac{g_{l}^{(n)}}{g_{1}^{(n)}}\left(\frac{g_{k}^{(n)}}{g_{1}^{(n)}}\right)^{\prime}-\frac{g_{k}^{(n)}}{g_{1}^{(n)}}\left(\frac{g_{l}^{(n)}}{g_{1}^{(n)}}\right)^{\prime}\right|^{2}}{\left|g_{1}^{(n)}\right|^{2}\left(1+\sum_{j=2}^{m}\left|g_{j}^{(n)} / g_{1}^{(n)}\right|^{2}\right)^{3}}=\left|K_{n}\right| \leq 1,
$$

in U_{p}. Therefore

$$
c_{1} \leq\left|g_{1}^{(n)}\right|^{2}
$$

in U_{p}, for large n. Then $\left\{g_{1}^{(n)}\right\}$ is relatively compact in $\mathcal{M}\left(U_{p}\right)$. Noticing that $M-M_{1}$ is discrete, by taking a subsequence, if necessary, we can assume that the globally defined holomorphic 1-forms $\left\{g_{1}^{(n)} d z\right\}$ converge on M_{1}, to a holomorphic 1-form $h_{1} d z$ or to infinity, uniformly on every compact subset of M_{1}. We consider each case below:

Case 1. $\left\{g_{1}^{(n)} d z\right\}$ converges to infinity uniformly on every compact subset of M_{1}.

For $p \in M_{1}$, we have, by (4),

$$
\begin{equation*}
K_{n}(p)=-4 \frac{\sum_{j<k}\left|\frac{g_{j}^{(n)}(p)}{g_{1}^{(n)}(p)}\left(\frac{g_{n}^{(n)}}{g_{1}^{(n)}}\right)^{\prime}(p)-\frac{g_{1}^{(n)}(p)}{g_{1}^{(n)}(p)}\left(\frac{g_{j}^{(n)}}{g_{1}^{(n)}}\right)^{\prime}(p)\right|^{2}}{\left|g_{1}^{(n)}(p)\right|^{2}\left(1+\sum_{j=2}^{m}\left|g_{j}^{(n)}(p) / g_{1}^{(n)}(p)\right|^{2}\right)^{3}} \rightarrow 0 . \tag{5}
\end{equation*}
$$

Let p be a point such that $p \notin M_{1}$ but also $g(p) \notin H_{1}$; then in a small disc of $U_{p}, D(2 \epsilon), g^{(n)}(z) \notin H_{1}$ for n large enough, $z \in D(2 \epsilon)$. This means that $g_{1}^{(n)}$ is non-vanishing on $D(2 \epsilon)$ and $g_{1}^{(n)}$ converges to infinity on $\partial D(\epsilon)$. From the maximum principle we conclude that $\left\{g_{1}^{(n)}\right\}$ converges to infinity on $D(\epsilon)$. Therefore we again have $K_{n}(p) \rightarrow 0$ by (4).

Finally suppose that $g(p) \in H_{1}$, i.e., $g_{1}(p)=0$. Since $g(p)$ is not contained in some coordinate hyperplane, we assume that $g(p) \notin H_{2}$, where H_{2} is the second coordinate hyperplane, $H_{2}=\left\{\left[y_{1}: \cdots: y_{n}\right] \in\right.$ $\left.\mathbf{P}^{n-1}(\mathbf{C}) \mid y_{2}=0\right\}$. Therefore, on a small disc, $D(2 \epsilon), g^{(n)}(z) \notin H_{2}$ for n large enough, i.e., $g_{2}^{(n)}(z) \neq 0$, for $z \in D(2 \epsilon)$, and $g_{1}^{(n)}, g_{1}$ have no zeros on a neighborhood of $\partial D(\epsilon)$ for n large enough. By Lemma 3.1, $\left\{\frac{g_{2}^{(n)}}{g_{1}^{(n)}}\right\}$, as a sequence of non-vanishing holomorphic functions, converges uniformly on $\partial D(\epsilon)$. Clearly, $\left\{\frac{g_{2}^{(n)}}{g_{1}^{(n)}} g_{1}^{(n)}\right\}$ converges uniformly to infinity on $\partial D(\epsilon)$, and therefore $g_{2}^{(n)}$ converges uniformly to infinity on $\partial D(\epsilon)$. Again from the maximum principle, we conclude that $g_{2}^{(n)}$ converges to infinity on $D(\epsilon)$. By (4), noticing that

$$
\left|\tilde{g}^{(n)} \wedge \tilde{g}^{(n)^{\prime}}\right|^{2} /\left|g_{2}^{(n)}\right|^{4}=\sum_{j<k} \left\lvert\, \frac{g_{j}^{(n)}}{g_{2}^{(n)}}\left(\frac{g_{k}^{(n)}}{g_{2}^{(n)}}\right)^{\prime}-\frac{g_{k}^{(n)}}{g_{2}^{(n)}}\left(\left.\left.\frac{g_{j}^{(n)}}{g_{2}^{(n)}}\right|^{\prime}\right|^{2},\right.\right.
$$

we have

$$
K_{n}(p)=-4 \frac{\left.\sum_{j<k} \left\lvert\, \frac{g_{j}^{(n)}}{g_{2}^{(n)}} \frac{g_{k}^{(n)}}{g_{2}^{(n)}}\right.\right)^{\prime}-\left.\frac{g_{k}^{(n)}}{g_{2}^{(n)}}\left(\frac{g_{j}^{(n)}}{g_{2}^{(n)}}\right)^{\prime}\right|^{2}}{\left|g_{2}^{(n)}\right|^{2}\left(\sum_{j=1}^{n}\left|g_{j}^{(n)} / g_{2}^{(n)}\right|^{2}\right)^{3}} \rightarrow 0 .
$$

Thus, we have proved that $K_{n}(p) \rightarrow 0$ for all $p \in M$. This corresponds to case (i) of the lemma.

Case 2. $\left\{g_{1}^{(n)} d z\right\}$ converges to a holomorphic 1-form, $h_{1} d z$, on M_{1}.
Let $p \in M-M_{1}$. If $D(2 \epsilon)$ is a small disc contained in U_{p}, as $\left\{g_{1}^{(n)}\right\} \rightarrow h_{1}$ uniformly on $\partial D(\epsilon)$ and $g_{1}^{(n)}$ are holomorphic, using the maximum principle, we see that $\left\{g_{1}^{(n)}\right\}$ is relatively compact on $D(\epsilon)$. Therefore $h_{1} d z$ extends to a holomorphic 1-form on M and the global 1-forms $\left\{g_{1}^{(n)} d z\right\}$ converge to $h_{1} d z$ on M.

We now prove that, for every integer $j, 2 \leq j \leq m$, the global 1-forms $\left\{g_{j}^{(n)} d z\right\}$ converge to a holomorphic form $h_{j} d z$ on M. Let $p \in M$ such that $g(p) \notin H_{1}$; then there is a neighborhood U_{p} of p such that $g_{1}, g_{1}^{(n)}$ have no zeros for n large enough, $z \in U_{p}$. Since $g_{j}^{(n)}=\frac{g_{j}^{(n)}}{g_{1}^{(n)}} g_{1}^{(n)}$, and by Lemma 3.1, $\left\{\frac{g_{j}^{(n)}}{g_{1}^{(n)}}\right\}$ converges uniformly on U_{p}, and $g_{1}^{(n)}$ also converges uniformly on $U_{p},\left\{g_{j}^{(n)}\right\}$ must converge uniformly on U_{p}. For the points p such that $g(p) \in H_{1}$, if $D(2 \epsilon) \subset U_{p}$ is small enough so that $g_{1}, g_{1}^{(n)}$ have no zeros on a neighborhood of $\partial D(\epsilon)$ for n large enough, then we just proved that $\left\{g_{j}^{(n)}\right\}$ is uniformly convergent on $\partial D(\epsilon)$. Since $g_{j}^{(n)}$ are holomorphic, by the maximum principle, we have that $g_{j}^{(n)}$ converges uniformly on $D(\epsilon)$. Therefore the globally defined holomorphic 1-forms $g_{j}^{(n)} d z$ converge to $\omega_{j}=h_{j} d z, 1 \leq j \leq m$.

We now check that the conditions in Theorem 2.1 are satisfied. Obviously we only need check that $\omega_{j}, 1 \leq j \leq m$, have no common zero. Take an arbitrary point $p \in M$; since $\tilde{g}=\left(g_{1}, \ldots, g_{m}\right)$ is a reduced representation of g, there is some integer $1 \leq k \leq m$, such that $g_{k}(p) \neq 0$. So there is some neighborhood U_{p}, such that g_{k} is non-vanishing on U_{p}, i.e., $g\left(U_{p}\right)$ omits k-th coordinate hyperplane H_{k}. Since $g^{(n)}$ converges to g uniformly on every compact subset of M, for n large enough, $g^{(n)}\left(U_{p}\right)$ also omits H_{k}. So $g_{k}^{(n)}$ is non-vanishing on U_{p}. By Hurwitz's theorem, since $g_{k}^{(n)}$ converges uniformly on U_{p} to h_{k}, either h_{k} is non-vanishing on U_{p} or $h_{k} \equiv 0$ on U_{p}. If h_{k} is non-vanishing on U_{p}, then we are done. Otherwise, $h_{k} \equiv 0$ on U_{p}, so $g_{k}^{(n)} \rightarrow 0$ on U_{p}. Pick a point $q \in U_{p}$ such that $q \in M_{1}$, then, by (4),

$$
K_{n}(q)=-\left.4 \frac{\left|g_{k}(q)\right|^{2}}{\left|g_{k}^{(n)}(q)\right|^{2}} \frac{\sum_{i<j}\left|\frac{g_{k}^{(n)}(q)}{g_{k}^{(n)}(q)}\left(\frac{g_{g}^{(n)}}{g_{k}^{(n)}}\right)^{\prime}(q)\right|^{2}\left(1+\sum_{j=1, j \neq k}^{m}\left|g_{j}^{(n)}(q) / g_{k}^{(n)}(q)\right|^{2}\right)^{3}}{g_{k}^{(n)}(q)}\left(\frac{g_{n}^{(n)}}{g_{k}^{(n)}}\right)^{\prime}(q)\right|^{2} .
$$

But

$$
\frac{\left.\sum_{i<j} \left\lvert\, \frac{g_{i}^{(n)}(q)}{g_{k}^{(n)}(q)}\left(\frac{g_{j}^{(n)}}{g_{k}^{(n)}}\right)^{\prime}(q)-\frac{g_{j}^{(n)}(q)}{g_{k}^{(n)}(q)}\left(\frac{g_{i}^{(n)}}{g_{k}^{(n)}}\right)^{\prime}(q)\right.\right)\left.\right|^{2}}{\left|g_{k}(q)\right|^{2}\left(1+\sum_{j=2, j \neq k}^{m}\left|g_{j}^{(n)}(q) / g_{k}^{(n)}(q)\right|^{2}\right)^{3}} \rightarrow \frac{\left|\tilde{g} \wedge \tilde{g}^{\prime}\right|^{2}}{|\tilde{g}|^{6}}(q) \neq 0,
$$

and $g_{k}(q) \neq 0, g_{k}^{(n)}(q) \rightarrow 0$. So $\left|K_{n}(q)\right| \rightarrow \infty$, which contradicts the assumption that $\left\{\left|K_{n}\right|\right\}$ is uniformly bounded. Therefore, the conditions
in Theorem 2.1 are satisfied. So they define a minimal surface $x: M \rightarrow$ \mathbf{R}^{m} whose Gauss map is g. q.e.d.

We now prove the main theorem.

Proof of the Main Theorem.

Suppose the theorem is not true. We will construct a nonflat complete minimal surface whose Gauss map omits a set of hyperplanes in general position, thus getting a contradiction with Theorem 2.3. So suppose the conclusion of the theorem is not true; then there is a sequence of (non complete) minimal surfaces $x^{(n)}: M_{n} \rightarrow \mathbf{R}^{m}$ and points $p_{n} \in M_{n}$ such that $\left|K_{n}\left(p_{n}\right)\right| d_{n}^{2}\left(p_{n}\right) \rightarrow \infty$, and such that the Gauss map $g^{(n)}$ of $x^{(n)}$ omits a fixed set of q hyperplanes in general position, with $q>m(m+1) / 2$.

We claim that the surfaces M_{n} can be chosen so that

$$
\begin{equation*}
K_{n}\left(p_{n}\right)=-1, \quad-4 \leq K_{n} \leq 0 \quad \text { on } M_{n} \text { for all } n \tag{6}
\end{equation*}
$$

We now prove the claim. Without loss of generality, we can assume that M_{n} is a geodesic disk centered at p_{n}. Let

$$
M_{n}^{\prime}=\left\{p \in M_{n}: d_{n}\left(p, p_{n}\right) \leq d_{n}\left(p_{n}\right) / 2\right\}
$$

Then K_{n} is uniformly bounded on M_{n}^{\prime} and $d_{n}^{\prime}(p)=$ distance of p to the boundary of M_{n}^{\prime} tends to zero as $p \rightarrow \partial M_{n}^{\prime}$. Hence $\left|K_{n}(p)\right|\left(d_{n}^{\prime}(p)\right)^{2}$ has a maximum at a point p_{n}^{\prime} interior to M_{n}^{\prime}. Therefore

$$
\left|K_{n}\left(p_{n}^{\prime}\right)\right| d_{n}^{\prime}\left(p_{n}^{\prime}\right)^{2} \geq\left|K_{n}\left(p_{n}\right)\right| d_{n}^{\prime}\left(p_{n}\right)^{2}=\frac{1}{4}\left|K_{n}\left(p_{n}\right)\right| d_{n}^{2}\left(p_{n}\right) \rightarrow \infty
$$

So we can replace the M_{n} by the M_{n}^{\prime}, with $\left|K_{n}\left(p_{n}^{\prime}\right)\right| d_{n}^{\prime}\left(p_{n}^{\prime}\right)^{2} \rightarrow \infty$. We rescale M_{n}^{\prime} to make $K_{n}\left(p_{n}^{\prime}\right)=-1$. By the invariance under scaling of the quantity $K(p) d(p)^{2}$, we will have $d_{n}^{\prime}\left(p_{n}^{\prime}\right) \rightarrow \infty$; here, without causing confusion, we use the same notation d_{n}^{\prime} to denote the geodesic distance with respect to the rescaled metric. Again we can assume that M_{n}^{\prime} is a geodesic disc centered at p_{n}^{\prime}, and let

$$
M_{n}^{\prime \prime}=\left\{p \in M_{n}^{\prime} \left\lvert\, d_{n}\left(p, p_{n}^{\prime}\right)<\frac{d_{n}^{\prime}\left(p_{n}^{\prime}\right)}{2}\right.\right\}
$$

Then $p \in M_{n}^{\prime \prime}$ implies that $d_{n}^{\prime}(p) \geq \frac{d_{n}^{\prime}\left(p_{n}^{\prime}\right)}{2}$ and

$$
\left|K_{n}(p)\right| \frac{d_{n}^{\prime}\left(p_{n}^{\prime}\right)^{2}}{4} \leq\left|K_{n}(p)\right| d_{n}^{\prime}(p)^{2} \leq\left|K_{n}\left(p_{n}^{\prime}\right)\right| d_{n}^{\prime}\left(p_{n}^{\prime}\right)^{2}=d_{n}^{\prime}\left(p_{n}^{\prime}\right)^{2}
$$

Therefore $\left|K_{n}(p)\right| \leq 4$ on $M_{n}^{\prime \prime}$. Furthermore,

$$
d_{n}^{\prime \prime}\left(p_{n}^{\prime}\right)=d\left(p_{n}^{\prime}, \partial M_{n}^{\prime \prime}\right)=d_{n}^{\prime}\left(p_{n}^{\prime}\right) / 2 \rightarrow \infty
$$

This proves the claim.
By translations of \mathbf{R}^{m} we can assume that $x^{(n)}\left(p_{n}\right)=\mathbf{0}$. We can also assume that M_{n} is simply connected, by taking its universal covering, if necessary. By the uniformization theorem, M_{n} is conformally equivalent to either the unit disc D or the complex plane \mathbf{C}, and we can suppose that p_{n} maps onto 0 for each n. But the case that M_{n} is conformally equivalent to \mathbf{C} is impossible because the condition that $g^{(n)}$ misses more than $m(m+1) / 2$ hyperplanes in general position in $\mathbf{P}^{m-1}(\mathbf{C})$, implies, by Picard's theorem, that $g^{(n)}$ is constant, so $K_{n} \equiv 0$, which contradicts the condition that $\left|K_{n}(0)\right|=1$. So we have constructed a sequence of minimal surfaces, $x^{(n)}: D \rightarrow \mathbf{R}^{m}$, satisfying (6). Since, by Theorem 2.4, $\mathbf{P}^{m-1}(\mathbf{C})$ minus $2 m-1$ hyperplanes is complete Kobayashi hyperbolic, and $m(m+1) / 2 \geq 2 m-1$, a subsequence of generalized Gauss maps $g^{(n)}$ of $x^{(n)}$ exists-without loss of generality we assume $g^{(n)}$ itself-such that $g^{(n)}: D \rightarrow \mathbf{P}^{m-1}(\mathbf{C})$ converges uniformly on every compact subset of D to a map $g: D \rightarrow \mathbf{P}^{m-1}(\mathbf{C})$.

We now claim that g is non-constant. Suppose not, i.e., g is a constant map, and g maps the disk D onto a single point P. Let H be any hyperplane not containing the point P, and let U, V be disjoint neighborhoods of H and P respectively. Let C be the constant in Theorem 1.2 such that

$$
|K(p)|^{1 / 2} d(p) \leq C
$$

for any minimal surface in \mathbf{R}^{m} whose Gauss map omits the neighborhood U of H, where p is a point of S and $d(p)$ is the geodesic distance of p to the boundary of S. Choose $r<1$ such that the hyperbolic distance R of $z=0$ to $|z|=r$ satisfies $R>C$. Since $g^{(n)}$ converges uniformly to g on $|z| \leq r$, the image of $|z|=r$ lies in the neighborhood V of P for sufficiently large n, say $n \geq n_{0}$. It follows that for $n \geq n_{0}$, the image of the disk $|z| \leq r$ under $g^{(n)}$ omits the neighborhood U of H and we may therefore apply the above inequality to conclude

$$
\left|K_{n}(0)\right|^{1 / 2} d_{n}(r) \leq C,
$$

where $d_{n}(r)$ is the geodesic distance from the origin to the boundary of the surface $x^{(n)}: D(r) \rightarrow \mathbf{R}^{m}$. But $\left|K_{n}(0)\right|=1$ for all n, and hence
$d_{n}(r) \leq C$ for $n \geq n_{0}$. On the other hand, we get a lower bound for $d_{n}(r)$ from Lemma 2.1. The surface $x^{(n)}:\{|z|<1\} \rightarrow \mathbf{R}^{m}$ is a geodesic disk of radius R_{n}. If we reparametrize by $w=r_{n} z$ where the subset $\left\{w\left||w|<r_{n}\right\}\right.$ has hyperbolic radius R_{n}, then the circle $|z|=r$ corresponds to $|w|=r_{n} r$, and by Lemma 2.1, the distance in the surface metric from the origin to any point on the circle $|z|=r$, or equivalently, $|w|=r_{n} r$, is greater than or equal to the hyperbolic distance from 0 to $|w|=r_{n} r$. But as $n \rightarrow \infty, R_{n} \rightarrow \infty$ and $r_{n} \rightarrow 1$, so that the hyperbolic radius of $|w|=r_{n} r$ tends to the hyperbolic radius of $|w|=r$, which is R. Since by assumption $R>C$ we have for n sufficiently large that the surface distance from $z=0$ to $|z|=r$ is greater than C, contradicting the earlier bound $d_{n}(r) \leq C$. Thus we conclude that the limit function g can not be constant.

Therefore the hypotheses of Lemma 3.2 are satisfied. Since $\left|K_{n}(0)\right|=$ 1 , the possibility (i) of Lemma 3.2 cannot happen. Thus, a subsequence $\left\{x^{\left(n^{\prime}\right)}\right\}$ of $\left\{x^{(n)}\right\}$ converges to a minimal immersion $x: D \rightarrow \mathbf{R}^{m}$, whose Gauss map is g. By (6) and Lemma 2.2, x is complete. By assumption, $g^{(n)}$ omits hyperplanes H_{1}, \ldots, H_{q} in $\mathbf{P}^{m-1}(\mathbf{C})$, located in general position, $q>m(m+1) / 2$. By Hurwitz's theorem(Theorem 2.2), either g omits these hyperplanes, or the image of g lies in some of these hyperplanes. Say $g(M) \subset \cap_{j=1}^{k} H_{j}=\mathbf{P}(V)$, where V is a subspace of \mathbf{C}^{m} of dimension $m-k$, and $g: M \rightarrow \mathbf{P}(V)$ omits the hyperplanes $H_{k+1} \cap\left(\cap_{j=1}^{k} H_{j}\right), \ldots, H_{q} \cap\left(\cap_{j=1}^{k} H_{j}\right)$ in $\mathbf{P}(V)$. Since the hyperplanes $H_{k+1} \cap\left(\cap_{j=1}^{k} H_{j}\right), \ldots, H_{q} \cap\left(\cap_{j=1}^{k} H_{j}\right)$ in $\mathbf{P}(V)$ are still in general position in $\mathbf{P}(V)$ because H_{1}, \ldots, H_{q} are in general position in $\mathbf{P}^{m-1}(\mathbf{C})$, and $q-k>m(m+1) / 2-k \geq(m-k)(m-k+1) / 2$, it follows from Theorem 2.3 that g is constant. But we have just proved that g is not constant. This leads to a contradiction. Therefore the main theorem is proved.

References

[1] L. V. Ahlfors, Über die Anwendung differentialgeometrischer Methoden zur Untersuchung von Überlagerungsfächen, Acta Soc. Sci. Fennicae Nova Ser. A 2 (1937) 1-17.
[2] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978) 213-219.
[3] S. S. Chern \& R. Osserman, Complete minimal surfaces in euclidean n-space, J. Anal. Math. 19 (1967) 15-34.
[4] H. Fujimoto, On the number of exceptional values of the Gauss map of minimal surfaces, J. Math. Soc. Japan 40 (1988) 235-247.
[5] _, Modified defect relations for the Gauss map of minimal surfaces, II, J. Differential Geom. 31 (1990) 365-385.
[6] , On the Gauss curvature of minimal surfaces, J. Math. Soc. Japan 44 (1992) 427-439.
[7] -, Value distribution theory of the Gauss map of minimal surfaces in \mathbf{R}^{m}, Aspects of Math., Vol. E21, Vieweg, Braunschweig 1993.
[8] M. Green, The hyperbolicity of the complement of $2 n+1$ hyperplanes in general position in \mathbf{P}^{n} and related results, Proc. Amer. Math. Soc. 66 (1977) 109-113.
[9] R. E. Greene \& H. Wu, Function theory on manifolds which possess a pole, Lecture Notes in Math., No. 699, Springer, New York, 1979.
[10] D. Hoffman \& R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 236 (1980) 1-105.
[11] S. Lang, Introduction to complex hyperbolic space, Springer, Berlin, 1987.
[12] R. Osserman, Global properties of minimal surfaces in E^{3} and E^{m}, Ann. of Math. 80 (1964) 340-364.
[13] , A survey of minimal surfaces, 2nd edition, Dover Publ. Inc., New York, 1986.
[14] A. Ros, The Gauss map of minimal surfaces, Preprint.
[15] M. Ru, On the Gauss map of minimal surfaces immersed in \mathbf{R}^{n}, J. Differential Geom. 34 (1991) 411-423.
[16] M. Troyanov, The Schwarz lemma for nonpositively curved Riemannian surfaces, Manuscripta Math. 72 (1991) 251-256.
[17] S. T. Yau, A general Schwarz lemma for Kähler manifolds, Amer. J. Math. 100 (1978) 197-203.

Stanford University
Mathematical Sciences Research Institute, Berkeley University of Houston

[^0]: Received April 30, 1996, and, in revised form, August 30, 1996. The second author's research was partially supported by NSF grant DMS-9506424 at the University of Houston and by NSF grant DMS-9022140 at MSRI.

